Necessary Conditions for Earthly Life Floating in the Venusian Atmosphere

Jennifer J．Abreu，Alyxander R．Anchordoqui，Nyamekye J．Fosu，Michael G．Kwakye，Danijela Kyriakakis，Krystal Reynoso，and Luis A．Anchordoqui

General Idea

Prompted by the recent observation of phosphine gas（a possible biomarker）in the Venusian atmosphere［arXiv：2009．06593］，we investigate the possible existence of life in Venus．Our study rides on the life cycle for aerial microbes proposed in［arXiv：2009．06474］．We reexamine the feasibility that liquid droplets or aerosols containing microbes can remain floating in the Venus clouds enough time for replication to be effective．Key considerations include the size and characteristics of these droplets，their ability to persist against gravitational settling，and comparisons with microbial replication times on Earth．The research aims to evaluate the feasibility of microbial life in the Venus＇s atmosphere and contributes theoretical insights to astrobiological studies．For details，see［arXiv：2404．05356］

Venus

（2）Upodrafts carry the spores up to the hobiticble elverer．

Doubling time vs Fallout time

Replications Rates

If the observation begins with one bacterium，we can estimate how many bacteria will be present after six hours．The E．coli divides every 20 minutes，and so this bacterium divide（60／20＝3） three times per hour．If the bacteria grow for twelve hours，each bacterium will divide：$n=3$ times per hour times 12 hours＝ 36 times．Every time the bacteria reproduce，the number doubles．Then，the number of bacteria at the end of the growth period is

$$
\mathbf{N}_{\text {final }}=\mathbf{N}_{\text {initial }} 2^{n}=7 \times 10^{10}
$$

Fallout Times

Stokes fallout time while droplets are spherical shaped can be determined by＿

$$
v_{\text {down }}=\mu m_{\text {droplet }} g_{+} \quad . v_{\text {down }}=\text { downward terminal speed }=4 \times 10^{-3} \mathrm{~m} / \mathrm{s}
$$

$g_{o}=$ acceleration due to gravity $=8.9 \mathrm{~m} / \mathrm{s}^{2}$

Abstract

\title{ }

 －

$v_{\text {down }}=\mu m_{\text {droplet }} g_{\text {or }}$	$v_{\text {down }}=$ downward terminal speed $=4 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
$\mu=\frac{1}{\square-m}$	$g_{⿱ ㇒ ⿻ ⺆ 一 ⿱ 丶 丶 ⿱ ⿰ ㇒ 一 十 凵}=\text { acceleration due to gravity }=8.9 \mathrm{~m} / \mathrm{s}^{2}$
$\begin{aligned} & 6 \pi \eta_{+} r_{\text {droplet }} \\ t= & 1 \text { month } \end{aligned}$	$\eta_{\odot}=\text { dynamic viscosity }=2 \times 10^{-5} \mathrm{~kg} / \mathrm{m} / \mathrm{s}$
For $10 \mathrm{~km} \square$ th	d correspond to $r_{\text {droplet }}=10 \mu \mathrm{~m}$

$$
\mu=\frac{1}{6 \pi \eta_{+} r_{d r o p l e t}}
$$

$$
t=1 \text { month }
$$

$\eta_{o}=$ dynamic viscosity $=2 \times 10^{-5} \mathrm{~kg} / \mathrm{m} / \mathrm{s}$ For 10 km this would correspond to $r_{\text {droplet }}=10 \mu \mathrm{~m}$
Take Home Message

－We＇ve reconsidered the idea of life existing in the clouds of Venus，using Earth＇s biochemistry． We＇ve found that aerosols take much longer to settle down in Venus＇s lower atmosphere compared to the time it takes for bacteria to replicate on Earth．
－Bearing this in mind，if there are upward air currents，it＇s possible that a stable population of microorganisms，could exist in the clouds of Venus．
－Life may have arisen in a good－nature surface habitat in the early history of Venus and the microbes lofted into the clouds before the planet suffered a runaway greenhouse．
－Such airborne microbial life might be waiting for exploration by missions like the Venus Life Finder（VLF）Mission［arXiv：2112．05153］．

See more details

