- 53. Suppose you install a compass on the center of a car's dashboard. (a) Assuming the dashboard is made mostly of plastic, compute an order-of-magnitude estimate for the magnetic field at this location produced by the current when you switch on the car's headlights. (b) How does this estimate compare with the Earth's magnetic field?
- 54. Why is the following situation impossible? The magnitude of the Earth's magnetic field at either pole is approximately 7.00×10^{-5} T. Suppose the field fades away to zero before its next reversal. Several scientists propose plans for artificially generating a replacement magnetic field to assist with devices that depend on the presence of the field. The plan that is selected is to lay a copper wire around the equator and supply it with a current that would generate a magnetic field of magnitude 7.00×10^{-5} T at the poles. (Ignore magnetization of any materials inside the Earth.) The plan is implemented and is highly successful.
- 55. A nonconducting ring of radius 10.0 cm is uniformly M charged with a total positive charge 10.0 μ C. The ring rotates at a constant angular speed 20.0 rad/s about an axis through its center, perpendicular to the plane of the ring. What is the magnitude of the magnetic field on the axis of the ring 5.00 cm from its center?
- 56. A nonconducting ring of radius *R* is uniformly charged with a total positive charge *q*. The ring rotates at a constant angular speed ω about an axis through its center, perpendicular to the plane of the ring. What is the magnitude of the magnetic field on the axis of the ring a distance $\frac{1}{2}R$ from its center?
- 57. A very long, thin strip of metal of width *w* carries a current *I* along its length as shown in Figure P30.57. The current is distributed uniformly across the width of the strip. Find the magnetic field at point *P* in the diagram. Point *P* is in the plane of the strip at distance *b* away from its edge.

Figure P30.57

58. A circular coil of five turns and a diameter of 30.0 cm is oriented in a vertical plane with its axis perpendicular to the horizontal component of the Earth's magnetic field. A horizontal compass placed at the coil's center is made to deflect 45.0° from magnetic north by a current of 0.600 A in the coil. (a) What is the horizontal component of the Earth's magnetic field? (b) The current in the coil is switched off. A "dip

needle" is a magnetic compass mounted so that it can rotate in a vertical north–south plane. At this location, a dip needle makes an angle of 13.0° from the vertical. What is the total magnitude of the Earth's magnetic field at this location?

- **59.** A very large parallel-plate capacitor has uniform charge per unit area $+\sigma$ on the upper plate and $-\sigma$ on the lower plate. The plates are horizontal, and both move horizontally with speed v to the right. (a) What is the magnetic field between the plates? (b) What is the magnetic field just above or just below the plates? (c) What are the magnitude and direction of the magnetic force per unit area on the upper plate? (d) At what extrapolated speed v will the magnetic force on a plate balance the electric force on the plate? Suggestion: Use Ampere's law and choose a path that closes between the plates of the capacitor.
- 60. Two circular coils of radius R, each with N turns, are perpendicular to a common axis. The coil centers are a distance R apart. Each coil carries a steady current I in the same direction as shown in Figure P30.60.(a) Show that the magnetic field on the axis at a distance x from the center of one coil is

$$B = \frac{N\mu_0 I R^2}{2} \left[\frac{1}{(R^2 + x^2)^{3/2}} + \frac{1}{(2R^2 + x^2 - 2Rx)^{3/2}} \right]$$

(b) Show that dB/dx and d^2B/dx^2 are both zero at the point midway between the coils. We may then conclude that the magnetic field in the region midway between the coils is uniform. Coils in this configuration are called *Helmholtz coils*.

Figure P30.60 Problems 60 and 61.

61. Two identical, flat, circular coils of wire each have 100 turns and radius R = 0.500 m. The coils are arranged as a set of Helmholtz coils so that the separation distance between the coils is equal to the radius of the coils (see Fig. P30.60). Each coil carries current I = 10.0 A. Determine the magnitude of the magnetic field at a point on the common axis of the coils and halfway between them.

62. Two circular loops are parallel, coaxial, and almost in contact, with their centers 1.00 mm apart (Fig. P30.62, page 932). Each loop is 10.0 cm in radius. The top loop carries a clockwise current of *I* = 140 A. The bottom loop carries a counterclockwise current of *I* = 140 A. (a) Calculate the magnetic force exerted by the bottom loop on the top loop. (b) Suppose a student thinks the first step in solving part (a) is to use Equation 30.7 to find the magnetic field created by one of the loops.

How would you argue for or against this idea? (c) The upper loop has a mass of 0.021 0 kg. Calculate its acceleration, assuming the only forces acting on it are the force in part (a) and the gravitational force.

Figure P30.62

63. Two long, straight wires cross each other perpendicularly as shown in Figure P30.63. The wires are thin so that they are effectively in the same plane but do not touch. Find the magnetic field at a point 30.0 cm above the point of intersection of the wires along the *z* axis; that is, 30.0 cm out of the page, toward you.

Figure P30.63

64. Two coplanar and concentric circular loops of wire carry currents of $I_1 = 5.00$ A and $I_2 = 3.00$ A in opposite directions as in Figure P30.64. If $r_1 = 12.0$ cm and $r_2 = 9.00$ cm, what are (a) the magnitude and (b) the direction of the net magnetic field at the center of the two loops? (c) Let r_1 remain fixed at 12.0 cm and let r_2 be a variable. Determine the value of r_2 such that the net field at the center of the loops is zero.

Figure P30.64

65. As seen in previous chapters, any object with electric charge, stationary or moving, other than the charged object that created the field, experiences a force in an electric field. Also, any object with electric charge, stationary or moving, can create an electric field (Chapter 23). Similarly, an electric current or a moving electric charge, other than the current or charge that created the field, experiences a force in a magnetic field (Chapter 29), and an electric current cre-

ates a magnetic field (Section 30.1). (a) To understand how a moving charge can also create a magnetic field, consider a particle with charge q moving with velocity $\vec{\mathbf{v}}$. Define the position vector $\vec{\mathbf{r}} = r\hat{\mathbf{r}}$ leading from the particle to some location. Show that the magnetic field at that location is

$$\vec{\mathbf{B}} = \frac{\mu_0}{4\pi} \; \frac{q \vec{\mathbf{v}} \times \hat{\mathbf{r}}}{r^2}$$

(b) Find the magnitude of the magnetic field 1.00 mm to the side of a proton moving at 2.00×10^7 m/s. (c) Find the magnetic force on a second proton at this point, moving with the same speed in the opposite direction. (d) Find the electric force on the second proton.

66. Review. Rail guns have been suggested for launch-AMT ing projectiles into space without chemical rockets. GP A tabletop model rail gun (Fig. P30.66) consists of two long, parallel, horizontal rails $\ell = 3.50$ cm apart, bridged by a bar of mass m = 3.00 g that is free to slide without friction. The rails and bar have low electric resistance, and the current is limited to a constant I = 24.0 A by a power supply that is far to the left of the figure, so it has no magnetic effect on the bar. Figure P30.66 shows the bar at rest at the midpoint of the rails at the moment the current is established. We wish to find the speed with which the bar leaves the rails after being released from the midpoint of the rails. (a) Find the magnitude of the magnetic field at a distance of 1.75 cm from a single long wire carrying a current of 2.40 A. (b) For purposes of evaluating the magnetic field, model the rails as infinitely long. Using the result of part (a), find the magnitude and direction of the magnetic field at the midpoint of the bar. (c) Argue that this value of the field will be the same at all positions of the bar to the right of the midpoint of the rails. At other points along the bar, the field is in the same direction as at the midpoint, but is larger in magnitude. Assume the average effective magnetic field along the bar is five times larger than the field at the midpoint. With this assumption, find (d) the magnitude and (e) the direction of the force on the bar. (f) Is the bar properly modeled as a particle under constant acceleration? (g) Find the velocity of the bar after it has traveled a distance d = 130 cm to the end of the rails.

67. Fifty turns of insulated wire 0.100 cm in diameter are tightly wound to form a flat spiral. The spiral fills a disk surrounding a circle of radius 5.00 cm and extending to a radius 10.00 cm at the outer edge. Assume the wire carries a current *I* at the center of its cross section. Approximate each turn of wire as a circle. Then a loop

of current exists at radius 5.05 cm, another at 5.15 cm, and so on. Numerically calculate the magnetic field at the center of the coil.

68. An infinitely long, straight wire carrying a current I_1 is partially surrounded by a loop as shown in Figure P30.68. The loop has a length *L* and radius *R*, and it carries a current I_2 . The axis of the loop coincides with the wire. Calculate the magnetic force exerted on the loop.

Figure P30.68

Challenge Problems

- **69.** Consider a solenoid of length ℓ and radius *a* containing *N* closely spaced turns and carrying a steady current *I*. (a) In terms of these parameters, find the magnetic field at a point along the axis as a function of position *x* from the end of the solenoid. (b) Show that as ℓ becomes very long, *B* approaches $\mu_0 NI/2\ell$ at each end of the solenoid.
- **70.** We have seen that a long solenoid produces a uniform magnetic field directed along the axis of a cylindrical region. To produce a uniform magnetic field directed parallel to a *diameter* of a cylindrical region, however, one can use the *saddle coils* illustrated in Figure P30.70. The loops are wrapped over a long, somewhat flattened tube. Figure P30.70a shows one wrapping of wire around the tube. This wrapping is continued in this manner until the visible side has many long sections of wire carrying current to the left in Figure P30.70a and the back side has many lengths carrying current to

the right. The end view of the tube in Figure P30.70b shows these wires and the currents they carry. By wrapping the wires carefully, the distribution of wires can take the shape suggested in the end view such that the overall current distribution is approximately the superposition of two overlapping, circular cylinders of radius R (shown by the dashed lines) with uniformly distributed current, one toward you and one away from you. The current density J is the same for each cylinder. The center of one cylinder is described by a position vector $\vec{\mathbf{d}}$ relative to the center of the other cylinder. Prove that the magnetic field inside the hollow tube is $\mu_0 Jd/2$ downward. Suggestion: The use of vector methods simplifies the calculation.

71. A thin copper bar of length $\ell = 10.0$ cm is supported horizontally by two (nonmagnetic) contacts at its ends. The bar carries a current of $I_1 = 100$ A in the negative x direction as shown in Figure P30.71. At a distance h = 0.500 cm below one end of the bar, a long, straight wire carries a current of $I_2 = 200$ A in the positive z direction. Determine the magnetic force exerted on the bar.

72. In Figure P30.72, both currents in the infinitely long wires are 8.00 A in the negative x direction. The wires are separated by the distance 2a = 6.00 cm. (a) Sketch the magnetic field pattern in the yz plane. (b) What is the value of the magnetic field at the origin? (c) At $(y = 0, z \rightarrow \infty)$? (d) Find the magnetic field at points along the z axis as a function of z. (e) At what distance d along the positive z axis is the magnetic field a maximum? (f) What is this maximum value?

Figure P30.72

73. A wire carrying a current *I* is bent into the shape of an exponential spiral, $r = e^{\theta}$, from $\theta = 0$ to $\theta = 2\pi$ as suggested in Figure P30.73 (page 934). To complete a loop, the ends of the spiral are connected by a straight wire along the *x* axis. (a) The angle β between a radial

line and its tangent line at any point on a curve $r = f(\theta)$ is related to the function by

$$\tan\beta = \frac{r}{dr/d\theta}$$

Use this fact to show that $\beta = \pi/4$. (b) Find the magnetic field at the origin.

Figure P30.73

74. A sphere of radius *R* has a uniform volume charge density ρ . When the sphere rotates as a rigid object with angular speed ω about an axis through its center (Fig. P30.74), determine (a) the magnetic field at the center of the sphere and (b) the magnetic moment of the sphere.

75. A long, cylindrical conductor of radius *a* has two cylindrical cavities each of diameter *a* through its entire length as shown in the end view of Figure P30.75. A current *I* is directed out of the page and is uniform through a cross section of the conducting material. Find the magnitude and direction of the magnetic field in terms of μ_0 , *I*, *r*, and *a* at (a) point P_1 and (b) point P_2 .

Figure P30.74

76. A wire is formed into the shape of a square of edge length *L* (Fig. P30.76). Show that when the current in the loop is *I*, the magnetic field at point *P* a distance *x* from the center of the square along its axis is

Figure P30.76

77. The magnitude of the force on a magnetic dipole $\vec{\mu}$ aligned with a nonuniform magnetic field in the positive *x* direction is $F_x = |\vec{\mu}| dB/dx$. Suppose two flat loops of wire each have radius *R* and carry a current *I*. (a) The loops are parallel to each other and share the same axis. They are separated by a variable distance x >> R. Show that the magnetic force between them varies as $1/x^4$. (b) Find the magnitude of this force, taking I = 10.0 A, R = 0.500 cm, and x = 5.00 cm.

Faraday's Law

CHAPTER 31

31.1 Faraday's Law of Induction
31.2 Motional emf
31.3 Lenz's Law
31.4 Induced emf and Electric Fields
31.5 Generators and Motors

31.6 Eddy Currents

So far, our studies in electricity and magnetism have focused on the electric fields produced by stationary charges and the magnetic fields produced by moving charges. This chapter explores the effects produced by magnetic fields that vary in time.

Experiments conducted by Michael Faraday in England in 1831 and independently by Joseph Henry in the United States that same year showed that an emf can be induced in a circuit by a changing magnetic field. The results of these experiments led to a very basic and important law of electromagnetism known as *Faraday's law of induction*. An emf (and therefore a current as well) can be induced in various processes that involve a change in a magnetic flux.

31.1 Faraday's Law of Induction

To see how an emf can be induced by a changing magnetic field, consider the experimental results obtained when a loop of wire is connected to a sensitive ammeter as illustrated in Figure 31.1 (page 936). When a magnet is moved toward the loop, the reading on the ammeter changes from zero to a nonzero value, arbitrarily shown as negative in Figure 31.1a. When the magnet is brought to rest and held stationary relative to the loop (Fig. 31.1b), a reading of zero is observed. When the magnet is moved away from the loop, the reading on the ammeter changes to a positive value as shown in Figure 31.1c. Finally, when the magnet is held stationary and the loop An artist's impression of the Skerries SeaGen Array, a tidal energy generator under development near the island of Anglesey, North Wales. When it is brought online, it will offer 10.5 MW of power from generators turned by tidal streams. The image shows the underwater blades that are driven by the tidal currents. The second blade system has been raised from the water for servicing. We will study generators in this chapter. (Marine Current Turbines TM Ltd.)

Michael Faraday British Physicist and Chemist (1791–1867)

Faraday is often regarded as the greatest experimental scientist of the 1800s. His many contributions to the study of electricity include the invention of the electric motor, electric generator, and transformer as well as the discovery of electromagnetic induction and the laws of electrolysis. Greatly influenced by religion, he refused to work on the development of poison gas for the British military. is moved either toward or away from it, the reading changes from zero. From these observations, we conclude that the loop detects that the magnet is moving relative to it and we relate this detection to a change in magnetic field. Therefore, it seems that a relationship exists between a current and a changing magnetic field.

These results are quite remarkable because a current is set up even though no batteries are present in the circuit! We call such a current an *induced current* and say that it is produced by an *induced emf*.

Now let's describe an experiment conducted by Faraday and illustrated in Figure 31.2. A primary coil is wrapped around an iron ring and connected to a switch and a battery. A current in the coil produces a magnetic field when the switch is closed. A secondary coil also is wrapped around the ring and is connected to a sensitive ammeter. No battery is present in the secondary circuit, and the secondary coil is not electrically connected to the primary coil. Any current detected in the secondary circuit must be induced by some external agent.

Initially, you might guess that no current is ever detected in the secondary circuit. Something quite amazing happens when the switch in the primary circuit is either opened or thrown closed, however. At the instant the switch is closed, the ammeter reading changes from zero momentarily and then returns to zero. At the instant the switch is opened, the ammeter changes to a reading with the opposite sign and again returns to zero. Finally, the ammeter reads zero when there is either a steady current or no current in the primary circuit. To understand what happens in this experiment, note that when the switch is closed, the current in the primary circuit produces a magnetic field that penetrates the secondary circuit. Furthermore, when the switch is thrown closed, the magnetic field produced by the current in the primary circuit changes from zero to some value over some finite time, and this changing field induces a current in the secondary circuit. Notice that no current is induced in the secondary coil even when a steady current exists in the primary coil. It is a *change* in the current in the primary coil that induces a current in the secondary coil, not just the *existence* of a current.

As a result of these observations, Faraday concluded that an electric current can be induced in a loop by a changing magnetic field. The induced current exists only while the magnetic field through the loop is changing. Once the magnetic field reaches a steady value, the current in the loop disappears. In effect, the loop behaves as though a source of emf were connected to it for a short time. It is customary to say that an induced emf is produced in the loop by the changing magnetic field.

Figure 31.1 A simple experiment showing that a current is induced in a loop when a magnet is moved toward or away from the loop.

When a magnet is moved toward a loop of wire connected to a sensitive ammeter, the ammeter shows that a current is induced in the loop.

When the magnet is held stationary, there is no induced current in the loop, even when the magnet is inside the loop.

When the magnet is moved away from the loop, the ammeter shows that the induced current is opposite that shown in part a.

937

Figure 31.2 Faraday's

experiment.

The emf induced in the secondary circuit is caused by the changing magnetic field through the secondary coil.

The experiments shown in Figures 31.1 and 31.2 have one thing in common: in each case, an emf is induced in a loop when the magnetic flux through the loop changes with time. In general, this emf is directly proportional to the time rate of change of the magnetic flux through the loop. This statement can be written mathematically as **Faraday's law of induction**:

$$\mathcal{E} = -\frac{d\Phi_B}{dt} \tag{31.1}$$

where $\Phi_{B} = \int \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}}$ is the magnetic flux through the loop. (See Section 30.5.)

If a coil consists of N loops with the same area and Φ_B is the magnetic flux through one loop, an emf is induced in every loop. The loops are in series, so their emfs add; therefore, the total induced emf in the coil is given by

$$\mathcal{E} = -N \, \frac{d\Phi_B}{dt} \tag{31.2}$$

The negative sign in Equations 31.1 and 31.2 is of important physical significance and will be discussed in Section 31.3.

Suppose a loop enclosing an area A lies in a uniform magnetic field \vec{B} as in Figure 31.3. The magnetic flux through the loop is equal to BA cos θ , where θ is the angle between the magnetic field and the normal to the loop; hence, the induced emf can be expressed as

$$\boldsymbol{\mathcal{E}} = -\frac{d}{dt} (BA\cos\theta) \tag{31.3}$$

From this expression, we see that an emf can be induced in the circuit in several ways:

- The magnitude of $\vec{\mathbf{B}}$ can change with time.
- The area enclosed by the loop can change with time.
- The angle θ between \vec{B} and the normal to the loop can change with time.
- Any combination of the above can occur.

uick Quiz 31.1 A circular loop of wire is held in a uniform magnetic field, with the plane of the loop perpendicular to the field lines. Which of the following will *not* cause a current to be induced in the loop? (a) crushing the loop (b) rotating the loop about an axis perpendicular to the field lines (c) keeping the orientation of the loop fixed and moving it along the field lines (d) pulling the loop out
of the field

Normal to loop θ Loop of area A

Figure 31.3 A conducting loop that encloses an area *A* in the presence of a uniform magnetic field \vec{B} . The angle between \vec{B} and the normal to the loop is θ .

Faraday's law of induction

Figure 31.4 Essential components of a ground fault circuit interrupter.

Some Applications of Faraday's Law

The ground fault circuit interrupter (GFCI) is an interesting safety device that protects users of electrical appliances against electric shock. Its operation makes use of Faraday's law. In the GFCI shown in Figure 31.4, wire 1 leads from the wall outlet to the appliance to be protected and wire 2 leads from the appliance back to the wall outlet. An iron ring surrounds the two wires, and a sensing coil is wrapped around part of the ring. Because the currents in the wires are in opposite directions and of equal magnitude, there is zero net current flowing through the ring and the net magnetic flux through the sensing coil is zero. Now suppose the return current in wire 2 changes so that the two currents are not equal in magnitude. (That can happen if, for example, the appliance becomes wet, enabling current to leak to ground.) Then the net current through the ring is not zero and the magnetic flux through the sensing coil is no longer zero. Because household current is alternating (meaning that its direction keeps reversing), the magnetic flux through the sensing coil changes with time, inducing an emf in the coil. This induced emf is used to trigger a circuit breaker, which stops the current before it is able to reach a harmful level.

Another interesting application of Faraday's law is the production of sound in an electric guitar. The coil in this case, called the *pickup coil*, is placed near the vibrating guitar string, which is made of a metal that can be magnetized. A permanent magnet inside the coil magnetizes the portion of the string nearest the coil (Fig. 31.5a). When the string vibrates at some frequency, its magnetized segment produces a changing magnetic flux through the coil. The changing flux induces an emf in the coil that is fed to an amplifier. The output of the amplifier is sent to the loudspeakers, which produce the sound waves we hear.

Figure 31.5 (a) In an electric guitar, a vibrating magnetized string induces an emf in a pickup coil. (b) The pickups (the circles beneath the metallic strings) of this electric guitar detect the vibrations of the strings and send this information through an amplifier and into speakers. (A switch on the guitar allows the musician to select which set of six pickups is used.)

Example 31.1 Inducing an emf in a Coil

A coil consists of 200 turns of wire. Each turn is a square of side d = 18 cm, and a uniform magnetic field directed perpendicular to the plane of the coil is turned on. If the field changes linearly from 0 to 0.50 T in 0.80 s, what is the magnitude of the induced emf in the coil while the field is changing?

SOLUTION

Conceptualize From the description in the problem, imagine magnetic field lines passing through the coil. Because the magnetic field is changing in magnitude, an emf is induced in the coil.

Categorize We will evaluate the emf using Faraday's law from this section, so we categorize this example as a substitution problem.

31.1 continued

Evaluate Equation 31.2 for the situation described here, noting that the magnetic field changes linearly with time:

Substitute numerical values:

$$\boldsymbol{\mathcal{E}}| = N \frac{\Delta \Phi_B}{\Delta t} = N \frac{\Delta (BA)}{\Delta t} = NA \frac{\Delta B}{\Delta t} = Nd^2 \frac{B_f - B_i}{\Delta t}$$

 $|\mathbf{\mathcal{E}}| = (200)(0.18 \text{ m})^2 \frac{(0.50 \text{ T} - 0)}{0.80 \text{ s}} = 4.0 \text{ V}$

WHAT IF? What if you were asked to find the magnitude of the induced current in the coil while the field is changing? Can you answer that question?

Answer If the ends of the coil are not connected to a circuit, the answer to this question is easy: the current is zero! (Charges move within the wire of the coil, but they cannot move into or out of the ends of the coil.) For a steady current to exist, the ends of the coil must be connected to an external circuit. Let's assume the coil is connected to a circuit and the total resistance of the coil and the circuit is 2.0Ω . Then, the magnitude of the induced current in the coil is

$$I = \frac{|\mathbf{\mathcal{E}}|}{R} = \frac{4.0 \text{ V}}{2.0 \Omega} = 2.0 \text{ A}$$

Example 31.2 An Exponentially Decaying Magnetic Fiel

A loop of wire enclosing an area A is placed in a region where the magnetic field is perpendicular to the plane of the loop. The magnitude of $\vec{\mathbf{B}}$ varies in time according to the expression $B = B_{\max}e^{-at}$, where a is some constant. That is, at t = 0, the field is B_{\max} , and for t > 0, the field decreases exponentially (Fig. 31.6). Find the induced emf in the loop as a function of time.

Figure 31.6 (Example 31.2) Exponential decrease in the magnitude of the magnetic field through a loop with time. The induced emf and induced current in a conducting path attached to the loop vary with time in the same way.

Conceptualize The physical situation is similar to that in Example 31.1 except for two things: there is only one loop, and the field varies exponentially with time rather than linearly.

Categorize We will evaluate the emf using Faraday's law from this section, so we categorize this example as a substitution problem.

Evaluate Equation 31.1 for the situation described here:

$$\boldsymbol{\mathcal{E}} = -\frac{d\Phi_B}{dt} = -\frac{d}{dt} \left(AB_{\max} e^{-at} \right) = -AB_{\max} \frac{d}{dt} e^{-at} = aAB_{\max} e^{-at}$$

This expression indicates that the induced emf decays exponentially in time. The maximum emf occurs at t = 0, where $\mathcal{E}_{max} = aAB_{max}$. The plot of \mathcal{E} versus *t* is similar to the *B*-versus-*t* curve shown in Figure 31.6.

31.2 Motional emf

In Examples 31.1 and 31.2, we considered cases in which an emf is induced in a stationary circuit placed in a magnetic field when the field changes with time. In this section, we describe **motional emf**, the emf induced in a conductor moving through a constant magnetic field.

In steady state, the electric and magnetic forces on an electron in the conductor are balanced.

Due to the magnetic force on electrons, the ends of the conductor become oppositely charged, which establishes an electric field in the conductor.

Figure 31.7 A straight electrical conductor of length ℓ moving with a velocity $\vec{\mathbf{v}}$ through a uniform magnetic field $\vec{\mathbf{B}}$ directed perpendicular to $\vec{\mathbf{v}}$.

The straight conductor of length ℓ shown in Figure 31.7 is moving through a uniform magnetic field directed into the page. For simplicity, let's assume the conductor is moving in a direction perpendicular to the field with constant velocity under the influence of some external agent. From the magnetic version of the particle in a field model, the electrons in the conductor experience a force $\vec{\mathbf{F}}_B = q\vec{\mathbf{v}} \times \vec{\mathbf{B}}$ (Eq. 29.1) that is directed along the length ℓ , perpendicular to both $\vec{\mathbf{v}}$ and $\vec{\mathbf{B}}$. Under the influence of this force, the electrons move to the lower end of the conductor and accumulate there, leaving a net positive charge at the upper end. As a result of this charge separation, an electric field $\vec{\mathbf{E}}$ is produced inside the conductor. Therefore, the electrons are also described by the electric version of the particle in a field model. The charges accumulate at both ends until the downward magnetic force qvBon charges remaining in the conductor is balanced by the upward electric force qE. The electrons are then described by the particle in equilibrium model. The condition for equilibrium requires that the forces on the electrons balance:

$$qE = qvB$$
 or $E = vB$

The magnitude of the electric field produced in the conductor is related to the potential difference across the ends of the conductor according to the relationship $\Delta V = E\ell$ (Eq. 25.6). Therefore, for the equilibrium condition,

$$\Delta V = E\ell = B\ell v \tag{31.4}$$

where the upper end of the conductor in Figure 31.7 is at a higher electric potential than the lower end. Therefore, a potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field. If the direction of the motion is reversed, the polarity of the potential difference is also reversed.

A more interesting situation occurs when the moving conductor is part of a closed conducting path. This situation is particularly useful for illustrating how a changing magnetic flux causes an induced current in a closed circuit. Consider a circuit consisting of a conducting bar of length ℓ sliding along two fixed, parallel conducting rails as shown in Figure 31.8a. For simplicity, let's assume the bar has zero resistance and the stationary part of the circuit has a resistance R. A uniform and constant magnetic field $\vec{\mathbf{B}}$ is applied perpendicular to the plane of the circuit. As the bar is pulled to the right with a velocity $\vec{\mathbf{v}}$ under the influence of an applied force $\vec{\mathbf{F}}_{app}$, free charges in the bar are moving particles in a magnetic field that experience a magnetic force directed along the length of the bar. This force sets up an induced current because the charges are free to move in the closed conducting path. In this case, the rate of change of magnetic flux through the circuit and the corresponding

Figure 31.8 (a) A conducting bar sliding with a velocity \vec{v} along two conducting rails under the action of an applied force \vec{F}_{app} . (b) The equivalent circuit diagram for the setup shown in (a).

induced motional emf across the moving bar are proportional to the change in area of the circuit.

Because the area enclosed by the circuit at any instant is ℓx , where x is the position of the bar, the magnetic flux through that area is

$$\Phi_B = B\ell x$$

Using Faraday's law and noting that *x* changes with time at a rate dx/dt = v, we find that the induced motional emf is

$$\varepsilon = -\frac{d\Phi_B}{dt} = -\frac{d}{dt} (B\ell x) = -B\ell \frac{dx}{dt}$$

$$\varepsilon = -B\ell v$$
(31.5)

Because the resistance of the circuit is R, the magnitude of the induced current is

$$I = \frac{|\boldsymbol{\mathcal{E}}|}{R} = \frac{B\ell\nu}{R}$$
(31.6)

The equivalent circuit diagram for this example is shown in Figure 31.8b.

Let's examine the system using energy considerations. Because no battery is in the circuit, you might wonder about the origin of the induced current and the energy delivered to the resistor. We can understand the source of this current and energy by noting that the applied force does work on the conducting bar. Therefore, we model the circuit as a nonisolated system. The movement of the bar through the field causes charges to move along the bar with some average drift velocity; hence, a current is established. The change in energy in the system during some time interval must be equal to the transfer of energy into the system by work, consistent with the general principle of conservation of energy described by Equation 8.2. The appropriate reduction of Equation 8.2 is $W = \Delta E_{int}$, because the input energy appears as internal energy in the resistor.

Let's verify this equality mathematically. As the bar moves through the uniform magnetic field $\vec{\mathbf{B}}$, it experiences a magnetic force $\vec{\mathbf{F}}_B$ of magnitude $\mathcal{H}B$ (see Section 29.4). Because the bar moves with constant velocity, it is modeled as a particle in equilibrium and the magnetic force must be equal in magnitude and opposite in direction to the applied force, or to the left in Figure 31.8a. (If $\vec{\mathbf{F}}_B$ acted in the direction of motion, it would cause the bar to accelerate, violating the principle of conservation of energy.) Using Equation 31.6 and $F_{app} = F_B = \mathcal{H}B$, the power delivered by the applied force is

$$P = F_{\rm app}v = (I\ell B)v = \frac{B^2\ell^2 v^2}{R} = \frac{\mathcal{E}^2}{R}$$
 (31.7)

From Equation 27.22, we see that this power input is equal to the rate at which energy is delivered to the resistor, consistent with the principle of conservation of energy.

Quick Quiz 31.2 In Figure 31.8a, a given applied force of magnitude F_{app} results in a constant speed v and a power input P. Imagine that the force is increased so that the constant speed of the bar is doubled to 2v. Under these conditions,

what are the new force and the new power input? (a) 2F and 2P (b) 4F and 2P

• (c) 2F and 4P (d) 4F and 4P

Example 31.3 Magnetic Force Acting on a Sliding Bar AM

The conducting bar illustrated in Figure 31.9 (page 942) moves on two frictionless, parallel rails in the presence of a uniform magnetic field directed into the page. The bar has mass *m*, and its length is ℓ . The bar is given an initial velocity $\vec{\mathbf{v}}_i$ to the right and is released at t = 0.

Motional emf

31.3 continued

(A) Using Newton's laws, find the velocity of the bar as a function of time.

SOLUTION

Conceptualize As the bar slides to the right in Figure 31.9, a counterclockwise current is established in the circuit consisting of the bar, the rails, and the resistor. The upward current in the bar results in a magnetic force to the left on the bar as shown in the figure. Therefore, the bar must slow down, so our mathematical solution should demonstrate that.

Categorize The text already categorizes this problem as one that uses Newton's laws. We model the bar as a *particle under a net force*.

Analyze From Equation 29.10, the magnetic force is $F_B = -I\ell B$, where the negative sign indicates that the force is to the left. The magnetic force is the only horizontal force acting on the bar.

Using the particle under a net force model, apply Newton's second law to the bar in the horizontal direction:

Substitute $I = B\ell v/R$ from Equation 31.6:

Rearrange the equation so that all occurrences of the variable *v* are on the left and those of *t* are on the right:

Integrate this equation using the initial condition that $v = v_i$ at t = 0 and noting that $(B^2 \ell^2 / mR)$ is a constant:

Define the constant $\tau = mR/B^2\ell^2$ and solve for the velocity:

Finalize This expression for v indicates that the velocity of the bar decreases with time under the action of the magnetic force as expected from our conceptualization of the problem.

(B) Show that the same result is found by using an energy approach.

SOLUTION

Categorize The text of this part of the problem tells us to use an energy approach for the same situation. We model the entire circuit in Figure 31.9 as an *isolated system*.

Analyze Consider the sliding bar as one system component possessing kinetic energy, which decreases because energy is transferring *out* of the bar by electrical transmission through the rails. The resistor is another system component possessing internal energy, which rises because energy is transferring into the resistor. Because energy is not leaving the system, the rate of energy transfer out of the bar equals the rate of energy transfer into the resistor.

Equate the power entering the resistor to that leaving the bar:

$$P_{\rm resistor} = -P_{\rm ba}$$

Substitute for the electrical power delivered to the resistor and the time rate of change of kinetic energy for the bar:

$$I^2 R = -\frac{d}{dt} \left(\frac{1}{2}mv^2\right)$$

Use Equation 31.6 for the current and carry out the derivative:

v ₽

Figure 31.9 (Example 31.3) A conducting bar of length ℓ on two fixed conducting rails is given an initial velocity $\vec{\mathbf{v}}$, to the right.

$$F_{x} = ma \rightarrow -I\ell B = m \frac{dv}{dt}$$

$$m \frac{dv}{dt} = -\frac{B^{2}\ell^{2}}{R}v$$

$$\frac{dv}{v} = -\left(\frac{B^{2}\ell^{2}}{mR}\right)dt$$

$$\int_{v_{i}}^{v} \frac{dv}{v} = -\frac{B^{2}\ell^{2}}{mR}\int_{0}^{t} dt$$

$$\ln\left(\frac{v}{v_{i}}\right) = -\left(\frac{B^{2}\ell^{2}}{mR}\right)t$$
(1) $\eta = \eta e^{-t/\tau}$

(1)
$$v = v_i e^{-t/\tau}$$

$$\frac{B^2\ell^2v^2}{R} = -mv\frac{dv}{dt}$$

31.3 continued

Rearrange terms:

 $\frac{dv}{v} = -\left(\frac{B^2\ell^2}{mR}\right)dt$

Finalize This result is the same expression to be integrated that we found in part (A).

WHAT IF? Suppose you wished to increase the distance through which the bar moves between the time it is initially projected and the time it essentially comes to rest. You can do so by changing one of three variables— v_i , R, or B—by a factor of 2 or $\frac{1}{2}$. Which variable should you change to maximize the distance, and would you double it or halve it?

Answer Increasing v_i would make the bar move farther. Increasing *R* would decrease the current and therefore the magnetic force, making the bar move farther. Decreasing *B* would decrease the magnetic force and make the bar move farther. Which method is most effective, though?

Use Equation (1) to find the distance the bar moves by integration:

This expression shows that doubling v_i or R will double the distance. Changing B by a factor of $\frac{1}{2}$, however, causes the distance to be four times as great!

Example 31.4

Motional emf Induced in a Rotating Bar

A conducting bar of length ℓ rotates with a constant angular speed ω about a pivot at one end. A uniform magnetic field \vec{B} is directed perpendicular to the plane of rotation as shown in Figure 31.10. Find the motional emf induced between the ends of the bar.

SOLUTION

Conceptualize The rotating bar is different in nature from the sliding bar in Figure 31.8. Consider a small segment of the bar, however. It is a short length of conductor moving in a magnetic

Figure 31.10 (Example 31.4) A conducting bar rotating around a pivot at one end in a uniform magnetic field that is perpendicular to the plane of rotation. A motional emf is induced between the ends of the bar.

field and has an emf generated in it like the sliding bar. By thinking of each small segment as a source of emf, we see that all segments are in series and the emfs add.

Categorize Based on the conceptualization of the problem, we approach this example as we did in the discussion leading to Equation 31.5, with the added feature that the short segments of the bar are traveling in circular paths.

Analyze Evaluate the magnitude of the emf induced in a segment of the bar of length dr having a velocity $\vec{\mathbf{v}}$ from Equation 31.5:

Find the total emf between the ends of the bar by adding the emfs induced across all segments:

The tangential speed v of an element is related to the angular speed ω through the relationship $v = r\omega$ (Eq. 10.10); use that fact and integrate:

$$l\mathbf{\mathcal{E}} = Bv \, dr$$

$$\boldsymbol{\varepsilon} = \int Bv \, dr$$
$$\boldsymbol{\varepsilon} = B \int v \, dr = B\omega \int_0^\ell r \, dr = \frac{1}{2} B\omega \ell^2$$

continued

31.4 continued

Finalize In Equation 31.5 for a sliding bar, we can increase \mathcal{E} by increasing B, ℓ , or v. Increasing any one of these variables by a given factor increases \mathcal{E} by the same factor. Therefore, you would choose whichever of these three variables is most convenient to increase. For the rotating rod, however, there is an advantage to increasing the length of the rod to raise the emf because ℓ is squared. Doubling the length gives four times the emf, whereas doubling the angular speed only doubles the emf.

WHAT IF? Suppose, after reading through this example, you come up with a brilliant idea. A Ferris wheel has radial metallic spokes between the hub and the circular rim. These spokes move in the magnetic field of the Earth, so each spoke acts like the bar in Figure 31.10. You plan to use the emf generated by the rotation of the Ferris wheel to power the lightbulbs on the wheel. Will this idea work?

Answer Let's estimate the emf that is generated in this situation. We know the magnitude of the magnetic field of the Earth from Table 29.1: $B = 0.5 \times 10^{-4}$ T. A typical spoke on a Ferris wheel might have a length on the order of 10 m. Suppose the period of rotation is on the order of 10 s.

Determine the angular speed of the spoke:

Assume the magnetic field lines of the Earth are horizontal at the location of the Ferris wheel and perpendicular to the spokes. Find the emf generated:

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{10 \text{ s}} = 0.63 \text{ s}^{-1} \sim 1 \text{ s}^{-1}$$
$$\mathcal{E} = \frac{1}{2} B \omega \ell^2 = \frac{1}{2} (0.5 \times 10^{-4} \text{ T}) (1 \text{ s}^{-1}) (10 \text{ m})^2$$
$$= 2.5 \times 10^{-3} \text{ V} \sim 1 \text{ mV}$$

This value is a tiny emf, far smaller than that required to operate lightbulbs.

An additional difficulty is related to energy. Even assuming you could find lightbulbs that operate using a potential difference on the order of millivolts, a spoke must be part of a circuit to provide a voltage to the lightbulbs. Consequently, the spoke must carry a current. Because this current-carrying spoke is in a magnetic field, a magnetic force is exerted on the spoke in the direction opposite its direction of motion. As a result, the motor of the Ferris wheel must supply more energy to perform work against this magnetic drag force. The motor must ultimately provide the energy that is operating the lightbulbs, and you have not gained anything for free!

Faraday's law (Eq. 31.1) indicates that the induced emf and the change in flux have opposite algebraic signs. This feature has a very real physical interpretation that has come to be known as **Lenz's law:**¹

The induced current in a loop is in the direction that creates a magnetic field that opposes the change in magnetic flux through the area enclosed by the loop.

That is, the induced current tends to keep the original magnetic flux through the loop from changing. We shall show that this law is a consequence of the law of conservation of energy.

To understand Lenz's law, let's return to the example of a bar moving to the right on two parallel rails in the presence of a uniform magnetic field (the *external* magnetic field, shown by the green crosses in Fig. 31.11a). As the bar moves to the right, the magnetic flux through the area enclosed by the circuit increases with time because the area increases. Lenz's law states that the induced current must be directed so that the magnetic field it produces opposes the change in the external magnetic flux. Because the magnetic flux due to an external field directed into the page is increasing, the induced current—if it is to oppose this change—must

x x x

×

produce a field directed out of the page. Hence, the induced current must be directed counterclockwise when the bar moves to the right. (Use the right-hand rule to verify this direction.) If the bar is moving to the left as in Figure 31.11b, the external magnetic flux through the area enclosed by the loop decreases with time. Because the field is directed into the page, the direction of the induced current must be clockwise if it is to produce a field that also is directed into the page. In either case, the induced current attempts to maintain the original flux through the area enclosed by the current loop.

×

.

x x x

Let's examine this situation using energy considerations. Suppose the bar is given a slight push to the right. In the preceding analysis, we found that this motion sets up a counterclockwise current in the loop. What happens if we assume the current is clockwise such that the direction of the magnetic force exerted on the bar is to the right? This force would accelerate the rod and increase its velocity, which in turn would cause the area enclosed by the loop to increase more rapidly. The result would be an increase in the induced current, which would cause an increase in the force, which would produce an increase in the current, and so on. In effect, the system would acquire energy with no input of energy. This behavior is clearly inconsistent with all experience and violates the law of conservation of energy. Therefore, the current must be counterclockwise.

uick Quiz 31.3. Figure 31.12 shows a circular loop of wire falling toward a wire carrying a current to the left. What is the direction of the induced current in the loop of wire? (a) clockwise (b) counterclockwise (c) zero (d) impossible to
 determine

Figure 31.12 (Quick Quiz 31.3)

Conceptual Example 31.5 Application of Lenz's Law

A magnet is placed near a metal loop as shown in Figure 31.13a (page 946).

(A) Find the direction of the induced current in the loop when the magnet is pushed toward the loop.

SOLUTION

a

As the magnet moves to the right toward the loop, the external magnetic flux through the loop increases with time. To counteract this increase in flux due to a field toward the right, the induced current produces its own magnetic field to the left as illustrated in Figure 31.13b; hence, the induced current is in the direction shown. Knowing that like *continued*

31.5 continued

magnetic poles repel each other, we conclude that the left face of the current loop acts like a north pole and the right face acts like a south pole.

(B) Find the direction of the induced current in the loop when the magnet is pulled away from the loop.

SOLUTION

If the magnet moves to the left as in Figure 31.13c, its flux through the area enclosed by the loop decreases in time. Now the induced current in the loop is in the direction shown in Figure 31.13d because this current direction produces a magnetic field in the same direction as the external field. In this case, the left face of the loop is a south pole and the right face is a north pole.

Conceptual Example 31.6 A Loop Moving Through a Magnetic Field

A rectangular metallic loop of dimensions ℓ and w and resistance R moves with constant speed v to the right as in Figure 31.14a. The loop passes through a uniform magnetic field \vec{B} directed into the page and extending a distance 3w along the *x* axis. Define *x* as the position of the right side of the loop along the *x* axis.

(A) Plot the magnetic flux through the area enclosed by the loop as a function of *x*.

SOLUTION

Figure 31.14b shows the flux through the area enclosed by the loop as a function of *x*. Before the loop enters the field, the flux through the loop is zero. As the loop enters the field, the flux increases linearly with position until the left edge of the loop is just inside the field. Finally, the flux through the loop decreases linearly to zero as the loop leaves the field.

(B) Plot the induced motional emf in the loop as a function of *x*.

SOLUTION

Before the loop enters the field, no motional emf is induced in it because no field is present (Fig. 31.14c). As the right side of the loop enters the field, the magnetic flux directed into the page increases. Hence, according to Lenz's law, the induced current is counterclockwise because it must produce its own magnetic field directed out of the page. The motional emf $-B\ell v$ (from Eq. 31.5) arises from the magnetic force experienced by charges in the right side of the loop. When the loop is entirely in the field, the change in magnetic flux through the loop is zero; hence, the motional emf vanishes. That happens because once the left side of the loop enters the field, the motional emf induced in it

31.6 continued

cancels the motional emf present in the right side of the loop. As the right side of the loop leaves the field, the flux through the loop begins to decrease, a clockwise current is induced, and the induced emf is $B\ell v$. As soon as the left side leaves the field, the emf decreases to zero.

(C) Plot the external applied force necessary to counter the magnetic force and keep v constant as a function of x.

SOLUTION

The external force that must be applied to the loop to maintain this motion is plotted in Figure 31.14d. Before the loop enters the field, no magnetic force acts on it; hence, the applied force must be zero if vis constant. When the right side of the loop enters the field, the applied force necessary to maintain constant speed must be equal in magnitude and opposite in direction to the magnetic force exerted on that side, so that the loop is a particle in equilibrium. When the loop is entirely in the field, the

Figure 31.14 (Conceptual Example 31.6) (a) A conducting rectangular loop of width *w* and length ℓ moving with a velocity \vec{v} through a uniform magnetic field extending a distance 3w. (b) Magnetic flux through the area enclosed by the loop as a function of loop position. (c) Induced emf as a function of loop position. (d) Applied force required for constant velocity as a function of loop position.

flux through the loop is not changing with time. Hence, the net emf induced in the loop is zero and the current also is zero. Therefore, no external force is needed to maintain the motion. Finally, as the right side leaves the field, the applied force must be equal in magnitude and opposite in direction to the magnetic force acting on the left side of the loop.

From this analysis, we conclude that power is supplied only when the loop is either entering or leaving the field. Furthermore, this example shows that the motional emf induced in the loop can be zero even when there is motion through the field! A motional emf is induced *only* when the magnetic flux through the loop *changes in time*.

31.4 Induced emf and Electric Fields

We have seen that a changing magnetic flux induces an emf and a current in a conducting loop. In our study of electricity, we related a current to an electric field that applies electric forces on charged particles. In the same way, we can relate an induced current in a conducting loop to an electric field by claiming that an electric field is created in the conductor as a result of the changing magnetic flux.

We also noted in our study of electricity that the existence of an electric field is independent of the presence of any test charges. This independence suggests that even in the absence of a conducting loop, a changing magnetic field generates an electric field in empty space.

This induced electric field is *nonconservative*, unlike the electrostatic field produced by stationary charges. To illustrate this point, consider a conducting loop of radius *r* situated in a uniform magnetic field that is perpendicular to the plane of the loop as in Figure 31.15. If the magnetic field changes with time, an emf $\mathcal{E} = -d\Phi_B/dt$ is, according to Faraday's law (Eq. 31.1), induced in the loop. The induction of a current in the loop implies the presence of an induced electric field \vec{E} , which must be tangent to the loop because that is the direction in which the charges in the wire move in response to the electric force. The work done by the electric field in moving a charge q once around the loop is equal to $q\mathcal{E}$. Because the electric force acting on the charge is $q\vec{E}$, the work done by the electric field in

If \vec{B} changes in time, an electric field is induced in a direction tangent to the circumference of the loop.

Figure 31.15 A conducting loop of radius *r* in a uniform magnetic field perpendicular to the plane of the loop.

Pitfall Prevention 31.1

Induced Electric Fields The changing magnetic field does *not* need to exist at the location of the induced electric field. In Figure 31.15, even a loop outside the region of magnetic field experiences an induced electric field.

moving the charge once around the loop is $qE(2\pi r)$, where $2\pi r$ is the circumference of the loop. These two expressions for the work done must be equal; therefore,

$$q\mathbf{\mathcal{E}} = qE(2\pi r)$$
$$E = \frac{\mathbf{\mathcal{E}}}{2\pi r}$$

Using this result along with Equation 31.1 and that $\Phi_B = BA = B\pi r^2$ for a circular loop, the induced electric field can be expressed as

$$E = -\frac{1}{2\pi r} \frac{d\Phi_B}{dt} = -\frac{r}{2} \frac{dB}{dt}$$
(31.8)

If the time variation of the magnetic field is specified, the induced electric field can be calculated from Equation 31.8.

The emf for any closed path can be expressed as the line integral of $\vec{\mathbf{E}} \cdot d\vec{\mathbf{s}}$ over that path: $\boldsymbol{\mathcal{E}} = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}}$. In more general cases, *E* may not be constant and the path may not be a circle. Hence, Faraday's law of induction, $\boldsymbol{\mathcal{E}} = -d\Phi_B/dt$, can be written in the general form

Faraday's law in general form 🕨

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -\frac{d\Phi_B}{dt}$$
(31.9)

The induced electric field $\vec{\mathbf{E}}$ in Equation 31.9 is a nonconservative field that is generated by a changing magnetic field. The field $\vec{\mathbf{E}}$ that satisfies Equation 31.9 cannot possibly be an electrostatic field because were the field electrostatic and hence conservative, the line integral of $\vec{\mathbf{E}} \cdot d\vec{s}$ over a closed loop would be zero (Section 25.1), which would be in contradiction to Equation 31.9.

Example 31.7 Electric Field Induced by a Changing Magnetic Field in a Solenoid

A long solenoid of radius *R* has *n* turns of wire per unit length and carries a timevarying current that varies sinusoidally as $I = I_{\text{max}} \cos \omega t$, where I_{max} is the maximum current and ω is the angular frequency of the alternating current source (Fig. 31.16).

(A) Determine the magnitude of the induced electric field outside the solenoid at a distance r > R from its long central axis.

SOLUTION

Conceptualize Figure 31.16 shows the physical situation. As the current in the coil changes, imagine a changing magnetic field at all points in space as well as an induced electric field.

Categorize In this analysis problem, because the current varies in time, the magnetic field is changing, leading to an induced electric field as opposed to the electrostatic electric fields due to stationary electric charges.

Analyze First consider an external point and take the path for the line integral to be a circle of radius *r* centered on the solenoid as illustrated in Figure 31.16.

Evaluate the right side of Equation 31.9, noting that the magnetic field $\vec{\mathbf{B}}$ inside the solenoid is perpendicular to the circle bounded by the path of integration:

Evaluate the magnetic field inside the solenoid from Equation 30.17:

(1)
$$-\frac{d\Phi_B}{dt} = -\frac{d}{dt} \left(B\pi R^2 \right) = -\pi R^2 \frac{dB}{dt}$$

$$(2) \quad B = \mu_0 n I = \mu_0 n I_{\max} \cos \omega t$$

Figure 31.16 (Example 31.7) A long solenoid carrying a time-varying current given by $I = I_{\text{max}} \cos \omega t$. An electric field is induced both inside and outside the solenoid.

31.7 continued

Substitute Equation (2) into Equation (1):

Evaluate the left side of Equation 31.9, noting that the magnitude of $\vec{\mathbf{E}}$ is constant on the path of integration and $\vec{\mathbf{E}}$ is tangent to it:

Substitute Equations (3) and (4) into Equation 31.9:

Solve for the magnitude of the electric field:

(3)
$$-\frac{d\Phi_B}{dt} = -\pi R^2 \mu_0 n I_{\max} \frac{d}{dt} (\cos \omega t) = \pi R^2 \mu_0 n I_{\max} \omega \sin \omega t$$

(4)
$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = E(2\pi r)$$

 $E(2\pi r) = \pi R^2 \mu_0 n I_{\rm max} \omega \sin \omega t$

 $E = \frac{\mu_0 n I_{\max} \omega R^2}{2r} \sin \omega t \quad (\text{for } r > R)$ Finalize This result shows that the amplitude of the electric field outside the solenoid falls of f as 1/r and varies sinusolidally with time. It is proportional to the current I as well as to the frequency ω , consistent with the fact that a larger value of ω means more change in magnetic flux per unit time. As we will learn in Chapter 34, the time-varying electric field creates an additional contribution to the magnetic field. The magnetic field can be somewhat stronger than we first stated, both inside and outside the solenoid. The correction to the magnetic field is small if the angular frequency ω is small. At high frequencies, however, a new phenomenon can dominate: The electric and magnetic fields, each re-creating the other, constitute an electromagnetic wave radiated by the solenoid as we will study in Chapter 34.

(B) What is the magnitude of the induced electric field inside the solenoid, a distance r from its axis?

SOLUTION

Analyze For an interior point (r < R), the magnetic flux through an integration loop is given by $\Phi_B = B\pi r^2$.

Evaluate the right side of Equation 31.9:

Substitute Equation (2) into Equation (5):

Substitute Equations (4) and (6) into Equation 31.9:

Solve for the magnitude of the electric field:

(5) $-\frac{d\Phi_B}{dt} = -\frac{d}{dt}(B\pi r^2) = -\pi r^2 \frac{dB}{dt}$

(6) $-\frac{d\Phi_B}{dt} = -\pi r^2 \mu_0 n I_{\text{max}} \frac{d}{dt} (\cos \omega t) = \pi r^2 \mu_0 n I_{\text{max}} \omega \sin \omega t$

 $E(2\pi r) = \pi r^2 \mu_0 n I_{\max} \omega \sin \omega t$

 $E = \frac{\mu_0 n I_{\max} \omega}{9} r \sin \omega t \quad (\text{for } r < R)$

Finalize This result shows that the amplitude of the electric field induced inside the solenoid by the changing magnetic flux through the solenoid increases linearly with r and varies sinusoidally with time. As with the field outside the solenoid, the field inside is proportional to the current I and the frequency ω .

Generators and Motors 5 31

Electric generators are devices that take in energy by work and transfer it out by electrical transmission. To understand how they operate, let us consider the alternatingcurrent (AC) generator. In its simplest form, it consists of a loop of wire rotated by some external means in a magnetic field (Fig. 31.17a, page 950).

In commercial power plants, the energy required to rotate the loop can be derived from a variety of sources. For example, in a hydroelectric plant, falling water directed against the blades of a turbine produces the rotary motion; in a coalfired plant, the energy released by burning coal is used to convert water to steam, and this steam is directed against the turbine blades.

Figure 31.17 (a) Schematic diagram of an AC generator. (b) The alternating emf induced in the loop plotted as a function of time.

As a loop rotates in a magnetic field, the magnetic flux through the area enclosed by the loop changes with time, and this change induces an emf and a current in the loop according to Faraday's law. The ends of the loop are connected to slip rings that rotate with the loop. Connections from these slip rings, which act as output terminals of the generator, to the external circuit are made by stationary metallic brushes in contact with the slip rings.

Instead of a single turn, suppose a coil with N turns (a more practical situation), with the same area A, rotates in a magnetic field with a constant angular speed ω . If θ is the angle between the magnetic field and the normal to the plane of the coil as in Figure 31.18, the magnetic flux through the coil at any time t is

$$\Phi_B = BA\cos\theta = BA\cos\omega\theta$$

where we have used the relationship $\theta = \omega t$ between angular position and angular speed (see Eq. 10.3). (We have set the clock so that t = 0 when $\theta = 0$.) Hence, the induced emf in the coil is

$$\boldsymbol{\varepsilon} = -N \frac{d\Phi_B}{dt} = -NBA \frac{d}{dt} (\cos \omega t) = NBA \omega \sin \omega t$$
(31.10)

This result shows that the emf varies sinusoidally with time as plotted in Figure 31.17b. Equation 31.10 shows that the maximum emf has the value

$$\boldsymbol{\varepsilon}_{\max} = NBA\boldsymbol{\omega} \tag{31.11}$$

which occurs when $\omega t = 90^{\circ}$ or 270°. In other words, $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{max}$ when the magnetic field is in the plane of the coil and the time rate of change of flux is a maximum. Furthermore, the emf is zero when $\omega t = 0$ or 180°, that is, when \mathbf{B} is perpendicular to the plane of the coil and the time rate of change of flux is zero.

The frequency for commercial generators in the United States and Canada is 60 Hz, whereas in some European countries it is 50 Hz. (Recall that $\omega = 2\pi f$, where *f* is the frequency in hertz.)

uick Quiz 31.4 In an AC generator, a coil with *N* turns of wire spins in a magnetic field. Of the following choices, which does *not* cause an increase in the emf generated in the coil? (a) replacing the coil wire with one of lower resistance (b) spinning the coil faster (c) increasing the magnetic field (d) increasing
the number of turns of wire on the coil

Figure 31.18 A cutaway view of a loop enclosing an area A and containing N turns, rotating with constant angular speed ω in a magnetic field. The emf induced in the loop varies sinusoidally in time.

Example 31.8 emf Induced in a Generator

The coil in an AC generator consists of 8 turns of wire, each of area $A = 0.090 \text{ 0 m}^2$, and the total resistance of the wire is 12.0 Ω . The coil rotates in a 0.500-T magnetic field at a constant frequency of 60.0 Hz.

(A) Find the maximum induced emf in the coil.

SOLUTION

Conceptualize Study Figure 31.17 to make sure you understand the operation of an AC generator.

Categorize We evaluate parameters using equations developed in this section, so we categorize this example as a substitution problem.

Use Equation 31.11 to find the maximum induced emf:

 $\boldsymbol{\mathcal{E}}_{\max} = NBA\boldsymbol{\omega} = NBA(2\pi f)$

Substitute numerical values:

$$\mathcal{E}_{\text{max}} = 8(0.500 \text{ T})(0.090 \text{ 0 m}^2)(2\pi)(60.0 \text{ Hz}) = 136 \text{ V}$$

(B) What is the maximum induced current in the coil when the output terminals are connected to a low-resistance conductor?

SOLUTION

Use Equation 27.7 and the result to part (A):

$$I_{\text{max}} = \frac{\mathbf{\mathcal{E}}_{\text{max}}}{R} = \frac{136 \text{ V}}{12.0 \Omega} = 11.3 \text{ A}$$

The **direct-current (DC) generator** is illustrated in Figure 31.19a. Such generators are used, for instance, in older cars to charge the storage batteries. The components are essentially the same as those of the AC generator except that the contacts to the rotating coil are made using a split ring called a *commutator*.

In this configuration, the output voltage always has the same polarity and pulsates with time as shown in Figure 31.19b. We can understand why by noting that the contacts to the split ring reverse their roles every half cycle. At the same time, the polarity of the induced emf reverses; hence, the polarity of the split ring (which is the same as the polarity of the output voltage) remains the same.

A pulsating DC current is not suitable for most applications. To obtain a steadier DC current, commercial DC generators use many coils and commutators distributed so that the sinusoidal pulses from the various coils are out of phase. When these pulses are superimposed, the DC output is almost free of fluctuations.

A **motor** is a device into which energy is transferred by electrical transmission while energy is transferred out by work. A motor is essentially a generator operating

Figure 31.20 The engine compartment of a Toyota Prius, a hybrid vehicle.

in reverse. Instead of generating a current by rotating a coil, a current is supplied to the coil by a battery, and the torque acting on the current-carrying coil (Section 29.5) causes it to rotate.

Useful mechanical work can be done by attaching the rotating coil of a motor to some external device. As the coil rotates in a magnetic field, however, the changing magnetic flux induces an emf in the coil; consistent with Lenz's law, this induced emf always acts to reduce the current in the coil. The back emf increases in magnitude as the rotational speed of the coil increases. (The phrase *back emf* is used to indicate an emf that tends to reduce the supplied current.) Because the voltage available to supply current equals the difference between the supply voltage and the back emf, the current in the rotating coil is limited by the back emf.

When a motor is turned on, there is initially no back emf, and the current is very large because it is limited only by the resistance of the coil. As the coil begins to rotate, the induced back emf opposes the applied voltage and the current in the coil decreases. If the mechanical load increases, the motor slows down, which causes the back emf to decrease. This reduction in the back emf increases the current in the coil and therefore also increases the power needed from the external voltage source. For this reason, the power requirements for running a motor are greater for heavy loads than for light ones. If the motor is allowed to run under no mechanical load, the back emf reduces the current to a value just large enough to overcome energy losses due to internal energy and friction. If a very heavy load jams the motor so that it cannot rotate, the lack of a back emf can lead to dangerously high current in the motor's wire. This dangerous situation is explored in the What If? section of Example 31.9.

A modern application of motors in automobiles is seen in the development of *hybrid drive systems*. In these automobiles, a gasoline engine and an electric motor are combined to increase the fuel economy of the vehicle and reduce its emissions. Figure 31.20 shows the engine compartment of a Toyota Prius, one of the hybrids available in the United States. In this automobile, power to the wheels can come from either the gasoline engine or the electric motor. In normal driving, the electric motor accelerates the vehicle from rest until it is moving at a speed of about 15 mi/h (24 km/h). During this acceleration period, the engine is not running, so gasoline is not used and there is no emission. At higher speeds, the motor and engine work together so that the engine always operates at or near its most efficient speed. The result is a significantly higher gasoline mileage than that obtained by a traditional gasoline-powered automobile. When a hybrid vehicle brakes, the motor acts as a generator and returns some of the vehicle's kinetic energy back to the battery as stored energy. In a normal vehicle, this kinetic energy is not recovered because it is transformed to internal energy in the brakes and roadway.

Example 31.9 The Induced

The Induced Current in a Motor

A motor contains a coil with a total resistance of 10Ω and is supplied by a voltage of 120 V. When the motor is running at its maximum speed, the back emf is 70 V.

(A) Find the current in the coil at the instant the motor is turned on.

SOLUTION

Conceptualize Think about the motor just after it is turned on. It has not yet moved, so there is no back emf generated. As a result, the current in the motor is high. After the motor begins to turn, a back emf is generated and the current decreases.

Categorize We need to combine our new understanding about motors with the relationship between current, voltage, and resistance in this substitution problem.

31.9 continued

Evaluate the current in the coil from Equation 27.7 with no back emf generated:

$$I = \frac{\boldsymbol{\mathcal{E}}}{R} = \frac{120 \text{ V}}{10 \Omega} = 12 \text{ A}$$

(B) Find the current in the coil when the motor has reached maximum speed.

SOLUTION

Evaluate the current in the coil with the maximum back emf generated:

$$I = \frac{\mathbf{\mathcal{E}} - \mathbf{\mathcal{E}}_{back}}{R} = \frac{120 \text{ V} - 70 \text{ V}}{10 \Omega} = \frac{50 \text{ V}}{10 \Omega} = 5.0 \text{ A}$$

The current drawn by the motor when operating at its maximum speed is significantly less than that drawn before it begins to turn.

WHAT IF? Suppose this motor is in a circular saw. When you are operating the saw, the blade becomes jammed in a piece of wood and the motor cannot turn. By what percentage does the power input to the motor increase when it is jammed?

Answer You may have everyday experiences with motors becoming warm when they are prevented from turning. That is due to the increased power input to the motor. The higher rate of energy transfer results in an increase in the internal energy of the coil, an undesirable effect.

Set up the ratio of power input to the motor when jammed, using the current calculated in part (A), to that when it is not jammed, part (B):

Substitute numerical values:

$$\frac{P_{\text{jammed}}}{P_{\text{not jammed}}} = \frac{I_{\text{A}}^2 R}{I_{\text{B}}^2 R} = \frac{I_{\text{A}}^2}{I_{\text{B}}^2}$$
$$\frac{P_{\text{jammed}}}{P_{\text{part jammed}}} = \frac{(12 \text{ A})^2}{(5.0 \text{ A})^2} = 5.76$$

That represents a 476% increase in the input power! Such a high power input can cause the coil to become so hot that it is damaged.

31.6 Eddy Currents

As we have seen, an emf and a current are induced in a circuit by a changing magnetic flux. In the same manner, circulating currents called **eddy currents** are induced in bulk pieces of metal moving through a magnetic field. This phenomenon can be demonstrated by allowing a flat copper or aluminum plate attached at the end of a rigid bar to swing back and forth through a magnetic field (Fig. 31.21). As the plate enters the field, the changing magnetic flux induces an emf in the plate, which in turn causes the free electrons in the plate to move, producing the swirling eddy currents. According to Lenz's law, the direction of the eddy currents is such that they create magnetic fields that oppose the change that causes the currents. For this reason, the eddy currents must produce effective magnetic poles on the plate, which are repelled by the poles of the magnet; this situation gives rise to a repulsive force that opposes the motion of the plate. (If the opposite were true, the plate would accelerate and its energy would increase after each swing, in violation of the law of conservation of energy.)

As indicated in Figure 31.22a (page 954), with \mathbf{B} directed into the page, the induced eddy current is counterclockwise as the swinging plate enters the field at position 1 because the flux due to the external magnetic field into the page through the plate is increasing. Hence, by Lenz's law, the induced current must provide its own magnetic field out of the page. The opposite is true as the plate

As the plate enters or leaves the field, the changing magnetic flux induces an emf, which causes eddy currents in the plate.

Figure 31.21 Formation of eddy currents in a conducting plate moving through a magnetic field.

Figure 31.22 When a conducting plate swings through a magnetic field, eddy currents are induced and the magnetic force \vec{F}_B on the plate opposes its velocity, causing it to eventually come to rest.

leaves the field at position 2, where the current is clockwise. Because the induced eddy current always produces a magnetic retarding force $\vec{\mathbf{F}}_B$ when the plate enters or leaves the field, the swinging plate eventually comes to rest.

If slots are cut in the plate as shown in Figure 31.22b, the eddy currents and the corresponding retarding force are greatly reduced. We can understand this reduction in force by realizing that the cuts in the plate prevent the formation of any large current loops.

The braking systems on many subway and rapid-transit cars make use of electromagnetic induction and eddy currents. An electromagnet attached to the train is positioned near the steel rails. (An electromagnet is essentially a solenoid with an iron core.) The braking action occurs when a large current is passed through the electromagnet. The relative motion of the magnet and rails induces eddy currents in the rails, and the direction of these currents produces a drag force on the moving train. Because the eddy currents decrease steadily in magnitude as the train slows down, the braking effect is quite smooth. As a safety measure, some power tools use eddy currents to stop rapidly spinning blades once the device is turned off.

• Eddy currents are often undesirable because they represent a transformation of mechanical energy to internal energy. To reduce this energy loss, conducting parts are often laminated; that is, they are built up in thin layers separated by a nonconducting material such as lacquer or a metal oxide. This layered structure prevents large current loops and effectively confines the currents to small loops in individual layers. Such a laminated structure is used in transformer cores (see Section 33.8) and motors to minimize eddy currents and thereby increase the efficiency of these devices.

() uick Quiz 31.5 In an equal-arm balance from the early 20th century (Fig. 31.23), an aluminum sheet hangs from one of the arms and passes between the poles of a magnet, causing the oscillations of the balance to decay rapidly. In the absence of such magnetic braking, the oscillation might continue for a long time, and the experimenter would have to wait to take a reading. Why do the oscillations decay? (a) because the aluminum sheet is attracted to the magnet

- (b) because currents in the aluminum sheet set up a magnetic field that opposes
- the oscillations (c) because aluminum is paramagnetic

Figure 31.23 (Quick Quiz 31.5) In an old-fashioned equal-arm balance, an aluminum sheet hangs between the poles of a magnet.

Summary

Concepts and Principles

Faraday's law of induction states that the emf induced in a loop is directly proportional to the time rate of change of magnetic flux through the loop, or

$$\boldsymbol{\mathcal{E}} = -\frac{d\Phi_B}{dt} \tag{31.1}$$

When a conducting bar of length ℓ moves at a velocity $\vec{\mathbf{v}}$ through a magnetic field $\vec{\mathbf{B}}$, where $\vec{\mathbf{B}}$ is perpendicular to the bar and to $\vec{\mathbf{v}}$, the **motional emf** induced in the bar is

$$\boldsymbol{\varepsilon} = -B\ell \boldsymbol{v} \tag{31.5}$$

where $\Phi_B = \int \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}}$ is the magnetic flux through the loop.

Lenz's law states that the induced current and induced emf in a conductor are in such a direction as to set up a magnetic field that opposes the change that produced them.

A general form of **Faraday's law of induction** is

$$\vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -\frac{d\Phi_B}{dt}$$
(31.9)

where \vec{E} is the nonconservative electric field that is produced by the changing magnetic flux.

Objective Questions

1. denotes answer available in Student Solutions Manual/Study Guide

1. Figure OQ31.1 is a graph of the magnetic flux through a certain coil of wire as a function of time during an interval while the radius of the coil is increased, the coil is rotated through 1.5 revolutions, and the external source of the magnetic field is turned off, in that order. Rank the emf induced in the coil at the instants marked A through E from the largest positive value to the largest-magnitude negative value. In your ranking,

note any cases of equality and also any instants when the emf is zero.

- 2. A flat coil of wire is placed in a uniform magnetic field that is in the *y* direction. (i) The magnetic flux through the coil is a maximum if the plane of the coil is where? More than one answer may be correct. (a) in the *xy* plane (b) in the *yz* plane (c) in the *xz* plane (d) in any orientation, because it is a constant (ii) For what orientation is the flux zero? Choose from the same possibilities as in part (i).
- **3.** A rectangular conducting loop is placed near a long wire carrying a current *I* as shown in Figure OQ31.3. If *I* decreases in time, what can be said of the current induced in the loop? (a) The direction of the current depends on the size of the loop. (b) The current is clockwise. (c) The current is counterclockwise. (d) The current is zero. (e) Nothing can be said about the current in the loop without more information.

- 4. A circular loop of wire with a radius of 4.0 cm is in a uniform magnetic field of magnitude 0.060 T. The plane of the loop is perpendicular to the direction of the magnetic field. In a time interval of 0.50 s, the magnetic field changes to the opposite direction with a magnitude of 0.040 T. What is the magnitude of the average emf induced in the loop? (a) 0.20 V (b) 0.025 V (c) 5.0 mV (d) 1.0 mV (e) 0.20 mV
- 5. A square, flat loop of wire is pulled at constant velocity through a region of uniform magnetic field directed perpendicular to the plane of the loop as shown in Figure OQ31.5. Which of the following statements are correct? More than one statement may be correct. (a) Current is induced in the loop in the clockwise direction. (b) Current is induced in the loop in the counterclockwise direction. (c) No current is induced in the loop, with the top edge positive. (e) Charge separation occurs in the loop, with the top edge negative.

×	×	×	$\mathbf{x} \mathbf{\vec{B}}_{in}$
×	×	×	×
×	×	×	× v
×	×	×	×
F	igur	e 00	31.5

6. The bar in Figure OQ31.6 moves on rails to the right with a velocity $\vec{\mathbf{v}}$, and a uniform, constant magnetic

field is directed out of the page. Which of the following statements are correct? More than one statement may be correct. (a) The induced current in the loop is zero. (b) The induced current in the loop is clockwise. (c) The induced current in the loop is counterclockwise. (d) An external force is required to keep the bar moving at constant speed. (e) No force is required to keep the bar moving at constant speed.

7. A bar magnet is held in a vertical orientation above a loop of wire that lies in the horizontal plane as shown in Figure OQ31.7. The south end of the magnet is toward the loop. After the magnet is dropped, what is true of the induced current in the loop as viewed from above? (a) It is clockwise as the magnet falls toward the loop. (b) It is counterclockwise as the magnet falls toward the loop. (c) It is clockwise after the magnet has moved through the loop and moves away from it. (d) It is always clockwise. (e) It is first counterclockwise as the magnet approaches the loop and then clockwise after it has passed through the loop.

- 8. What happens to the amplitude of the induced emf when the rate of rotation of a generator coil is doubled? (a) It becomes four times larger. (b) It becomes two times larger. (c) It is unchanged. (d) It becomes one-half as large. (e) It becomes one-fourth as large.
- **9.** Two coils are placed near each other as shown in Figure OQ31.9. The coil on the left is connected to a battery and a switch, and the coil on the right is connected to a resistor. What is the direction of the cur-

Figure 0Q31.9

rent in the resistor (i) at an instant immediately after the switch is thrown closed, (ii) after the switch has been closed for several seconds, and (iii) at an instant after the switch has then been thrown open? Choose each answer from the possibilities (a) left, (b) right, or (c) the current is zero.

10. A circuit consists of a conducting movable bar and a lightbulb connected to two conducting rails as shown in Figure OQ31.10. An external magnetic field is directed perpendicular to the plane of the circuit. Which of the following actions will make the bulb light up? More than one statement may be correct. (a) The bar is

	×	×	×	×	×	×	×	×	×	
\int	×	×	×	×	×	×	×	×	×	
	×	×	×	×	×	×	×	×	×	
$\left \right\rangle$	×	×	×	×	×	×	×	×	×	
4	×	<mark>≓</mark> .×	×	×	×	×	×	×	×	
$\langle -$	×	×	×	×	×	×	×	×	×	
4	×	×	×	×	×	×	×	×	×	
			Figu	ure (003	1.10				

moved to the left. (b) The bar is moved to the right.(c) The magnitude of the magnetic field is increased.(d) The magnitude of the magnetic field is decreased.(e) The bar is lifted off the rails.

11. Two rectangular loops of wire lie in the same plane as shown in Figure OQ31.11. If the current *I* in the outer loop is counterclockwise and increases with time, what is true of the current induced in the inner loop? More than one statement may be correct. (a) It is zero. (b) It is clockwise. (c) It is counterclockwise. (d) Its magnitude depends on the dimensions of the loops. (e) Its direction depends on the dimensions of the loops.

Conceptual Questions

1. denotes answer available in Student Solutions Manual/Study Guide

- 1. In Section 7.7, we defined conservative and nonconservative forces. In Chapter 23, we stated that an electric charge creates an electric field that produces a conservative force. Argue now that induction creates an electric field that produces a nonconservative force.
- **2.** A spacecraft orbiting the Earth has a coil of wire in it. An astronaut measures a small current in the coil, although there is no battery connected to it and there are no magnets in the spacecraft. What is causing the current?
- **3.** In a hydroelectric dam, how is energy produced that is then transferred out by electrical transmission? That is, how is the energy of motion of the water converted to energy that is transmitted by AC electricity?
- **4.** A bar magnet is dropped toward a conducting ring lying on the floor. As the magnet falls toward the ring, does it move as a freely falling object? Explain.
- **5.** A circular loop of wire is located in a uniform and constant magnetic field. Describe how an emf can be induced in the loop in this situation.
- **6.** A piece of aluminum is dropped vertically downward between the poles of an electromagnet. Does the magnetic field affect the velocity of the aluminum?
- **7.** What is the difference between magnetic flux and magnetic field?
- 8. When the switch in Figure CQ31.8a is closed, a current is set up in the coil and the metal ring springs upward (Fig. CQ31.8b). Explain this behavior.

Figure CQ31.8 Conceptual Questions 8 and 9.

- **9.** Assume the battery in Figure CQ31.8a is replaced by an AC source and the switch is held closed. If held down, the metal ring on top of the solenoid becomes hot. Why?
- 10. A loop of wire is moving near a long, straight wire carrying a constant current *I* as shown in Figure CQ31.10.(a) Determine the direction of the induced current in the loop as it moves away from the wire.(b) What would be the direction of the induced current in the loop if it were moving toward the wire?

Figure CQ31.10

Section 31.1 Faraday's Law of Induction

- 1. A flat loop of wire consisting of a single turn of crosssectional area 8.00 cm^2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.00 Ω ?
- 2. An instrument based on induced emf has been used to measure projectile speeds up to 6 km/s. A small magnet is imbedded in the projectile as shown in Figure P31.2. The projectile passes through two coils separated by a distance *d*. As the projectile passes through each coil, a pulse of emf is induced in the coil. The time interval between pulses can be measured accurately with an oscilloscope, and thus the speed can be determined. (a) Sketch a graph of ΔV versus *t* for the arrangement shown. Consider a current that flows counterclockwise as viewed from the starting point of the projectile as positive. On your graph, indicate which pulse is from coil 1 and which is from coil 2. (b) If the pulse separation is 2.40 ms and d = 1.50 m, what is the projectile speed?

3. Transcranial magnetic stimulation (TMS) is a noninvasive technique used to stimulate regions of the human brain (Figure P31.3). In TMS, a small coil is placed on the scalp and a brief burst of current in the coil produces a rapidly changing magnetic field inside the brain. The induced emf can stimulate neuronal activity. (a) One such device generates an upward magnetic field within the brain that rises from zero to 1.50 T in 120 ms. Determine the induced emf around a horizontal circle of tissue of radius 1.60 mm. (b) **What If?** The field next changes to 0.500 T downward in 80.0 ms. How does the emf induced in this process compare with that in part (a)?

Figure P31.3 Problems 3 and 51. The magnetic coil of a Neurostar TMS apparatus is held near the head of a patient.

- 4. A 25-turn circular coil of wire has diameter 1.00 m. It
 W is placed with its axis along the direction of the Earth's magnetic field of 50.0 μT and then in 0.200 s is flipped 180°. An average emf of what magnitude is generated in the coil?
- **5.** The flexible loop in Figure P31.5 has a radius of 12.0 cm and is in a magnetic field of magnitude 0.150 T. The loop is grasped at points *A* and *B* and stretched until its area is nearly zero. If it takes 0.200 s to close the loop, what is the magnitude of the average induced emf in it during this time interval?

6. A circular loop of wire of radius 12.0 cm is placed in a magnetic field directed perpendicular to the plane of the loop as in Figure P31.5. If the field decreases at the rate of 0.050 0 T/s in some time interval, find

- 7. To monitor the breathing of a hospital patient, a thin belt is girded around the patient's chest. The belt is a 200-turn coil. When the patient inhales, the area encircled by the coil increases by 39.0 cm². The magnitude of the Earth's magnetic field is 50.0 μ T and makes an angle of 28.0° with the plane of the coil. Assuming a patient takes 1.80 s to inhale, find the average induced emf in the coil during this time interval.
- 8. A strong electromagnet produces a uniform magnetic
 if field of 1.60 T over a cross-sectional area of 0.200 m². A coil having 200 turns and a total resistance of 20.0 Ω is placed around the electromagnet. The current in the electromagnet is then smoothly reduced until it reaches zero in 20.0 ms. What is the current induced in the coil?
- 9. A 30-turn circular coil of radius 4.00 cm and resistance
 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t², where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 5.00 s.
- 10. Scientific work is currently under way to determine whether weak oscillating magnetic fields can affect human health. For example, one study found that drivers of trains had a higher incidence of blood cancer than other railway workers, possibly due to long exposure to mechanical devices in the train engine cab. Consider a magnetic field of magnitude 1.00×10^{-3} T, oscillating sinusoidally at 60.0 Hz. If the diameter of a red blood cell is 8.00 μ m, determine the maximum emf that can be generated around the perimeter of a cell in this field.
- An aluminum ring of radius r₁ = 5.00 cm and resistance
 3.00 × 10⁻⁴ Ω is placed around one end of a long aircore solenoid with 1 000 turns per meter and radius r₂ = 3.00 cm as shown in Figure P31.11. Assume the axial component of the field produced by the solenoid is one-half as strong over the area of the end of the solenoid as at the center of the solenoid. Also assume the solenoid produces negligible field outside its cross-sectional area. The current in the solenoid is increasing at a rate of 270 A/s. (a) What is the induced current in the ring? At the center of the ring, what are (b) the magnitude and (c) the direction of the magnetic field produced by the induced current in the ring?

Figure P31.11 Problems 11 and 12.

- 12. An aluminum ring of radius r_1 and resistance R is placed around one end of a long air-core solenoid with n turns per meter and smaller radius r_2 as shown in Figure P31.11. Assume the axial component of the field produced by the solenoid over the area of the end of the solenoid is one-half as strong as at the center of the solenoid. Also assume the solenoid produces negligible field outside its cross-sectional area. The current in the solenoid is increasing at a rate of $\Delta I/\Delta t$. (a) What is the induced current in the ring? (b) At the center of the ring, what is the magnetic field produced by the induced of the ring? (c) What is the direction of this field?
- 13. A loop of wire in the shape of a rectangle of width w and length L and a long, straight wire carrying a current I lie on a tabletop as shown in Figure P31.13. (a) Determine the magnetic flux through the loop due to the current I. (b) Suppose the current is changing with time according to I = a + bt, where a and b are constants. Determine the emf that is induced in the loop if b = 10.0 A/s, h = 1.00 cm, w = 10.0 cm, and L = 1.00 m. (c) What is the direction of the induced current in the rectangle?

15. A square, single-turn wire loop ℓ = 1.00 cm on a side is placed inside a solenoid that has a circular cross section of radius r = 3.00 cm as shown in the end view of Figure P31.15 (page 960). The solenoid is 20.0 cm long and wound with 100 turns of wire. (a) If the current in the solenoid is 3.00 A, what is the magnetic flux

through the square loop? (b) If the current in the solenoid is reduced to zero in 3.00 s, what is the magnitude of the average induced emf in the square loop?

Figure P31.15

16. A long solenoid has n = 400 turns per meter and carries a current given by I = 30.0(1 - e^{-1.60t}), where I is in amperes and t is in seconds. Inside the solenoid and coaxial with it is a coil that has a radius of R = 6.00 cm and consists of a total of N = 250 turns of fine wire (Fig. P31.16). What emf is induced in the coil by the changing current?

Figure P31.16

- **17.** A coil formed by wrapping 50 turns of wire in the shape of a square is positioned in a magnetic field so that the normal to the plane of the coil makes an angle of 30.0° with the direction of the field. When the magnetic field is increased uniformly from $200 \ \mu\text{T}$ to $600 \ \mu\text{T}$ in 0.400 s, an emf of magnitude 80.0 mV is induced in the coil. What is the total length of the wire in the coil?
- 18. When a wire carries an AC current with a known frequency, you can use a *Rogowski coil* to determine the amplitude I_{max} of the current without disconnecting the wire to shunt the current through a meter. The Rogowski coil, shown in Figure P31.18, simply clips around the wire. It consists of a toroidal conductor wrapped around a circular return cord. Let *n* represent the number of turns in the toroid per unit distance along it. Let *A* represent the cross-sectional area of the

toroid. Let $I(t) = I_{\text{max}} \sin \omega t$ represent the current to be measured. (a) Show that the amplitude of the emf induced in the Rogowski coil is $\mathcal{E}_{\text{max}} = \mu_0 nA\omega I_{\text{max}}$. (b) Explain why the wire carrying the unknown current need not be at the center of the Rogowski coil and why the coil will not respond to nearby currents that it does not enclose.

19. A toroid having a rectangular cross section (a = 2.00 cm by b = 3.00 cm) and inner radius R = 4.00 cm consists of N = 500 turns of wire that carry a sinusoidal current I = I_{max} sin ωt, with I_{max} = 50.0 A and a frequency f = ω/2π = 60.0 Hz. A coil that consists of N' = 20 turns of wire is wrapped around one section of the toroid as shown in Figure P31.19. Determine the emf induced in the coil as a function of time.

20. A piece of insulated wire is shaped into a figure eight as shown in Figure P31.20. For simplicity, model the two halves of the figure eight as circles. The radius of the upper circle is 5.00 cm and that of the lower circle is 9.00 cm. The wire has a uniform resistance per unit length of 3.00 Ω/m . A uniform magnetic field is applied perpendicular to the plane of the two circles, in the direction shown. The magnetic field is increasing at a constant rate of 2.00 T/s. Find (a) the magnitude and (b) the direction of the induced current in the wire.

×	×	×	×	×	×		
×	×	×	×	×	×		
×	×	×	×	×	×		
×	×	À	×	×	×		
×	K	×	×	X	×		
×	×	×	×	×	×		
×	×	×	×	×	×		
×	×	×	×	×	×		
F	Figure P31.20						

Section 31.2 Motional emf

Section 31.3 Lenz's Law

Problem 72 in Chapter 29 can be assigned with this section.

21. A helicopter (Fig. P31.21) has blades of length 3.00 m, extending out from a central hub and rotating at 2.00 rev/s. If the vertical component of the Earth's

magnetic field is 50.0 μ T, what is the emf induced between the blade tip and the center hub?

Figure P31.21

22. Use Lenz's law to answer the following questions conw cerning the direction of induced currents. Express your answers in terms of the letter labels *a* and *b* in each part of Figure P31.22. (a) What is the direction of the induced current in the resistor *R* in Figure P31.22a when the bar magnet is moved to the left? (b) What is the direction of the current induced in the resistor *R* immediately after the switch S in Figure P31.22b is closed? (c) What is the direction of the induced current in the resistor *R* when the current *I* in Figure P31.22c decreases rapidly to zero?

- **23.** A truck is carrying a steel beam of length 15.0 m on a freeway. An accident causes the beam to be dumped off the truck and slide horizontally along the ground at a speed of 25.0 m/s. The velocity of the center of mass of the beam is northward while the length of the beam maintains an east–west orientation. The vertical component of the Earth's magnetic field at this location has a magnitude of 35.0 μ T. What is the magnitude of the induced emf between the ends of the beam?
- 24. A small airplane with a wingspan of 14.0 m is flying due north at a speed of 70.0 m/s over a region where the vertical component of the Earth's magnetic field is $1.20 \ \mu\text{T}$ downward. (a) What potential difference is

developed between the airplane's wingtips? (b) Which wingtip is at higher potential? (c) **What If?** How would the answers to parts (a) and (b) change if the plane turned to fly due east? (d) Can this emf be used to power a lightbulb in the passenger compartment? Explain your answer.

- **25.** A 2.00-m length of wire is held in an east-west direction and moves horizontally to the north with a speed of 0.500 m/s. The Earth's magnetic field in this region is of magnitude 50.0 μ T and is directed northward and 53.0° below the horizontal. (a) Calculate the magnitude of the induced emf between the ends of the wire and (b) determine which end is positive.
- **26.** Consider the arrangement shown in Figure P31.26. Assume that $R = 6.00 \ \Omega$, $\ell = 1.20 \ m$, and a uniform 2.50-T magnetic field is directed into the page. At what speed should the bar be moved to produce a current of 0.500 A in the resistor?

	×	×	×	×	×	×	×	\rightarrow
	×	×	×	×	×	×	×	B _{in}
D	×ځ	×	×	×	×	×	×	
R	× ک	×	×	×	×	×	×	F an
	×	×	×	×	×	×	×	чP
	×	×	×	×	×	×	×	

- **27.** Figure P31.26 shows a top view of a bar that can slide **M** on two frictionless rails. The resistor is $R = 6.00 \Omega$, and a 2.50-T magnetic field is directed perpendicularly downward, into the paper. Let $\ell = 1.20$ m. (a) Calculate the applied force required to move the bar to the right at a constant speed of 2.00 m/s. (b) At what rate is energy delivered to the resistor?
- **28.** A metal rod of mass *m* slides without friction along two parallel horizontal rails, separated by a distance ℓ and connected by a resistor *R*, as shown in Figure P31.26. A uniform vertical magnetic field of magnitude *B* is applied perpendicular to the plane of the paper. The applied force shown in the figure acts only for a moment, to give the rod a speed *v*. In terms of *m*, ℓ , *R*, *B*, and *v*, find the distance the rod will then slide as it coasts to a stop.
- 29. A conducting rod of length ℓ moves on two horizontal, frictionless rails as shown in Figure P31.26. If a constant force of 1.00 N moves the bar at 2.00 m/s through a magnetic field **B** that is directed into the page, (a) what is the current through the 8.00-Ω resistor *R*? (b) What is the rate at which energy is delivered to the resistor? (c) What is the mechanical power delivered by the force F_{app}?
- **30.** Why is the following situation impossible? An automobile has a vertical radio antenna of length $\ell = 1.20$ m. The automobile travels on a curvy, horizontal road where the Earth's magnetic field has a magnitude of $B = 50.0 \ \mu\text{T}$ and is directed toward the north and downward at an angle of $\theta = 65.0^{\circ}$ below the horizontal. The

motional emf developed between the top and bottom of the antenna varies with the speed and direction of the automobile's travel and has a maximum value of 4.50 mV.

31. Review. Figure P31.31 shows a bar of mass m = 0.200 kg AMT that can slide without friction on a pair of rails separated by a distance $\ell = 1.20$ m and located on an inclined plane that makes an angle $\theta = 25.0^{\circ}$ with respect to the ground. The resistance of the resistor is $R = 1.00 \Omega$ and a uniform magnetic field of magnitude B = 0.500 T is directed downward, perpendicular to the ground, over the entire region through which the bar moves. With what constant speed v does the bar slide along the rails?

Figure P31.31 Problems 31 and 32.

32. Review. Figure P31.31 shows a bar of mass *m* that can slide without friction on a pair of rails separated by a distance ℓ and located on an inclined plane that makes an angle θ with respect to the ground. The resistance of the resistor is *R*, and a uniform magnetic field of magnitude *B* is directed downward, perpendicular to the ground, over the entire region through which the bar moves. With what constant speed v does the bar slide along the rails?

33. The homopolar generator, also called the Faraday disk, is a low-voltage, high-current electric generator. It consists of a rotating conducting disk with one stationary brush (a sliding electrical contact) at its axle and another at a point on its circumference as shown in Figure P31.33. A uniform magnetic field is applied perpendicular to the plane of the disk. Assume the field is 0.900 T, the angular speed is 3.20 × 10³ rev/min, and the radius of

the disk is 0.400 m. Find the emf generated between the brushes. When superconducting coils are used to produce a large magnetic field, a homopolar generator can have a power output of several megawatts. Such a generator is useful, for example, in purifying metals by electrolysis. If a voltage is applied to the output terminals of the generator, it runs in reverse as a *homopolar motor* capable of providing great torque, useful in ship propulsion.

34. A conducting bar of length ℓ moves to the right on two frictionless rails as shown in Figure P31.34. A uniform magnetic field directed into the page has a magnitude of 0.300 T. Assume $R = 9.00 \Omega$ and $\ell = 0.350$ m. (a) At what constant speed should the bar move to produce an 8.50-mA current in the resistor? (b) What is the direction of the induced current? (c) At what rate is energy delivered to the resistor? (d) Explain the origin of the energy being delivered to the resistor.

Figure F31.34

35. Review. After removing one string while restringing AMT his acoustic guitar, a student is distracted by a video game. His experimentalist roommate notices his inattention and attaches one end of the string, of linear density $\mu = 3.00 \times 10^{-3}$ kg/m, to a rigid support. The other end passes over a pulley, a distance $\ell = 64.0$ cm from the fixed end, and an object of mass m = 27.2 kg is attached to the hanging end of the string. The roommate places a magnet across the string as shown in Figure P31.35. The magnet does not touch the string, but produces a uniform field of 4.50 mT over a 2.00-cm length of the string and negligible field elsewhere. Strumming the string sets it vibrating vertically at its fundamental (lowest) frequency. The section of the string in the magnetic field moves perpendicular to the field with a uniform amplitude of 1.50 cm. Find (a) the frequency and (b) the amplitude of the emf induced between the ends of the string.

37. Two parallel rails with negligible resistance are 10.0 cm apart and are connected by a resistor of resistance $R_3 = 5.00 \ \Omega$. The circuit also contains two metal rods having resistances of $R_1 = 10.0 \ \Omega$ and $R_2 = 15.0 \ \Omega$ sliding along the rails (Fig. P31.37). The rods are pulled away from the resistor at constant speeds of $v_1 = 4.00 \ m/s$ and $v_2 = 2.00 \ m/s$, respectively. A uniform magnetic field of magnitude $B = 0.010 \ 0 \ T$ is applied perpendicular to the plane of the rails. Determine the current in R_3 .

38. An astronaut is connected to her spacecraft by a 25.0-m-long tether cord as she and the spacecraft orbit the Earth in a circular path at a speed of 7.80 × 10³ m/s. At one instant, the emf between the ends of a wire embedded in the cord is measured to be 1.17 V. Assume the long dimension of the cord is perpendicular to the Earth's magnetic field at that instant. Assume also the tether's center of mass moves with a velocity perpendicular to the Earth's magnetic field. (a) What is the magnitude of the Earth's field at this location? (b) Does the emf change as the system moves from one location to another? Explain. (c) Provide two conditions under which the emf would be zero even though the magnetic field is not zero.

Section 31.4 Induced emf and Electric Fields

39. Within the green dashed circle shown in Figure P31.39, the magnetic field changes with time according to the expression $B = 2.00t^3 - 4.00t^2 + 0.800$, where *B* is in teslas, *t* is in seconds, and R = 2.50 cm. When t = 2.00 s, calculate (a) the magnitude and (b) the direction of the direction of the test of test of

tion of the force exerted on an electron located at point P_1 , which is at a distance $r_1 = 5.00$ cm from the center of the circular field region. (c) At what instant is this force equal to zero?

Figure P31.39 Problems 39 and 40.

- 40. A magnetic field directed into the page changes with time according to B = 0.030 0t² + 1.40, where B is in teslas and t is in seconds. The field has a circular cross section of radius R = 2.50 cm (see Fig. P31.39). When t = 3.00 s and r₂ = 0.020 0 m, what are (a) the magnitude and (b) the direction of the electric field at point P₂?
- 41. A long solenoid with 1.00 × 10³ turns per meter and radius 2.00 cm carries an oscillating current I = 5.00 sin 100πt, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (b) What is the direction of this electric field when the current is increasing counterclockwise in the solenoid?

Section 31.5 Generators and Motors

Problems 50 and 68 in Chapter 29 can be assigned with this section.

42. A 100-turn square coil of side 20.0 cm rotates about a vertical axis at 1.50×10^3 rev/min as indicated in Figure P31.42. The horizontal component of the Earth's magnetic field at the coil's location is equal to 2.00×10^{-5} T. (a) Calculate the maximum emf induced in the coil by this field. (b) What is the orientation of the coil with respect to the magnetic field when the maximum emf occurs?

- **43.** A generator produces 24.0 V when turning at 900 rev/min. What emf does it produce when turning at 500 rev/min?
- **44.** Figure P31.44 (page 964) is a graph of the induced emf versus time for a coil of N turns rotating with angular speed ω in a uniform magnetic field directed perpendicular to the coil's axis of rotation. What If? Copy this sketch (on a larger scale) and on the same set of axes show the graph of emf versus t (a) if the number of turns in the coil is doubled, (b) if instead the angular

speed is doubled, and (c) if the angular speed is doubled while the number of turns in the coil is halved.

Figure P31.44

- 45. In a 250-turn automobile alternator, the magnetic flux
 W in each turn is Φ_B = 2.50 × 10⁻⁴ cos ωt, where Φ_B is in webers, ω is the angular speed of the alternator, and t is in seconds. The alternator is geared to rotate three times for each engine revolution. When the engine is running at an angular speed of 1.00 × 10³ rev/min, determine (a) the induced emf in the alternator as a function of time and (b) the maximum emf in the alternator.
- **46.** In Figure P31.46, a semicircular conductor of radius R = 0.250 m is rotated about the axis AC at a constant rate of 120 rev/min. A uniform magnetic field of magnitude 1.30 T fills the entire region below the axis and is directed out of the page. (a) Calculate the maximum value of the emf induced between the ends of the conductor. (b) What is the value of the average induced emf for each complete rotation? (c) **What If?** How would your answers to parts (a) and (b) change if the magnetic field were allowed to extend a distance R above the axis of rotation? Sketch the emf versus time (d) when the field is as drawn in Figure P31.46 and (e) when the field is extended as described in part (c).

- 47. A long solenoid, with its axis along the *x* axis, consists of 200 turns per meter of wire that carries a steady current of 15.0 A. A coil is formed by wrapping 30 turns of thin wire around a circular frame that has a radius of 8.00 cm. The coil is placed inside the solenoid and mounted on an axis that is a diameter of the coil and coincides with the *y* axis. The coil is then rotated with an angular speed of 4.00π rad/s. The plane of the coil is in the *yz* plane at t = 0. Determine the emf generated in the coil as a function of time.
- **48.** A motor in normal operation carries a direct current of 0.850 A when connected to a 120-V power supply. The resistance of the motor windings is 11.8 Ω . While in normal operation, (a) what is the back emf gener-

ated by the motor? (b) At what rate is internal energy produced in the windings? (c) **What If?** Suppose a malfunction stops the motor shaft from rotating. At what rate will internal energy be produced in the windings in this case? (Most motors have a thermal switch that will turn off the motor to prevent overheating when this stalling occurs.)

49. The rotating loop in an AC generator is a square 10.0 cm on each side. It is rotated at 60.0 Hz in a uniform field of 0.800 T. Calculate (a) the flux through the loop as a function of time, (b) the emfinduced in the loop, (c) the current induced in the loop for a loop resistance of 1.00 Ω , (d) the power delivered to the loop, and (e) the torque that must be exerted to rotate the loop.

Section 31.6 Eddy Currents

50. Figure P31.50 represents an electromagnetic brake that uses eddy currents. An electromagnet hangs from a railroad car near one rail. To stop the car, a large current is sent through the coils of the electromagnet. The moving electromagnet induces eddy currents in the rails, whose fields oppose the change in the electromagnet's field. The magnetic fields of the eddy currents exert force on the current in the electromagnet, thereby slowing the car. The direction of the car's motion and the direction of the current in the electromagnet are shown correctly in the picture. Determine which of the eddy currents shown on the rails is correct. Explain your answer.

Figure P31.50

Additional Problems

51. Consider a transcranial magnetic stimulation (TMS) device (Figure P31.3) containing a coil with several turns of wire, each of radius 6.00 cm. In a circular area of the brain of radius 6.00 cm directly below and coaxial with the coil, the magnetic field changes at the rate of 1.00×10^4 T/s. Assume that this rate of change is the same everywhere inside the circular area. (a) What is the emf induced around the circumference of this circular area in the brain? (b) What electric field is induced on the circumference of this circular area?

- **52.** Suppose you wrap wire onto the core from a roll of cellophane tape to make a coil. Describe how you can use a bar magnet to produce an induced voltage in the coil. What is the order of magnitude of the emf you generate? State the quantities you take as data and their values.
- 53. A circular coil enclosing
 M an area of 100 cm² is made of 200 turns of copper wire (Figure P31.53). The wire making up the coil has no resistance; the ends of the wire are connected across a 5.00-Ω resistor to form a closed circuit. Ini-

tially, a 1.10-T uniform magnetic field points perpendicularly upward through the plane of the coil. The direction of the field then reverses so that the final magnetic field has a magnitude of 1.10 T and points downward through the coil. If the time interval required for the field to reverse directions is 0.100 s, what is the average current in the coil during that time?

54. A circular loop of wire of resistance R = 0.500 Ω and radius r = 8.00 cm is in a uniform magnetic field directed out of the page as in Figure P31.54. If a clockwise current of I = 2.50 mA is induced in the loop, (a) is the magnetic field increasing or decreasing in time? (b) Find the rate at which the field is changing with time.

- **55.** A rectangular loop of area $A = 0.160 \text{ m}^2$ is placed in a region where the magnetic field is perpendicular to the plane of the loop. The magnitude of the field is allowed to vary in time according to $B = 0.350 \ e^{-t/2.00}$, where *B* is in teslas and *t* is in seconds. The field has the constant value 0.350 T for t < 0. What is the value for \mathcal{E} at t = 4.00 s?
- **56.** A rectangular loop of area *A* is placed in a region where the magnetic field is perpendicular to the plane of the loop. The magnitude of the field is allowed to vary in time according to $B = B_{\max}e^{-t/\tau}$, where B_{\max} and τ are constants. The field has the constant value B_{\max} for t < 0. Find the emf induced in the loop as a function of time.
- **57.** Strong magnetic fields are used in such medical procedures as magnetic resonance imaging, or MRI. A technician wearing a brass bracelet enclosing area 0.005 00 m²

places her hand in a solenoid whose magnetic field is 5.00 T directed perpendicular to the plane of the bracelet. The electrical resistance around the bracelet's circumference is 0.020 0 Ω . An unexpected power failure causes the field to drop to 1.50 T in a time interval of 20.0 ms. Find (a) the current induced in the bracelet and (b) the power delivered to the bracelet. *Note:* As this problem implies, you should not wear any metal objects when working in regions of strong magnetic fields.

58. Consider the apparatus shown in Figure P31.58 in which GP a conducting bar can be moved along two rails connected to a lightbulb. The whole system is immersed in a magnetic field of magnitude B = 0.400 T perpendicular and into the page. The distance between the horizontal rails is $\ell = 0.800$ m. The resistance of the lightbulb is $R = 48.0 \Omega$, assumed to be constant. The bar and rails have negligible resistance. The bar is moved toward the right by a constant force of magnitude F = 0.600 N. We wish to find the maximum power delivered to the lightbulb. (a) Find an expression for the current in the lightbulb as a function of B, ℓ , R, and v, the speed of the bar. (b) When the maximum power is delivered to the lightbulb, what analysis model properly describes the moving bar? (c) Use the analysis model in part (b) to find a numerical value for the speed v of the bar when the maximum power is being delivered to the lightbulb. (d) Find the current in the lightbulb when maximum power is being delivered to it. (e) Using $P = I^2 R$, what is the maximum power delivered to the lightbulb? (f) What is the maximum mechanical input power delivered to the bar by the force F? (g) We have assumed the resistance of the lightbulb is constant. In reality, as the power delivered to the lightbulb increases, the filament temperature increases and the resistance increases. Does the speed found in part (c) change if the resistance increases and all other quantities are held constant? (h) If so, does the speed found in part (c) increase or decrease? If not, explain. (i) With the assumption that the resistance of the lightbulb increases as the current increases, does the power found in part (f) change? (j) If so, is the power found in part (f) larger or smaller? If not, explain.

59. A guitar's steel string vibrates (see Fig. 31.5). The component of magnetic field perpendicular to the area of a pickup coil nearby is given by

$B = 50.0 + 3.20 \sin 1.046 \pi t$

where B is in milliteslas and t is in seconds. The circular pickup coil has 30 turns and radius 2.70 mm. Find the emf induced in the coil as a function of time.

966

60. Why is the following situation impossible? A conducting AMT rectangular loop of mass M = 0.100 kg, resistance $R = 1.00 \Omega$, and dimensions w = 50.0 cm by $\ell = 90.0$ cm is held with its lower edge just above a region with a uniform magnetic field of magnitude B = 1.00 T as shown in Figure P31.60. The loop is released from rest. Just as the top edge of the loop reaches the region containing the field, the loop moves with a speed 4.00 m/s.

61. The circuit in Figure P31.61 is located in a magnetic
W field whose magnitude varies with time according to the expression B = 1.00 × 10⁻³ t, where B is in teslas and t is in seconds. Assume the resistance per length of the wire is 0.100 Ω/m. Find the current in section PQ of length a = 65.0 cm.

- 62. Magnetic field values are often determined by using a device known as a search coil. This technique depends on the measurement of the total charge passing through a coil in a time interval during which the magnetic flux linking the windings changes either because of the coil's motion or because of a change in the value of B. (a) Show that as the flux through the coil changes from Φ_1 to Φ_2 , the charge transferred through the coil is given by $Q = N(\Phi_2 - \Phi_1)/R$, where R is the resistance of the coil and N is the number of turns. (b) As a specific example, calculate B when a total charge of 5.00×10^{-4} C passes through a 100-turn coil of resistance 200 Ω and cross-sectional area 40.0 cm² as it is rotated in a uniform field from a position where the plane of the coil is perpendicular to the field to a position where it is parallel to the field.
- **63.** A conducting rod of length $\ell = 35.0$ cm is free to slide on two parallel conducting bars as shown in Figure P31.63. Two resistors $R_1 = 2.00 \ \Omega$ and $R_2 = 5.00 \ \Omega$ are connected across the ends of the bars to form a loop. A constant magnetic field B = 2.50 T is directed perpendicularly into the page. An external agent pulls the rod to the left with a constant speed of v = 8.00 m/s.

Find (a) the currents in both resistors, (b) the total power delivered to the resistance of the circuit, and (c) the magnitude of the applied force that is needed to move the rod with this constant velocity.

64. Review. A particle with a mass of 2.00×10^{-16} kg and a charge of 30.0 nC starts from rest, is accelerated through a potential difference ΔV , and is fired from a small source in a region containing a uniform, constant magnetic field of magnitude 0.600 T. The particle's velocity is perpendicular to the magnetic field lines. The circular orbit of the particle as it returns to the location of the source encloses a magnetic flux of 15.0 μ Wb. (a) Calculate the particle's speed. (b) Calculate the potential difference through which the particle was accelerated inside the source.

65. The plane of a square loop of wire with edge length $\mathbf{M} = 0.200$ m is oriented vertically and along an eastwest axis. The Earth's magnetic field at this point is of magnitude $B = 35.0 \ \mu\text{T}$ and is directed northward at 35.0° below the horizontal. The total resistance of the loop and the wires connecting it to a sensitive ammeter is $0.500 \ \Omega$. If the loop is suddenly collapsed by horizontal forces as shown in Figure P31.65, what total charge enters one terminal of the ammeter?

Figure P31.65

66. In Figure P31.66, the rolling axle, 1.50 m long, is pushed along horizontal rails at a constant speed v = 3.00 m/s. A resistor $R = 0.400 \Omega$ is connected to the rails at points *a* and *b*, directly opposite each other.

The wheels make good electrical contact with the rails, so the axle, rails, and R form a closed-loop circuit. The only significant resistance in the circuit is R. A uniform magnetic field B = 0.080 0 T is vertically downward. (a) Find the induced current I in the resistor. (b) What horizontal force F is required to keep the axle rolling at constant speed? (c) Which end of the resistor, a or b, is at the higher electric potential? (d) **What If?** After the axle rolls past the resistor, does the current in R reverse direction? Explain your answer.

67. Figure P31.67 shows a stationary conductor whose shape is similar to the letter e. The radius of its circular portion is a = 50.0 cm. It is placed in a constant magnetic field of 0.500 T directed out of the page. A straight conducting rod, 50.0 cm long, is pivoted about point O and rotates with a constant angular speed of 2.00 rad/s. (a) Determine the induced emf in the loop *POQ*. Note that the area of the loop is θa²/2. (b) If all the conducting material has a resistance per length of 5.00 Ω/m, what is the induced current in the loop *POQ* at the instant 0.250 s after point P passes point Q?

68. A conducting rod moves with a constant velocity in a direction perpendicular to a long, straight wire carrying a current *I* as shown in Figure P31.68. Show that the magnitude of the emf generated between the ends of the rod is

$$|\mathbf{\mathcal{E}}| = \frac{\mu_0 v I \ell}{2\pi r}$$

In this case, note that the emf decreases with increasing *r* as you might expect.

Figure P31.68

69. A small, circular washer of radius a = 0.500 cm is held AMI directly below a long, straight wire carrying a current of I = 10.0 A. The washer is located h = 0.500 m above the top of a table (Fig. P31.69). Assume the magnetic field is nearly constant over the area of the washer and equal to the magnetic field at the center of the washer. (a) If the washer is dropped from rest, what is the magnitude of the average induced emf in the washer over the time interval between its release and the moment it hits the tabletop? (b) What is the direction of the induced current in the washer?

70. Figure P31.70 shows a compact, circular coil with 220 turns and radius 12.0 cm immersed in a uniform magnetic field parallel to the axis of the coil. The rate of change of the field has the constant magnitude 20.0 mT/s. (a) What additional information is necessary to determine whether the coil is carrying clock-

wise or counterclockwise current? (b) The coil overheats if more than 160 W of power is delivered to it. What resistance would the coil have at this critical point? (c) To run cooler, should it have lower resistance or higher resistance?

Figure P31.70

- 71. A rectangular coil of 60 turns, dimensions 0.100 m by 0.200 m, and total resistance 10.0 Ω rotates with angular speed 30.0 rad/s about the *y* axis in a region where a 1.00-T magnetic field is directed along the *x* axis. The time t = 0 is chosen to be at an instant when the plane of the coil is perpendicular to the direction of \vec{B} . Calculate (a) the maximum induced emf in the coil, (b) the maximum rate of change of magnetic flux through the coil, (c) the induced emf at t = 0.050 0 s, and (d) the torque exerted by the magnetic field on the coil at the instant when the emf is a maximum.
- **72. Review.** In Figure P31.72, a uniform magnetic field decreases at a constant rate dB/dt = -K, where *K* is a positive constant. A circular loop of wire of radius *a* containing a resistance *R* and a capacitance *C* is placed

with its plane normal to the field. (a) Find the charge Q on the capacitor when it is fully charged. (b) Which plate, upper or lower, is at the higher potential? (c) Discuss the force that causes the separation of charges.

73. An *N*-turn square coil with side ℓ and resistance *R* is pulled to the right at constant speed *v* in the presence of a uniform magnetic field *B* acting perpendicular to the coil as shown in Figure P31.73. At t = 0, the right side of the coil has just departed the right edge of the field. At time *t*, the left side of the coil enters the region where B = 0. In terms of the quantities *N*, *B*, ℓ , *v*, and *R*, find symbolic expressions for (a) the magnitude of the induced emf in the loop during the time interval from t = 0 to *t*, (b) the magnitude of the induced current in the coil, (c) the power delivered to the coil, and (d) the force required to remove the coil from the field. (e) What is the direction of the magnetic force on the loop while it is being pulled out of the field?

74. A conducting rod of length ℓ moves with velocity $\vec{\mathbf{v}}$ parallel to a long wire carrying a steady current *I*. The axis of the rod is maintained perpendicular to the wire with the near end a distance *r* away (Fig. P31.74). Show that the magnitude of the emf induced in the rod is

Figure P31.74

75. The magnetic flux through a metal ring varies with **M** time t according to $\Phi_B = at^3 - bt^2$, where Φ_B is in webers, $a = 6.00 \text{ s}^{-3}$, $b = 18.0 \text{ s}^{-2}$, and t is in seconds.

The resistance of the ring is $3.00 \ \Omega$. For the interval from t = 0 to t = 2.00 s, determine the maximum current induced in the ring.

76. A rectangular loop of dimensions ℓ and w moves with a constant velocity \vec{v} away from a long wire that carries a cur-

rent I in the plane of the loop (Fig. P31.76). The total resistance of the loop is R. Derive an expression that gives the current in the loop at the instant the near side is a distance r from the wire.

77. A long, straight wire carries a current given by I = $I_{\text{max}} \sin (\omega t + \phi)$. The wire lies in the plane of a rectangular coil of N turns of wire as shown in Figure P31.77. The quantities I_{max} , ω , and ϕ are all constants. Assume $I_{\text{max}} = 50.0 \text{ A}$, $\omega = 200\pi \text{ s}^{-1}$, N = 100, h = w = 5.00 cm, and L = 20.0 cm. Determine the emf induced in the coil by the magnetic field created by the current in the straight wire.

78. A thin wire $\ell = 30.0$ cm long is held parallel to and d = 80.0 cm above a long, thin wire carrying I = 200 A and fixed in position (Fig. P31.78). The 30.0-cm wire is released at the instant t = 0 and falls, remaining

parallel to the current-carrying wire as it falls. Assume the falling wire accelerates at 9.80 m/s². (a) Derive an equation for the emf induced in it as a function of time. (b) What is the minimum value of the emf? (c) What is the maximum value? (d) What is the induced emf 0.300 s after the wire is released?

Figure P31.78

Challenge Problems

79. Two infinitely long solenoids (seen in cross section) pass through a circuit as shown in Figure P31.79. The magnitude of \vec{B} inside each is the same and is increasing at the rate of 100 T/s. What is the current in each resistor?

operate at frequencies ranging from 60 Hz to about 1 MHz and deliver powers from a few watts to several megawatts. Induction heating can be used for warming a metal pan on a kitchen stove. It can be used to avoid oxidation and contamination of the metal when welding in a vacuum enclosure. To explore induction heating, consider a flat conducting disk of radius R, thickness b, and resistivity ρ . A sinusoidal magnetic field $B_{\text{max}} \cos \omega t$ is applied perpendicular to the disk. Assume the eddy currents occur in circles concentric with the disk. (a) Calculate the average power delivered to the disk. (b) **What If?** By what factor does the power change when the amplitude of the field doubles? (c) When the frequency doubles? (d) When the radius of the disk doubles?

- 81. A bar of mass *m* and resistance *R* slides without friction in a horizontal plane, moving on parallel rails as shown in Figure P31.81. The rails are separated by a distance *d*. A battery that maintains a constant emf $\boldsymbol{\mathcal{E}}$ is connected between the rails, and a constant magnetic field $\vec{\mathbf{B}}$ is directed perpendicularly out of the page. Assuming the bar starts from rest at time t = 0, show that at time t it moves with a speed
- **82.** A *betatron* is a device that accelerates electrons to energies in the MeV range by means of electromagnetic induction. Electrons in a vacuum chamber are held in a circular orbit by a magnetic field perpendicular to the orbital plane. The magnetic field is gradually increased to induce an electric field around the orbit. (a) Show that the electric field is in the correct direction to make the electrons speed up. (b) Assume the radius of the orbit remains constant. Show that the average magnetic field over the area enclosed by the orbit must be twice as large as the magnetic field at the circle's circumference.
- 83. Review. The bar of mass *m* in Figure P31.83 is pulled horizontally across parallel, frictionless rails by a massless string that passes over a light, frictionless pulley and is attached to a suspended object of mass *M*. The uniform upward magnetic field has a magnitude *B*, and the distance between the rails is ℓ . The only significant electrical resistance is the load resistor *R* shown connecting the rails at one end. Assuming the suspended object is released with the bar at rest at t = 0, derive an expression that gives the bar's horizontal speed as a function of time.

CHAPTER 32

Inductance

- 32.1 Self-Induction and Inductance
- 32.2 RL Circuits
- **32.3** Energy in a Magnetic Field
- 32.4 Mutual Inductance
- 32.5 Oscillations in an LC Circuit
- 32.6 The RLC Circuit

A treasure hunter uses a metal detector to search for buried objects at a beach. At the end of the metal detector is a coil of wire that is part of a circuit. When the coil comes near a metal object, the inductance of the coil is affected and the current in the circuit changes. This change triggers a signal in the earphones worn by the treasure hunter. We investigate inductance in this chapter. (Andy Ryan/Stone/Getty Images) In Chapter 31, we saw that an emf and a current are induced in a loop of wire when the magnetic flux through the area enclosed by the loop changes with time. This phenomenon of electromagnetic induction has some practical consequences. In this chapter, we first describe an effect known as *self-induction*, in which a time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Self-induction is the basis of the *inductor*, an electrical circuit element. We discuss the energy stored in the magnetic field of an inductor and the energy density associated with the magnetic field.

Next, we study how an emf is induced in a coil as a result of a changing magnetic flux produced by a second coil, which is the basic principle of *mutual induction*. Finally, we examine the characteristics of circuits that contain inductors, resistors, and capacitors in various combinations.

32.1 Self-Induction and Inductance

In this chapter, we need to distinguish carefully between emfs and currents that are caused by physical sources such as batteries and those that are induced by changing magnetic fields. When we use a term (such as *emf* or *current*) without an adjective, we are describing the parameters associated with a physical source. We use the adjective *induced* to describe those emfs and currents caused by a changing magnetic field.

Consider a circuit consisting of a switch, a resistor, and a source of emf as shown in Figure 32.1. The circuit diagram is represented in perspective to show the orientations of some of the magnetic field lines due to the current in the circuit. When the switch is thrown to its closed position, the current does not immediately jump from zero to its maximum value \mathcal{E}/R . Faraday's law of electromagnetic induction (Eq. 31.1) can be used to describe this effect as follows. As the current increases with time, the magnetic field lines surrounding the wires pass through the loop represented by the circuit itself. This magnetic field passing through the loop causes a magnetic flux through the loop. This increasing flux creates an induced emf in the circuit. The direction of the induced emf is such that it would cause an induced current in the loop (if the loop did not already carry a current), which would establish a magnetic field opposing the change in the original magnetic field. Therefore, the direction of the induced emf is opposite the direction of the emf of the battery, which results in a gradual rather than instantaneous increase in the current to its final equilibrium value. Because of the direction of the induced emf, it is also called a *back emf*, similar to that in a motor as discussed in Chapter 31. This effect is called **self-induction** because the changing flux through the circuit and the resultant induced emf arise from the circuit itself. The emf \mathcal{E}_L set up in this case is called a self-induced emf.

To obtain a quantitative description of self-induction, recall from Faraday's law that the induced emf is equal to the negative of the time rate of change of the magnetic flux. The magnetic flux is proportional to the magnetic field, which in turn is proportional to the current in the circuit. Therefore, a self-induced emf is always proportional to the time rate of change of the current. For any loop of wire, we can write this proportionality as

$$\boldsymbol{\mathcal{E}}_{L} = -L\frac{di}{dt} \tag{32.1}$$

where L is a proportionality constant—called the **inductance** of the loop—that depends on the geometry of the loop and other physical characteristics. If we consider a closely spaced coil of N turns (a toroid or an ideal solenoid) carrying a current *i* and containing N turns, Faraday's law tells us that $\mathcal{E}_L = -N d\Phi_B/dt$. Combining this expression with Equation 32.1 gives

assumed the same magnetic flux passes through each turn and
$$L$$
 is the

 $L = \frac{N\Phi_B}{I}$

inductance of the entire coil.

where it is

From Equation 32.1, we can also write the inductance as the ratio

$$L = -\frac{\mathcal{E}_L}{di/dt}$$
(32.3)

Recall that resistance is a measure of the opposition to current as given by Equation 27.7, $R = \Delta V/I$; in comparison, Equation 32.3, being of the same mathematical form as Equation 27.7, shows us that inductance is a measure of the opposition to a *change* in current.

The SI unit of inductance is the **henry** (H), which as we can see from Equation 32.3 is 1 volt-second per ampere: $1 \text{ H} = 1 \text{ V} \cdot \text{s/A}$.

As shown in Example 32.1, the inductance of a coil depends on its geometry. This dependence is analogous to the capacitance of a capacitor depending on the geometry of its plates as we found in Equation 26.3 and the resistance of a resistor depending on the length and area of the conducting material in Equation 27.10. Inductance calculations can be quite difficult to perform for complicated geometries, but the examples below involve simple situations for which inductances are easily evaluated.

Joseph Henry American Physicist (1797–1878) Henry became the first director of the Smithsonian Institution and first president of the Academy of Natural Science. He improved the design of the electromagnet and constructed one of the first motors. He also discovered the phenomenon of self-induction, but he failed to publish his findings. The unit of inductance, the henry, is named in his honor.

Inductance of an N-turn coil

(32.2)

After the switch is closed, the current produces a magnetic flux through the area enclosed by the loop. As the current increases toward its equilibrium value, this magnetic flux changes in time and induces an emf in the loop.

Figure 32.1 Self-induction in a simple circuit.

uick Quiz 32.1 A coil with zero resistance has its ends labeled a and b. The potential at a is higher than at b. Which of the following could be consistent with this situation? (a) The current is constant and is directed from a to b.
(b) The current is constant and is directed from b to a. (c) The current is increasing and is directed from a to b. (d) The current is decreasing and is directed from b to a.

(f) The current is decreasing and is directed from *b* to *a*.

Example 32.1 Inductance of a Solenoid

Consider a uniformly wound solenoid having N turns and length ℓ . Assume ℓ is much longer than the radius of the windings and the core of the solenoid is air.

(A) Find the inductance of the solenoid.

SOLUTION

Conceptualize The magnetic field lines from each turn of the solenoid pass through all the turns, so an induced emf in each coil opposes changes in the current.

Categorize We categorize this example as a substitution problem. Because the solenoid is long, we can use the results for an ideal solenoid obtained in Chapter 30.

Find the magnetic flux through each turn of area *A* in the solenoid, using the expression for the magnetic field from Equation 30.17:

Substitute this expression into Equation 32.2:

(B) Calculate the inductance of the solenoid if it contains 300 turns, its length is 25.0 cm, and its cross-sectional area is 4.00 cm².

SOLUTION

Substitute numerical values into Equation 32.4:

$$L = (4\pi \times 10^{-7} \,\mathrm{T \cdot m/A}) \frac{300^2}{25.0 \times 10^{-2} \,\mathrm{m}} (4.00 \times 10^{-4} \,\mathrm{m}^2)$$
$$= 1.81 \times 10^{-4} \,\mathrm{T \cdot m^2/A} = 0.181 \,\mathrm{mH}$$

(C) Calculate the self-induced emf in the solenoid if the current it carries decreases at the rate of 50.0 A/s.

SOLUTION

Substitute di/dt = -50.0 A/s and the answer to part (B) into Equation 32.1:

$$\mathcal{E}_L = -L \frac{di}{dt} = -(1.81 \times 10^{-4} \text{ H})(-50.0 \text{ A/s})$$

= 9.05 mV

The result for part (A) shows that *L* depends on geometry and is proportional to the square of the number of turns. Because $N = n\ell$, we can also express the result in the form

$$L = \mu_0 \frac{(n\ell)^2}{\ell} A = \mu_0 n^2 A \ell = \mu_0 n^2 V$$
 (32.5)

where $V = A\ell$ is the interior volume of the solenoid.

32.2 *RL* Circuits

If a circuit contains a coil such as a solenoid, the inductance of the coil prevents the current in the circuit from increasing or decreasing instantaneously. A circuit

$$\Phi_B = BA = \mu_0 niA = \mu_0 \frac{N}{\ell} iA$$

$$L = \frac{N\Phi_B}{i} = \mu_0 \frac{N^2}{\ell} A \qquad (32.4)$$

element that has a large inductance is called an **inductor** and has the circuit symbol — **w**. We always assume the inductance of the remainder of a circuit is negligible compared with that of the inductor. Keep in mind, however, that even a circuit without a coil has some inductance that can affect the circuit's behavior.

Because the inductance of an inductor results in a back emf, an inductor in a circuit opposes changes in the current in that circuit. The inductor attempts to keep the current the same as it was before the change occurred. If the battery voltage in the circuit is increased so that the current rises, the inductor opposes this change and the rise is not instantaneous. If the battery voltage is decreased, the inductor causes a slow drop in the current rather than an immediate drop. Therefore, the inductor causes the circuit to be "sluggish" as it reacts to changes in the voltage.

Consider the circuit shown in Figure 32.2, which contains a battery of negligible internal resistance. This circuit is an *RL* **circuit** because the elements connected to the battery are a resistor and an inductor. The curved lines on switch S_2 suggest this switch can never be open; it is always set to either *a* or *b*. (If the switch is connected to neither *a* nor *b*, any current in the circuit suddenly stops.) Suppose S_2 is set to *a* and switch S_1 is open for t < 0 and then thrown closed at t = 0. The current in the circuit begins to increase, and a back emf (Eq. 32.1) that opposes the increasing current is induced in the inductor.

With this point in mind, let's apply Kirchhoff's loop rule to this circuit, traversing the circuit in the clockwise direction:

$$\mathcal{E} - iR - L\frac{di}{dt} = 0 \tag{32.6}$$

where *iR* is the voltage drop across the resistor. (Kirchhoff's rules were developed for circuits with steady currents, but they can also be applied to a circuit in which the current is changing if we imagine them to represent the circuit at one *instant* of time.) Now let's find a solution to this differential equation, which is similar to that for the *RC* circuit (see Section 28.4).

A mathematical solution of Equation 32.6 represents the current in the circuit as a function of time. To find this solution, we change variables for convenience, letting $x = (\mathcal{E}/R) - i$, so dx = -di. With these substitutions, Equation 32.6 becomes

$$x + \frac{L}{R} \frac{dx}{dt} = 0$$

Rearranging and integrating this last expression gives

$$\int_{x_0}^{x} \frac{dx}{x} = -\frac{R}{L} \int_{0}^{t} dt$$
$$\ln \frac{x}{x_0} = -\frac{R}{L} t$$

where x_0 is the value of x at time t = 0. Taking the antilogarithm of this result gives

$$x = x_0 e^{-Rt/L}$$

Because i = 0 at t = 0, note from the definition of x that $x_0 = \mathcal{E}/R$. Hence, this last expression is equivalent to

$$\frac{\boldsymbol{\mathcal{E}}}{R} - i = \frac{\boldsymbol{\mathcal{E}}}{R} e^{-Rt/L}$$
$$i = \frac{\boldsymbol{\mathcal{E}}}{R} (1 - e^{-Rt/L})$$

This expression shows how the inductor affects the current. The current does not increase instantly to its final equilibrium value when the switch is closed, but instead increases according to an exponential function. If the inductance is removed from the circuit, which corresponds to letting L approach zero, the exponential term

When switch S_1 is thrown closed, the current increases and an emf that opposes the increasing current is induced in the inductor.

When the switch S_2 is thrown to position *b*, the battery is no longer part of the circuit and the current decreases.

Figure 32.2 An *RL* circuit. When switch S_2 is in position *a*, the battery is in the circuit.

Figure 32.3 Plot of the current versus time for the *RL* circuit shown in Figure 32.2. The time constant τ is the time interval required for *i* to reach 63.2% of its maximum value.

Figure 32.4 Plot of *di/dt* versus time for the *RL* circuit shown in Figure 32.2. The rate decreases exponentially with time as *i* increases toward its maximum value.

becomes zero and there is no time dependence of the current in this case; the current increases instantaneously to its final equilibrium value in the absence of the inductance.

We can also write this expression as

$$i = \frac{\varepsilon}{R} (1 - e^{-t/\tau})$$
(32.7)

where the constant τ is the **time constant** of the *RL* circuit:

$$\tau = \frac{L}{R}$$
(32.8)

Physically, τ is the time interval required for the current in the circuit to reach $(1 - e^{-1}) = 0.632 = 63.2\%$ of its final value \mathcal{E}/R . The time constant is a useful parameter for comparing the time responses of various circuits.

Figure 32.3 shows a graph of the current versus time in the *RL* circuit. Notice that the equilibrium value of the current, which occurs as *t* approaches infinity, is \mathcal{E}/R . That can be seen by setting di/dt equal to zero in Equation 32.6 and solving for the current *i*. (At equilibrium, the change in the current is zero.) Therefore, the current initially increases very rapidly and then gradually approaches the equilibrium value \mathcal{E}/R as *t* approaches infinity.

Let's also investigate the time rate of change of the current. Taking the first time derivative of Equation 32.7 gives

$$\frac{di}{dt} = \frac{\mathcal{E}}{L} e^{-t/\tau}$$
(32.9)

This result shows that the time rate of change of the current is a maximum (equal to \mathcal{E}/L) at t = 0 and falls off exponentially to zero as *t* approaches infinity (Fig. 32.4).

Now consider the *RL* circuit in Figure 32.2 again. Suppose switch S_2 has been set at position *a* long enough (and switch S_1 remains closed) to allow the current to reach its equilibrium value \mathcal{E}/R . In this situation, the circuit is described by the outer loop in Figure 32.2. If S_2 is thrown from *a* to *b*, the circuit is now described by only the right-hand loop in Figure 32.2. Therefore, the battery has been eliminated from the circuit. Setting $\mathcal{E} = 0$ in Equation 32.6 gives

$$iR + L\frac{di}{dt} = 0$$

It is left as a problem (Problem 22) to show that the solution of this differential equation is

$$i = \frac{\mathcal{E}}{R} e^{-t/\tau} = I_i e^{-t/\tau}$$
 (32.10)

where $\boldsymbol{\varepsilon}$ is the emf of the battery and $I_i = \boldsymbol{\varepsilon}/R$ is the initial current at the instant the switch is thrown to *b*.

If the circuit did not contain an inductor, the current would immediately decrease to zero when the battery is removed. When the inductor is present, it opposes the decrease in the current and causes the current to decrease exponentially. A graph of the current in the circuit versus time (Fig. 32.5) shows that the current is continuously decreasing with time.

At t = 0, the switch is thrown to

position *b* and the current has

Figure 32.5 Current versus time for the right-hand loop of the circuit shown in Figure 32.2. For t < 0, switch S_2 is at position *a*.

() uick Quiz 32.2 Consider the circuit in Figure 32.2 with S_1 open and S_2 at position *a*. Switch S_1 is now thrown closed. (i) At the instant it is closed, across which circuit element is the voltage equal to the emf of the battery? (a) the resistor (b) the inductor (c) both the inductor and resistor (ii) After a very long time, across which circuit element is the voltage equal to the emf of the battery?

• Choose from among the same answers.

Example 32.2 Time Constant of an *RL* Circuit

Consider the circuit in Figure 32.2 again. Suppose the circuit elements have the following values: $\mathcal{E} = 12.0 \text{ V}$, $R = 6.00 \Omega$, and L = 30.0 mH.

(A) Find the time constant of the circuit.

SOLUTION

Conceptualize You should understand the operation and behavior of the circuit in Figure 32.2 from the discussion in this section.

Categorize We evaluate the results using equations developed in this section, so this example is a substitution problem.

Evaluate the time constant from Equation 32.8:

$$\tau = \frac{L}{R} = \frac{30.0 \times 10^{-3} \,\mathrm{H}}{6.00 \,\Omega} = 5.00 \,\mathrm{ms}$$

(B) Switch S_2 is at position *a*, and switch S_1 is thrown closed at t = 0. Calculate the current in the circuit at t = 2.00 ms.

SOLUTION

Evaluate the current at t = 2.00 ms from Equation 32.7: $i = \frac{\mathcal{E}}{R} (1 - e^{-t/\tau}) = \frac{12.0 \text{ V}}{6.00 \Omega} (1 - e^{-2.00 \text{ ms}/5.00 \text{ ms}}) = 2.00 \text{ A} (1 - e^{-0.400})$ = 0.659 A

(C) Compare the potential difference across the resistor with that across the inductor.

SOLUTION

At the instant the switch is closed, there is no current and therefore no potential difference across the resistor. At this instant, the battery voltage appears entirely across the inductor in the form of a back emf of 12.0 V as the inductor tries to maintain the zero-current condition. (The top end of the inductor in Fig. 32.2 is at a higher electric potential than the bottom end.) As time passes, the emf across the inductor decreases and the current in the resistor (and hence the voltage across it) increases as shown in Figure 32.6 (page 976). The sum of the two voltages at all times is 12.0 V.

WHAT IF? In Figure 32.6, the voltages across the resistor and inductor are equal at 3.4 ms. What if you wanted to delay the condition in which the voltages are equal to some later instant, such as t = 10.0 ms? Which parameter, *L* or *R*, would require the least adjustment, in terms of a percentage change, to achieve that?

Answer Figure 32.6 shows that the voltages are equal when the voltage across the inductor has fallen to half its original value. Therefore, the time interval required for the voltages to become equal is the *half-life* $_{1/2}$ of the decay. We introduced the half-life in the What If? section of Example 28.10 to describe the exponential decay in circuits, where $_{1/2}$ 0.693

From the desired half-life of 10.0 ms, use the result from Example 28.10 to find the time constant of the circuit:

Hold fixed and find the value of that gives this time constant:

Now hold fixed and find the appropriate value of

The change in corresponds to a 65% decrease compared with the initial resistance. The change in represents a 188% increase in inductance! Therefore, a much smaller percentage adjustment in can achieve the desired effect than would an adjustment in

Pitfall Prevention 32.1

Capacitors, Resistors, and Induc tors Store Energy Differently Different energy-storage mecha nisms are at work in capacitors, inductors, and resistors. A charged capacitor stores energy as electri cal potential energy. An inductor stores energy as what we could call magnetic potential energy when it carries current. Energy delivered to a resistor is transformed to internal energy.

32.3 Energy in a Magnetic Field

A battery in a circuit containing an inductor must provide more energy than one in a circuit without the inductor. Consider Figure 32.2 with switch S in position When switch S is thrown closed, part of the energy supplied by the battery appears as internal energy in the resistance in the circuit, and the remaining energy is stored in the magnetic field of the inductor. Multiplying each term in Equation 32.6 by and rearranging the expression gives

$$Li \frac{di}{dt}$$
 (32.11)

Recognizing as the rate at which energy is supplied by the battery and as the rate at which energy is delivered to the resistor, we see that di) must represent the rate at which energy is being stored in the inductor. If is the energy stored in the inductor at any time, we can write the rate at which energy is stored as

$$\frac{dU}{dt}$$
 $Li\frac{di}{dt}$

To find the total energy stored in the inductor at any instant, let's rewrite this expression as Li di and integrate:

where is constant and has been removed from the integral. Equation 32.12 represents the energy stored in the magnetic field of the inductor when the current is It is similar in form to Equation 26.11 for the energy stored in the electric field of a

We can also determine the energy density of a magnetic field. For simplicity, con

. In either case, energy is required to establish a field.

expression as *Li ui* and integrate.

sider a solenoid whose inductance is given by Equation 32.5:

Energy stored in an inductor

capacitor,

The time behavior of the voltages across the resistor and inductor in Figure 32.2 given the values provided in this example. 10.0 ms 14.4 ms 0.693 0.693 10Η 14.4 ms 14.4 ms)(6.00 86.4 Η 10

Figure 32.6 (Example 32.2)

(32.14)

The magnetic field of a solenoid is given by Equation 30.17:

 $B = \mu_0 n i$

Substituting the expression for *L* and $i = B/\mu_0 n$ into Equation 32.12 gives

u

$$U_B = \frac{1}{2}Li^2 = \frac{1}{2}\mu_0 n^2 V \left(\frac{B}{\mu_0 n}\right)^2 = \frac{B^2}{2\mu_0} V$$
 (32.13)

The magnetic energy density, or the energy stored per unit volume in the magnetic field of the inductor, is $u_B = U_B/V$, or

$$B_B = \frac{B^2}{2\mu_0}$$

Although this expression was derived for the special case of a solenoid, it is valid for any region of space in which a magnetic field exists. Equation 32.14 is similar in form to Equation 26.13 for the energy per unit volume stored in an electric field, $u_E = \frac{1}{2}\epsilon_0 E^2$. In both cases, the energy density is proportional to the square of the field magnitude.

uick Quiz 32.3 You are performing an experiment that requires the highest-possible magnetic energy density in the interior of a very long current-carrying solenoid. Which of the following adjustments increases the energy density? (More than one choice may be correct.) (a) increasing the number of turns per unit length on the solenoid (b) increasing the cross-sectional area of the solenoid (c) increasing only the length of the solenoid while keeping the number of

turns per unit length fixed (d) increasing the current in the solenoid

Example 32.3 What Happens to the Energy in the Inductor? AM

Consider once again the *RL* circuit shown in Figure 32.2, with switch S_2 at position *a* and the current having reached its steady-state value. When S_2 is thrown to position *b*, the current in the right-hand loop decays exponentially with time according to the expression $i = I_i e^{-t/\tau}$, where $I_i = \mathcal{E}/R$ is the initial current in the circuit and $\tau = L/R$ is the time constant. Show that all the energy initially stored in the magnetic field of the inductor appears as internal energy in the resistor as the current decays to zero.

SOLUTION

Conceptualize Before S_2 is thrown to *b*, energy is being delivered at a constant rate to the resistor from the battery and energy is stored in the magnetic field of the inductor. After t = 0, when S_2 is thrown to *b*, the battery can no longer provide energy and energy is delivered to the resistor only from the inductor.

Categorize We model the right-hand loop of the circuit as an *isolated system* so that energy is transferred between components of the system but does not leave the system.

Analyze We begin by evaluating the energy delivered to the resistor, which appears as internal energy in the resistor.

Begin with Equation 27.22 and recognize that the rate of change of internal energy in the resistor is the power delivered to the resistor:

Substitute the current given by Equation 32.10 into this equation:

Solve for dE_{int} and integrate this expression over the limits t = 0 to $t \rightarrow \infty$:

The value of the definite integral can be shown to be L/2R (see Problem 36). Use this result to evaluate E_{int} :

$$\frac{dE_{\rm int}}{dt} = P = i^2 R$$

$$\begin{aligned} \frac{dE_{\text{int}}}{dt} &= i^2 R = (I_i e^{-Rt/L})^2 R = I_i^2 R e^{-2Rt/L} \\ E_{\text{int}} &= \int_0^\infty I_i^2 R e^{-2Rt/L} \, dt = I_i^2 R \int_0^\infty e^{-2Rt/L} \, dt \\ E_{\text{int}} &= I_i^2 R \left(\frac{L}{2R}\right) = \frac{1}{2} L I_i^2 \end{aligned}$$
continued

Magnetic energy density

32.3 continued

Finalize This result is equal to the initial energy stored in the magnetic field of the inductor, given by Equation 32.12, as we set out to prove.

Example 32.4 The Coaxial Cable

Coaxial cables are often used to connect electrical devices, such as your video system, and in receiving signals in television cable systems. Model a long coaxial cable as a thin, cylindrical conducting shell of radius *b* concentric with a solid cylinder of radius *a* as in Figure 32.7. The conductors carry the same current *I* in opposite directions. Calculate the inductance *L* of a length ℓ of this cable.

SOLUTION

Conceptualize Consider Figure 32.7. Although we do not have a visible coil in this geometry, imagine a thin, radial slice of the coaxial cable such as the light gold rectangle in Figure 32.7. If the inner and outer conductors are connected at the ends of the cable (above and below the figure), this slice represents one large conducting loop. The current in the loop sets up a magnetic field between the inner and outer conductors that passes through this loop. If the current changes, the magnetic field changes and the induced emf opposes the original change in the current in the conductors.

Figure 32.7 (Example 32.4) Section of a long coaxial cable. The inner and outer conductors carry equal currents in opposite directions.

Categorize We categorize this situation as one in which we must return to the fundamental definition of inductance, Equation 32.2.

Analyze We must find the magnetic flux through the light gold rectangle in Figure 32.7. Ampère's law (see Section 30.3) tells us that the magnetic field in the region between the conductors is due to the inner conductor alone and that its magnitude is $B = \mu_0 i/2\pi r$, where *r* is measured from the common center of the cylinders. A sample circular field line is shown in Figure 32.7, along with a field vector tangent to the field line. The magnetic field is zero outside the outer shell because the net current passing through the area enclosed by a circular path surrounding the cable is zero; hence, from Ampère's law, $\oint \vec{B} \cdot d\vec{s} = 0$.

The magnetic field is perpendicular to the light gold rectangle of length ℓ and width b - a, the cross section of interest. Because the magnetic field varies with radial position across this rectangle, we must use calculus to find the total magnetic flux.

Divide the light gold rectangle into strips of width dr such as the darker strip in Figure 32.7. Evaluate the magnetic flux through such a strip:

Substitute for the magnetic field and integrate over the entire light gold rectangle:

Use Equation 32.2 to find the inductance of the cable:

 $d\Phi_B = B \, dA = B\ell \, dr$

$$\Phi_B = \int_a^b \frac{\mu_0 i}{2\pi r} \ell \, dr = \frac{\mu_0 i \ell}{2\pi} \int_a^b \frac{dr}{r} = \frac{\mu_0 i \ell}{2\pi} \ln\left(\frac{b}{a}\right)$$
$$L = \frac{\Phi_B}{i} = \frac{\mu_0 \ell}{2\pi} \ln\left(\frac{b}{a}\right)$$

Finalize The inductance depends only on geometric factors related to the cable. It increases if ℓ increases, if *b* increases, or if *a* decreases. This result is consistent with our conceptualization: any of these changes increases the size of the loop represented by our radial slice and through which the magnetic field passes, increasing the inductance.

Very often, the magnetic flux through the area enclosed by a circuit varies with time because of time-varying currents in nearby circuits. This condition induces an

emf through a process known as *mutual induction*, so named because it depends on the interaction of two circuits.

Consider the two closely wound coils of wire shown in cross-sectional view in Figure 32.8. The current i_1 in coil 1, which has N_1 turns, creates a magnetic field. Some of the magnetic field lines pass through coil 2, which has N_2 turns. The magnetic flux caused by the current in coil 1 and passing through coil 2 is represented by Φ_{12} . In analogy to Equation 32.2, we can identify the **mutual inductance** M_{12} of coil 2 with respect to coil 1:

$$M_{12} = \frac{N_2 \Phi_{12}}{i_1}$$
(32.15)

Mutual inductance depends on the geometry of both circuits and on their orientation with respect to each other. As the circuit separation distance increases, the mutual inductance decreases because the flux linking the circuits decreases.

If the current i_1 varies with time, we see from Faraday's law and Equation 32.15 that the emf induced by coil 1 in coil 2 is

$$\boldsymbol{\mathcal{E}}_{2} = -N_{2} \frac{d\Phi_{12}}{dt} = -N_{2} \frac{d}{dt} \left(\frac{M_{12}i_{1}}{N_{2}} \right) = -M_{12} \frac{di_{1}}{dt}$$
(32.16)

In the preceding discussion, it was assumed the current is in coil 1. Let's also imagine a current i_2 in coil 2. The preceding discussion can be repeated to show that there is a mutual inductance M_{21} . If the current i_2 varies with time, the emf induced by coil 2 in coil 1 is

$$\boldsymbol{\mathcal{E}}_1 = -M_{21} \frac{di_2}{dt} \tag{32.17}$$

In mutual induction, the emf induced in one coil is always proportional to the rate at which the current in the other coil is changing. Although the proportionality constants M_{12} and M_{21} have been treated separately, it can be shown that they are equal. Therefore, with $M_{12} = M_{21} = M$, Equations 32.16 and 32.17 become

$$\boldsymbol{\mathcal{E}}_2 = -M \frac{di_1}{dt}$$
 and $\boldsymbol{\mathcal{E}}_1 = -M \frac{di_2}{dt}$

These two equations are similar in form to Equation 32.1 for the self-induced emf $\mathcal{E} = -L (di/dt)$. The unit of mutual inductance is the henry.

Quick Quiz 32.4 In Figure 32.8, coil 1 is moved closer to coil 2, with the orientation of both coils remaining fixed. Because of this movement, the mutual induc-

• tion of the two coils (a) increases, (b) decreases, or (c) is unaffected.

Example 32.5

"Wireless" Battery Charger

An electric toothbrush has a base designed to hold the toothbrush handle when not in use. As shown in Figure 32.9a, the handle has a cylindrical hole that fits loosely over a matching cylinder on the base. When the handle is placed on the base, a changing current in a solenoid inside the base cylinder induces a current in a coil inside the handle. This induced current charges the battery in the handle.

We can model the base as a solenoid of length ℓ with $N_{\rm B}$ turns (Fig. 32.9b), carrying a current *i*, and having a cross-sectional area *A*. The handle coil contains $N_{\rm H}$ turns and completely surrounds the base coil. Find the mutual inductance of the system.

Figure 32.9 (Example 32.5) (a) This electric toothbrush uses the mutual induction of solenoids as part of its battery-charging system. (b) A coil of $N_{\rm H}$ turns wrapped around the center of a solenoid of $N_{\rm B}$ turns.

Figure 32.8 A cross-sectional view of two adjacent coils.

32.5 continued

SOLUTION

Conceptualize Be sure you can identify the two coils in the situation and understand that a changing current in one coil induces a current in the second coil.

Categorize We will determine the result using concepts discussed in this section, so we categorize this example as a substitution problem.

Use Equation 30.17 to express the magnetic field in the interior of the base solenoid:

 $B=\mu_0\,rac{N_{
m B}}{\ell}\,i$

Find the mutual inductance, noting that the magnetic flux Φ_{BH} through the handle's coil caused by the magnetic field of the base coil is *BA*:

$$M = \frac{N_{\rm H} \Phi_{\rm BH}}{i} = \frac{N_{\rm H} BA}{i} = \mu_0 \frac{N_{\rm B} N_{\rm H}}{\ell} A$$

Wireless charging is used in a number of other "cordless" devices. One significant example is the inductive charging used by some manufacturers of electric cars that avoids direct metal-to-metal contact between the car and the charging apparatus.

Figure 32.10 A simple *LC* circuit. The capacitor has an initial charge Q_{max} , and the switch is open for t < 0 and then closed at t = 0.

32.5 Oscillations in an *LC* Circuit

When a capacitor is connected to an inductor as illustrated in Figure 32.10, the combination is an *LC* circuit. If the capacitor is initially charged and the switch is then closed, both the current in the circuit and the charge on the capacitor oscillate between maximum positive and negative values. If the resistance of the circuit is zero, no energy is transformed to internal energy. In the following analysis, the resistance in the circuit is neglected. We also assume an idealized situation in which energy is not radiated away from the circuit. This radiation mechanism is discussed in Chapter 34.

Assume the capacitor has an initial charge Q_{max} (the maximum charge) and the switch is open for t < 0 and then closed at t = 0. Let's investigate what happens from an energy viewpoint.

When the capacitor is fully charged, the energy U in the circuit is stored in the capacitor's electric field and is equal to $Q_{\text{max}}^2/2C$ (Eq. 26.11). At this time, the current in the circuit is zero; therefore, no energy is stored in the inductor. After the switch is closed, the rate at which charges leave or enter the capacitor plates (which is also the rate at which the charge on the capacitor changes) is equal to the current in the circuit. After the switch is closed and the capacitor begins to discharge, the energy stored in its electric field decreases. The capacitor's discharge represents a current in the circuit, and some energy is now stored in the magnetic field of the inductor. Therefore, energy is transferred from the electric field of the capacitor to the magnetic field of the inductor. When the capacitor is fully discharged, it stores no energy. At this time, the current reaches its maximum value and all the energy in the circuit is stored in the inductor. The current continues in the same direction, decreasing in magnitude, with the capacitor eventually becoming fully charged again but with the polarity of its plates now opposite the initial polarity. This process is followed by another discharge until the circuit returns to its original state of maximum charge Q_{max} and the plate polarity shown in Figure 32.10. The energy continues to oscillate between inductor and capacitor.

The oscillations of the LC circuit are an electromagnetic analog to the mechanical oscillations of the particle in simple harmonic motion studied in Chapter 15. Much of what was discussed there is applicable to LC oscillations. For example, we investigated the effect of driving a mechanical oscillator with an external force,

Figure 32.11 Energy transfer in a resistanceless, nonradiating *LC* circuit. The capacitor has a charge Q_{max} at t = 0, the instant at which the switch in Figure 32.10 is closed. The mechanical analog of this circuit is the particle in simple harmonic motion, represented by the block–spring system at the right of the figure. (a)–(d) At these special instants, all of the energy in the circuit resides in one of the circuit elements. (e) At an arbitrary instant, the energy is split between the capacitor and the inductor.

which leads to the phenomenon of *resonance*. The same phenomenon is observed in the *LC* circuit. (See Section 33.7.)

A representation of the energy transfer in an LC circuit is shown in Figure 32.11. As mentioned, the behavior of the circuit is analogous to that of the particle in simple harmonic motion studied in Chapter 15. For example, consider the block-spring system shown in Figure 15.10. The oscillations of this system are shown at the right of Figure 32.11. The potential energy $\frac{1}{2}kx^2$ stored in the stretched spring is analogous to the potential energy $Q^2_{\text{max}}/2C$ stored in the capacitor in Figure 32.11. The kinetic energy $\frac{1}{2}mv^2$ of the moving block is analogous to the magnetic energy $\frac{1}{2}Li^2$ stored in the inductor, which requires the presence of moving charges. In Figure 32.11a, all the energy is stored as electric potential energy in the capacitor at t = 0 (because i = 0), just as all the energy in a block-spring system is initially stored as potential energy in the spring if it is stretched and released at t = 0. In Figure 32.11b, all the energy is stored as magnetic energy $\frac{1}{2}LI^2_{\text{max}}$ in the inductor, where I_{max} is the maximum current. Figures 32.11c and 32.11d show subsequent quarter-cycle situations in which the energy is all electric or all magnetic. At intermediate points, part of the energy is electric and part is magnetic.

Total energy stored in an LC circuit Consider some arbitrary time t after the switch is closed so that the capacitor has a charge $q < Q_{\text{max}}$ and the current is $i < I_{\text{max}}$. At this time, both circuit elements store energy, as shown in Figure 32.11e, but the sum of the two energies must equal the total initial energy U stored in the fully charged capacitor at t = 0:

$$U = U_E + U_B = \frac{q^2}{2C} + \frac{1}{2}Li^2 = \frac{Q_{\text{max}}^2}{2C}$$
(32.18)

Because we have assumed the circuit resistance to be zero and we ignore electromagnetic radiation, no energy is transformed to internal energy and none is transferred out of the system of the circuit. Therefore, with these assumptions, the system of the circuit is isolated: *the total energy of the system must remain constant in time*. We describe the constant energy of the system mathematically by setting dU/dt = 0. Therefore, by differentiating Equation 32.18 with respect to time while noting that q and i vary with time gives

$$\frac{dU}{dt} = \frac{d}{dt} \left(\frac{q^2}{2C} + \frac{1}{2}Li^2 \right) = \frac{q}{C} \frac{dq}{dt} + Li \frac{di}{dt} = 0$$
(32.19)

We can reduce this result to a differential equation in one variable by remembering that the current in the circuit is equal to the rate at which the charge on the capacitor changes: i = dq/dt. It then follows that $di/dt = d^2q/dt^2$. Substitution of these relationships into Equation 32.19 gives

$$\frac{q}{C} + L \frac{d^2 q}{dt^2} = 0$$

$$\frac{d^2 q}{dt^2} = -\frac{1}{LC} q$$
(32.20)

Let's solve for q by noting that this expression is of the same form as the analogous Equations 15.3 and 15.5 for a particle in simple harmonic motion:

 $\frac{d^2x}{dt^2} = -\frac{k}{m}x = -\omega^2 x$

where *k* is the spring constant, *m* is the mass of the block, and $\omega = \sqrt{k/m}$. The solution of this mechanical equation has the general form (Eq. 15.6):

 $x = A\cos\left(\omega t + \phi\right)$

where A is the amplitude of the simple harmonic motion (the maximum value of x), ω is the angular frequency of this motion, and ϕ is the phase constant; the values of A and ϕ depend on the initial conditions. Because Equation 32.20 is of the same mathematical form as the differential equation of the simple harmonic oscillator, it has the solution

$$q = Q_{\max} \cos \left(\omega t + \phi\right) \tag{32.21}$$

where $Q_{\rm max}$ is the maximum charge of the capacitor and the angular frequency ω is

$$\omega = \frac{1}{\sqrt{LC}}$$
(32.22)

Note that the angular frequency of the oscillations depends solely on the inductance and capacitance of the circuit. Equation 32.22 gives the *natural frequency* of oscillation of the *LC* circuit.

Because *q* varies sinusoidally with time, the current in the circuit also varies sinusoidally. We can show that by differentiating Equation 32.21 with respect to time:

$$i = \frac{dq}{dt} = -\omega Q_{\max} \sin(\omega t + \phi)$$
(32.23)

Charge as a function of time for an ideal *LC* circuit

Angular frequency of oscillation in an *LC* circuit

Current as a function of time for an ideal *LC* current To determine the value of the phase angle ϕ , let's examine the initial conditions, which in our situation require that at t = 0, i = 0, and $q = Q_{\text{max}}$. Setting i = 0 at t = 0 in Equation 32.23 gives

$$D = -\omega Q_{\max} \sin \phi$$

which shows that $\phi = 0$. This value for ϕ also is consistent with Equation 32.21 and the condition that $q = Q_{\text{max}}$ at t = 0. Therefore, in our case, the expressions for q and i are

$$q = Q_{\max} \cos \omega t \tag{32.24}$$

$$i = -\omega Q_{\max} \sin \omega t = -I_{\max} \sin \omega t$$
 (32.25)

Graphs of q versus t and i versus t are shown in Figure 32.12. The charge on the capacitor oscillates between the extreme values Q_{max} and $-Q_{\text{max}}$, and the current oscillates between I_{max} and $-I_{\text{max}}$. Furthermore, the current is 90° out of phase with the charge. That is, when the charge is a maximum, the current is zero, and when the charge is zero, the current has its maximum value.

Let's return to the energy discussion of the *LC* circuit. Substituting Equations 32.24 and 32.25 in Equation 32.18, we find that the total energy is

$$U = U_E + U_B = \frac{Q_{\text{max}}^2}{2C} \cos^2 \omega t + \frac{1}{2}LI_{\text{max}}^2 \sin^2 \omega t$$
 (32.26)

This expression contains all the features described qualitatively at the beginning of this section. It shows that the energy of the *LC* circuit continuously oscillates between energy stored in the capacitor's electric field and energy stored in the inductor's magnetic field. When the energy stored in the capacitor has its maximum value $Q_{\text{max}}^2/2C$, the energy stored in the inductor is zero. When the energy stored in the inductor has its maximum value $\frac{1}{2}LI_{\text{max}}^2$, the energy stored in the capacitor is zero.

Plots of the time variations of U_E and U_B are shown in Figure 32.13. The sum $U_E + U_B$ is a constant and is equal to the total energy $Q_{\max}^2/2C$, or $\frac{1}{2}LI_{\max}^2$. Analytical verification is straightforward. The amplitudes of the two graphs in Figure 32.13 must be equal because the maximum energy stored in the capacitor (when I = 0) must equal the maximum energy stored in the inductor (when q = 0). This equality is expressed mathematically as

Figure 32.12 Graphs of charge versus time and current versus time for a resistanceless, nonradiating *LC* circuit.

Using this expression in Equation 32.26 for the total energy gives

$$U = \frac{Q_{\max}^2}{2C} \left(\cos^2 \omega t + \sin^2 \omega t \right) = \frac{Q_{\max}^2}{2C}$$
(32.27)

because $\cos^2 \omega t + \sin^2 \omega t = 1$.

In our idealized situation, the oscillations in the circuit persist indefinitely; the total energy *U* of the circuit, however, remains constant only if energy transfers and transformations are neglected. In actual circuits, there is always some resistance and some energy is therefore transformed to internal energy. We mentioned at the beginning of this section that we are also ignoring radiation from the circuit. In reality, radiation is inevitable in this type of circuit, and the total energy in the circuit continuously decreases as a result of this process.

uick Quiz 32.5 (i) At an instant of time during the oscillations of an *LC* circuit, the current is at its maximum value. At this instant, what happens to the voltage across the capacitor? (a) It is different from that across the inductor. (b) It is zero. (c) It has its maximum value. (d) It is impossible to determine. (ii) Now consider an instant when the current is momentarily zero. From the same choices,
describe the magnitude of the voltage across the capacitor at this instant.

Example 32.6 Oscillations in an LC Circuit

In Figure 32.14, the battery has an emf of 12.0 V, the inductance is 2.81 mH, and the capacitance is 9.00 pF. The switch has been set to position a for a long time so that the capacitor is charged. The switch is then thrown to position b, removing the battery from the circuit and connecting the capacitor directly across the inductor.

SOLUTION

Conceptualize When the switch is thrown to position *b*, the active part of the circuit is the right-hand loop, which is an *LC* circuit.

Categorize We use equations developed in this section, so we categorize this example as a substitution problem.

 $f = \frac{\omega}{\omega} = 1$

j

Use Equation 32.22 to find the frequency:

$$f = \frac{2\pi}{2\pi} \frac{1}{2\pi \sqrt{LC}}$$
$$f = \frac{1}{2\pi [(2.81 \times 10^{-3} \,\mathrm{H})(9.00 \times 10^{-12} \,\mathrm{F})]^{1/2}} = 1.00 \times 10^{6} \,\mathrm{Hz}$$

Substitute numerical values:

(B) What are the maximum values of charge on the capacitor and current in the circuit?

SOLUTION

Find the initial charge on the capacitor, which equals the maximum charge:

Use Equation 32.25 to find the maximum current from the maximum charge:

$$Q_{\rm max} = C \Delta V = (9.00 \times 10^{-12} \,{\rm F})(12.0 \,{\rm V}) = 1.08 \times 10^{-10} \,{\rm C}$$

$$V_{\text{max}} = \omega Q_{\text{max}} = 2\pi f Q_{\text{max}} = (2\pi \times 10^6 \,\text{s}^{-1})(1.08 \times 10^{-10} \,\text{C})$$

= $6.79 \times 10^{-4} \,\text{A}$

32.6 The *RLC* Circuit

Let's now turn our attention to a more realistic circuit consisting of a resistor, an inductor, and a capacitor connected in series as shown in Figure 32.15. We assume

Figure 32.14 (Example 32.6) First the capacitor is fully charged with the switch set to position *a*. Then the switch is thrown to position *b*, and the battery is no longer in the circuit.

circuit.

the resistance of the resistor represents all the resistance in the circuit. Suppose the switch is at position a so that the capacitor has an initial charge Q_{max} . The switch is now thrown to position b. At this instant, the total energy stored in the capacitor and inductor is $Q_{\text{max}}^2/2C$. This total energy, however, is no longer constant as it was in the *LC* circuit because the resistor causes transformation to internal energy. (We continue to ignore electromagnetic radiation from the circuit in this discussion.) Because the rate of energy transformation to internal energy within a resistor is i^2R ,

$$\frac{dU}{dt} = -i^2 R$$

where the negative sign signifies that the energy U of the circuit is decreasing in time. Substituting $U = U_E + U_B$ gives

$$\frac{q}{C}\frac{dq}{dt} + Li\frac{di}{dt} = -i^2R$$
(32.28)

To convert this equation into a form that allows us to compare the electrical oscillations with their mechanical analog, we first use i = dq/dt and move all terms to the left-hand side to obtain

$$Li\frac{d^2q}{dt^2} + i^2R + \frac{q}{C}i = 0$$

Now divide through by *i*:

$$L\frac{d^{2}q}{dt^{2}} + iR + \frac{q}{C} = 0$$

$$L\frac{d^{2}q}{dt^{2}} + R\frac{dq}{dt} + \frac{q}{C} = 0$$
(32.29)

The *RLC* circuit is analogous to the damped harmonic oscillator discussed in Section 15.6 and illustrated in Figure 15.20. The equation of motion for a damped block–spring system is, from Equation 15.31,

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$$
 (32.30)

Comparing Equations 32.29 and 32.30, we see that q corresponds to the position x of the block at any instant, L to the mass m of the block, R to the damping coefficient b, and C to 1/k, where k is the force constant of the spring. These and other relationships are listed in Table 32.1 on page 986.

Because the analytical solution of Equation 32.29 is cumbersome, we give only a qualitative description of the circuit behavior. In the simplest case, when R = 0, Equation 32.29 reduces to that of a simple *LC* circuit as expected, and the charge and the current oscillate sinusoidally in time. This situation is equivalent to removing all damping in the mechanical oscillator.

When R is small, a situation that is analogous to light damping in the mechanical oscillator, the solution of Equation 32.29 is

$$q = Q_{\max} e^{-Rt/2L} \cos \omega_d t \tag{32.31}$$

where ω_d , the angular frequency at which the circuit oscillates, is given by

$$\boldsymbol{\omega}_{d} = \left[\frac{1}{LC} - \left(\frac{R}{2L}\right)^{2}\right]^{1/2}$$
(32.32)

That is, the value of the charge on the capacitor undergoes a damped harmonic oscillation in analogy with a block-spring system moving in a viscous medium. Equation 32.32 shows that when $R \ll \sqrt{4L/C}$ (so that the second term in the

The switch is set first to position

a, and the capacitor is charged.

RLC Circuit		One-Dimensional Particle in Simple Harmonic Motion
Charge	$q \leftrightarrow x$	Position
Current	$i \leftrightarrow v_x$	Velocity
Potential difference	$\Delta V {\leftrightarrow} F_{\rm x}$	Force
Resistance	$R \leftrightarrow b$	Viscous damping coefficient
Capacitance	$C \leftrightarrow 1/k$	(k = spring constant)
Inductance	$L \leftrightarrow m$	Mass
Current = time derivative of charge	$i = rac{dq}{dt} \leftrightarrow v_x = rac{dx}{dt}$	Velocity = time derivative of position
Rate of change of current = second time derivative of charge	$\frac{di}{dt} = \frac{d^2q}{dt^2} \iff a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$	Acceleration = second time derivative of position
Energy in inductor	$U_{B} = \frac{1}{2}Li^{2} \iff K = \frac{1}{2}mv^{2}$	Kinetic energy of moving object
Energy in capacitor	$U_E = rac{1}{2} \; rac{q^2}{C} \; \leftrightarrow \; U = \; rac{1}{2} k x^2$	Potential energy stored in a spring
Rate of energy loss due to resistance	$i^2 R \leftrightarrow b v^2$	Rate of energy loss due to friction
RLC circuit	$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = 0 \iff m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$	Damped object on a spring
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

## Table 32.1 Analogies Between the RLC Circuit and the Particle in Simple Harmonic Motion

brackets is much smaller than the first), the frequency  $\omega_d$  of the damped oscillator is close to that of the undamped oscillator,  $1/\sqrt{LC}$ . Because i = dq/dt, it follows that the current also undergoes damped harmonic oscillation. A plot of the charge versus time for the damped oscillator is shown in Figure 32.16a, and an oscilloscope trace for a real *RLC* circuit is shown in Figure 32.16b. The maximum value of qdecreases after each oscillation, just as the amplitude of a damped block–spring system decreases in time.

For larger values of R, the oscillations damp out more rapidly; in fact, there exists a critical resistance value  $R_c = \sqrt{4L/C}$  above which no oscillations occur. A system with  $R = R_c$  is said to be *critically damped*. When R exceeds  $R_c$ , the system is said to be *overdamped*.



## Summary

## **Concepts and Principles**

When the current in a loop of wire changes with time, an emf is induced in the loop according to Faraday's law. The **self-induced emf** is

$$\boldsymbol{\varepsilon}_{L} = -L \frac{di}{dt} \tag{32.1}$$

where *L* is the **inductance** of the loop. Inductance is a measure of how much opposition a loop offers to a change in the current in the loop. Inductance has the SI unit of **henry** (H), where  $1 \text{ H} = 1 \text{ V} \cdot \text{s/A}$ . The inductance of any coil is

(32.7)

$$L = \frac{N\Phi_B}{i}$$
(32.2)

where *N* is the total number of turns and  $\Phi_B$  is the magnetic flux through the coil. The inductance of a device depends on its geometry. For example, the inductance of an air-core solenoid is

$$L = \mu_0 \frac{N^2}{\ell} A$$
 (32.4)

where  $\ell$  is the length of the solenoid and A is the cross-sectional area.

If a resistor and inductor are connected in series to a battery of emf  $\mathcal{E}$  at time t = 0, the current in the circuit varies in time according to the expression

$$i = \frac{\mathcal{E}}{R} (1 - e^{-t/\tau})$$

where  $\tau = L/R$  is the **time constant** of the *RL* circuit. If we replace the battery in the circuit by a resistanceless wire, the current decays exponentially with time according to the expression

$$=\frac{\varepsilon}{R}e^{-t/\tau}$$
 (32.10)

where  $\mathbf{\mathcal{E}}/R$  is the initial current in the circuit.

The **mutual inductance** of a system of two coils is

$$M_{12} = \frac{N_2 \Phi_{12}}{i_1} = M_{21} = \frac{N_1 \Phi_{21}}{i_2} = M$$
 (32.15)

This mutual inductance allows us to relate the induced emf in a coil to the changing source current in a nearby coil using the relationships

$$\boldsymbol{\mathcal{E}}_{2} = -M_{12} \frac{di_{1}}{dt} \text{ and } \boldsymbol{\mathcal{E}}_{1} = -M_{21} \frac{di_{2}}{dt}$$
 (32.16, 32.17)

In an *RLC* circuit with small resistance, the charge on the capacitor varies with time according to

$$q = Q_{\max} e^{-Rt/2L} \cos \omega_d t$$
 (32.31)

where

$$\omega_d = \left[\frac{1}{LC} - \left(\frac{R}{2L}\right)^2\right]^{1/2}$$
(32.32)

The energy stored in the magnetic field of an inductor carrying a current *i* is

 $U_{\rm B} = \frac{1}{2}Li^2$  (32.12)

This energy is the magnetic counterpart to the energy stored in the electric field of a charged capacitor.

The energy density at a point where the magnetic field is *B* is

$$u_B = \frac{B^2}{2\mu_0}$$
 (32.14)

In an *LC* circuit that has zero resistance and does not radiate electromagnetically (an idealization), the values of the charge on the capacitor and the current in the circuit vary sinusoidally in time at an angular frequency given by

$$\omega = \frac{1}{\sqrt{LC}}$$
 (32.22)

The energy in an *LC* circuit continuously transfers between energy stored in the capacitor and energy stored in the inductor.

## **Objective Questions**

- 1. The centers of two circular loops are separated by a fixed distance. (i) For what relative orientation of the loops is their mutual inductance a maximum? (a) coaxial and lying in parallel planes (b) lying in the same plane (c) lying in perpendicular planes, with the center of one on the axis of the other (d) The orientation makes no difference. (ii) For what relative orientation is their mutual inductance a minimum? Choose from the same possibilities as in part (i).
- **2.** A long, fine wire is wound into a coil with inductance 5 mH. The coil is connected across the terminals of a battery, and the current is measured a few seconds after the connection is made. The wire is unwound and wound again into a different coil with L = 10 mH. This second coil is connected across the same battery, and the current is measured in the same way. Compared with the current in the first coil, is the current in the second coil (a) four times as large, (b) twice as large, (c) unchanged, (d) half as large, or (e) one-fourth as large?
- **3.** A solenoidal inductor for a printed circuit board is being redesigned. To save weight, the number of turns is reduced by one-half, with the geometric dimensions kept the same. By how much must the current change if the energy stored in the inductor is to remain the same? (a) It must be four times larger. (b) It must be two times larger. (c) It should be left the same. (d) It should be one-half as large. (e) No change in the current can compensate for the reduction in the number of turns.
- 4. In Figure OQ32.4, the switch is left in position a for a long time interval and is then quickly thrown to posi-

## **Conceptual Questions**

1. denotes answer available in *Student Solutions Manual/Study Guide* 

- Consider this thesis: "Joseph Henry, America's first professional physicist, caused a basic change in the human view of the Universe when he discovered self-induction during a school vacation at the Albany Academy about 1830. Before that time, one could think of the Universe as composed of only one thing: matter. The energy that temporarily maintains the current after a battery is removed from a coil, on the other hand, is not energy that belongs to any chunk of matter. It is energy in the massless magnetic field surrounding the coil. With Henry's discovery, Nature forced us to admit that the Universe consists of fields as well as matter."

   (a) Argue for or against the statement.
   (b) In your view, what makes up the Universe?
- 2. (a) What parameters affect the inductance of a coil?(b) Does the inductance of a coil depend on the current in the coil?
- **3.** A switch controls the current in a circuit that has a large inductance. The electric arc at the switch (Fig.

tion *b*. Rank the magnitudes of the voltages across the four circuit elements a short time thereafter from the largest to the smallest.



- 5. Two solenoids, A and B, are wound using equal lengths of the same kind of wire. The length of the axis of each solenoid is large compared with its diameter. The axial length of A is twice as large as that of B, and A has twice as many turns as B. What is the ratio of the inductance of solenoid A to that of solenoid B? (a) 4 (b) 2 (c) 1 (d)  $\frac{1}{2}$  (e)  $\frac{1}{4}$
- 6. If the current in an inductor is doubled, by what factor is the stored energy multiplied? (a) 4 (b) 2 (c) 1 (d) ¹/₂
  (e) ¹/₄
- 7. Initially, an inductor with no resistance carries a constant current. Then the current is brought to a new constant value twice as large. *After* this change, when the current is constant at its higher value, what has happened to the emf in the inductor? (a) It is larger than before the change by a factor of 4. (b) It is larger by a factor of 2. (c) It has the same nonzero value. (d) It continues to be zero. (e) It has decreased.

CQ32.3) can melt and oxidize the contact surfaces, resulting in high resistivity of the contacts and eventual destruction of the switch. Is a spark more likely to be produced at the switch when the switch is being closed, when it is being opened, or does it not matter?



Figure CQ32.3

**4.** Consider the four circuits shown in Figure CQ32.4, each consisting of a battery, a switch, a lightbulb, a

resistor, and either a capacitor or an inductor. Assume the capacitor has a large capacitance and the inductor has a large inductance but no resistance. The lightbulb has high efficiency, glowing whenever it carries electric current. (i) Describe what the lightbulb does in each of circuits (a) through (d) after the switch is thrown closed. (ii) Describe what the lightbulb does in each of circuits (a) through (d) when, having been closed for a long time interval, the switch is opened.



**5.** The current in a circuit containing a coil, a resistor, and a battery has reached a constant value. (a) Does the coil have an inductance? (b) Does the coil affect the value of the current?

- 6. (a) Can an object exert a force on itself? (b) When a coil induces an emf in itself, does it exert a force on itself?
- 7. The open switch in Figure CQ32.7 is thrown closed at t = 0. Before the switch is closed, the capacitor is uncharged and all currents are zero. Determine the currents in *L*, *C*, and *R*, the emf across *L*, and the potential differences across *C* and *R* (a) at the instant after the switch is closed and (b) long after it is closed.
- 8. After the switch is closed in the *LC* circuit shown in Figure CQ32.8, the charge on the capacitor is sometimes zero, but at such instants the current in the circuit is not zero. How is this behavior possible?







**Figure CO32.8** Conceptual Question 8 and Problems 52, 54, and 55.

- **9.** How can you tell whether an *RLC* circuit is overdamped or underdamped?
- **10.** Discuss the similarities between the energy stored in the electric field of a charged capacitor and the energy stored in the magnetic field of a current-carrying coil.

## Problems

AMT Analysis Model tutorial available in The problems found in this Web**Assign** Enhanced WebAssign chapter may be assigned online in Enhanced WebAssign Guided Problem GP 1. straightforward; 2. intermediate; Master It tutorial available in Enhanced 3. challenging WebAssign 1. full solution available in the Student W Watch It video solution available in Solutions Manual/Study Guide Enhanced WebAssign

## Section 32.1 Self-Induction and Inductance

- 1. A coil has an inductance of 3.00 mH, and the current in it changes from 0.200 A to 1.50 A in a time interval of 0.200 s. Find the magnitude of the average induced emf in the coil during this time interval.
- **2.** A coiled telephone cord forms a spiral with 70.0 turns, a diameter of 1.30 cm, and an unstretched length of 60.0 cm. Determine the inductance of one conductor in the unstretched cord.
- 3. A 2.00-H inductor carries a steady current of 0.500 A. When the switch in the circuit is opened, the current is effectively zero after 10.0 ms. What is the average induced emf in the inductor during this time interval?
- **4.** A solenoid of radius 2.50 cm has 400 turns and a length M of 20.0 cm. Find (a) its inductance and (b) the rate at

which current must change through it to produce an emf of 75.0 mV.

- **5.** An emf of 24.0 mV is induced in a 500-turn coil when the current is changing at the rate of 10.0 A/s. What is the magnetic flux through each turn of the coil at an instant when the current is 4.00 A?
- **6.** A 40.0-mA current is carried by a uniformly wound aircore solenoid with 450 turns, a 15.0-mm diameter, and 12.0-cm length. Compute (a) the magnetic field inside the solenoid, (b) the magnetic flux through each turn, and (c) the inductance of the solenoid. (d) **What If?** If the current were different, which of these quantities would change?
- 7. The current in a coil changes from 3.50 A to 2.00 A in the same direction in 0.500 s. If the average emf induced in the coil is 12.0 mV, what is the inductance of the coil?

- 8. A technician wraps wire around a tube of length 36.0 cm having a diameter of 8.00 cm. When the windings are evenly spread over the full length of the tube, the result is a solenoid containing 580 turns of wire. (a) Find the inductance of this solenoid. (b) If the current in this solenoid increases at the rate of 4.00 A/s, find the self-induced emf in the solenoid.
- **9.** The current in a 90.0-mH inductor changes with time
- W as  $i = 1.00t^2 6.00t$ , where *i* is in amperes and *t* is in seconds. Find the magnitude of the induced emf at (a) t = 1.00 s and (b) t = 4.00 s. (c) At what time is the emf zero?
- 10. An inductor in the form of a solenoid contains 420
   M turns and is 16.0 cm in length. A uniform rate of decrease of current through the inductor of 0.421 A/s induces an emf of 175 μV. What is the radius of the solenoid?
- 11. A self-induced emf in a solenoid of inductance *L* changes in time as  $\mathcal{E} = \mathcal{E}_0 e^{-kt}$ . Assuming the charge is finite, find the total charge that passes a point in the wire of the solenoid.
- 12. A toroid has a major radius R and a minor radius r and is tightly wound with N turns of wire on a hollow cardboard torus. Figure P32.12 shows half of this toroid, allowing us to see its cross section. If R >> r, the magnetic field in the region enclosed by the wire is essentially the same as the magnetic field of a solenoid that has been bent into a large circle of radius R. Modeling the field as the uniform field of a long solenoid, show that the inductance of such a toroid is approximately



- **13.** A 10.0-mH inductor carries a current  $i = I_{max} \sin \omega t$ , **M** with  $I_{max} = 5.00$  A and  $f = \omega/2\pi = 60.0$  Hz. What is the self-induced emf as a function of time?
- 14. The current in a 4.00 mH-inductor varies in time as shown in Figure P32.14. Construct a graph of the self-induced emf across the inductor over the time interval t = 0 to t = 12.0 ms.



what time interval will the current reach (a) 50.0% and

Section 32.2 RL Circuits

circuit?

(b) 90.0% of its final value?
17. A series *RL* circuit with *L* = 3.00 H and a series *RC* circuit with *C* = 3.00 μF have equal time constants. If the two circuits contain the same resistance *R*, (a) what is

the value of R? (b) What is the time constant?

15. A 510-turn solenoid has a radius of 8.00 mm and an

**16.** A 12.0-V battery is connected into a series circuit con-

**M** taining a 10.0- $\Omega$  resistor and a 2.00-H inductor. In

overall length of 14.0 cm. (a) What is its inductance?

(b) If the solenoid is connected in series with a 2.50- $\Omega$ 

resistor and a battery, what is the time constant of the

**18.** In the circuit diagrammed in Figure P32.18, take  $\mathcal{E} = 12.0$  V and  $R = 24.0 \Omega$ . Assume the switch is open for t < 0 and is closed at t = 0. On a single set of axes, sketch graphs of the current in the circuit as a function of time for  $t \ge 0$ , assuming (a) the inductance in the circuit is essentially zero, (b) the inductance has an intermediate value, and (c) the inductance has a very large value. Label the initial and final values of the current.



**Figure P32.18** Problems 18, 20, 23, 24, and 27.

**19.** Consider the circuit shown in Figure P32.19. (a) When the switch is in position *a*, for what value of *R* will the circuit have a time constant of 15.0  $\mu$ s? (b) What is the current in the inductor at the instant the switch is thrown to position *b*?



- **20.** When the switch in Figure P32.18 is closed, the current takes 3.00 ms to reach 98.0% of its final value. If  $R = 10.0 \Omega$ , what is the inductance?
- **21.** A circuit consists of a coil, a switch, and a battery, all in series. The internal resistance of the battery is negligible compared with that of the coil. The switch is originally open. It is thrown closed, and after a time interval  $\Delta t$ , the current in the circuit reaches 80.0%

of its final value. The switch then remains closed for a time interval much longer than  $\Delta t$ . The wires connected to the terminals of the battery are then shortcircuited with another wire and removed from the battery, so that the current is uninterrupted. (a) At an instant that is a time interval  $\Delta t$  after the short circuit, the current is what percentage of its maximum value? (b) At the moment  $2\Delta t$  after the coil is short-circuited, the current in the coil is what percentage of its maximum value?

22. Show that  $i = I_i e^{-t/\tau}$  is a solution of the differential equation

$$iR + L\frac{di}{dt} = 0$$

where  $I_i$  is the current at t = 0 and  $\tau = L/R$ .

- 23. In the circuit shown in Figure P32.18, let L = 7.00 H,
  W R = 9.00 Ω, and E = 120 V. What is the self-induced emf 0.200 s after the switch is closed?
- 24. Consider the circuit in Figure P32.18, taking £ = 6.00 V, L = 8.00 mH, and R = 4.00 Ω. (a) What is the inductive time constant of the circuit? (b) Calculate the current in the circuit 250 µs after the switch is closed. (c) What is the value of the final steady-state current? (d) After what time interval does the current reach 80.0% of its maximum value?
- **25.** The switch in Figure P32.25 is open for t < 0 and is then thrown closed at time t = 0. Assume  $R = 4.00 \Omega$ , L = 1.00 H, and  $\mathcal{E} = 10.0$  V. Find (a) the current in the inductor and (b) the current in the switch as functions of time thereafter.



Figure P32.25 Problems 25, 26, and 64.

- **26.** The switch in Figure P32.25 is open for t < 0 and is then thrown closed at time t = 0. Find (a) the current in the inductor and (b) the current in the switch as functions of time thereafter.
- 27. For the *RL* circuit shown in Figure P32.18, let the inductance be 3.00 H, the resistance 8.00  $\Omega$ , and the battery emf 36.0 V. (a) Calculate  $\Delta V_R / \mathcal{E}_L$ , that is, the ratio of the potential difference across the resistor to the emf across the inductor when the current is 2.00 A. (b) Calculate the emf across the inductor when the current is 4.50 A.
- **28.** Consider the current pulse i(t) shown in Figure P32.28a. The current begins at zero, becomes 10.0 A between t = 0 and  $t = 200 \ \mu$ s, and then is zero once again. This pulse is applied to the input of the partial

circuit shown in Figure P32.28b. Determine the current in the inductor as a function of time.



## Figure P32.28

- 29. An inductor that has an inductance of 15.0 H and a resistance of 30.0 Ω is connected across a 100-V battery. What is the rate of increase of the current (a) at t = 0 and (b) at t = 1.50 s?
- **30.** Two ideal inductors,  $L_1$  and  $L_2$ , have zero internal resistance and are far apart, so their magnetic fields do not influence each other. (a) Assuming these inductors are connected in series, show that they are equivalent to a single ideal inductor having  $L_{eq} = L_1 + L_2$ . (b) Assuming these same two inductors are connected in parallel, show that they are equivalent to a single ideal inductor having  $1/L_{eq} = 1/L_1 + 1/L_2$ . (c) What If? Now consider two inductors  $L_1$  and  $L_2$  that have *nonzero* internal resistances  $R_1$  and  $R_2$ , respectively. Assume they are still far apart, so their mutual inductance is zero, and assume they are connected in series. Show that they are equivalent to a single inductor having  $L_{eq} =$  $L_1 + L_2$  and  $R_{eq} = R_1 + R_2$ . (d) If these same inductors are now connected in parallel, is it necessarily true that they are equivalent to a single ideal inductor having  $1/L_{eq} = 1/L_1 + 1/L_2$  and  $1/R_{eq} = 1/R_1 + 1/R_2$ ? Explain your answer.
- 31. A 140-mH inductor and a 4.90-Ω resistor are connected with a switch to a 6.00-V battery as shown in Figure P32.31. (a) After the switch is first thrown to a (connecting the battery), what time interval elapses before the current reaches 220 mA? (b) What is the current in the inductor 10.0 s after the switch is closed? (c) Now the switch is quickly thrown from a to b. What time interval elapses before the current in the inductor falls to 160 mA?



Section 32.3 Energy in a Magnetic Field

**32.** Calculate the energy associated with the magnetic field of a 200-turn solenoid in which a current of 1.75 A produces a magnetic flux of  $3.70 \times 10^{-4} \text{ T} \cdot \text{m}^2$  in each turn.

33. An air-core solenoid with 68 turns is 8.00 cm long and
M has a diameter of 1.20 cm. When the solenoid carries a current of 0.770 A, how much energy is stored in its magnetic field?

**34.** A 10.0-V battery, a 5.00- $\Omega$  resistor, and a 10.0-H inductor

- w are connected in series. After the current in the circuit has reached its maximum value, calculate (a) the power being supplied by the battery, (b) the power being delivered to the resistor, (c) the power being delivered to the inductor, and (d) the energy stored in the magnetic field of the inductor.
- **35.** On a clear day at a certain location, a 100-V/m vertical electric field exists near the Earth's surface. At the same place, the Earth's magnetic field has a magnitude of  $0.500 \times 10^{-4}$  T. Compute the energy densities of (a) the electric field and (b) the magnetic field.
- **36.** Complete the calculation in Example 32.3 by proving that

$$\int_0^\infty e^{-2Rt/L} \, dt = \frac{L}{2R}$$

- **37.** A 24.0-V battery is connected in series with a resistor **M** and an inductor, with  $R = 8.00 \ \Omega$  and  $L = 4.00 \ H$ , respectively. Find the energy stored in the inductor (a) when the current reaches its maximum value and (b) at an instant that is a time interval of one time constant after the switch is closed.
- **38.** A flat coil of wire has an inductance of 40.0 mH and a resistance of 5.00  $\Omega$ . It is connected to a 22.0-V battery at the instant t = 0. Consider the moment when the current is 3.00 A. (a) At what rate is energy being delivered by the battery? (b) What is the power being delivered to the resistance of the coil? (c) At what rate is energy being stored in the magnetic field of the coil? (d) What is the relationship among these three power values? (e) Is the relationship described in part (d) true at other instants as well? (f) Explain the relationship at the moment immediately after t = 0 and at a moment several seconds later.
- 39. The magnetic field inside a superconducting solenoid is 4.50 T. The solenoid has an inner diameter of 6.20 cm and a length of 26.0 cm. Determine (a) the magnetic energy density in the field and (b) the energy stored in the magnetic field within the solenoid.

#### Section 32.4 Mutual Inductance

- **40.** An emf of 96.0 mV is induced in the windings of a coil when the current in a nearby coil is increasing at the rate of 1.20 A/s. What is the mutual inductance of the two coils?
- **41.** Two coils, held in fixed positions, have a mutual inductance of 100  $\mu$ H. What is the peak emf in one coil when the current in the other coil is  $i(t) = 10.0 \sin (1.00 \times 10^3 t)$ , where *i* is in amperes and *t* is in seconds?
- **42.** Two coils are close to each other. The first coil carries a current given by  $i(t) = 5.00 e^{-0.025 0t} \sin 120\pi t$ , where *i*

is in amperes and *t* is in seconds. At t = 0.800 s, the emf measured across the second coil is -3.20 V. What is the mutual inductance of the coils?

- **43.** Two solenoids A and B, spaced close to each other and M sharing the same cylindrical axis, have 400 and 700 turns, respectively. A current of 3.50 A in solenoid A produces an average flux of 300  $\mu$ Wb through each turn of A and a flux of 90.0  $\mu$ Wb through each turn of B. (a) Calculate the mutual inductance of the two solenoids. (b) What is the inductance of A? (c) What emf is induced in B when the current in A changes at the rate of 0.500 A/s?
- 44. Solenoid  $S_1$  has  $N_1$  turns, radius  $R_1$ , and length  $\ell$ . It is so long that its magnetic field is uniform nearly everywhere inside it and is nearly zero outside. Solenoid  $S_2$ has  $N_2$  turns, radius  $R_2 < R_1$ , and the same length as  $S_1$ . It lies inside  $S_1$ , with their axes parallel. (a) Assume  $S_1$  carries variable current *i*. Compute the mutual inductance characterizing the emf induced in  $S_2$ . (b) Now assume  $S_2$  carries current *i*. Compute the mutual inductance to which the emf in  $S_1$  is proportional. (c) State how the results of parts (a) and (b) compare with each other.
- **45.** On a printed circuit board, a relatively long, straight conductor and a conducting rectangular loop lie in the same plane as shown in Figure P32.45. Taking h = 0.400 mm, w = 1.30 mm, and  $\ell = 2.70$  mm, find their mutual inductance.



46. Two single-turn circular loops of wire have radii *R* and *r*, with *R* >> *r*. The loops lie in the same plane and are concentric. (a) Show that the mutual inductance of the pair is approximately M = μ₀πr²/2R. (b) Evaluate M for r = 2.00 cm and R = 20.0 cm.

#### Section 32.5 Oscillations in an LC Circuit

47. In the circuit of Figure P32.47, the battery emf is 50.0 V, the resistance is 250  $\Omega$ , and the capacitance is 0.500  $\mu$ F. The switch S is closed for a long time



Figure P32.47

992

interval, and zero potential difference is measured across the capacitor. After the switch is opened, the potential difference across the capacitor reaches a maximum value of 150 V. What is the value of the inductance?

- **48.** A 1.05- $\mu$ H inductor is connected in series with a variable capacitor in the tuning section of a shortwave radio set. What capacitance tunes the circuit to the signal from a transmitter broadcasting at 6.30 MHz?
- **49.** A  $1.00-\mu$ F capacitor is charged by a 40.0-V power supply. The fully charged capacitor is then discharged through a 10.0-mH inductor. Find the maximum current in the resulting oscillations.
- **50.** Calculate the inductance of an *LC* circuit that oscillates at 120 Hz when the capacitance is  $8.00 \ \mu$ F.
- **51.** An *LC* circuit consists of a 20.0-mH inductor and a 0.500- $\mu$ F capacitor. If the maximum instantaneous current is 0.100 A, what is the greatest potential difference across the capacitor?
- **52.** Why is the following situation impossible? The LC circuit shown in Figure CQ32.8 has L = 30.0 mH and  $C = 50.0 \,\mu\text{F}$ . The capacitor has an initial charge of 200  $\mu$ C. The switch is closed, and the circuit undergoes undamped LC oscillations. At periodic instants, the energies stored by the capacitor and the inductor are equal, with each of the two components storing  $250 \,\mu\text{J}$ .
- **53.** The switch in Figure P32.53 is connected to position *a* **AMI** for a long time interval. At t = 0, the switch is thrown to position *b*. After this time, what are (a) the frequency of oscillation of the *LC* circuit, (b) the maximum charge that appears on the capacitor, (c) the maximum current in the inductor, and (d) the total energy the circuit possesses at t = 3.00 s?



- 54. An *LC* circuit like that in Figure CQ32.8 consists of a
  M 3.30-H inductor and an 840-pF capacitor that initially carries a 105-μC charge. The switch is open for *t* < 0 and is then thrown closed at *t* = 0. Compute the following quantities at *t* = 2.00 ms: (a) the energy stored in the capacitor, (b) the energy stored in the inductor, and (c) the total energy in the circuit.
- 55. An *LC* circuit like the one in Figure CQ32.8 contains AMT an 82.0-mH inductor and a 17.0- $\mu$ F capacitor that initially carries a 180- $\mu$ C charge. The switch is open for t < 0 and is then thrown closed at t = 0. (a) Find the frequency (in hertz) of the resulting oscillations. At t = 1.00 ms, find (b) the charge on the capacitor and (c) the current in the circuit.

#### Section 32.6 The RLC Circuit

**56.** Show that Equation 32.28 in the text is Kirchhoff's loop rule as applied to the circuit in Figure P32.56 with the switch thrown to position *b*.



- **57.** In Figure P32.56, let  $R = 7.60 \Omega$ , L = 2.20 mH, and  $C = 1.80 \mu$ F. (a) Calculate the frequency of the damped oscillation of the circuit when the switch is thrown to position *b*. (b) What is the critical resistance for damped oscillations?
- **58.** Consider an *LC* circuit in which L = 500 mH and  $\mathbf{M} = 0.100 \ \mu\text{F}$ . (a) What is the resonance frequency  $\omega_0$ ? (b) If a resistance of 1.00 k $\Omega$  is introduced into this circuit, what is the frequency of the damped oscillations? (c) By what percentage does the frequency of the damped oscillations differ from the resonance frequency?
- 59. Electrical oscillations are initiated in a series circuit containing a capacitance *C*, inductance *L*, and resistance *R*. (a) If *R* << √4*L*/*C* (weak damping), what time interval elapses before the amplitude of the current oscillation falls to 50.0% of its initial value? (b) Over what time interval does the energy decrease to 50.0% of its initial value?

#### Additional Problems

60. Review. This problem extends the reasoning of Section 26.4, Problem 38 in Chapter 26, Problem 34 in Chapter 30, and Section 32.3. (a) Consider a capacitor with vacuum between its large, closely spaced, oppositely charged parallel plates. Show that the force on one plate can be accounted for by thinking of the electric field between the plates as exerting a "negative pressure" equal to the energy density of the electric field. (b) Consider two infinite plane sheets carrying electric currents in opposite directions with equal linear current densities  $J_s$ . Calculate the force per area acting on one sheet due to the magnetic field, of magnitude  $\mu_0 I_c/2$ , created by the other sheet. (c) Calculate the net magnetic field between the sheets and the field outside of the volume between them. (d) Calculate the energy density in the magnetic field between the sheets. (e) Show that the force on one sheet can be accounted for by thinking of the magnetic field between the sheets as exerting a positive pressure equal to its energy density. This result for magnetic pressure applies to all current configurations, not only to sheets of current.

- **61.** A 1.00-mH inductor and a  $1.00-\mu$ F capacitor are connected in series. The current in the circuit increases linearly in time as i = 20.0t, where *i* is in amperes and *t* is in seconds. The capacitor initially has no charge. Determine (a) the voltage across the inductor as a function of time, (b) the voltage across the capacitor as a function of time, and (c) the time when the energy stored in the capacitor first exceeds that in the inductor.
- **62.** An inductor having inductance L and a capacitor having capacitance C are connected in series. The current in the circuit increases linearly in time as described by i = Kt, where K is a constant. The capacitor is initially uncharged. Determine (a) the voltage across the inductor as a function of time, (b) the voltage across the capacitor as a function of time, and (c) the time when the energy stored in the capacitor first exceeds that in the inductor.
- 63. A capacitor in a series *LC* circuit has an initial charge *Q* and is being discharged. When the charge on the capacitor is *Q*/2, find the flux through each of the *N* turns in the coil of the inductor in terms of *Q*, *N*, *L*, and *C*.
- 64. In the circuit diagrammed in Figure P32.25, assume AMT the switch has been closed for a long time interval and is opened at t = 0. Also assume  $R = 4.00 \Omega$ , L = 1.00 H, and  $\mathcal{E} = 10.0$  V. (a) Before the switch is opened, does the inductor behave as an open circuit, a short circuit, a resistor of some particular resistance, or none of those choices? (b) What current does the inductor carry? (c) How much energy is stored in the inductor for t < 0? (d) After the switch is opened, what happens to the energy previously stored in the inductor? (e) Sketch a graph of the current in the inductor for  $t \ge 0$ . Label the initial and final values and the time constant.
- **65.** When the current in the portion of the circuit shown in Figure P32.65 is 2.00 A and increases at a rate of 0.500 A/s, the measured voltage is  $\Delta V_{ab} = 9.00$  V. When the current is 2.00 A and decreases at the rate of 0.500 A/s, the measured voltage is  $\Delta V_{ab} = 5.00$  V. Calculate the values of (a) L and (b) R.



**66.** At the moment t = 0, a 24.0-V battery is connected to a 5.00-mH coil and a 6.00- $\Omega$  resistor. (a) Immediately thereafter, how does the potential difference across the resistor compare to the emf across the coil? (b) Answer the same question about the circuit several seconds later. (c) Is there an instant at which these two voltages are equal in magnitude? If so, when? Is there more than one such instant? (d) After a 4.00-A current is established in the resistor and coil, the battery is sud-

denly replaced by a short circuit. Answer parts (a), (b), and (c) again with reference to this new circuit.

- 67. (a) A flat, circular coil does not actually produce a uniform magnetic field in the area it encloses. Nevertheless, estimate the inductance of a flat, compact, circular coil with radius R and N turns by assuming the field at its center is uniform over its area. (b) A circuit on a laboratory table consists of a 1.50-volt battery, a 270- $\Omega$  resistor, a switch, and three 30.0-cm-long patch cords connecting them. Suppose the circuit is arranged to be circular. Think of it as a flat coil with one turn. Compute the order of magnitude of its inductance and (c) of the time constant describing how fast the current increases when you close the switch.
- **68.** Why is the following situation impossible? You are working on an experiment involving a series circuit consisting of a charged  $500-\mu$ F capacitor, a 32.0-mH inductor, and a resistor *R*. You discharge the capacitor through the inductor and resistor and observe the decaying oscillations of the current in the circuit. When the resistance *R* is 8.00  $\Omega$ , the decay in the oscillations is too slow for your experimental design. To make the decay faster, you double the resistance. As a result, you generate decaying oscillations of the current that are perfect for your needs.
- **69.** A time-varying current *i* is sent through a 50.0-mH inductor from a source as shown in Figure P32.69a. The current is constant at i = -1.00 mA until t = 0 and then varies with time afterward as shown in Figure P32.69b. Make a graph of the emf across the inductor as a function of time.



70. At t = 0, the open switch in Figure P32.70 is thrown GP closed. We wish to find a symbolic expression for the current in the inductor for time t > 0. Let this current be called *i* and choose it to be downward in the inductor in Figure P32.70. Identify  $i_1$  as the current to the right through  $R_1$  and  $i_2$  as the current downward through  $R_2$ . (a) Use Kirchhoff's junction rule to find



Figure P32.70

a relation among the three currents. (b) Use Kirchhoff's loop rule around the left loop to find another relationship. (c) Use Kirchhoff's loop rule around the outer loop to find a third relationship. (d) Eliminate  $i_1$  and  $i_2$  among the three equations to find an equation involving only the current *i*. (e) Compare the equation in part (d) with Equation 32.6 in the text. Use this comparison to rewrite Equation 32.7 in the text for the situation in this problem and show that

$$i(t) = rac{oldsymbol{\mathcal{E}}}{R_1} \left[1 - e^{-(R'/L)t}
ight]$$

where  $R' = R_1 R_2 / (R_1 + R_2)$ .

71. The toroid in Figure P32.71 consists of *N* turns and has a rectangular cross section. Its inner and outer radii are *a* and *b*, respectively. The figure shows half of the toroid to allow us to see its cross-section. Compute the inductance of a 500-turn toroid for which a = 10.0 cm, b = 12.0 cm, and h = 1.00 cm.



Figure P32.71 Problems 71 and 72.

72. The toroid in Figure P32.71 consists of *N* turns and has a rectangular cross section. Its inner and outer radii are *a* and *b*, respectively. Find the inductance of the toroid.

Problems 73 through 76 apply ideas from this and earlier chapters to some properties of superconductors, which were introduced in Section 27.5.

- **73. Review.** A novel method of storing energy has been proposed. A huge underground superconducting coil, 1.00 km in diameter, would be fabricated. It would carry a maximum current of 50.0 kA through each winding of a 150-turn Nb₃Sn solenoid. (a) If the inductance of this huge coil were 50.0 H, what would be the total energy stored? (b) What would be the compressive force per unit length acting between two adjacent windings 0.250 m apart?
- 74. Review. In an experiment carried out by S. C. Collins between 1955 and 1958, a current was maintained in a superconducting lead ring for 2.50 yr with no observed loss, even though there was no energy input. If the inductance of the ring were  $3.14 \times 10^{-8}$  H and the sensitivity of the experiment were 1 part in 10⁹, what was the maximum resistance of the ring? *Suggestion:* Treat the ring as an *RL* circuit carrying decaying current and recall that the approximation  $e^{-x} \approx 1 x$  is valid for small *x*.

75. Review. The use of superconductors has been proposed for power transmission lines. A single coaxial cable (Fig. P32.75) could carry a power of  $1.00 \times 10^3$  MW (the output of a large power plant) at 200 kV, DC, over a distance of  $1.00 \times 10^3$  km without loss. An inner wire of radius a = 2.00 cm, made from the superconductor Nb₃Sn, carries the current *I* in one direction. A surrounding superconducting cylinder of radius b = 5.00 cm would carry the return current *I*. In such a system, what is the magnetic field (a) at the surface of the inner conductor and (b) at the inner surface of the outer conductor? (c) How much energy would be stored in the magnetic field in the space between the conductors in a  $1.00 \times 10^3$  km superconducting line? (d) What is the pressure exerted on the outer conductor due to the current in the inner conductor?



## Figure P32.75

**6 Review.** A fundamental property of a type I superconducting material is *perfect diamagnetism*, or demonstration of the *Meissner effect*, illustrated in Figure 30.27 in Section 30.6 and described as follows. If a sample of superconducting material is placed into an externally produced magnetic field or is cooled to become superconducting while it is in a magnetic field, electric currents appear on the surface of the sample. The currents have precisely the strength and orientation required to make the total magnetic field be zero throughout the interior of the sample. This problem will help you understand the magnetic force that can then act on the sample. Compare this problem with Problem 65 in Chapter 26, pertaining to the force attracting a perfect dielectric into a strong electric field.

A vertical solenoid with a length of 120 cm and a diameter of 2.50 cm consists of 1 400 turns of copper wire carrying a counterclockwise current (when viewed from above) of 2.00 A as shown in Figure P32.76a (page 996). (a) Find the magnetic field in the vacuum inside the solenoid. (b) Find the energy density of the magnetic field. Now a superconducting bar 2.20 cm in diameter is inserted partway into the solenoid. Its upper end is far outside the solenoid, where the magnetic field is negligible. The lower end of the bar is deep inside the solenoid. (c) Explain how you identify the direction required for the current on the curved surface of the bar so that the total magnetic field is zero within the bar. The field created by the supercurrents is sketched in Figure P32.76b, and the total field is sketched in Figure P32.76c. (d) The field of the solenoid exerts a force on the current in the superconductor. Explain how you determine the direction of the force on the bar. (e) Noting that the units  $J/m^3$  of energy density are the

same as the units  $N/m^2$  of pressure, calculate the magnitude of the force by multiplying the energy density of the solenoid field times the area of the bottom end of the superconducting bar.



77. A wire of nonmagnetic material, with radius *R*, carries current uniformly distributed over its cross section. The total current carried by the wire is *I*. Show that the magnetic energy per unit length inside the wire is  $\mu_0 I^2/16\pi$ .

## **Challenge Problems**

**78.** In earlier times when many households received nondigital television signals from an antenna, the lead-in wires from the antenna were often constructed in the form of two parallel wires (Fig. P32.78). The two wires carry currents of equal magnitude in opposite directions. The center-to-center separation of the wires is w, and a is their radius. Assume w is large enough compared with a that the wires carry the current uniformly distributed over their surfaces and negligible magnetic field exists inside the wires. (a) Why does this configuration of conductors have an inductance? (b) What constitutes the flux loop for this configuration? (c) Show that the inductance of a length x of this type of lead-in is



Figure P32.78

**79.** Assume the magnitude of the magnetic field outside a sphere of radius R is  $B = B_0 (R/r)^2$ , where  $B_0$  is a constant. (a) Determine the total energy stored in the

magnetic field outside the sphere. (b) Evaluate your result from part (a) for  $B_0 = 5.00 \times 10^{-5}$  T and  $R = 6.00 \times 10^6$  m, values appropriate for the Earth's magnetic field.

**80.** In Figure P32.80, the battery has emf  $\mathcal{E} = 18.0$  V and the other circuit elements have values L = 0.400 H,  $R_1 = 2.00 \text{ k}\Omega$ , and  $R_2 = 6.00 \text{ k}\Omega$ . The switch is closed for t < 0, and steady-state conditions are established. The switch is then opened at t = 0. (a) Find the emf across L immediately after t = 0. (b) Which end of the coil, a or b, is at the higher potential? (c) Make graphs of the currents in  $R_1$  and in  $R_2$  as a function of time, treating the steady-state directions as positive. Show values before and after t = 0. (d) At what moment after t = 0 does the current in  $R_2$  have the value 2.00 mA?



**81.** To prevent damage from arcing in an electric motor, a discharge resistor is sometimes placed in parallel with the armature. If the motor is suddenly unplugged while running, this resistor limits the voltage that appears across the armature coils. Consider a 12.0-V DC motor with an armature that has a resistance of 7.50  $\Omega$  and an inductance of 450 mH. Assume the magnitude of the self-induced emf in the armature coils is 10.0 V when the motor is running at normal speed. (The equivalent circuit for the armature is shown in Fig. P32.81.) Calculate the maximum resistance *R* that limits the voltage across the armature to 80.0 V when the motor is unplugged.



**82.** One application of an *RL* circuit is the generation of time-varying high voltage from a low-voltage source as shown in Figure P32.82. (a) What is the current in the circuit a long time after the switch has been in posi-

tion *a*? (b) Now the switch is thrown quickly from *a* to *b*. Compute the initial voltage across each resistor and across the inductor. (c) How much time elapses before the voltage across the inductor drops to 12.0 V?

83. Two inductors having inductances  $L_1$  and  $L_2$  are connected in parallel as shown in Figure P32.83a. The mutual inductance between the two inductors is M. Determine the equivalent inductance  $L_{\rm eq}$  for the system (Fig. P32.83b).



# Alternating-**Current Circuits**



These large transformers are used to increase the voltage at a power plant for distribution of energy by electrical transmission to the power grid. Voltages can be changed relatively easily because power is distributed by alternating current rather than direct current. (©Lester Lefkowitz/Getty Images)

CHAPTER

33

33.1 AC Sources

33.5 The RLC Series Circuit 33.6 Power in an AC Circuit

*RLC* Circuit 33.8 The Transformer and Power Transmission 33.9 Rectifiers and Filters

Resonance in a Series

33.2

33.3

33.7

In this chapter, we describe alternating-current (AC) circuits. Every time you turn on a television set, a computer, or any of a multitude of other electrical appliances in a home, you are calling on alternating currents to provide the power to operate them. We begin our study by investigating the characteristics of simple series circuits that contain resistors, inductors, and capacitors and that are driven by a sinusoidal voltage. The primary aim of this chapter can be summarized as follows: if an AC source applies an alternating voltage to a series circuit containing resistors, inductors, and capacitors, we want to know the amplitude and time characteristics of the alternating current. We conclude this chapter with two sections concerning transformers, power transmission, and electrical filters.

# 33.1 AC Sources

An AC circuit consists of circuit elements and a power source that provides an alternating voltage  $\Delta v$ . This time-varying voltage from the source is described by

## $\Delta v = \Delta V_{\max} \sin \omega t$

where  $\Delta V_{\text{max}}$  is the maximum output voltage of the source, or the voltage amplitude. There are various possibilities for AC sources, including generators as disdally with time, the voltage is positive during one half of the cycle and negative during the other half as in Figure 33.1. Likewise, the current in any circuit driven by an AC source is an alternating current that also varies sinusoidally with time.

From Equation 15.12, the angular frequency of the AC voltage is

$$\omega = 2\pi f = \frac{2\pi}{T}$$

where f is the frequency of the source and T is the period. The source determines the frequency of the current in any circuit connected to it. Commercial electric-power plants in the United States use a frequency of 60.0 Hz, which corresponds to an angular frequency of 377 rad/s.

## 33.2 Resistors in an AC Circuit

Consider a simple AC circuit consisting of a resistor and an AC source  $\neg \neg \neg$  as shown in Figure 33.2. At any instant, the algebraic sum of the voltages around a closed loop in a circuit must be zero (Kirchhoff's loop rule). Therefore,  $\Delta v + \Delta v_R = 0$  or, using Equation 27.7 for the voltage across the resistor,

 $\Delta v - i_R R = 0$ 

If we rearrange this expression and substitute  $\Delta V_{\text{max}} \sin \omega t$  for  $\Delta v$ , the instantaneous current in the resistor is

$$v_R = \frac{\Delta v}{R} = \frac{\Delta V_{\text{max}}}{R} \sin \omega t = I_{\text{max}} \sin \omega t$$
 (33.1)

where  $I_{\text{max}}$  is the maximum current:

$$v_{\max} = \frac{\Delta V_{\max}}{R}$$
(33.2)

Equation 33.1 shows that the instantaneous voltage across the resistor is

$$\Delta v_R = i_R R = I_{\max} R \sin \omega t \tag{33.3}$$

A plot of voltage and current versus time for this circuit is shown in Figure 33.3a on page 1000. At point a, the current has a maximum value in one direction, arbitrarily called the positive direction. Between points a and b, the current is decreasing in magnitude but is still in the positive direction. At point b, the current is momentarily zero; it then begins to increase in the negative direction between points b and c. At point c, the current has reached its maximum value in the negative direction.

The current and voltage are in step with each other because they vary identically with time. Because  $i_R$  and  $\Delta v_R$  both vary as sin  $\omega t$  and reach their maximum values at the same time as shown in Figure 33.3a, they are said to be **in phase**, similar to the way two waves can be in phase as discussed in our study of wave motion in Chapter 18. Therefore, for a sinusoidal applied voltage, the current in a resistor is always in phase with the voltage across the resistor. For resistors in AC circuits, there are no new concepts to learn. Resistors behave essentially the same way in both DC and AC circuits. That, however, is not the case for capacitors and inductors.

To simplify our analysis of circuits containing two or more elements, we use a graphical representation called a *phasor diagram*. A **phasor** is a vector whose length is proportional to the maximum value of the variable it represents ( $\Delta V_{\text{max}}$  for voltage and  $I_{\text{max}}$  for current in this discussion). The phasor rotates counterclockwise at an angular speed equal to the angular frequency associated with the variable. The

**Figure 33.1** The voltage supplied by an AC source is sinusoidal with a period *T*.



**Figure 33.2** A circuit consisting of a resistor of resistance R connected to an AC source, designated by the symbol



 Maximum current in a resistor

Voltage across a resistor

#### **Pitfall Prevention 33.1**

**Time-Varying Values** We continue to use lowercase symbols  $\Delta v$  and *i* to indicate the instantaneous values of time-varying voltages and currents. We will add a subscript to indicate the appropriate circuit element. Capital letters represent fixed values of voltage and current such as  $\Delta V_{max}$  and  $I_{max}$ .

 $\Delta v$ 

**Figure 33.3** (a) Plots of the instantaneous current  $i_R$  and instantaneous voltage  $\Delta v_R$  across a resistor as functions of time. At time t = T, one cycle of the time-varying voltage and current has been completed. (b) Phasor diagram for the resistive circuit showing that the current is in phase with the voltage.

#### Pitfall Prevention 33.2

A Phasor Is Like a Graph An alternating voltage can be presented in different representations. One graphical representation is shown in Figure 33.1 in which the voltage is drawn in rectangular coordinates, with voltage on the vertical axis and time on the horizontal axis. Figure 33.3b shows another graphical representation. The phase space in which the phasor is drawn is similar to polar coordinate graph paper. The radial coordinate represents the amplitude of the voltage. The angular coordinate is the phase angle. The vertical-axis coordinate of the tip of the phasor represents the instantaneous value of the voltage. The horizontal coordinate represents nothing at all. As shown in Figure 33.3b, alternating currents can also be represented by phasors.

To help with this discussion of phasors, review Section 15.4, where we represented the simple harmonic motion of a real object by the projection of an imaginary object's uniform circular motion onto a coordinate axis. A phasor is a direct analog to this representation.

ANNA.



projection of the phasor onto the vertical axis represents the instantaneous value of the quantity it represents.

Figure 33.3b shows voltage and current phasors for the circuit of Figure 33.2 at some instant of time. The projections of the phasor arrows onto the vertical axis are determined by a sine function of the angle of the phasor with respect to the horizontal axis. For example, the projection of the current phasor in Figure 33.3b is  $I_{\text{max}} \sin \omega t$ . Notice that this expression is the same as Equation 33.1. Therefore, the projections of phasors represent current values that vary sinusoidally in time. We can do the same with time-varying voltages. The advantage of this approach is that the phase relationships among currents and voltages can be represented as vector additions of phasors using the vector addition techniques discussed in Chapter 3.

In the case of the single-loop resistive circuit of Figure 33.2, the current and voltage phasors are in the same direction in Figure 33.3b because  $i_R$  and  $\Delta v_R$  are in phase. The current and voltage in circuits containing capacitors and inductors have different phase relationships.

uick Quiz 33.1 Consider the voltage phasor in Figure 33.4, shown at three instants of time. (i) Choose the part of the figure, (a), (b), or (c), that represents the instant of time at which the instantaneous value of the voltage has the largest magnitude. (ii) Choose the part of the figure that represents the instant of time at which the instantaneous value of the voltage has the smallest magnitude.



**Figure 33.4** (Quick Quiz 33.1) A voltage phasor is shown at three instants of time, (a), (b), and (c).

For the simple resistive circuit in Figure 33.2, notice that the average value of the current over one cycle is zero. That is, the current is maintained in the positive direction for the same amount of time and at the same magnitude as it is maintained in the negative direction. The direction of the current, however, has no effect on the behavior of the resistor. We can understand this concept by realizing that collisions between electrons and the fixed atoms of the resistor result in an



**Figure 33.5** (a) Graph of the current in a resistor as a function of time. (b) Graph of the current squared in a resistor as a function of time, showing that the red dashed line is the average of  $I_{\text{max}}^2 \sin^2 \omega t$ . In general, the average value of  $\sin^2 \omega t$  or  $\cos^2 \omega t$  over one cycle is  $\frac{1}{2}$ .

increase in the resistor's temperature. Although this temperature increase depends on the magnitude of the current, it is independent of the current's direction.

We can make this discussion quantitative by recalling that the rate at which energy is delivered to a resistor is the power  $P = i^2 R$ , where *i* is the instantaneous current in the resistor. Because this rate is proportional to the square of the current, it makes no difference whether the current is direct or alternating, that is, whether the sign associated with the current is positive or negative. The temperature increase produced by an alternating current having a maximum value  $I_{\text{max}}$ , however, is not the same as that produced by a direct current equal to  $I_{\text{max}}$  because the alternating current has this maximum value for only an instant during each cycle (Fig. 33.5a). What is of importance in an AC circuit is an average value of current, referred to as the **rms current**. As we learned in Section 21.1, the notation *rms* stands for *root-mean-square*, which in this case means the square root of the mean (average) value of the square of the current:  $I_{\text{rms}} = \sqrt{(i^2)_{\text{avg}}}$ . Because  $i^2$ varies as  $\sin^2 \omega t$  and because the average value of  $i^2 \text{ is } \frac{1}{2}I_{\text{max}}^2$  (see Fig. 33.5b), the rms current is

$$I_{\rm rms} = \frac{I_{\rm max}}{\sqrt{2}} = 0.707 I_{\rm max}$$

rms current

a resistor

Average power delivered to

(33.4)

This equation states that an alternating current whose maximum value is 2.00 A delivers to a resistor the same power as a direct current that has a value of (0.707)(2.00 A) = 1.41 A. The average power delivered to a resistor that carries an alternating current is

$$P_{\rm avg} = I_{\rm rms}^2 R$$

Alternating voltage is also best discussed in terms of rms voltage, and the relationship is identical to that for current:

$$\Delta V_{\rm rms} = \frac{\Delta V_{\rm max}}{\sqrt{2}} = 0.707 \,\Delta V_{\rm max} \tag{33.5} \blacktriangleleft \rm rms \, voltage$$

When we speak of measuring a 120-V alternating voltage from an electrical outlet, we are referring to an rms voltage of 120 V. A calculation using Equation 33.5 shows that such an alternating voltage has a maximum value of about 170 V. One reason rms values are often used when discussing alternating currents and voltages is that AC ammeters and voltmeters are designed to read rms values. Furthermore, with rms values, many of the equations we use have the same form as their directcurrent counterparts.

## Example 33.1 What Is the rms Current?

The voltage output of an AC source is given by the expression  $\Delta v = 200 \sin \omega t$ , where  $\Delta v$  is in volts. Find the rms current in the circuit when this source is connected to a 100- $\Omega$  resistor.

#### SOLUTION

**Conceptualize** Figure 33.2 shows the physical situation for this problem.

**Categorize** We evaluate the current with an equation developed in this section, so we categorize this example as a substitution problem.

Combine Equations 33.2 and 33.4 to find the rms current:

Comparing the expression for voltage output with the general form  $\Delta v = \Delta V_{\text{max}} \sin \omega t$  shows that  $\Delta V_{\text{max}} = 200$  V. Substitute numerical values:





**Figure 33.6** A circuit consisting of an inductor of inductance *L* connected to an AC source.



33.3 Inductors in an AC Circuit

Now consider an AC circuit consisting only of an inductor connected to the terminals of an AC source as shown in Figure 33.6. Because  $\Delta v_L = -L(di_L/dt)$  is the selfinduced instantaneous voltage across the inductor (see Eq. 32.1), Kirchhoff's loop rule applied to this circuit gives  $\Delta v + \Delta v_L = 0$ , or

$$\Delta v - L \frac{di_L}{dt} = 0$$

Substituting  $\Delta V_{\text{max}} \sin \omega t$  for  $\Delta v$  and rearranging gives

$$\Delta v = L \frac{di_L}{dt} = \Delta V_{\text{max}} \sin \omega t$$
(33.6)

Solving this equation for  $di_L$  gives

$$di_L = \frac{\Delta V_{\max}}{L} \sin \omega t \, dt$$

Integrating this expression¹ gives the instantaneous current  $i_L$  in the inductor as a function of time:

$$i_L = \frac{\Delta V_{\text{max}}}{L} \int \sin \omega t \, dt = -\frac{\Delta V_{\text{max}}}{\omega L} \cos \omega t$$
(33.7)

Using the trigonometric identity  $\cos \omega t = -\sin(\omega t - \pi/2)$ , we can express Equation 33.7 as

Current in an inductor **>** 

$$i_L = \frac{\Delta V_{\text{max}}}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$$
(33.8)

Comparing this result with Equation 33.6 shows that the instantaneous current  $i_L$  in the inductor and the instantaneous voltage  $\Delta v_L$  across the inductor are *out* of phase by  $\pi/2$  rad = 90°.

A plot of voltage and current versus time is shown in Figure 33.7a. When the current  $i_L$  in the inductor is a maximum (point *b* in Fig. 33.7a), it is momentarily

¹We neglect the constant of integration here because it depends on the initial conditions, which are not important for this situation.


**Figure 33.7** (a) Plots of the instantaneous current  $i_L$  and instantaneous voltage  $\Delta v_L$  across an inductor as functions of time. (b) Phasor diagram for the inductive circuit.

not changing, so the voltage across the inductor is zero (point d). At points such as a and e, the current is zero and the rate of change of current is at a maximum. Therefore, the voltage across the inductor is also at a maximum (points c and f). Notice that the voltage reaches its maximum value one-quarter of a period before the current reaches its maximum value. Therefore, for a sinusoidal applied voltage, the current in an inductor always *lags* behind the voltage across the inductor by 90° (one-quarter cycle in time).

As with the relationship between current and voltage for a resistor, we can represent this relationship for an inductor with a phasor diagram as in Figure 33.7b. The phasors are at 90° to each other, representing the 90° phase difference between current and voltage.

Equation 33.7 shows that the current in an inductive circuit reaches its maximum value when  $\cos \omega t = \pm 1$ :

 $I_{\max} = \frac{\Delta V_{\max}}{\omega L}$ 

(33.9)

(33.10)

 Maximum current in an inductor

Inductive reactance

This expression is similar to the relationship between current, voltage, and resistance in a DC circuit,  $I = \Delta V/R$  (Eq. 27.7). Because  $I_{\text{max}}$  has units of amperes and  $\Delta V_{\text{max}}$  has units of volts,  $\omega L$  must have units of ohms. Therefore,  $\omega L$  has the same units as resistance and is related to current and voltage in the same way as resistance. It must behave in a manner similar to resistance in the sense that it represents opposition to the flow of charge. Because  $\omega L$  depends on the applied frequency  $\omega$ , the inductor *reacts* differently, in terms of offering opposition to current, for different frequencies. For this reason, we define  $\omega L$  as the **inductive reactance**  $X_L$ :

 $X_L$ 

$$\equiv \omega L$$

Therefore, we can write Equation 33.9 as

$$I_{\max} = \frac{\Delta V_{\max}}{X_L}$$
(33.11)

The expression for the rms current in an inductor is similar to Equation 33.11, with  $I_{\rm max}$  replaced by  $I_{\rm rms}$  and  $\Delta V_{\rm max}$  replaced by  $\Delta V_{\rm rms}$ .

Equation 33.10 indicates that, for a given applied voltage, the inductive reactance increases as the frequency increases. This conclusion is consistent with Faraday's law: the greater the rate of change of current in the inductor, the larger the back emf. The larger back emf translates to an increase in the reactance and a decrease in the current. Chapter 33 Alternating-Current Circuits

Using Equations 33.6 and 33.11, we find that the instantaneous voltage across the inductor is

Voltage across an inductor

$$\Delta v_L = -L \frac{di_L}{dt} = -\Delta V_{\max} \sin \omega t = -I_{\max} X_L \sin \omega t$$
 (33.12)

① uick Quiz 33.2 Consider the AC circuit in Figure 33.8. The frequency of the AC source is adjusted while its voltage amplitude is held constant. When does the lightbulb glow the brightest? (a) It glows brightest at high frequencies. (b) It glows

brightest at low frequencies. (c) The brightness is the same at all frequencies.



#### Example 33.2

A Purely Inductive AC Circuit

In a purely inductive AC circuit, L = 25.0 mH and the rms voltage is 150 V. Calculate the inductive reactance and rms current in the circuit if the frequency is 60.0 Hz.

#### SOLUTION

Conceptualize Figure 33.6 shows the physical situation for this problem. Keep in mind that inductive reactance increases with increasing frequency of the applied voltage.

**Categorize** We determine the reactance and the current from equations developed in this section, so we categorize this example as a substitution problem.

Use Equation 33.10 to find the inductive reactance:

Use an rms version of Equation 33.11 to find the rms current:

WHAT IF? If the frequency increases to 6.00 kHz, what happens to the rms current in the circuit?

Answer If the frequency increases, the inductive reactance also increases because the current is changing at a higher rate. The increase in inductive reactance results in a lower current.

Let's calculate the new inductive reactance and the new rms current:

 $X_L = 2\pi (6.00 \times 10^3 \text{ Hz})(25.0 \times 10^{-3} \text{ H}) = 942 \Omega$ 

$$I_{\rm rms} = \frac{150 \,\rm V}{942 \,\Omega} = 0.159 \,\rm A$$

### 33.4 Capacitors in an AC Circuit

Figure 33.9 shows an AC circuit consisting of a capacitor connected across the terminals of an AC source. Kirchhoff's loop rule applied to this circuit gives  $\Delta v + \Delta v_c = 0$ , or

$$\Delta v - \frac{q}{C} = 0 \tag{33.13}$$

$$-9.42 \Omega$$

 $X_I = \omega L = 2\pi f L = 2\pi (60.0 \text{ Hz})(25.0 \times 10^{-3} \text{ H})$ 

 $I_{\rm rms} = \frac{\Delta V_{\rm rms}}{X_I} = \frac{150 \,\mathrm{V}}{9.42 \,\Omega} = 15.9 \,\mathrm{A}$ 

- 0.49.0



**Figure 33.9** A circuit consisting of a capacitor of capacitance *C* connected to an AC source.

Substituting  $\Delta V_{\text{max}} \sin \omega t$  for  $\Delta v$  and rearranging gives

$$q = C \Delta V_{\max} \sin \omega t \tag{33.14}$$

where q is the instantaneous charge on the capacitor. Differentiating Equation 33.14 with respect to time gives the instantaneous current in the circuit:

$$T_C = \frac{dq}{dt} = \omega C \Delta V_{\max} \cos \omega t$$

Using the trigonometric identity

$$\cos \omega t = \sin \left( \omega t + \frac{\pi}{2} \right)$$

we can express Equation 33.15 in the alternative form

$$i_C = \omega C \Delta V_{\text{max}} \sin\left(\omega t + \frac{\pi}{2}\right)$$

Comparing this expression with  $\Delta v = \Delta V_{\text{max}} \sin \omega t$  shows that the current is  $\pi/2$  rad = 90° out of phase with the voltage across the capacitor. A plot of current and voltage versus time (Fig. 33.10a) shows that the current reaches its maximum value one-quarter of a cycle sooner than the voltage reaches its maximum value.

Consider a point such as b in Figure 33.10a where the current is zero at this instant. That occurs when the capacitor reaches its maximum charge so that the voltage across the capacitor is a maximum (point d). At points such as a and e, the current is a maximum, which occurs at those instants when the charge on the capacitor reaches zero and the capacitor begins to recharge with the opposite polarity. When the charge is zero, the voltage across the capacitor is zero (points c and f).

As with inductors, we can represent the current and voltage for a capacitor on a phasor diagram. The phasor diagram in Figure 33.10b shows that for a sinusoidally applied voltage, the current always *leads* the voltage across a capacitor by 90°.





(33.16)

Current in a capacitor

(33.15)

Equation 33.15 shows that the current in the circuit reaches its maximum value when  $\cos \omega t = \pm 1$ :

$$I_{\max} = \omega C \Delta V_{\max} = \frac{\Delta V_{\max}}{(1/\omega C)}$$
(33.17)

As in the case with inductors, this looks like Equation 27.7, so the denominator plays the role of resistance, with units of ohms. We give the combination  $1/\omega C$  the symbol  $X_C$ , and because this function varies with frequency, we define it as the **capacitive reactance:** 

Capacitive reactance 🕨

$$X_C \equiv \frac{1}{\omega C}$$
(33.18)

We can now write Equation 33.17 as

Maximum current in a capacitor

$$I_{\max} = \frac{\Delta V_{\max}}{X_C}$$
(33.19)

The rms current is given by an expression similar to Equation 33.19, with  $I_{\text{max}}$  replaced by  $I_{\text{rms}}$  and  $\Delta V_{\text{max}}$  replaced by  $\Delta V_{\text{rms}}$ .

Using Equation 33.19, we can express the instantaneous voltage across the capacitor as

Voltage across a capacitor 🕨

$$\Delta v_C = \Delta V_{\text{max}} \sin \omega t = I_{\text{max}} X_C \sin \omega t$$
(33.20)

Equations 33.18 and 33.19 indicate that as the frequency of the voltage source increases, the capacitive reactance decreases and the maximum current therefore increases. The frequency of the current is determined by the frequency of the voltage source driving the circuit. As the frequency approaches zero, the capacitive reactance approaches infinity and the current therefore approaches zero. This conclusion makes sense because the circuit approaches direct current conditions as  $\omega$  approaches zero and the capacitor represents an open circuit.

uick Quiz 33.3 Consider the AC circuit in Figure 33.11. The frequency of the AC source is adjusted while its voltage amplitude is held constant. When does the lightbulb glow the brightest? (a) It glows brightest at high frequencies. (b) It glows brightest at low frequencies. (c) The brightness is the same at all frequencies.



Figure 33.11 (Quick Quiz 33.3)

uick Quiz 33.4 Consider the AC circuit in Figure 33.12. The frequency of the AC source is adjusted while its voltage amplitude is held constant. When does the lightbulb glow the brightest? (a) It glows brightest at high frequencies. (b) It glows
 brightest at low frequencies. (c) The brightness is the same at all frequencies.



Figure 33.12 (Quick Quiz 33.4)

#### Example 33.3 A Purely Capacitive AC Circuit

An  $8.00-\mu$ F capacitor is connected to the terminals of a 60.0-Hz AC source whose rms voltage is 150 V. Find the capacitive reactance and the rms current in the circuit.

#### SOLUTION

**Conceptualize** Figure 33.9 shows the physical situation for this problem. Keep in mind that capacitive reactance decreases with increasing frequency of the applied voltage.

**Categorize** We determine the reactance and the current from equations developed in this section, so we categorize this example as a substitution problem.

Use Equation 33.18 to find the capacitive reactance:

$$X_{C} = \frac{1}{\omega C} = \frac{1}{2\pi fC} = \frac{1}{2\pi (60.0 \text{ Hz})(8.00 \times 10^{-6} \text{ F})} = 332 \Omega$$
$$I_{\text{rms}} = \frac{\Delta V_{\text{rms}}}{2\pi c} = \frac{150 \text{ V}}{2\pi c} = -0.452 \text{ A}$$

 $332 \Omega$ 

 $X_C$ 

Use an rms version of Equation 33.19 to find the rms current:

WHAT IF? What if the frequency is doubled? What happens to the rms current in the circuit?

**Answer** If the frequency increases, the capacitive reactance decreases, which is just the opposite from the case of an inductor. The decrease in capacitive reactance results in an increase in the current.

Let's calculate the new capacitive reactance and the new rms current:

$$X_{C} = \frac{1}{\omega C} = \frac{1}{2\pi (120 \text{ Hz})(8.00 \times 10^{-6} \text{ F})} = 166 \Omega$$
$$I_{\text{rms}} = \frac{150 \text{ V}}{166 \Omega} = 0.904 \text{ A}$$

## 33.5 The *RLC* Series Circuit

In the previous sections, we considered individual circuit elements connected to an AC source. Figure 33.13a shows a circuit that contains a combination of circuit elements: a resistor, an inductor, and a capacitor connected in series across an alternating-voltage source. If the applied voltage varies sinusoidally with time, the instantaneous applied voltage is



**Figure 33.13** (a) A series circuit consisting of a resistor, an inductor, and a capacitor connected to an AC source. (b) Phase relationships between the current and the voltages in the individual circuit elements if they were connected alone to the AC source.



**Figure 33.14** Phase relationships between the voltage and current phasors for (a) a resistor, (b) an inductor, and (c) a capacitor connected in series.

**Figure 33.15** (a) Phasor diagram for the series *RLC* circuit shown in Figure 33.13a. (b) The inductance and capacitance phasors are added together and then added vectorially to the resistance phasor.

Figure 33.13b shows the voltage versus time across each element in the circuit and its phase relationships to the current if it were connected individually to the AC source, as discussed in Sections 33.2–33.4.

When the circuit elements are all connected together to the AC source, as in Figure 33.13a, the current in the circuit is given by

$$i = I_{\max} \sin(\omega t - \phi)$$

where  $\phi$  is some **phase angle** between the current and the applied voltage. Based on our discussions of phase in Sections 33.3 and 33.4, we expect that the current will generally not be in phase with the voltage in an *RLC* circuit.

Because the circuit elements in Figure 33.13a are in series, the current everywhere in the circuit must be the same at any instant. That is, the current at all points in a series AC circuit has the same amplitude and phase. Based on the preceding sections, we know that the voltage across each element has a different amplitude and phase. In particular, the voltage across the resistor is in phase with the current, the voltage across the inductor leads the current by 90°, and the voltage across the capacitor lags behind the current by 90°. Using these phase relationships, we can express the instantaneous voltages across the three circuit elements as

$$\Delta v_R = I_{\max} R \sin \omega t = \Delta V_R \sin \omega t$$
 (33.21)

$$\Delta v_L = I_{\max} X_L \sin\left(\omega t + \frac{\pi}{2}\right) = \Delta V_L \cos \omega t$$
(33.22)

$$\Delta v_C = I_{\max} X_C \sin\left(\omega t - \frac{\pi}{2}\right) = -\Delta V_C \cos \omega t$$
(33.23)

The sum of these three voltages must equal the instantaneous voltage from the AC source, but it is important to recognize that because the three voltages have different phase relationships with the current, they cannot be added directly. Figure 33.14 represents the phasors at an instant at which the current in all three elements is momentarily zero. The zero current is represented by the current phasor along the horizontal axis in each part of the figure. Next the voltage phasor is drawn at the appropriate phase angle to the current for each element.

Because phasors are rotating vectors, the voltage phasors in Figure 33.14 can be combined using vector addition as in Figure 33.15. In Figure 33.15a, the voltage phasors in Figure 33.14 are combined on the same coordinate axes. Figure 33.15 shows the vector addition of the voltage phasors. The voltage phasors  $\Delta V_L$  and  $\Delta V_C$  are in *opposite* directions along the same line, so we can construct the difference phasor  $\Delta V_L - \Delta V_C$ , which is perpendicular to the phasor  $\Delta V_L$ , and  $\Delta V_C$  equals a phasor whose length is the maximum applied voltage  $\Delta V_{max}$  and which makes an angle  $\phi$  with the current phasor  $I_{max}$ . From the right triangle in Figure 33.15b, we see that



$$\Delta V_{\max} = \sqrt{\Delta V_R^2} + (\Delta V_L - \Delta V_C)^2 = \sqrt{(I_{\max}R)^2 + (I_{\max}X_L - I_{\max}X_C)^2}$$
$$\Delta V_{\max} = I_{\max}\sqrt{R^2 + (X_L - X_C)^2}$$

Therefore, we can express the maximum current as

$$I_{\max} = \frac{\Delta V_{\max}}{\sqrt{R^2 + (X_L - X_C)^2}}$$
(33.24)

Once again, this expression has the same mathematical form as Equation 27.7. The denominator of the fraction plays the role of resistance and is called the **impedance** Z of the circuit:

$$Z \equiv \sqrt{R^2 + (X_L - X_C)^2}$$
(33.25)

where impedance also has units of ohms. Therefore, Equation 33.24 can be written in the form

$$I_{\rm max} = \frac{\Delta V_{\rm max}}{Z}$$

Equation 33.26 is the AC equivalent of Equation 27.7. Note that the impedance and therefore the current in an AC circuit depend on the resistance, the inductance, the capacitance, and the frequency (because the reactances are frequency dependent).

From the right triangle in the phasor diagram in Figure 33.15b, the phase angle  $\phi$  between the current and the voltage is found as follows:

$$\phi = \tan^{-1} \left( \frac{\Delta V_L - \Delta V_C}{\Delta V_R} \right) = \tan^{-1} \left( \frac{I_{\max} X_L - I_{\max} X_C}{I_{\max} R} \right)$$
$$\phi = \tan^{-1} \left( \frac{X_L - X_C}{R} \right)$$
(33.27)

Phase angle

When  $X_L > X_C$  (which occurs at high frequencies), the phase angle is positive, signifying that the current lags the applied voltage as in Figure 33.15b. We describe this situation by saying that the circuit is *more inductive than capacitive*. When  $X_L < X_C$ , the phase angle is negative, signifying that the current leads the applied voltage, and the circuit is *more capacitive than inductive*. When  $X_L = X_C$ , the phase angle is zero and the circuit is *purely resistive*.

**Quick Quiz 33.5** Label each part of Figure 33.16, (a), (b), and (c), as representing  $X_L > X_C$ ,  $X_L = X_C$ , or  $X_L < X_C$ .



#### Example 33.4

Analyzing a Series RLC Circuit

A series *RLC* circuit has  $R = 425 \Omega$ , L = 1.25 H, and  $C = 3.50 \mu$ F. It is connected to an AC source with f = 60.0 Hz and  $\Delta V_{\text{max}} = 150$  V.

(A) Determine the inductive reactance, the capacitive reactance, and the impedance of the circuit.

 Maximum current in an RLC circuit

Impedance

(33.26)

#### ▶ 33.4 continued

#### SOLUTION

**Conceptualize** The circuit of interest in this example is shown in Figure 33.13a. The current in the combination of the resistor, inductor, and capacitor oscillates at a particular phase angle with respect to the applied voltage.

**Categorize** The circuit is a simple series *RLC* circuit, so we can use the approach discussed in this section.

<b>Analyze</b> Find the angular frequency:	$\omega = 2\pi f = 2\pi (60.0 \text{ Hz}) = 377 \text{ s}^{-1}$
Use Equation 33.10 to find the inductive reactance:	$X_L = \omega L = (377 \text{ s}^{-1})(1.25 \text{ H}) = 471 \Omega$
Use Equation 33.18 to find the capacitive reactance:	$X_C = \frac{1}{\omega C} = \frac{1}{(377 \text{ s}^{-1})(3.50 \times 10^{-6} \text{ F})} = 758 \Omega$
Use Equation 33.25 to find the impedance:	$Z = \sqrt{R^2 + (X_L - X_C)^2}$
	$= \sqrt{(425 \ \Omega)^2 + (471 \ \Omega - 758 \ \Omega)^2} = 513 \ \Omega$
<b>(B)</b> Find the maximum current in the circuit.	1013
SOLUTION	
Use Equation 33.26 to find the maximum current:	$I_{\text{max}} = \frac{\Delta V_{\text{max}}}{Z} = \frac{150 \text{ V}}{513 \Omega} = 0.293 \text{ A}$
<b>(C)</b> Find the phase angle between the current and voltage.	Gi
SOLUTION	
Use Equation 33.27 to calculate the phase angle: $\phi =$	$\tan^{-1}\left(\frac{X_L - X_C}{R}\right) = \tan^{-1}\left(\frac{471\ \Omega - 758\ \Omega}{425\ \Omega}\right) = -34.0^{\circ}$
( <b>D</b> ) Find the maximum voltage across each element.	)
SOLUTION	
Use Equations 33.2, 33.11, and 33.19 to calculate the	$\Delta V_R = I_{\text{max}} R = (0.293 \text{ A})(425 \Omega) = 124 \text{ V}$
maximum voltages:	$\Delta V_L = I_{\text{max}} X_L = (0.293 \text{ A})(471 \Omega) = 138 \text{ V}$
2	$\Delta V_C = I_{\text{max}} X_C = (0.293 \text{ A})(758 \Omega) = 222 \text{ V}$
(E) What replacement value of $L$ should an engineer analyzing the circuit choose such that the current leads the applied voltage by 30.0° rather than 34.0°? All other values in the circuit stay the same.	

#### SOLUTION

Solve Equation 33.27 for the inductive reactance:

Substitute Equations 33.10 and 33.18 into this expression:

Solve for *L*:

$$\omega L = \frac{1}{\omega C} + R \tan \phi$$

$$L = \frac{1}{\omega} \left( \frac{1}{\omega C} + R \tan \phi \right)$$

$$L = \frac{1}{(377 \text{ s}^{-1})} \left[ \frac{1}{(377 \text{ s}^{-1})(3.50 \times 10^{-6} \text{ F})} + (425 \Omega) \tan (-30.0^{\circ}) \right]$$

$$L = 1.36 \text{ H}$$

Substitute the given values:

**Finalize** Because the capacitive reactance is larger than the inductive reactance, the circuit is more capacitive than inductive. In this case, the phase angle  $\phi$  is negative, so the current leads the applied voltage.

 $X_L = X_C + R \tan \phi$ 

#### 33.4 continued

Using Equations 33.21, 33.22, and 33.23, the instantaneous voltages across the three elements are

$$\Delta v_R = (124 \text{ V}) \sin 377t$$
$$\Delta v_L = (138 \text{ V}) \cos 377t$$
$$\Delta v_C = (-222 \text{ V}) \cos 377t$$

WHAT IF? What if you added up the maximum voltages across the three circuit elements? Is that a physically meaningful quantity?

**Answer** The sum of the maximum voltages across the elements is  $\Delta V_R + \Delta V_L + \Delta V_C = 484$  V. This sum is much greater than the maximum voltage of the source, 150 V. The sum of the maximum voltages is a meaningless quantity because when sinusoidally varying quantities are added, *both their amplitudes and their phases* must be taken into account. The maximum voltages across the various elements occur at different times. Therefore, the voltages must be added in a way that takes account of the different phases as shown in Figure 33.15.

## 33.6 Power in an AC Circuit

Now let's take an energy approach to analyzing AC circuits and consider the transfer of energy from the AC source to the circuit. The power delivered by a battery to an external DC circuit is equal to the product of the current and the terminal voltage of the battery. Likewise, the instantaneous power delivered by an AC source to a circuit is the product of the current and the applied voltage. For the *RLC* circuit shown in Figure 33.13a, we can express the instantaneous power *P* as

$$P = i \Delta v = I_{\max} \sin (\omega t - \phi) \Delta V_{\max} \sin \omega t$$
$$P = I_{\max} \Delta V_{\max} \sin \omega t \sin (\omega t - \phi)$$
(33.28)

This result is a complicated function of time and is therefore not very useful from a practical viewpoint. What is generally of interest is the average power over one or more cycles. Such an average can be computed by first using the trigonometric identity  $\sin (\omega t - \phi) = \sin \omega t \cos \phi - \cos \omega t \sin \phi$ . Substituting this identity into Equation 33.28 gives

$$P = I_{\max} \Delta V_{\max} \sin^2 \omega t \cos \phi - I_{\max} \Delta V_{\max} \sin \omega t \cos \omega t \sin \phi$$
 (33.29)

Let's now take the time average of *P* over one or more cycles, noting that  $I_{\text{max}}$ ,  $\Delta V_{\text{max}}$ ,  $\phi$ , and  $\omega$  are all constants. The time average of the first term on the right of the equal sign in Equation 33.29 involves the average value of  $\sin^2 \omega t$ , which is  $\frac{1}{2}$ . The time average of the second term on the right of the equal sign is identically zero because  $\sin \omega t \cos \omega t = \frac{1}{2} \sin 2\omega t$ , and the average value of  $\sin 2\omega t$  is zero. Therefore, we can express the **average power**  $P_{\text{avg}}$  as

$$P_{\text{avg}} = \frac{1}{2} I_{\text{max}} \Delta V_{\text{max}} \cos \phi$$
 (33.30)

It is convenient to express the average power in terms of the rms current and rms voltage defined by Equations 33.4 and 33.5:

$$P_{\rm avg} = I_{\rm rms} \,\Delta V_{\rm rms} \cos \phi \tag{33.31}$$

where the quantity  $\cos \phi$  is called the **power factor.** Figure 33.15b shows that the maximum voltage across the resistor is given by  $\Delta V_R = \Delta V_{\text{max}} \cos \phi = I_{\text{max}}R$ . Therefore,  $\cos \phi = I_{\text{max}}R/\Delta V_{\text{max}} = R/Z$ , and we can express  $P_{\text{avg}}$  as

$$P_{\text{avg}} = I_{\text{rms}} \,\Delta V_{\text{rms}} \cos \phi = I_{\text{rms}} \,\Delta V_{\text{rms}} \left(\frac{R}{Z}\right) = I_{\text{rms}} \left(\frac{\Delta V_{\text{rms}}}{Z}\right) R$$

 Average power delivered to an RLC circuit Recognizing that  $\Delta V_{\rm rms}/Z = I_{\rm rms}$  gives

$$P_{\rm avg} = I_{\rm rms}^2 R \tag{33.32}$$

The average power delivered by the source is converted to internal energy in the resistor, just as in the case of a DC circuit. When the load is purely resistive,  $\phi = 0$ ,  $\cos \phi = 1$ , and, from Equation 33.31, we see that

$$P_{\rm avg} = I_{\rm rms} \, \Delta V_{\rm rm}$$

Note that no power losses are associated with pure capacitors and pure inductors in an AC circuit. To see why that is true, let's first analyze the power in an AC circuit containing only a source and a capacitor. When the current begins to increase in one direction in an AC circuit, charge begins to accumulate on the capacitor and a voltage appears across it. When this voltage reaches its maximum value, the energy stored in the capacitor as electric potential energy is  $\frac{1}{2}C(\Delta V_{\max})^2$ . This energy storage, however, is only momentary. The capacitor is charged and discharged twice during each cycle: charge is delivered to the capacitor during two quarters of the cycle and is returned to the voltage source during the remaining two quarters. Therefore, the average power supplied by the source is zero. In other words, no power losses occur in a capacitor in an AC circuit.

Now consider the case of an inductor. When the current in an inductor reaches its maximum value, the energy stored in the inductor is a maximum and is given by  $\frac{1}{2}LI_{\text{max}}^2$ . When the current begins to decrease in the circuit, this stored energy in the inductor returns to the source as the inductor attempts to maintain the current in the circuit.

Equation 33.31 shows that the power delivered by an AC source to any circuit depends on the phase, a result that has many interesting applications. For example, a factory that uses large motors in machines, generators, or transformers has a large inductive load (because of all the windings). To deliver greater power to such devices in the factory without using excessively high voltages, technicians introduce capacitance in the circuits to shift the phase.

**1** uick Quiz 33.6 An AC source drives an *RLC* circuit with a fixed voltage amplitude. If the driving frequency is  $\omega_1$ , the circuit is more capacitive than inductive and the phase angle is  $-10^{\circ}$ . If the driving frequency is  $\omega_2$ , the circuit is more inductive than capacitive and the phase angle is  $+10^{\circ}$ . At what frequency is the largest amount of power delivered to the circuit? (a) It is largest at  $\omega_1$ . (b) It is largest at  $\omega_2$ . (c) The same amount of power is delivered at both frequencies.

#### Example 33.5 Average Power in an *RLC* Series Circuit

Calculate the average power delivered to the series *RLC* circuit described in Example 33.4.

#### SOLUTION

**Conceptualize** Consider the circuit in Figure 33.13a and imagine energy being delivered to the circuit by the AC source. Review Example 33.4 for other details about this circuit.

**Categorize** We find the result by using equations developed in this section, so we categorize this example as a substitution problem.

Use Equation 33.5 and the maximum voltage from Example 33.4 to find the rms voltage from the source:

Similarly, find the rms current in the circuit:

$$\Delta V_{\rm rms} = \frac{\Delta V_{\rm max}}{\sqrt{2}} = \frac{150 \,\mathrm{V}}{\sqrt{2}} = 106 \,\mathrm{V}$$

$$I_{\rm rms} = \frac{I_{\rm max}}{\sqrt{2}} = \frac{0.293 \,\text{A}}{\sqrt{2}} = 0.207 \,\text{A}$$

(33.34)

(33.35)

#### 33.5 continued

Use Equation 33.31 to find the power delivered by the source:

## **33.7** Resonance in a Series *RLC* Circuit

We investigated resonance in mechanical oscillating systems in Chapter 15. As shown in Chapter 32, a series *RLC* circuit is an electrical oscillating system. Such a circuit is said to be **in resonance** when the driving frequency is such that the rms current has its maximum value. In general, the rms current can be written

$$I_{\rm rms} = \frac{\Delta V_{\rm rms}}{Z}$$
(33.33)

where Z is the impedance. Substituting the expression for Z from Equation 33.25 into Equation 33.33 gives

$$V_{\rm rms} = \frac{\Delta V_{\rm rms}}{\sqrt{R^2 + (X_L - X_C)^2}}$$

Because the impedance depends on the frequency of the source, the current in the *RLC* circuit also depends on the frequency. The angular frequency  $\omega_0$  at which  $X_L - X_C = 0$  is called the **resonance frequency** of the circuit. To find  $\omega_0$ , we set  $X_L = X_C$ , which gives  $\omega_0 L = 1/\omega_0 C$ , or

This frequency also corresponds to the natural frequency of oscillation of an LC circuit (see Section 32.5). Therefore, the rms current in a series RLC circuit has its maximum value when the frequency of the applied voltage matches the natural oscillator frequency, which depends only on L and C. Furthermore, at the resonance frequency, the current is in phase with the applied voltage.

 $\omega_0 = \frac{1}{\sqrt{LC}}$ 

uick Quiz 33.7 What is the impedance of a series *RLC* circuit at resonance?
(a) larger than *R* (b) less than *R* (c) equal to *R* (d) impossible to determine

A plot of rms current versus angular frequency for a series *RLC* circuit is shown in Figure 33.17a on page 1014. The data assume a constant  $\Delta V_{\rm rms} = 5.0$  mV,  $L = 5.0 \,\mu$ H, and C = 2.0 nF. The three curves correspond to three values of *R*. In each case, the rms current has its maximum value at the resonance frequency  $\omega_0$ . Furthermore, the curves become narrower and taller as the resistance decreases.

Equation 33.34 shows that when R = 0, the current becomes infinite at resonance. Real circuits, however, always have some resistance, which limits the value of the current to some finite value.

We can also calculate the average power as a function of frequency for a series *RLC* circuit. Using Equations 33.32, 33.33, and 33.25 gives

$$P_{\text{avg}} = I_{\text{rms}}^2 R = \frac{(\Delta V_{\text{rms}})^2}{Z^2} R = \frac{(\Delta V_{\text{rms}})^2 R}{R^2 + (X_L - X_C)^2}$$
(33.36)

Because  $X_L = \omega L$ ,  $X_C = 1/\omega C$ , and  $\omega_0^2 = 1/LC$ , the term  $(X_L - X_C)^2$  can be expressed as

$$(X_L - X_C)^2 = \left(\omega L - \frac{1}{\omega C}\right)^2 = \frac{L^2}{\omega^2} (\omega^2 - \omega_0^2)^2$$

$$P_{\text{avg}} = I_{\text{rms}} V_{\text{rms}} \cos \phi = (0.207 \text{ A})(106 \text{ V}) \cos (-34.0^{\circ})$$
  
= 18.2 W



**Figure 33.17** (a) The rms current versus frequency for a series *RLC* circuit for three values of *R*. (b) Average power delivered to the circuit versus frequency for the series *RLC* circuit for three values of *R*.



Using this result in Equation 33.36 gives

Average power as a function of frequency in an *RLC* circuit

$$P_{\text{avg}} = \frac{(\Delta V_{\text{rms}})^2 R \omega^2}{R^2 \omega^2 + L^2 (\omega^2 - \omega_0^2)^2}$$
(33.37)

Equation 33.37 shows that at resonance, when  $\omega = \omega_0$ , the average power is a maximum and has the value  $(\Delta V_{\rm rms})^2/R$ . Figure 33.17b is a plot of average power versus frequency for three values of *R* in a series *RLC* circuit. As the resistance is made smaller, the curve becomes sharper in the vicinity of the resonance frequency. This curve sharpness is usually described by a dimensionless parameter known as the **quality factor**,² denoted by  $\hat{Q}$ :

Quality factor 🕨

$$Q = \frac{\omega_0}{\Delta \omega}$$

where  $\Delta \omega$  is the width of the curve measured between the two values of  $\omega$  for which  $P_{\text{avg}}$  has one-half its maximum value, called the *half-power points* (see Fig. 33.17b.) It is left as a problem (Problem 76) to show that the width at the half-power points has the value  $\Delta \omega = R/L$  so that

$$Q = \frac{\omega_0 L}{R}$$
(33.38)

A radio's receiving circuit is an important application of a resonant circuit. The radio is tuned to a particular station (which transmits an electromagnetic wave or signal of a specific frequency) by varying a capacitor, which changes the receiving circuit's resonance frequency. When the circuit is driven by the electromagnetic oscillations a radio signal produces in an antenna, the tuner circuit responds with a large amplitude of electrical oscillation only for the station frequency that matches the resonance frequency. Therefore, only the signal from one radio station is passed on to the amplifier and loudspeakers even though signals are often present over a range of frequencies, it is important to design a high-*Q* circuit to eliminate unwanted signals. In this manner, stations whose frequencies are near but not equal to the resonance frequency have a response at the receiver that is negligibly small relative to the signal that matches the resonance frequency.

²The quality factor is also defined as the ratio  $2\pi E/\Delta E$ , where *E* is the energy stored in the oscillating system and  $\Delta E$  is the energy decrease per cycle of oscillation due to the resistance.

#### Example 33.6 A Resonating Series *RLC* Circuit

Consider a series *RLC* circuit for which  $R = 150 \Omega$ , L = 20.0 mH,  $\Delta V_{\text{rms}} = 20.0 \text{ V}$ , and  $\omega = 5 000 \text{ s}^{-1}$ . Determine the value of the capacitance for which the current is a maximum.

#### SOLUTION

**Conceptualize** Consider the circuit in Figure 33.13a and imagine varying the frequency of the AC source. The current in the circuit has its maximum value at the resonance frequency  $\omega_0$ .

**Categorize** We find the result by using equations developed in this section, so we categorize this example as a substitution problem.

Use Equation 33.35 to solve for the required capacitance in terms of the resonance frequency:

Substitute numerical values:

$$\omega_0 = \frac{1}{\sqrt{LC}} \rightarrow C = \frac{1}{\omega_0^2 L}$$
$$C = \frac{1}{(5.00 \times 10^3 \,\mathrm{s}^{-1})^2 (20.0 \times 10^{-3} \,\mathrm{H})} = 2.00 \,\mu\mathrm{F}$$

## 33.8 The Transformer and Power Transmission

As discussed in Section 27.6, it is economical to use a high voltage and a low current to minimize the  $I^2R$  loss in transmission lines when electric power is transmitted over great distances. Consequently, 350-kV lines are common, and in many areas, even higher-voltage (765-kV) lines are used. At the receiving end of such lines, the consumer requires power at a low voltage (for safety and for efficiency in design). In practice, the voltage is decreased to approximately 20 000 V at a distribution substation, then to 4 000 V for delivery to residential areas, and finally to 120 V and 240 V at the customer's site. Therefore, a device is needed that can change the alternating voltage and current without causing appreciable changes in the power delivered. The AC transformer is that device.

In its simplest form, the **AC transformer** consists of two coils of wire wound around a core of iron as illustrated in Figure 33.18. (Compare this arrangement to Faraday's experiment in Figure 31.2.) The coil on the left, which is connected to the input alternating-voltage source and has  $N_1$  turns, is called the *primary winding* (or the *primary*). The coil on the right, consisting of  $N_2$  turns and connected to a load resistor  $R_L$ , is called the *secondary winding* (or the *secondary*). The purposes of the iron core are to increase the magnetic flux through the coil and to provide a medium in which nearly all the magnetic field lines through one coil pass through the other coil. Eddy-current losses are reduced by using a laminated core. Transformation of energy to internal energy in the finite resistance of the coil wires is usually quite small. Typical transformers have power efficiencies from 90% to



**Figure 33.18** An ideal transformer consists of two coils wound on the same iron core.

99%. In the discussion that follows, let's assume we are working with an *ideal transformer*, one in which the energy losses in the windings and core are zero.

Faraday's law states that the voltage  $\Delta v_1$  across the primary is

$$\Delta v_1 = -N_1 \frac{d\Phi_B}{dt}$$
(33.39)

where  $\Phi_B$  is the magnetic flux through each turn. If we assume all magnetic field lines remain within the iron core, the flux through each turn of the primary equals the flux through each turn of the secondary. Hence, the voltage across the secondary is

$$\Delta v_2 = -N_2 \frac{d\Phi_B}{dt}$$
(33.40)

Solving Equation 33.39 for  $d\Phi_B/dt$  and substituting the result into Equation 33.40 gives

$$\Delta v_2 = \frac{N_2}{N_1} \Delta v_1 \tag{33.41}$$

When  $N_2 > N_1$ , the output voltage  $\Delta v_2$  exceeds the input voltage  $\Delta v_1$ . This configuration is referred to as a *step-up transformer*. When  $N_2 < N_1$ , the output voltage is less than the input voltage, and we have a *step-down transformer*. A circuit diagram for a transformer connected to a load resistance is shown in Figure 33.19.

When a current  $I_1$  exists in the primary circuit, a current  $I_2$  is induced in the secondary. (In this discussion, uppercase I and  $\Delta V$  refer to rms values.) If the load in the secondary circuit is a pure resistance, the induced current is in phase with the induced voltage. The power supplied to the secondary circuit must be provided by the AC source connected to the primary circuit. In an ideal transformer where there are no losses, the power  $I_1 \Delta V_1$  supplied by the source is equal to the power  $I_2 \Delta V_2$  in the secondary circuit. That is,

$$I_1 \Delta V_1 = I_2 \Delta V_2 \tag{33.42}$$

The value of the load resistance  $R_L$  determines the value of the secondary current because  $I_2 = \Delta V_2 / R_L$ . Furthermore, the current in the primary is  $I_1 = \Delta V_1 / R_{eq}$ , where

$$R_{\rm eq} = \left(\frac{N_1}{N_2}\right)^2 R_L \tag{33.43}$$

is the equivalent resistance of the load resistance when viewed from the primary side. We see from this analysis that a transformer may be used to match resistances between the primary circuit and the load. In this manner, maximum power transfer can be achieved between a given power source and the load resistance. For example, a transformer connected between the 1-k $\Omega$  output of an audio amplifier and an 8- $\Omega$  speaker ensures that as much of the audio signal as possible is transferred into the speaker. In stereo terminology, this process is called *impedance matching*.

To operate properly, many common household electronic devices require low voltages. A small transformer that plugs directly into the wall like the one illustrated in Figure 33.20 can provide the proper voltage. The photograph shows the two windings wrapped around a common iron core that is found inside all these





Nikola Tesla

American Physicist (1856–1943) Tesla was born in Croatia, but he spent most of his professional life as an inventor in the United States. He was a key figure in the development of alternating-current electricity, highvoltage transformers, and the transport of electrical power using AC transmission lines. Tesla's viewpoint was at odds with the ideas of Thomas Edison, who committed himself to the use of direct current in power transmission. Tesla's AC approach won out.



This transformer is smaller than the one in the opening photograph of this chapter. In addition, it is a step-down transformer. It drops the voltage from 4 000 V to 240 V for delivery to a group of residences.

The primary winding in this transformer is attached to the prongs of the plug, whereas the secondary winding is connected to the power cord on the right.



Figure 33.20 Electronic devices are often powered by AC adaptors containing transformers such as this one. These adaptors alter the AC voltage. In many applications, the adaptors also convert alternating current to direct current.

little "black boxes." This particular transformer converts the 120-V AC in the wall socket to 12.5-V AC. (Can you determine the ratio of the numbers of turns in the two coils?) Some black boxes also make use of diodes to convert the alternating current to direct current. (See Section 33.9.)

#### Example 33.7 The Economics of AC Power

An electricity-generating station needs to deliver energy at a rate of 20 MW to a city 1.0 km away. A common voltage for commercial power generators is 22 kV, but a step-up transformer is used to boost the voltage to 230 kV before transmission.

(A) If the resistance of the wires is 2.0  $\Omega$  and the energy costs are about 11 c/kWh, estimate the cost of the energy converted to internal energy in the wires during one day.

#### SOLUTION

**Conceptualize** The resistance of the wires is in series with the resistance representing the load (homes and businesses). Therefore, there is a voltage drop in the wires, which means that some of the transmitted energy is converted to internal energy in the wires and never reaches the load.

**Categorize** This problem involves finding the power delivered to a resistive load in an AC circuit. Let's ignore any capacitive or inductive characteristics of the load and set the power factor equal to 1.

<b>Analyze</b> Calculate $I_{\rm rms}$ in the wires from Equation 33.31:	$I_{\rm rms} = \frac{P_{\rm avg}}{\Delta V_{\rm rms}} = \frac{20 \times 10^6 {\rm W}}{230 \times 10^3 {\rm V}} = 87 {\rm A}$
Determine the rate at which energy is delivered to the resistance in the wires from Equation 33.32:	$P_{\text{wires}} = I_{\text{rms}}^2 R = (87 \text{ A})^2 (2.0 \Omega) = 15 \text{ kW}$
Calculate the energy $T_{\rm ET}$ delivered to the wires over the course of a day:	$T_{\rm ET} = P_{\rm wires} \Delta t = (15 {\rm kW})(24 {\rm h}) = 363 {\rm kWh}$
Find the cost of this energy at a rate of $11$ ¢/kWh:	Cost = $(363 \text{ kWh})(\$0.11/\text{kWh}) = \$40$

(B) Repeat the calculation for the situation in which the power plant delivers the energy at its original voltage of 22 kV.

#### 33.7 continued

#### SOLUTION

Calculate  $I_{\rm rms}$  in the wires from Equation 33.31:

From Equation 33.32, determine the rate at which energy is delivered to the resistance in the wires:

Calculate the energy delivered to the wires over the course of a day:

Find the cost of this energy at a rate of 11¢/kWh:

 $I_{\rm rms} = \frac{P_{\rm avg}}{\Delta V_{\rm rms}} = \frac{20 \times 10^6 \,\text{W}}{22 \times 10^3 \,\text{V}} = 909 \,\text{A}$  $P_{\rm wires} = I_{\rm rms}^2 R = (909 \,\text{A})^2 (2.0 \,\Omega) = 1.7 \times 10^3 \,\text{kW}$ 

 $T_{\rm ET} = P_{\rm wires} \Delta t = (1.7 \times 10^3 \,\text{kW})(24 \,\text{h}) = 4.0 \times 10^4 \,\text{kWh}$ 

Cost = 
$$(4.0 \times 10^4 \text{ kWh})(\$0.11/\text{ kWh}) = \$4.4 \times 10^3$$

**Finalize** Notice the tremendous savings that are possible through the use of transformers and high-voltage transmission lines. Such savings in combination with the efficiency of using alternating current to operate motors led to the universal adoption of alternating current instead of direct current for commercial power grids.

## 33.9 Rectifiers and Filters

Portable electronic devices such as radios and laptop computers are often powered by direct current supplied by batteries. Many devices come with AC–DC converters such as that shown in Figure 33.20. Such a converter contains a transformer that steps the voltage down from 120 V to, typically, 6 V or 9 V and a circuit that converts alternating current to direct current. The AC–DC converting process is called **rectification**, and the converting device is called a **rectifier**.

The most important element in a rectifier circuit is a **diode**, a circuit element that conducts current in one direction but not the other. Most diodes used in modern electronics are semiconductor devices. The circuit symbol for a diode is -, where the arrow indicates the direction of the current in the diode. A diode has low resistance to current in one direction (the direction of the arrow) and high resistance to current in the opposite direction. To understand how a diode rectifies a current, consider Figure 33.21a, which shows a diode and a resistor connected to the secondary of a transformer. The transformer reduces the voltage from 120-V AC to the lower voltage that is needed for the device having a resistance *R* (the load



**Figure 33.21** (a) A half-wave rectifier with an optional filter capacitor. (b) Current versus time in the resistor.

resistance). Because the diode conducts current in only one direction, the alternating current in the load resistor is reduced to the form shown by the solid curve in Figure 33.21b. The diode conducts current only when the side of the symbol containing the arrowhead has a positive potential relative to the other side. In this situation, the diode acts as a *half-wave rectifier* because current is present in the circuit only during half of each cycle.

When a capacitor is added to the circuit as shown by the dashed lines and the capacitor symbol in Figure 33.21a, the circuit is a simple DC power supply. The time variation of the current in the load resistor (the dashed curve in Fig. 33.21b) is close to being zero, as determined by the *RC* time constant of the circuit. As the current in the circuit begins to rise at t = 0 in Figure 33.21b, the capacitor charges up. When the current begins to fall, however, the capacitor discharges through the resistor, so the current in the resistor does not fall as quickly as the current from the transformer.

The *RC* circuit in Figure 33.21a is one example of a **filter circuit**, which is used to smooth out or eliminate a time-varying signal. For example, radios are usually powered by a 60-Hz alternating voltage. After rectification, the voltage still contains a small AC component at 60 Hz (sometimes called *ripple*), which must be filtered. By "filtered," we mean that the 60-Hz ripple must be reduced to a value much less than that of the audio signal to be amplified because without filtering, the resulting audio signal includes an annoying hum at 60 Hz.

We can also design filters that respond differently to different frequencies. Consider the simple series RC circuit shown in Figure 33.22a. The input voltage is across the series combination of the two elements. The output is the voltage across the resistor. A plot of the ratio of the output voltage to the input voltage as a function of the logarithm of angular frequency (see Fig. 33.22b) shows that at low frequencies,  $\Delta V_{out}$  is much smaller than  $\Delta V_{in}$ , whereas at high frequencies, the two voltages are equal. Because the circuit preferentially passes signals of higher frequency while blocking low-frequency signals, the circuit is called an **RC high-pass filter.** (See Problem 54 for an analysis of this filter.)

Physically, a high-pass filter works because a capacitor "blocks out" direct current and AC current at low frequencies. At low frequencies, the capacitive reactance is large and much of the applied voltage appears across the capacitor rather than across the output resistor. As the frequency increases, the capacitive reactance drops and more of the applied voltage appears across the resistor.

Now consider the circuit shown in Figure 33.23a on page 1020, where we have interchanged the resistor and capacitor and where the output voltage is taken across the capacitor. At low frequencies, the reactance of the capacitor and the voltage across the capacitor is high. As the frequency increases, the voltage across the capacitor drops. Therefore, this filter is an **RC low-pass filter.** The ratio of output voltage to input voltage (see Problem 56), plotted as a function of the logarithm of  $\omega$  in Figure 33.23b, shows this behavior.



Figure 33.22 (a) A simple *RC* high-pass filter. (b) Ratio of output voltage to input voltage for an *RC* high-pass filter as a function of the angular frequency of the AC source.

**Figure 33.23** (a) A simple *RC* low-pass filter. (b) Ratio of output voltage to input voltage for an *RC* low-pass filter as a function of the angular frequency of the AC source.



You may be familiar with crossover networks, which are an important part of the speaker systems for high-quality audio systems. These networks use low-pass filters to direct low frequencies to a special type of speaker, the "woofer," which is designed to reproduce the low notes accurately. The high frequencies are sent by a high-pass filter to the "tweeter" speaker.

## Summary

#### Definitions

In AC circuits that contain inductors and capacitors, it is useful to define the **inductive reactance**  $X_L$  and the **capacitive reactance**  $X_C$  as

$$X_L \equiv \omega L \tag{33.10}$$

$$X_C \equiv \frac{1}{\omega C}$$
 (33.18)

where  $\omega$  is the angular frequency of the AC source. The SI unit of reactance is the ohm.

#### **Concepts and Principles**

The **rms current** and **rms voltage** in an AC circuit in which the voltages and current vary sinusoidally are given by

$$I_{\rm rms} = \frac{I_{\rm max}}{\sqrt{2}} = 0.707 I_{\rm max}$$
 (33.4)

$$\Delta V_{\rm rms} = \frac{\Delta V_{\rm max}}{\sqrt{2}} = 0.707 \Delta V_{\rm max} \qquad (33.5)$$

where  $I_{\text{max}}$  and  $\Delta V_{\text{max}}$  are the maximum values.

The **impedance** *Z* of an *RLC* series AC circuit is

$$Z \equiv \sqrt{R^2 + (X_L - X_C)^2}$$
 (33.25)

This expression illustrates that we cannot simply add the resistance and reactances in a circuit. We must account for the applied voltage and current being out of phase, with the **phase angle**  $\phi$  between the current and voltage being

$$b = \tan^{-1}\left(\frac{X_L - X_C}{R}\right)$$
(33.27)

The sign of  $\phi$  can be positive or negative, depending on whether  $X_L$  is greater or less than  $X_C$ . The phase angle is zero when  $X_L = X_C$ .

If an AC circuit consists of a source and a resistor, the current is in phase with the voltage. That is, the current and voltage reach their maximum values at the same time.

If an AC circuit consists of a source and an inductor, the current lags the voltage by 90°. That is, the voltage reaches its maximum value one-quarter of a period before the current reaches its maximum value.

If an AC circuit consists of a source and a capacitor, the current leads the voltage by 90°. That is, the current reaches its maximum value one-quarter of a period before the voltage reaches its maximum value. The **average power** delivered by the source in an *RLC* circuit is

$$P_{\rm avg} = I_{\rm rms} \,\Delta V_{\rm rms} \cos \phi \tag{33.31}$$

An equivalent expression for the average power is

$$P_{\rm avg} = I_{\rm rms}^2 R$$
 (33.32)

The average power delivered by the source results in increasing internal energy in the resistor. No power loss occurs in an ideal inductor or capacitor.

A series *RLC* circuit is in resonance when the inductive reactance equals the capacitive reactance. When this condition is met, the rms current given by Equation 33.34 has its maximum value. The **resonance frequency**  $\omega_0$  of the circuit is

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{33.35}$$

The rms current in a series *RLC* circuit has its maximum value when the frequency of the source equals  $\omega_0$ , that is, when the "driving" frequency matches the resonance frequency.

#### **Objective Questions**

1. denotes answer available in *Student Solutions Manual/Study Guide* 

1. An inductor and a resistor are connected in series across an AC source as in Figure OQ33.1. Immediately after the switch is closed, which of the following statements is true? (a) The current in the circuit is  $\Delta V/R$ . (b) The voltage across the inductor is zero. (c) The current in the circuit is zero. (d) The voltage across the resistor is  $\Delta V$ . (e) The voltage across the inductor is half its maximum value.



- (i) When a particular inductor is connected to a source of sinusoidally varying emf with constant amplitude and a frequency of 60.0 Hz, the rms current is 3.00 A. What is the rms current if the source frequency is doubled? (a) 12.0 A (b) 6.00 A (c) 4.24 A (d) 3.00 A (e) 1.50 A (ii) Repeat part (i) assuming the load is a capacitor instead of an inductor. (iii) Repeat part (i) assuming the load is a resistor instead of an inductor.
- **3.** A capacitor and a resistor are connected in series across an AC source as shown in Figure OQ33.3. After the switch is closed, which of the following statements is true? (a) The voltage across the capacitor lags the current by 90°. (b) The voltage across the resistor is out of phase with the current. (c) The voltage across the capacitor leads the current by 90°. (d) The current decreases as the frequency of the source is increased,

but its peak voltage remains the same. (e) None of those statements is correct.





(i) What is the time average of the "square-wave" potential shown in Figure OQ33.4? (a) √2 ΔV_{max} (b) ΔV_{max} (c) ΔV_{max}/√2 (d) ΔV_{max}/2 (e) ΔV_{max}/4 (ii) What is the rms voltage? Choose from the same possibilities as in part (i).



#### Figure 0Q33.4

- 5. If the voltage across a circuit element has its maximum value when the current in the circuit is zero, which of the following statements *must* be true? (a) The circuit element is a resistor. (b) The circuit element is a capacitor. (c) The circuit element is an inductor. (d) The current and voltage are 90° out of phase. (e) The current and voltage are 180° out of phase.
- 6. A sinusoidally varying potential difference has amplitude 170 V. (i) What is its minimum instantaneous

The rms current in a series *RLC* circuit is

$$I_{\rm rms} = \frac{\Delta V_{\rm rms}}{\sqrt{R^2 + (X_L - X_C)^2}}$$
 (33.34)

**AC transformers** allow for easy changes in alternating voltage according to

$$\Delta v_2 = \frac{N_2}{N_1} \Delta v_1 \tag{33.41}$$

where  $N_1$  and  $N_2$  are the numbers of windings on the primary and secondary coils, respectively, and  $\Delta v_1$  and  $\Delta v_2$  are the voltages on these coils. value? (a) 170 V (b) 120 V (c) 0 (d) -120 V (e) -170 V (ii) What is its average value? (iii) What is its rms value? Choose from the same possibilities as in part (i) in each case.

- 7. A series *RLC* circuit contains a 20.0- $\Omega$  resistor, a 0.750- $\mu$ F capacitor, and a 120-mH inductor. (i) If a sinusoidally varying rms voltage of 120 V at f = 500 Hz is applied across this combination of elements, what is the rms current in the circuit? (a) 2.33 A (b) 6.00 A (c) 10.0 A (d) 17.0 A (e) none of those answers (ii) What If? What is the rms current in the circuit when operating at its resonance frequency? Choose from the same possibilities as in part (i).
- **8.** A resistor, a capacitor, and an inductor are connected in series across an AC source. Which of the following statements is *false*? (a) The instantaneous voltage across the capacitor lags the current by 90°. (b) The instantaneous voltage across the inductor leads the current by 90°. (c) The instantaneous voltage across the resistor is in phase with the current. (d) The voltages across the resistor, capacitor, and inductor are not in phase. (e) The rms voltage across the combination of the three elements equals the algebraic sum of the rms voltages across each element separately.

- **9.** Under what conditions is the impedance of a series *RLC* circuit equal to the resistance in the circuit? (a) The driving frequency is lower than the resonance frequency. (b) The driving frequency is equal to the resonance frequency. (c) The driving frequency is higher than the resonance frequency. (d) always (e) never
- **10.** What is the phase angle in a series *RLC* circuit at resonance? (a)  $180^{\circ}$  (b)  $90^{\circ}$  (c) 0 (d)  $-90^{\circ}$  (e) None of those answers is necessarily correct.
- 11. A circuit containing an AC source, a capacitor, an inductor, and a resistor has a high-Q resonance at 1 000 Hz. From greatest to least, rank the following contributions to the impedance of the circuit at that frequency and at lower and higher frequencies. Note any cases of equality in your ranking. (a)  $X_C$  at 500 Hz (b)  $X_C$  at 1 500 Hz (c)  $X_L$  at 500 Hz (d)  $X_L$  at 1 500 Hz (e) R at 1 000 Hz
- **12.** A 6.00-V battery is connected across the primary coil of a transformer having 50 turns. If the secondary coil of the transformer has 100 turns, what voltage appears across the secondary? (a) 24.0 V (b) 12.0 V (c) 6.00 V (d) 3.00 V (e) none of those answers
- **13.** Do AC ammeters and voltmeters read (a) peak-to-valley, (b) maximum, (c) rms, or (d) average values?

#### **Conceptual Questions**

1. denotes answer available in Student Solutions Manual/Study Guide

- **1.** (a) Explain how the quality factor is related to the response characteristics of a radio receiver. (b) Which variable most strongly influences the quality factor?
- 2. (a) Explain how the mnemonic "ELI the ICE man" can be used to recall whether current leads voltage or voltage leads current in *RLC* circuits. Note that E represents emf *E*. (b) Explain how "CIVIL" works as another mnemonic device, where V represents voltage.
- **3.** Why is the sum of the maximum voltages across each element in a series *RLC* circuit usually greater than the maximum applied voltage? Doesn't that inequality violate Kirchhoff's loop rule?
- **4.** (a) Does the phase angle in an *RLC* series circuit depend on frequency? (b) What is the phase angle for the circuit when the inductive reactance equals the capacitive reactance?
- **5.** Do some research to answer these questions: Who invented the metal detector? Why? What are its limitations?
- **6.** As shown in Figure CQ33.6, a person pulls a vacuum cleaner at speed v across a horizontal floor, exerting



Figure CQ33.6

on it a force of magnitude F directed upward at an angle  $\theta$  with the horizontal. (a) At what rate is the person doing work on the cleaner? (b) State as completely as you can the analogy between power in this situation and in an electric circuit.

- 7. A certain power supply can be modeled as a source of emf in series with both a resistance of 10  $\Omega$  and an inductive reactance of 5  $\Omega$ . To obtain maximum power delivered to the load, it is found that the load should have a resistance of  $R_L = 10 \Omega$ , an inductive reactance of zero, and a capacitive reactance of 5  $\Omega$ . (a) With this load, is the circuit in resonance? (b) With this load, what fraction of the average power put out by the source of emf is delivered to the load? (c) To increase the fraction of the power delivered to the load, how could the load be changed? You may wish to review Example 28.2 and Problem 4 in Chapter 28 on maximum power transfer in DC circuits.
- **8.** Will a transformer operate if a battery is used for the input voltage across the primary? Explain.
- **9.** (a) Why does a capacitor act as a short circuit at high frequencies? (b) Why does a capacitor act as an open circuit at low frequencies?
- 10. An ice storm breaks a transmission line and interrupts electric power to a town. A homeowner starts a gasoline-powered 120-V generator and clips its output terminals to "hot" and "ground" terminals of the electrical panel for his house. On a power pole down the block is a transformer designed to step down the voltage for household use. It has a ratio of turns  $N_1/N_2$  of 100 to 1. A repairman climbs the pole. What voltage

will he encounter on the input side of the transformer? As this question implies, safety precautions must be taken in the use of home generators and during power failures in general.



#### Section 33.1 AC Sources

#### Section 33.2 Resistors in an AC Circuit

- 1. When an AC source is connected across a 12.0- $\Omega$  resistor, the rms current in the resistor is 8.00 A. Find (a) the rms voltage across the resistor, (b) the peak voltage of the source, (c) the maximum current in the resistor, and (d) the average power delivered to the resistor.
- 2. (a) What is the resistance of a lightbulb that uses an average power of 75.0 W when connected to a 60.0-Hz power source having a maximum voltage of 170 V? (b) What If? What is the resistance of a 100-W lightbulb?
- **3.** An AC power supply produces a maximum voltage  $\Delta V_{\text{max}} = 100$  V. This power supply is connected to a resistor  $R = 24.0 \ \Omega$ , and the current and resistor voltage are measured with an ideal AC ammeter and voltmeter as shown in Figure P33.3. An ideal ammeter has zero resistance, and an ideal voltmeter has infinite resistance. What is the reading on (a) the ammeter and (b) the voltmeter?



- **4.** A certain lightbulb is rated at 60.0 W when operating at an rms voltage of 120 V. (a) What is the peak voltage
  - applied across the bulb? (b) What is the resistance of the bulb? (c) Does a 100-W bulb have greater or less resistance than a 60.0-W bulb? Explain.
- **5.** The current in the circuit shown in Figure P33.5 equals 60.0% of the peak current at t = 7.00 ms.



Problems 5 and 6.

What is the lowest source frequency that gives this current?

- 6. In the AC circuit shown in Figure P33.5, R = 70.0 Ω and the output voltage of the AC source is ΔV_{max} sin ωt.
  (a) If ΔV_R = 0.250 ΔV_{max} for the first time at t = 0.010 0 s, what is the angular frequency of the source?
  (b) What is the next value of t for which ΔV_R = 0.250 ΔV_{max}?
- 7. An audio amplifier, represented by the AC source and resistor in Figure P33.7, delivers to the speaker alternating voltage at audio frequencies. If the source voltage has an amplitude of 15.0 V,  $R = 8.20 \Omega$ , and the speaker is equivalent to a resistance of 10.4  $\Omega$ , what is the time-averaged power transferred to it?



Figure P33.7

8. Figure P33.8 shows three lightbulbs connected to a 120-V AC (rms) household supply voltage. Bulbs 1 and 2 have a power rating of 150 W, and bulb 3 has a 100-W rating. Find (a) the rms current in each bulb and (b) the resistance of each bulb. (c) What is the total resistance of the combination of the three lightbulbs?





#### Section 33.3 Inductors in an AC Circuit

- 9. An inductor has a 54.0-Ω reactance when connected to a 60.0–Hz source. The inductor is removed and then connected to a 50.0-Hz source that produces a 100-V rms voltage. What is the maximum current in the inductor?
- **10.** In a purely inductive AC circuit as shown in Figure **M** P33.10 (page 1024),  $\Delta V_{\text{max}} = 100$  V. (a) The maximum

current is 7.50 A at 50.0 Hz. Calculate the inductance *L*. (b) What If? At what angular frequency  $\omega$  is the maximum current 2.50 A?



Figure P33.10 Problems 10 and 11.

- **11.** For the circuit shown in Figure P33.10,  $\Delta V_{\text{max}} = 80.0 \text{ V}$ , **W**  $\omega = 65.0\pi \text{ rad/s}$ , and L = 70.0 mH. Calculate the current in the inductor at t = 15.5 ms.
- **12.** An inductor is connected to an AC power supply having a maximum output voltage of 4.00 V at a frequency of 300 Hz. What inductance is needed to keep the rms current less than 2.00 mA?
- **13.** An AC source has an output rms voltage of 78.0 V at a frequency of 80.0 Hz. If the source is connected across a 25.0-mH inductor, what are (a) the inductive reactance of the circuit, (b) the rms current in the circuit, and (c) the maximum current in the circuit?
- 14. A 20.0-mH inductor is connected to a North American
- W electrical outlet ( $\Delta V_{\rm rms} = 120$  V, f = 60.0 Hz). Assuming the energy stored in the inductor is zero at t = 0, determine the energy stored at  $t = \frac{1}{180}$  s.
- **15. Review.** Determine the maximum magnetic flux through an inductor connected to a North American electrical outlet ( $\Delta V_{\rm rms} = 120$  V, f = 60.0 Hz).
- 16. The output voltage of an AC source is given by  $\Delta v = 120 \sin 30.0\pi t$ , where  $\Delta v$  is in volts and t is in seconds. The source is connected across a 0.500-H inductor. Find (a) the frequency of the source, (b) the rms voltage across the inductor, (c) the inductive reactance of the circuit, (d) the rms current in the inductor, and (e) the maximum current in the inductor.

#### Section 33.4 Capacitors in an AC Circuit

- 17. A 1.00-mF capacitor is connected to a North American electrical outlet ( $\Delta V_{\rm rms} = 120$  V, f = 60.0 Hz). Assuming the energy stored in the capacitor is zero at t = 0, determine the magnitude of the current in the wires at  $t = \frac{1}{180}$  s.
- 18. An AC source with an output rms voltage of 36.0 V at a frequency of 60.0 Hz is connected across a  $12.0 \text{-}\mu\text{F}$  capacitor. Find (a) the capacitive reactance, (b) the rms current, and (c) the maximum current in the circuit. (d) Does the capacitor have its maximum charge when the current has its maximum value? Explain.
- 19. (a) For what frequencies does a 22.0-μF capacitor have a reactance below 175 Ω? (b) What If? What is the reactance of a 44.0-μF capacitor over this same frequency range?

- **20.** A source delivers an AC voltage of the form  $\Delta v = 98.0 \sin 80\pi t$ , where  $\Delta v$  is in volts and t is in seconds, to a capacitor. The maximum current in the circuit is 0.500 A. Find (a) the rms voltage of the source, (b) the frequency of the source, and (c) the value of the capacitance.
- What maximum current is delivered by an AC source
   with ΔV_{max} = 48.0 V and f = 90.0 Hz when connected across a 3.70-μF capacitor?
- **22.** A capacitor *C* is connected to a power supply that operates at a frequency *f* and produces an rms voltage  $\Delta V$ . What is the maximum charge that appears on either capacitor plate?
- **23.** What is the maximum current in a 2.20- $\mu$ F capacitor
- W when it is connected across (a) a North American electrical outlet having  $\Delta V_{\rm rms} = 120$  V and f = 60.0 Hz and (b) a European electrical outlet having  $\Delta V_{\rm rms} = 240$  V and f = 50.0 Hz?

#### Section 33.5 The RLC Series Circuit

24. An AC source with ΔV_{max} = 150 V and f = 50.0 Hz is
W connected between points a and d in Figure P33.24. Calculate the maximum voltages between (a) points a and b, (b) points b and c, (c) points c and d, and (d) points b and d.



Figure P33.24 Problems 24 and 81.

- **25.** In addition to phasor diagrams showing voltages such as in Figure 33.15, we can draw phasor diagrams with resistance and reactances. The resultant of adding the phasors is the impedance. Draw to scale a phasor diagram showing *Z*,  $X_L$ ,  $X_C$ , and  $\phi$  for an AC series circuit for which  $R = 300 \Omega$ ,  $C = 11.0 \mu$ F, L = 0.200 H, and  $f = 500/\pi$  Hz.
- 26. A sinusoidal voltage Δv = 40.0 sin 100t, where Δv is in wolts and t is in seconds, is applied to a series *RLC* circuit with L = 160 mH, C = 99.0 μF, and R = 68.0 Ω.
  (a) What is the impedance of the circuit? (b) What is the maximum current? Determine the numerical values for (c) ω and (d) φ in the equation i = I_{max} sin (ωt φ).
- 27. A series AC circuit contains a resistor, an inductor  $\mathbf{W}$  of 150 mH, a capacitor of 5.00  $\mu$ F, and a source with  $\Delta V_{\text{max}} = 240$  V operating at 50.0 Hz. The maximum current in the circuit is 100 mA. Calculate (a) the inductive reactance, (b) the capacitive reactance, (c) the impedance, (d) the resistance in the circuit, and (e) the phase angle between the current and the source voltage.
- 28. At what frequency does the inductive reactance of a 57.0-μH inductor equal the capacitive reactance of a 57.0-μF capacitor?
- **29.** An *RLC* circuit consists of a 150- $\Omega$  resistor, a 21.0- $\mu$ F capacitor, and a 460-mH inductor connected in series with a 120-V, 60.0-Hz power supply. (a) What is the phase

angle between the current and the applied voltage? (b) Which reaches its maximum earlier, the current or the voltage?

- **30.** Draw phasors to scale for the following voltages in SI units: (a) 25.0 sin  $\omega t$  at  $\omega t = 90.0^{\circ}$ , (b) 30.0 sin  $\omega t$  at  $\omega t = 60.0^{\circ}$ , and (c) 18.0 sin  $\omega t$  at  $\omega t = 300^{\circ}$ .
- 31. An inductor (L = 400 mH), a capacitor (C = 4.43 μF),
  M and a resistor (R = 500 Ω) are connected in series. A 50.0-Hz AC source produces a peak current of 250 mA in the circuit. (a) Calculate the required peak voltage ΔV_{max}. (b) Determine the phase angle by which the current leads or lags the applied voltage.
- **32.** A 60.0- $\Omega$  resistor is connected in series with a 30.0- $\mu$ F capacitor and a source whose maximum voltage is 120 V, operating at 60.0 Hz. Find (a) the capacitive reactance of the circuit, (b) the impedance of the circuit, and (c) the maximum current in the circuit. (d) Does the voltage lead or lag the current? (e) How will adding an inductor in series with the existing resistor and capacitor affect the current? Explain.
- **33. Review.** In an *RLC* series circuit that includes a source of alternating current operating at fixed frequency and voltage, the resistance *R* is equal to the inductive reactance. If the plate separation of the parallel-plate capacitor is reduced to one-half its original value, the current in the circuit doubles. Find the initial capacitive reactance in terms of *R*.

#### Section 33.6 Power in an AC Circuit

- **34.** Why is the following situation impossible? A series circuit consists of an ideal AC source (no inductance or capacitance in the source itself) with an rms voltage of  $\Delta V$  at a frequency f and a magnetic buzzer with a resistance R and an inductance L. By carefully adjusting the inductance L of the circuit, a power factor of exactly 1.00 is attained.
- 35. A series *RLC* circuit has a resistance of 45.0 Ω and an
   w impedance of 75.0 Ω. What average power is delivered to this circuit when ΔV_{rms} = 210 V?
- 36. An AC voltage of the form Δv = 100 sin 1 000t, where
  Δv is in volts and t is in seconds, is applied to a series *RLC* circuit. Assume the resistance is 400 Ω, the capacitance is 5.00 µF, and the inductance is 0.500 H. Find the average power delivered to the circuit.
- **37.** A series *RLC* circuit has a resistance of 22.0  $\Omega$  and an impedance of 80.0  $\Omega$ . If the rms voltage applied to the circuit is 160 V, what average power is delivered to the circuit?
- **38.** An AC voltage of the form  $\Delta v = 90.0 \sin 350t$ , where  $\Delta v$  is in volts and *t* is in seconds, is applied to a series *RLC* circuit. If  $R = 50.0 \Omega$ ,  $C = 25.0 \mu$ F, and L = 0.200 H, find (a) the impedance of the circuit, (b) the rms current in the circuit, and (c) the average power delivered to the circuit.
- **39.** In a certain series *RLC* circuit,  $I_{\rm rms} = 9.00$  A,  $\Delta V_{\rm rms} = 100$  W 180 V, and the current leads the voltage by 37.0°.

(a) What is the total resistance of the circuit? (b) Calculate the reactance of the circuit  $(X_L - X_C)$ .

- **40.** Suppose you manage a factory that uses many electric
- W motors. The motors create a large inductive load to the electric power line as well as a resistive load. The electric company builds an extra-heavy distribution line to supply you with two components of current: one that is 90° out of phase with the voltage and another that is in phase with the voltage. The electric company charges you an extra fee for "reactive volt-amps" in addition to the amount you pay for the energy you use. You can avoid the extra fee by installing a capacitor between the power line and your factory. The following problem models this solution.

In an *RL* circuit, a 120-V (rms), 60.0-Hz source is in series with a 25.0-mH inductor and a 20.0- $\Omega$  resistor. What are (a) the rms current and (b) the power factor? (c) What capacitor must be added in series to make the power factor equal to 1? (d) To what value can the supply voltage be reduced if the power supplied is to be the same as before the capacitor was installed?

41. A diode is a device that allows current to be carried in only one direction (the direction indicated by the arrowhead in its circuit symbol). Find the average power delivered to the diode circuit of Figure P33.41 in terms of  $\Delta V_{\rm rms}$  and *R*.



Figure P33.41

#### Section 33.7 Resonance in a Series RLC Circuit

**42.** A series *RLC* circuit has components with the following values: L = 20.0 mH, C = 100 nF,  $R = 20.0 \Omega$ , and  $\Delta V_{\text{max}} = 100 \text{ V}$ , with  $\Delta v = \Delta V_{\text{max}} \sin \omega t$ . Find (a) the resonant frequency of the circuit, (b) the amplitude of the current at the resonant frequency, (c) the *Q* of the circuit, and (d) the amplitude of the voltage across the inductor at resonance.

43. An *RLC* circuit is used in a radio to tune into an FM
AMT station broadcasting at *f* = 99.7 MHz. The resistance
M in the circuit is *R* = 12.0 Ω, and the inductance is *L* = 1.40 µH. What capacitance should be used?

- **44.** The *LC* circuit of a radar transmitter oscillates at 9.00 GHz. (a) What inductance is required for the circuit to resonate at this frequency if its capacitance is 2.00 pF? (b) What is the inductive reactance of the circuit at this frequency?
- **45.** A 10.0-Ω resistor, 10.0-mH inductor, and 100- $\mu$ F capacitor are connected in series to a 50.0-V (rms) source

having variable frequency. If the operating frequency is twice the resonance frequency, find the energy delivered to the circuit during one period.

- **46.** A resistor *R*, inductor *L*, and capacitor *C* are connected in series to an AC source of rms voltage  $\Delta V$  and variable frequency. If the operating frequency is twice the resonance frequency, find the energy delivered to the circuit during one period.
- **47.** Review. A radar transmitter contains an *LC* circuit oscillating at  $1.00 \times 10^{10}$  Hz. (a) For a one-turn loop having an inductance of 400 pH to resonate at this frequency, what capacitance is required in series with the loop? (b) The capacitor has square, parallel plates separated by 1.00 mm of air. What should the edge length of the plates be? (c) What is the common reactance of the loop and capacitor at resonance?

#### Section 33.8 The Transformer and Power Transmission

- 48. A step-down transformer is used for recharging the batteries of portable electronic devices. The turns ratio N₂/N₁ for a particular transformer used in a DVD player is 1:13. When used with 120-V (rms) house-hold service, the transformer draws an rms current of 20.0 mA from the house outlet. Find (a) the rms output voltage of the transformer and (b) the power delivered to the DVD player.
- 49. The primary coil of a transformer has N₁ = 350 turns,
  M and the secondary coil has N₂ = 2 000 turns. If the input voltage across the primary coil is Δv = 170 cos ωt, where Δv is in volts and t is in seconds, what rms voltage is developed across the secondary coil?
- 50. A transmission line that has a resistance per unit AMI length of  $4.50 \times 10^{-4} \Omega/m$  is to be used to transmit 5.00 MW across  $400 \text{ mi} (6.44 \times 10^5 \text{ m})$ . The output voltage of the source is 4.50 kV. (a) What is the line loss if a transformer is used to step up the voltage to 500 kV? (b) What fraction of the input power is lost to the line under these circumstances? (c) **What If?** What difficulties would be encountered in attempting to transmit the 5.00 MW at the source voltage of 4.50 kV?
- **51.** In the transformer shown in Figure P33.51, the load resistance  $R_L$  is 50.0  $\Omega$ . The turns ratio  $N_1/N_2$  is 2.50, and the rms source voltage is  $\Delta V_s = 80.0$  V. If a voltmeter across the load resistance measures an rms voltage of 25.0 V, what is the source resistance  $R_s$ ?



**52.** A person is working near the secondary of a transformer as shown in Figure P33.52. The primary voltage is 120 V at 60.0 Hz. The secondary voltage is

5 000 V. The capacitance  $C_s$ , which is the stray capacitance between the hand and the secondary winding, is 20.0 pF. Assuming the person has a body resistance to ground of  $R_b = 50.0 \text{ k}\Omega$ , determine the rms voltage across the body. *Suggestion:* Model the secondary of the transformer as an AC source.



Section 33.9 Rectifiers and Filters

**53.** The *RC* high-pass filter shown in Figure P33.53 M has a resistance  $R = 0.500 \Omega$  and a capacitance

 $C = 613 \ \mu$ F. What is the ratio of the amplitude of the output voltage to that of the input voltage for this filter for a source frequency of 600 Hz?



54. Consider the *RC* highpass filter circuit shown in Figure P33.53.(a) Find an expres-

**Figure P33.53** Problems 53 and 54.

sion for the ratio of the amplitude of the output voltage to that of the input voltage in terms of R, C, and the AC source frequency  $\omega$ . (b) What value does this ratio approach as the frequency decreases toward zero? (c) What value does this ratio approach as the frequency increases without limit?

- 55. One particular plug-in power supply for a radio looks similar to the one shown in Figure 33.20 and is marked with the following information: Input 120 V AC 8 W Output 9 V DC 300 mA. Assume these values are accurate to two digits. (a) Find the energy efficiency of the device when the radio is operating. (b) At what rate is energy wasted in the device when the radio is operating? (c) Suppose the input power to the transformer is 8.00 W when the radio is switched off and energy costs \$0.110/kWh from the electric company. Find the cost of having six such transformers around the house, each plugged in for 31 days.
- 56. Consider the filter circuit shown in Figure P33.56.(a) Show that the ratio of the amplitude of the output voltage to that of the input voltage is

$$\frac{\Delta V_{\text{out}}}{\Delta V_{\text{in}}} = \frac{1/\omega C}{\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}}$$

(b) What value does this ratio approach as the frequency decreases toward zero? (c) What value does this ratio approach as the frequency increases without limit? (d) At what frequency is the ratio equal to one-half?



#### **Additional Problems**

- 57. A step-up transformer is designed to have an output woltage of 2 200 V (rms) when the primary is connected across a 110-V (rms) source. (a) If the primary winding has exactly 80 turns, how many turns are required on the secondary? (b) If a load resistor across the second-ary draws a current of 1.50 A, what is the current in the primary, assuming ideal conditions? (c) What If? If the transformer actually has an efficiency of 95.0%, what is the current in the primary when the secondary current is 1.20 A?
- **[58.**] Why is the following situation impossible? An RLC circuit is used in a radio to tune into a North American AM commercial radio station. The values of the circuit components are  $R = 15.0 \ \Omega$ ,  $L = 2.80 \ \mu$ H, and  $C = 0.910 \ \text{pF}$ .
- 59. Review. The voltage phasor diagram for a certain series *RLC* circuit is shown in Figure P33.59. The resistance of the circuit is 75.0 Ω, and the frequency is 60.0 Hz. Find (a) the maximum voltage ΔV_{max}, (b) the phase angle φ, (c) the maximum current, (d) the impedance, (e) the capacitance and (f) the inductance of the circuit, and (g) the average power delivered to the circuit.



60. Consider a series *RLC* circuit having the parameters
M R = 200 Ω, L = 663 mH, and C = 26.5 μF. The applied voltage has an amplitude of 50.0 V and a frequency of 60.0 Hz. Find (a) the current I_{max} and its phase relative to the applied voltage Δv, (b) the maximum voltage ΔV_R across the resistor and its phase relative to the current, (c) the maximum voltage ΔV_C across the capacitor and its phase relative to the current, and (d) the maximum voltage to the current, and (d) the maximum voltage to the current.

mum voltage  $\Delta V_L$  across the inductor and its phase relative to the current.

- 61. Energy is to be transmitted over a pair of copper wires in a transmission line at the rate of 20.0 kW with only a 1.00% loss over a distance of 18.0 km at potential difference  $\Delta V_{\rm rms} = 1.50 \times 10^3$  V between the wires. Assuming the current density is uniform in the conductors, what is the diameter required for each of the two wires?
- 62. Energy is to be transmitted over a pair of copper wires in a transmission line at a rate *P* with only a fractional loss *f* over a distance  $\ell$  at potential difference  $\Delta V_{\rm rms}$ between the wires. Assuming the current density is uniform in the conductors, what is the diameter required for each of the two wires?
- 63. A 400-Ω resistor, an inductor, and a capacitor are in series with an AC source. The reactance of the inductor is 700 Ω, and the circuit impedance is 760 Ω.
  (a) What are the possible values of the reactance of the capacitor? (b) If you find that the power delivered to the circuit decreases as you raise the frequency, what is the capacitive reactance in the original circuit? (c) Repeat part (a) assuming the resistance is 200 Ω instead of 400 Ω and the circuit impedance continues to be 760 Ω.
- 64. Show that the rms value for the sawtooth voltage shown in Figure P33.64 is  $\Delta V_{\text{max}} / \sqrt{3}$ .



Figure P33.64

**65.** A transformer may be used to provide maximum power transfer between two AC circuits that have different impedances  $Z_1$  and  $Z_2$ . This process is called *impedance matching*. (a) Show that the ratio of turns  $N_1/N_2$  for this transformer is

$$\frac{N_1}{N_2} = \sqrt{\frac{Z_1}{Z_2}}$$

(b) Suppose you want to use a transformer as an impedance-matching device between an audio amplifier that has an output impedance of 8.00 k $\Omega$  and a speaker that has an input impedance of 8.00  $\Omega$ . What should your  $N_1/N_9$  ratio be?

**66.** A capacitor, a coil, and two resistors of equal resistance are arranged in an AC circuit as shown in Figure P33.66 (page 1028). An AC source provides an emf of  $\Delta V_{\rm rms} = 20.0$  V at a frequency of 60.0 Hz. When the double-throw switch S is open as shown in the figure, the rms current is 183 mA. When the switch is closed in position *a*, the rms current is 298 mA. When the switch is closed in position *b*, the rms current is 137 mA. Determine the

values of (a) R, (b) C, and (c) L. (d) Is more than one set of values possible? Explain.



Figure P33.66

67. Marie Cornu, a physicist at the Polytechnic Institute in
W Paris, invented phasors in about 1880. This problem helps you see their general utility in representing oscillations. Two mechanical vibrations are represented by the expressions

$$y_1 = 12.0 \sin 4.50$$

t

and

$$y_2 = 12.0 \sin (4.50t + 70.0^\circ)$$

where  $y_1$  and  $y_2$  are in centimeters and t is in seconds. Find the amplitude and phase constant of the sum of these functions (a) by using a trigonometric identity (as from Appendix B) and (b) by representing the oscillations as phasors. (c) State the result of comparing the answers to parts (a) and (b). (d) Phasors make it equally easy to add traveling waves. Find the amplitude and phase constant of the sum of the three waves represented by

> $y_1 = 12.0 \sin (15.0x - 4.50t + 70.0^\circ)$   $y_2 = 15.5 \sin (15.0x - 4.50t - 80.0^\circ)$  $y_3 = 17.0 \sin (15.0x - 4.50t + 160^\circ)$

where x,  $y_1$ ,  $y_2$ , and  $y_3$  are in centimeters and t is in seconds.

- **68.** A series *RLC* circuit has resonance angular frequency  $2.00 \times 10^3$  rad/s. When it is operating at some input frequency,  $X_L = 12.0 \ \Omega$  and  $X_C = 8.00 \ \Omega$ . (a) Is this input frequency higher than, lower than, or the same as the resonance frequency? Explain how you can tell. (b) Explain whether it is possible to determine the values of both *L* and *C*. (c) If it is possible, find *L* and *C*. If it is not possible, give a compact expression for the condition that *L* and *C* must satisfy.
- **69. Review.** One insulated conductor from a household **AMI** extension cord has a mass per length of 19.0 g/m. A section of this conductor is held under tension between two clamps. A subsection is located in a magnetic field of magnitude 15.3 mT directed perpendicular to the length of the cord. When the cord carries an AC current of 9.00 A at a frequency of 60.0 Hz, it vibrates in resonance in its simplest standing-wave vibration mode. (a) Determine the relationship that must be satisfied between the separation *d* of the clamps and

the tension T in the cord. (b) Determine one possible combination of values for these variables.

- **70.** (a) Sketch a graph of the phase angle for an *RLC* series circuit as a function of angular frequency from zero to a frequency much higher than the resonance frequency. (b) Identify the value of  $\phi$  at the resonance angular frequency  $\omega_0$ . (c) Prove that the slope of the graph of  $\phi$  versus  $\omega$  at the resonance point is  $2Q/\omega_0$ .
- **71.** In Figure P33.71, find the rms current delivered by the 45.0-V (rms) power supply when (a) the frequency is very large and (b) the frequency is very small.



**72. Review.** In the circuit shown in Figure P33.72, assume all parameters except *C* are given. Find (a) the current in the circuit as a function of time and (b) the power delivered to the circuit. (c) Find the current as a function of time after *only* switch 1 is opened. (d) After switch 2 is *also* opened, the current and voltage are in phase. Find the capacitance *C*. Find (e) the impedance of the circuit when both switches are open, (f) the maximum energy stored in the capacitor during oscillations, and (g) the maximum energy stored in the frequency of the voltage source is doubled. Find the phase difference between the current and the voltage. (i) Find the frequency that makes the inductive reactance one-half the capacitive reactance.



**73.** A series *RLC* circuit contains the following compofor nents:  $R = 150 \ \Omega$ ,  $L = 0.250 \ H$ ,  $C = 2.00 \ \mu$ F, and a source with  $\Delta V_{max} = 210 \ V$  operating at 50.0 Hz. Our goal is to find the phase angle, the power factor, and the power input for this circuit. (a) Find the inductive reactance in the circuit. (b) Find the capacitive reactance in the circuit. (c) Find the impedance in the circuit. (d) Calculate the maximum current in the circuit. (e) Determine the phase angle between the cur-

rent and source voltage. (f) Find the power factor for the circuit. (g) Find the power input to the circuit.

- 74. A series *RLC* circuit is operating at  $2.00 \times 10^3$  Hz. At this frequency,  $X_L = X_C = 1$  884  $\Omega$ . The resistance of the circuit is 40.0  $\Omega$ . (a) Prepare a table showing the values of  $X_L$ ,  $X_C$ , and Z for  $f = 300, 600, 800, 1.00 \times 10^3$ ,  $1.50 \times 10^3, 2.00 \times 10^3, 3.00 \times 10^3, 4.00 \times 10^3, 6.00 \times 10^3$ , and  $1.00 \times 10^4$  Hz. (b) Plot on the same set of axes  $X_L$ ,  $X_C$ , and Z as a function of ln *f*.
- 75. A series *RLC* circuit consists of an 8.00-Ω resistor, a
  M 5.00-μF capacitor, and a 50.0-mH inductor. A variable-frequency source applies an emf of 400 V (rms) across the combination. Assuming the frequency is equal to one-half the resonance frequency, determine the power delivered to the circuit.
- **76.** A series *RLC* circuit in which  $R = 1.00 \Omega$ , L = 1.00 mH, and C = 1.00 nF is connected to an AC source delivering 1.00 V (rms). (a) Make a precise graph of the power delivered to the circuit as a function of the frequency and (b) verify that the full width of the resonance peak at half-maximum is  $R/2\pi L$ .

#### **Challenge Problems**

77. The resistor in Figure P33.77 represents the midrange speaker in a three-speaker system. Assume its resistance to be constant at 8.00  $\Omega$ . The source represents an audio amplifier producing signals of uniform amplitude  $\Delta V_{\text{max}} = 10.0$  V at all audio frequencies. The inductor and capacitor are to function as a band-pass filter with  $\Delta V_{\text{out}}/\Delta V_{\text{in}} = \frac{1}{2}$  at 200 Hz and at 4.00  $\times$  10³ Hz. Determine the required values of (a) *L* and (b) *C*. Find (c) the maximum value of the ratio  $\Delta V_{\text{out}}/\Delta V_{\text{in}}$ ; (d) the frequency  $f_0$  at which the ratio has its maximum value; (e) the phase shift between  $\Delta v_{\text{in}}$  and  $\Delta v_{\text{out}}$  at 200 Hz, at  $f_0$ , and at 4.00  $\times$  10³ Hz; and (f) the average power transferred to the speaker at 200 Hz, at  $f_0$ , and at



 $4.00 \times 10^3$  Hz. (g) Treating the filter as a resonant circuit, find its quality factor.

- 78. An 80.0-Ω resistor and a 200-mH inductor are connected in *parallel* across a 100-V (rms), 60.0-Hz source.
  (a) What is the rms current in the resistor? (b) By what angle does the total current lead or lag behind the voltage?
- **79.** A voltage  $\Delta v = 100 \sin \omega t$ , where  $\Delta v$  is in volts and t is in seconds, is applied across a series combination of a 2.00-H inductor, a 10.0- $\mu$ F capacitor, and a 10.0- $\Omega$  resistor. (a) Determine the angular frequency  $\omega_0$  at which the power delivered to the resistor is a maximum. (b) Calculate the average power delivered at that frequency. (c) Determine the two angular frequencies  $\omega_1$  and  $\omega_2$  at which the power is one-half the maximum value. *Note:* The *Q* of the circuit is  $\omega_0/(\omega_2 \omega_1)$ .
- 80. Figure P33.80a shows a parallel *RLC* circuit. The instantaneous voltages (and rms voltages) across each of the three circuit elements are the same, and each is in phase with the current in the resistor. The currents in *C* and *L* lead or lag the current in the resistor as shown in the current phasor diagram, Figure P33.80b. (a) Show that the rms current delivered by the source is

$$I_{\rm rms} = \Delta V_{\rm rms} \left[ \frac{1}{R^2} + \left( \omega C - \frac{1}{\omega L} \right)^2 \right]^{1/2}$$

(b) Show that the phase angle  $\phi$  between  $\Delta V_{\rm rms}$  and  $I_{\rm rms}$  is given by



- 1 igure 1 55.60
- 81. An AC source with  $\Delta V_{\rm rms} = 120$  V is connected between points *a* and *d* in Figure P33.24. At what frequency will it deliver a power of 250 W? Explain your answer.

# CHAPTER 34

## **Electromagnetic Waves**



34.1 Displacement Current and the General Form of Ampère's Law

- 34.2 Maxwell's Equations and Hertz's Discoveries
- 34.3 Plane Electromagnetic Waves
- 34.4 Energy Carried by Electromagnetic Waves
- 34.5 Momentum and Radiation Pressure
- **34.6** Production of Electromagnetic Waves by an Antenna
- **34.7** The Spectrum of Electromagnetic Waves

This image of the Crab Nebula taken with visible light shows a variety of colors, with each color representing a different wavelength of visible light. (NASA, ESA, J. Hester, A. Loll (ASU)) The waves described in Chapters 16, 17, and 18 are mechanical waves. By definition, the propagation of mechanical disturbances—such as sound waves, water waves, and waves on a string—requires the presence of a medium. This chapter is concerned with the properties of electromagnetic waves, which (unlike mechanical waves) can propagate through empty space.

We begin by considering Maxwell's contributions in modifying Ampère's law, which we studied in Chapter 30. We then discuss Maxwell's equations, which form the theoretical basis of all electromagnetic phenomena. These equations predict the existence of electromagnetic waves that propagate through space at the speed of light *c* according to the traveling wave analysis model. Heinrich Hertz confirmed Maxwell's prediction when he generated and detected electromagnetic waves in 1887. That discovery has led to many practical communication systems, including radio, television, cell phone systems, wireless Internet connectivity, and optoelectronics.

Next, we learn how electromagnetic waves are generated by oscillating electric charges. The waves radiated from the oscillating charges can be detected at great distances. Furthermore, because electromagnetic waves carry energy ( $T_{ER}$  in Eq. 8.2) and momentum, they can exert pressure on a surface. The chapter concludes with a description of the various frequency ranges in the electromagnetic spectrum.

## 34.1 Displacement Current and the General Form of Ampère's Law

In Chapter 30, we discussed using Ampère's law (Eq. 30.13) to analyze the magnetic fields created by currents:

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I$$

In this equation, the line integral is over any closed path through which conduction current passes, where conduction current is defined by the expression I = dq/dt. (In this section, we use the term *conduction current* to refer to the current carried by charge carriers in the wire to distinguish it from a new type of current we shall introduce shortly.) We now show that Ampère's law in this form is valid only if any electric fields present are constant in time. James Clerk Maxwell recognized this limitation and modified Ampère's law to include time-varying electric fields.

Consider a capacitor being charged as illustrated in Figure 34.1. When a conduction current is present, the charge on the positive plate changes, but no conduction current exists in the gap between the plates because there are no charge carriers in the gap. Now consider the two surfaces  $S_1$  and  $S_2$  in Figure 34.1, bounded by the same path *P*. Ampère's law states that  $\oint \mathbf{B} \cdot d\mathbf{s}$  around this path must equal  $\mu_0 I$ , where *I* is the total current through *any* surface bounded by the path *P*.

When the path *P* is considered to be the boundary of  $S_1$ ,  $\oint \vec{B} \cdot d\vec{s} = \mu_0 I$  because the conduction current *I* passes through  $S_1$ . When the path is considered to be the boundary of  $S_2$ , however,  $\oint \vec{B} \cdot d\vec{s} = 0$  because no conduction current passes through  $S_2$ . Therefore, we have a contradictory situation that arises from the discontinuity of the current! Maxwell solved this problem by postulating an additional term on the right side of Ampère's law, which includes a factor called the **displacement current**  $I_d$  defined as¹



James Clerk Maxwell Scottish Theoretical Physicist (1831–1879) Maxwell developed the electromagnetic theory of light and the kinetic theory of gases, and explained the nature of Saturn's rings and color vision. Maxwell's successful interpretation of the electromagnetic field resulted in the field equations that bear his name. Formidable mathematical ability combined with great insight enabled him to lead the way in the study of electromagnetism and kinetic theory. He died of cancer before he was 50.



¹Displacement in this context does not have the meaning it does in Chapter 2. Despite the inaccurate implications, the word is historically entrenched in the language of physics, so we continue to use it.

where  $\epsilon_0$  is the permittivity of free space (see Section 23.3) and  $\Phi_E \equiv \int \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$  is the electric flux (see Eq. 24.3) through the surface bounded by the path of integration.

As the capacitor is being charged (or discharged), the changing electric field between the plates may be considered equivalent to a current that acts as a continuation of the conduction current in the wire. When the expression for the displacement current given by Equation 34.1 is added to the conduction current on the right side of Ampère's law, the difficulty represented in Figure 34.1 is resolved. No matter which surface bounded by the path P is chosen, either a conduction current or a displacement current passes through it. With this new term  $I_d$ , we can express the general form of Ampère's law (sometimes called the **Ampère-Maxwell law**) as

Ampère–Maxwell law 🕨



**Figure 34.2** When a conduction current exists in the wires, a changing electric field  $\vec{E}$  exists between the plates of the capacitor.

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 (I + I_d) = \mu_0 I + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$$
(34.2)

We can understand the meaning of this expression by referring to Figure 34.2. The electric flux through surface S is  $\Phi_E = \int \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = EA$ , where A is the area of the capacitor plates and E is the magnitude of the uniform electric field between the plates. If q is the charge on the plates at any instant, then  $E = q/(\epsilon_0 A)$  (see Section 26.2). Therefore, the electric flux through S is

$$\Phi_E = EA = \frac{q}{\epsilon_0}$$

Hence, the displacement current through S is

$$I_d = \epsilon_0 \frac{d\Phi_E}{dt} = \frac{dq}{dt}$$
(34.3)

That is, the displacement current  $I_d$  through S is precisely equal to the conduction current *I* in the wires connected to the capacitor!

By considering surface S, we can identify the displacement current as the source of the magnetic field on the surface boundary. The displacement current has its physical origin in the time-varying electric field. The central point of this formalism is that magnetic fields are produced *both* by conduction currents *and* by time-varying electric fields. This result was a remarkable example of theoretical work by Maxwell, and it contributed to major advances in the understanding of electromagnetism.

uick Quiz 34.1 In an *RC* circuit, the capacitor begins to discharge. (i) During the discharge, in the region of space between the plates of the capacitor, is there (a) conduction current but no displacement current, (b) displacement current but no conduction current, (c) both conduction and displacement current, or (d) no current of any type? (ii) In the same region of space, is there (a) an electric field but no magnetic field, (b) a magnetic field but no electric field,
(c) both electric and magnetic fields, or (d) no fields of any type?

#### Example 34.1

#### **Displacement Current in a Capacitor**

A sinusoidally varying voltage is applied across a capacitor as shown in Figure 34.3. The capacitance is  $C = 8.00 \ \mu\text{F}$ , the frequency of the applied voltage is f = 3.00 kHz, and the voltage amplitude is  $\Delta V_{\text{max}} = 30.0 \text{ V}$ . Find the displacement current in the capacitor.

#### SOLUTION

**Conceptualize** Figure 34.3 represents the circuit diagram for this situation. Figure 34.2 shows a close-up of the capacitor and the electric field between the plates.

**Categorize** We determine results using equations discussed in this section, so we categorize this example as a substitution problem.





#### 34.1 continued

Evaluate the angular frequency of the source from Equation 15.12:

Use Equation 33.20 to express the potential difference in volts across the capacitor as a function of time in seconds:

Use Equation 34.3 to find the displacement current in amperes as a function of time. Note that the charge on the capacitor is  $q = C \Delta v_c$ :

Substitute numerical values:

$$\omega = 2\pi f = 2\pi (3.00 \times 10^3 \,\mathrm{Hz}) = 1.88 \times 10^4 \,\mathrm{s}^{-1}$$

 $\Delta v_C = \Delta V_{\text{max}} \sin \omega t = 30.0 \sin (1.88 \times 10^4 t)$ 

$$i_{d} = \frac{dq}{dt} = \frac{d}{dt} (C \Delta v_{C}) = C \frac{d}{dt} (\Delta V_{\max} \sin \omega t)$$
$$= \omega C \Delta V_{\max} \cos \omega t$$

$$i_d = (1.88 \times 10^4 \,\mathrm{s}^{-1})(8.00 \times 10^{-6} \,\mathrm{C})(30.0 \,\mathrm{V}) \cos{(1.88 \times 10^4 \,t)}$$

(34.4)

Gauss's law

$$= 4.51 \cos \left( 1.88 \times 10^4 t \right)$$

## 34.2 Maxwell's Equations and Hertz's Discoveries

We now present four equations that are regarded as the basis of all electrical and magnetic phenomena. These equations, developed by Maxwell, are as fundamental to electromagnetic phenomena as Newton's laws are to mechanical phenomena. In fact, the theory that Maxwell developed was more far-reaching than even he imagined because it turned out to be in agreement with the special theory of relativity, as Einstein showed in 1905.

Maxwell's equations represent the laws of electricity and magnetism that we have already discussed, but they have additional important consequences. For simplicity, we present **Maxwell's equations** as applied to free space, that is, in the absence of any dielectric or magnetic material. The four equations are

 $\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = -\frac{q}{2}$ 

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0 \qquad (34.5) \quad \textbf{Gauss's law in magnetism}$$

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -\frac{d\Phi_B}{dt} \qquad (34.6) \quad \textbf{Faraday's law}$$

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I + \epsilon_0 \mu_0 \frac{d\Phi_E}{dt} \qquad (34.7) \quad \textbf{Ampère-Maxwell law}$$

Equation 34.4 is Gauss's law: the total electric flux through any closed surface equals the net charge inside that surface divided by  $\epsilon_0$ . This law relates an electric field to the charge distribution that creates it.

Equation 34.5 is Gauss's law in magnetism, and it states that the net magnetic flux through a closed surface is zero. That is, the number of magnetic field lines that enter a closed volume must equal the number that leave that volume, which implies that magnetic field lines cannot begin or end at any point. If they did, it would mean that isolated magnetic monopoles existed at those points. That isolated magnetic monopoles have not been observed in nature can be taken as a confirmation of Equation 34.5.

Equation 34.6 is Faraday's law of induction, which describes the creation of an electric field by a changing magnetic flux. This law states that the emf, which is the

line integral of the electric field around any closed path, equals the rate of change of magnetic flux through any surface bounded by that path. One consequence of Faraday's law is the current induced in a conducting loop placed in a time-varying magnetic field.

Equation 34.7 is the Ampère–Maxwell law, discussed in Section 34.1, and it describes the creation of a magnetic field by a changing electric field and by electric current: the line integral of the magnetic field around any closed path is the sum of  $\mu_0$  multiplied by the net current through that path and  $\epsilon_0\mu_0$  multiplied by the rate of change of electric flux through any surface bounded by that path.

Once the electric and magnetic fields are known at some point in space, the force acting on a particle of charge q can be calculated from the electric and magnetic versions of the particle in a field model:

Lorentz force law 🕨

The transmitter consists of two spherical electrodes connected to an induction coil, which provides short voltage surges to the spheres, setting up oscillations in the discharge between the electrodes.



Figure 34.4 Schematic diagram of Hertz's apparatus for generating and detecting electromagnetic waves.

$$\vec{\mathbf{F}} = q \vec{\mathbf{E}} + q \vec{\mathbf{v}} \times \vec{\mathbf{B}}$$
(34.8)

This relationship is called the **Lorentz force law.** (We saw this relationship earlier as Eq. 29.6.) Maxwell's equations, together with this force law, completely describe all classical electromagnetic interactions in a vacuum.

Notice the symmetry of Maxwell's equations. Equations 34.4 and 34.5 are symmetric, apart from the absence of the term for magnetic monopoles in Equation 34.5. Furthermore, Equations 34.6 and 34.7 are symmetric in that the line integrals of  $\vec{E}$  and  $\vec{B}$  around a closed path are related to the rate of change of magnetic flux and electric flux, respectively. Maxwell's equations are of fundamental importance not only to electromagnetism, but to all science. Hertz once wrote, "One cannot escape the feeling that these mathematical formulas have an independent existence and an intelligence of their own, that they are wiser than we are, wiser even than their discoverers, that we get more out of them than we put into them."

In the next section, we show that Equations 34.6 and 34.7 can be combined to obtain a wave equation for both the electric field and the magnetic field. In empty space, where q = 0 and I = 0, the solution to these two equations shows that the speed at which electromagnetic waves travel equals the measured speed of light. This result led Maxwell to predict that light waves are a form of electromagnetic radiation.

Hertz performed experiments that verified Maxwell's prediction. The experimental apparatus Hertz used to generate and detect electromagnetic waves is shown schematically in Figure 34.4. An induction coil is connected to a transmitter made up of two spherical electrodes separated by a narrow gap. The coil provides short voltage surges to the electrodes, making one positive and the other negative. A spark is generated between the spheres when the electric field near either electrode surpasses the dielectric strength for air ( $3 \times 10^6$  V/m; see Table 26.1). Free electrons in a strong electric field are accelerated and gain enough energy to ionize any molecules they strike. This ionization provides more electrons, which can accelerate and cause further ionizations. As the air in the gap is ionized, it becomes a much better conductor and the discharge between the electric-circuit viewpoint, this experimental apparatus is equivalent to an *LC* circuit in which the inductance is that of the coil and the capacitance is due to the spherical electrodes.

Because *L* and *C* are small in Hertz's apparatus, the frequency of oscillation is high, on the order of 100 MHz. (Recall from Eq. 32.22 that  $\omega = 1/\sqrt{LC}$  for an *LC* circuit.) Electromagnetic waves are radiated at this frequency as a result of the oscillation of free charges in the transmitter circuit. Hertz was able to detect these waves using a single loop of wire with its own spark gap (the receiver). Such a receiver loop, placed several meters from the transmitter, has its own effective inductance, capacitance, and natural frequency of oscillation. In Hertz's experiment, sparks were induced across the gap of the receiving electrodes when the receiver's frequency was adjusted to match that of the transmitter. In this way, Hertz demonstrated that the oscillating current induced in the receiver was produced by electromagnetic waves radiated by the transmitter. His experiment is analogous to the mechanical phenomenon in which a tuning fork responds to acoustic vibrations from an identical tuning fork that is oscillating nearby.

In addition, Hertz showed in a series of experiments that the radiation generated by his spark-gap device exhibited the wave properties of interference, diffraction, reflection, refraction, and polarization, which are all properties exhibited by light as we shall see in Part 5. Therefore, it became evident that the radio-frequency waves Hertz was generating had properties similar to those of light waves and that they differed only in frequency and wavelength. Perhaps his most convincing experiment was the measurement of the speed of this radiation. Waves of known frequency were reflected from a metal sheet and created a standing-wave interference pattern whose nodal points could be detected. The measured distance between the nodal points enabled determination of the wavelength  $\lambda$ . Using the relationship  $v = \lambda f$  (Eq. 16.12) from the traveling wave model, Hertz found that v was close to  $3 \times 10^8$  m/s, the known speed c of visible light.

## 34.3 Plane Electromagnetic Waves

The properties of electromagnetic waves can be deduced from Maxwell's equations. One approach to deriving these properties is to solve the second-order differential equation obtained from Maxwell's third and fourth equations. A rigorous mathematical treatment of that sort is beyond the scope of this text. To circumvent this problem, let's assume the vectors for the electric field and magnetic field in an electromagnetic wave have a specific space–time behavior that is simple but consistent with Maxwell equations.

To understand the prediction of electromagnetic waves more fully, let's focus our attention on an electromagnetic wave that travels in the *x* direction (the *direction of propagation*). For this wave, the electric field  $\vec{E}$  is in the *y* direction and the magnetic field  $\vec{B}$  is in the *z* direction as shown in Figure 34.5. Such waves, in which the electric and magnetic fields are restricted to being parallel to a pair of perpendicular axes, are said to be **linearly polarized waves**. Furthermore, let's assume the field magnitudes *E* and *B* depend on *x* and *t* only, not on the *y* or *z* coordinate.

Let's also imagine that the source of the electromagnetic waves is such that a wave radiated from *any* position in the *yz* plane (not only from the origin as might be suggested by Fig. 34.5) propagates in the *x* direction and all such waves are emitted in phase. If we define a **ray** as the line along which the wave travels, all rays for these waves are parallel. This entire collection of waves is often called a **plane wave**. A surface connecting points of equal phase on all waves is a geometric plane called a **wave front**, introduced in Chapter 17. In comparison, a point source of radiation sends waves out radially in all directions. A surface connecting points of equal phase for this situation is a sphere, so this wave is called a **spherical wave**.

To generate the prediction of plane electromagnetic waves, we start with Faraday's law, Equation 34.6:

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -\frac{d\Phi_B}{dt}$$

To apply this equation to the wave in Figure 34.5, consider a rectangle of width dx and height  $\ell$  lying in the xy plane as shown in Figure 34.6 (page 1036). Let's first evaluate the line integral of  $\vec{\mathbf{E}} \cdot d\vec{\mathbf{s}}$  around this rectangle in the counterclockwise direction at an instant of time when the wave is passing through the rectangle. The contributions from the top and bottom of the rectangle are zero because  $\vec{\mathbf{E}}$  is perpendicular to  $d\vec{\mathbf{s}}$  for these paths. We can express the electric field on the right side of the rectangle as

$$E(x + dx) \approx E(x) + \frac{dE}{dx}\Big|_{t \text{ constant}} dx = E(x) + \frac{\partial E}{\partial x} dx$$



Heinrich Rudolf Hertz German Physicist (1857–1894) Hertz made his most important discovery of electromagnetic waves in 1887. After finding that the speed of an electromagnetic wave was the same as that of light, Hertz showed that electromagnetic waves, like light waves, could be reflected, refracted, and diffracted. The hertz, equal to one complete vibration or cycle per second, is named after him.

#### **Pitfall Prevention 34.1**

What is "a" Wave? What do we mean by a *single* wave? The word *wave* represents both the emission from a *single point* ("wave radiated from *any* position in the *yz* plane" in the text) and the collection of waves from *all points* on the source ("**plane wave**" in the text). You should be able to use this term in both ways and understand its meaning from the context.



**Figure 34.5** Electric and magnetic fields of an electromagnetic wave traveling at velocity  $\vec{c}$  in the positive *x* direction. The field vectors are shown at one instant of time and at one position in space. These fields depend on *x* and *t*.

According to Equation 34.11, this spatial variation in  $\vec{E}$  gives rise to a time-varying magnetic field along the *z* direction.

**Figure 34.6** At an instant when a plane wave moving in the positive *x* direction passes through a rectangular path of width dx lying in the *xy* plane, the electric field in the *y* direction varies from  $\vec{\mathbf{E}}(x)$  to  $\vec{\mathbf{E}}(x + dx)$ .

According to Equation 34.14, this spatial variation in  $\vec{\mathbf{B}}$  gives rise to a time-varying electric field along the y direction.

**Figure 34.7** At an instant when a plane wave passes through a rectangular path of width dx lying in the xz plane, the magnetic field in the *z* direction varies from  $\vec{\mathbf{B}}(x)$  to  $\vec{\mathbf{B}}(x + dx)$ .

where E(x) is the field on the left side of the rectangle at this instant.² Therefore, the line integral over this rectangle is approximately

X

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = [E(x+dx)]\ell - [E(x)]\ell \approx \ell\left(\frac{\partial E}{\partial x}\right)dx$$
(34.9)

Because the magnetic field is in the *z* direction, the magnetic flux through the rectangle of area  $\ell dx$  is approximately  $\Phi_B = B\ell dx$  (assuming dx is very small compared with the wavelength of the wave). Taking the time derivative of the magnetic flux gives

$$\frac{d\Phi_B}{dt} = \ell \, dx \frac{dB}{dt} \bigg|_{x \text{ constant}} = \ell \, dx \frac{\partial B}{\partial t}$$
(34.10)

Substituting Equations 34.9 and 34.10 into Equation 34.6 gives

$$\ell\left(\frac{\partial E}{\partial x}\right)dx = -\ell dx \frac{\partial B}{\partial t}$$

$$\frac{\partial E}{\partial x} = -\frac{\partial B}{\partial t}$$
(34.11)

In a similar manner, we can derive a second equation by starting with Maxwell's fourth equation in empty space (Eq. 34.7). In this case, the line integral of  $\vec{\mathbf{B}} \cdot d\vec{\mathbf{s}}$  is evaluated around a rectangle lying in the *xz* plane and having width *dx* and length  $\ell$  as in Figure 34.7. Noting that the magnitude of the magnetic field changes from B(x) to B(x + dx) over the width *dx* and that the direction for taking the line integral is counterclockwise when viewed from above in Figure 34.7, the line integral over this rectangle is found to be approximately

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = [B(x)]\ell - [B(x+dx)]\ell \approx -\ell\left(\frac{\partial B}{\partial x}\right)dx$$
(34.12)



²Because dE/dx in this equation is expressed as the change in *E* with *x* at a given instant *t*, dE/dx is equivalent to the partial derivative  $\partial E/\partial x$ . Likewise, dB/dt means the change in *B* with time at a particular position *x*; therefore, in Equation 34.10, we can replace dB/dt with  $\partial B/\partial t$ .

The electric flux through the rectangle is  $\Phi_E = E\ell dx$ , which, when differentiated with respect to time, gives

$$\frac{\partial \Phi_E}{\partial t} = \ell \, dx \frac{\partial E}{\partial t} \tag{34.13}$$

Substituting Equations 34.12 and 34.13 into Equation 34.7 gives

$$\ell\left(\frac{\partial B}{\partial x}\right) dx = \mu_0 \epsilon_0 \ell \, dx \left(\frac{\partial E}{\partial t}\right)$$
$$\frac{\partial B}{\partial x} = -\mu_0 \epsilon_0 \frac{\partial E}{\partial t}$$
(34.14)

Taking the derivative of Equation 34.11 with respect to x and combining the result with Equation 34.14 gives

$$\frac{\partial^2 E}{\partial x^2} = -\frac{\partial}{\partial x} \left( \frac{\partial B}{\partial t} \right) = -\frac{\partial}{\partial t} \left( \frac{\partial B}{\partial x} \right) = -\frac{\partial}{\partial t} \left( -\mu_0 \epsilon_0 \frac{\partial E}{\partial t} \right)$$
$$\frac{\partial^2 E}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2}$$
(34.15)

In the same manner, taking the derivative of Equation 34.14 with respect to *x* and combining it with Equation 34.11 gives

$$\frac{\partial^2 B}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 B}{\partial t^2}$$
(34.16)

Equations 34.15 and 34.16 both have the form of the linear wave equation³ with the wave speed v replaced by c, where

$$c=\frac{1}{\sqrt{\mu_0\epsilon_0}}$$

(34.17) < Speed of electromagnetic waves

 Sinusoidal electric and magnetic fields

çu'

Let's evaluate this speed numerically:

$$c = \frac{1}{\sqrt{(4\pi \times 10^{-7} \,\mathrm{T \cdot m/A})(8.854\,19 \times 10^{-12} \,\mathrm{C^2/N \cdot m^2})}}$$
  
= 2.997 92 × 10⁸ m/s

Because this speed is precisely the same as the speed of light in empty space, we are led to believe (correctly) that light is an electromagnetic wave.

The simplest solution to Equations 34.15 and 34.16 is a sinusoidal wave for which the field magnitudes *E* and *B* vary with *x* and *t* according to the expressions

$$E = E_{\max} \cos (kx - \omega t)$$
 (34.18)

$$B = B_{\max} \cos \left( kx - \omega t \right) \tag{34.19}$$

where  $E_{\text{max}}$  and  $B_{\text{max}}$  are the maximum values of the fields. The angular wave number is  $k = 2\pi/\lambda$ , where  $\lambda$  is the wavelength. The angular frequency is  $\omega = 2\pi f$ , where f is the wave frequency. According to the traveling wave model, the ratio  $\omega/k$  equals the speed of an electromagnetic wave, c:

$$\frac{\omega}{k} = \frac{2\pi f}{2\pi/\lambda} = \lambda f = c$$

³The linear wave equation is of the form  $(\partial^2 y/\partial x^2) = (1/v^2)(\partial^2 y/\partial t^2)$ , where v is the speed of the wave and y is the wave function. The linear wave equation was introduced as Equation 16.27, and we suggest you review Section 16.6.



**Figure 34.8** A sinusoidal electromagnetic wave moves in the positive *x* direction with a speed *c*.

Pitfall Prevention 34.2  $\vec{E}$  Stronger Than  $\vec{B}$ ? Because the value of *c* is so large, some students incorrectly interpret Equation 34.21 as meaning that

the electric field is much stronger than the magnetic field. Electric

and magnetic fields are measured

in different units, however, so they

Section 34.4, we find that the elec-

cannot be directly compared. In

tric and magnetic fields contribute equally to the wave's energy. where we have used Equation 16.12,  $v = c = \lambda f$ , which relates the speed, frequency, and wavelength of a sinusoidal wave. Therefore, for electromagnetic waves, the wavelength and frequency of these waves are related by

$$\lambda = \frac{c}{f} = \frac{3.00 \times 10^8 \,\mathrm{m/s}}{f}$$
(34.20)

Figure 34.8 is a pictorial representation, at one instant, of a sinusoidal, linearly polarized electromagnetic wave moving in the positive x direction.

We can generate other mathematical representations of the traveling wave model for electromagnetic waves. Taking partial derivatives of Equations 34.18 (with respect to *x*) and 34.19 (with respect to *t*) gives

$$\frac{\partial E}{\partial x} = -kE_{\max}\sin(kx - \omega t)$$
$$\frac{\partial B}{\partial t} = \omega B_{\max}\sin(kx - \omega t)$$

Substituting these results into Equation 34.11 shows that, at any instant,

$$kE_{\max} = \omega B_{\max}$$
$$\frac{E_{\max}}{B_{\max}} = \frac{\omega}{k} = c$$

Using these results together with Equations 34.18 and 34.19 gives

$$\frac{E_{\max}}{B_{\max}} = \frac{E}{B} = c$$
(34.21)

That is, at every instant, the ratio of the magnitude of the electric field to the magnitude of the magnetic field in an electromagnetic wave equals the speed of light.

Finally, note that electromagnetic waves obey the superposition principle as described in the waves in interference analysis model (which we discussed in Section 18.1 with respect to mechanical waves) because the differential equations involving *E* and *B* are linear equations. For example, we can add two waves with the same frequency and polarization simply by adding the magnitudes of the two electric fields algebraically.

uick Quiz 34.2 What is the phase difference between the sinusoidal oscillations
of the electric and magnetic fields in Figure 34.8? (a) 180° (b) 90° (c) 0 (d) impossible to determine

uick Quiz 34.3 An electromagnetic wave propagates in the negative *y* direction. The electric field at a point in space is momentarily oriented in the positive *x* direction. In which direction is the magnetic field at that point momentarily oriented? (a) the negative *x* direction (b) the positive *y* direction (c) the positive *z* direction (d) the negative *z* direction

#### Example 34.2



A sinusoidal electromagnetic wave of frequency 40.0 MHz travels in free space in the x direction as in Figure 34.9.

(A) Determine the wavelength and period of the wave.
# 34.2 continued

# SOLUTION

**Conceptualize** Imagine the wave in Figure 34.9 moving to the right along the x axis, with the electric and magnetic fields oscillating in phase.

**Categorize** We use the mathematical representation of the traveling wave model for electromagnetic waves.

Analyze

Use Equation 34.20 to find the wavelength of the wave:

Find the period T of the wave as the inverse of the frequency:

(B) At some point and at some instant, the electric field has its maximum value of 750 N/C and is directed along the y axis. Calculate the magnitude and direction of the magnetic

Figure

maximu

# SOLUTION

Use Equation 34.21 to find the magnitude of the magnetic field:

Because  $\vec{E}$  and  $\vec{B}$  must be perpendicular to each other and perpendicular to the direction of wave propagation (x in this case), we conclude that  $\vec{\mathbf{B}}$  is in the *z* direction.

Finalize Notice that the wavelength is several meters. This is relatively long for an electromagnetic wave. As we will see in Section 34.7, this wave belongs to the radio range of frequencies.

# **Energy Carried by Electromagnetic Waves**

In our discussion of the nonisolated system model for energy in Section 8.1, we identified electromagnetic radiation as one method of energy transfer across the boundary of a system. The amount of energy transferred by electromagnetic waves is symbolized as  $T_{\rm FR}$  in Equation 8.2. The rate of transfer of energy by an electromagnetic wave is described by a vector  $\vec{S}$ , called the **Poynting vector**, which is defined by the expression

$$\vec{\mathbf{S}} \equiv \frac{1}{\mu_0} \vec{\mathbf{E}} \times \vec{\mathbf{B}}$$

Poynting vector

(34.22)

The magnitude of the Poynting vector represents the rate at which energy passes through a unit surface area perpendicular to the direction of wave propagation. Therefore, the magnitude of  $\mathbf{S}$  represents *power per unit area*. The direction of the vector is along the direction of wave propagation (Fig. 34.10, page 1040). The SI units of **Ś** are  $I/s \cdot m^2 = W/m^2$ .

As an example, let's evaluate the magnitude of  $\vec{s}$  for a plane electromagnetic wave where  $|\vec{\mathbf{E}} \times \vec{\mathbf{B}}| = EB$ . In this case,

$$S = \frac{EB}{\mu_0} \tag{34.23}$$

An Instantaneous Value The Poynting vector given by Equation 34.22 is time dependent. Its magnitude varies in time, reaching a maximum value at the same instant the magnitudes of  $\vec{\mathbf{E}}$  and  $\mathbf{\hat{B}}$  do. The *average* rate of energy transfer is given by Equation 34.24 on the next page.

 $T = \frac{1}{f} = \frac{1}{40.0 \times 10^6 \,\mathrm{Hz}} =$ 

$$B_{\text{max}} = \frac{E_{\text{max}}}{c} = \frac{750 \text{ N/C}}{3.00 \times 10^8 \text{ m/s}} = 2.50 \times 10^{-6} \text{ T}$$

t, a plane electromagnetic  
g in the x direction has a  
lectric field of 750 N/C in  
y direction.  

$$\lambda = \frac{c}{f} = \frac{3.00 \times 10^8 \text{ m/s}}{40.0 \times 10^6 \text{ Hz}} = 7.50 \text{ m}$$

y

#### Pitfall Prevention 34.4

**Irradiance** In this discussion, intensity is defined in the same way as in Chapter 17 (as power per unit area). In the optics industry, however, power per unit area is called the *irradiance*. Radiant intensity is defined as the power in watts per solid angle (measured in steradians).

Wave intensity >



**Figure 34.10** The Poynting vector  $\vec{s}$  for a plane electromagnetic wave is along the direction of wave propagation.

Total instantaneous energy density of an electromagnetic wave

Average energy density of an electromagnetic wave Because B = E/c, we can also express this result as

$$S = \frac{E^2}{\mu_0 c} = \frac{cB^2}{\mu_0}$$

These equations for *S* apply at any instant of time and represent the *instantaneous* rate at which energy is passing through a unit area in terms of the instantaneous values of *E* and *B*.

What is of greater interest for a sinusoidal plane electromagnetic wave is the time average of *S* over one or more cycles, which is called the *wave intensity I*. (We discussed the intensity of sound waves in Chapter 17.) When this average is taken, we obtain an expression involving the time average of  $\cos^2 (kx - \omega t)$ , which equals  $\frac{1}{2}$ . Hence, the average value of *S* (in other words, the intensity of the wave) is

$$I = S_{\text{avg}} = \frac{E_{\text{max}} B_{\text{max}}}{2\mu_0} = \frac{E_{\text{max}}^2}{2\mu_0 c} = \frac{cB_{\text{max}}^2}{2\mu_0}$$
(34.24)

Recall that the energy per unit volume associated with an electric field, which is the instantaneous energy density  $u_E$ , is given by Equation 26.13:

$$u_E = \frac{1}{2} \epsilon_0 E^2$$

Also recall that the instantaneous energy density  $u_B$  associated with a magnetic field is given by Equation 32.14:

$$u_B = \frac{B^2}{2\mu_0}$$

Because *E* and *B* vary with time for an electromagnetic wave, the energy densities also vary with time. Using the relationships B = E/c and  $c = 1/\sqrt{\mu_0\epsilon_0}$ , the expression for  $u_B$  becomes

$$u_B = \frac{(E/c)^2}{2\mu_0} = \frac{\mu_0\epsilon_0}{2\mu_0}E^2 = \frac{1}{2}\epsilon_0 E^2$$

Comparing this result with the expression for  $u_E$ , we see that

$$u_B = u_E = \frac{1}{2}\epsilon_0 E^2 = \frac{B^2}{2\mu_0}$$

That is, the instantaneous energy density associated with the magnetic field of an electromagnetic wave equals the instantaneous energy density associated with the electric field. Hence, in a given volume, the energy is equally shared by the two fields. The **total instantaneous energy density** u is equal to the sum of the energy densities associated with the electric fields:

$$u = u_E + u_B = \epsilon_0 E^2 = \frac{B^2}{\mu_0}$$

When this total instantaneous energy density is averaged over one or more cycles of an electromagnetic wave, we again obtain a factor of  $\frac{1}{2}$ . Hence, for any electromagnetic wave, the total average energy per unit volume is

$$u_{\text{avg}} = \epsilon_0 (E^2)_{\text{avg}} = \frac{1}{2} \epsilon_0 E_{\text{max}}^2 = \frac{B_{\text{max}}^2}{2\mu_0}$$
(34.25)

Comparing this result with Equation 34.24 for the average value of S, we see that

$$I = S_{\text{avg}} = c u_{\text{avg}}$$
(34.26)

In other words, the intensity of an electromagnetic wave equals the average energy density multiplied by the speed of light.

The Sun delivers about  $10^3 \text{ W/m}^2$  of energy to the Earth's surface via electromagnetic radiation. Let's calculate the total power that is incident on the roof of a home. The roof's dimensions are 8.00 m × 20.0 m. We assume the average magnitude of the Poynting vector for solar radiation at the surface of the Earth is  $S_{\text{avg}} = 1000 \text{ W/m}^2$ . This average value represents the power per unit area, or the light intensity. Assuming the radiation is incident normal to the roof, we obtain

 $P_{\text{avg}} = S_{\text{avg}}A = (1\ 000\ \text{W/m}^2)(8.00\ \text{m} \times 20.0\ \text{m}) = 1.60 \times 10^5\ \text{W}$ 

This power is large compared with the power requirements of a typical home. If this power could be absorbed and made available to electrical devices, it would provide more than enough energy for the average home. Solar energy is not easily harnessed, however, and the prospects for large-scale conversion are not as bright as may appear from this calculation. For example, the efficiency of conversion from solar energy is typically 12–18% for photovoltaic cells, reducing the available power by an order of magnitude. Other considerations reduce the power even further. Depending on location, the radiation is most likely not incident normal to the roof and, even if it is, this situation exists for only a short time near the middle of the day. No energy is available for about half of each day during the nighttime hours, and cloudy days further reduce the available energy. Finally, while energy is arriving at a large rate during the middle of the day, some of it must be stored for later use, requiring batteries or other storage devices. All in all, complete solar operation of homes is not currently cost effective for most homes.

# Example 34.3 Fields on the Page

Estimate the maximum magnitudes of the electric and magnetic fields of the light that is incident on this page because of the visible light coming from your desk lamp. Treat the lightbulb as a point source of electromagnetic radiation that is 5% efficient at transforming energy coming in by electrical transmission to energy leaving by visible light.

# SOLUTION

**Conceptualize** The filament in your lightbulb emits electromagnetic radiation. The brighter the light, the larger the magnitudes of the electric and magnetic fields.

**Categorize** Because the lightbulb is to be treated as a point source, it emits equally in all directions, so the outgoing electromagnetic radiation can be modeled as a spherical wave.

**Analyze** Recall from Equation 17.13 that the wave intensity *I* a distance *r* from a point source is  $I = P_{avg}/4\pi r^2$ , where  $P_{avg}$  is the average power output of the source and  $4\pi r^2$  is the area of a sphere of radius *r* centered on the source.

Set this expression for *I* equal to the intensity of an electromagnetic wave given by Equation 34.24:

.....

Solve for the electric field magnitude:

Let's make some assumptions about numbers to enter in this equation. The visible light output of a 60-W lightbulb operating at 5% efficiency is approximately 3.0 W by visible light. (The remaining energy transfers out of the lightbulb by thermal conduction and invisible radiation.) A reasonable distance from the lightbulb to the page might be 0.30 m.

Substitute these values:

$$E_{\text{max}} = \sqrt{\frac{(4\pi \times 10^{-7} \,\text{T} \cdot \text{m/A})(3.00 \times 10^8 \,\text{m/s})(3.0 \,\text{W})}{2\pi (0.30 \,\text{m})^2}}$$
$$= 45 \,\text{V/m}$$

continued

$$I = \frac{P_{\text{avg}}}{4\pi r^2} = \frac{E_{\text{max}}^2}{2\mu_0 c}$$
$$E_{\text{max}} = \sqrt{\frac{\mu_0 c P_{\text{avg}}}{2\pi r^2}}$$

### 34.3 continued

Use Equation 34.21 to find the magnetic field magnitude:

$$B_{\text{max}} = \frac{E_{\text{max}}}{c} = \frac{45 \text{ V/m}}{3.00 \times 10^8 \text{ m/s}} = 1.5 \times 10^{-7} \text{ T}$$

**Finalize** This value of the magnetic field magnitude is two orders of magnitude smaller than the Earth's magnetic field.

# 34.5 Momentum and Radiation Pressure

Electromagnetic waves transport linear momentum as well as energy. As this momentum is absorbed by some surface, pressure is exerted on the surface. Therefore, the surface is a nonisolated system for momentum. In this discussion, let's assume the electromagnetic wave strikes the surface at normal incidence and transports a total energy  $T_{\rm ER}$  to the surface in a time interval  $\Delta t$ . Maxwell showed that if the surface absorbs all the incident energy  $T_{\rm ER}$  in this time interval (as does a black body, introduced in Section 20.7), the total momentum  $\vec{\mathbf{p}}$  transported to the surface has a magnitude

Momentum transported to a perfectly absorbing surface  $p = \frac{T_{\rm ER}}{c}$  (complete absorption) (34.27)

The pressure P exerted on the surface is defined as force per unit area F/A, which when combined with Newton's second law gives

$$P = \frac{F}{A} = \frac{1}{A} \frac{dp}{dt}$$

Substituting Equation 34.27 into this expression for pressure *P* gives

 $P = \frac{1}{A} \frac{dp}{dt} = \frac{1}{A} \frac{d}{dt} \left(\frac{T_{\rm ER}}{c}\right) = \frac{1}{c} \frac{(dT_{\rm ER}/dt)}{A}$ 

We recognize  $(dT_{\rm ER}/dt)/A$  as the rate at which energy is arriving at the surface per unit area, which is the magnitude of the Poynting vector. Therefore, the radiation pressure *P* exerted on the perfectly absorbing surface is

$$P = \frac{S}{c} \qquad \text{(complete absorption)} \tag{34.28}$$

If the surface is a perfect reflector (such as a mirror) and incidence is normal, the momentum transported to the surface in a time interval  $\Delta t$  is twice that given by Equation 34.27. That is, the momentum transferred to the surface by the incoming light is  $p = T_{\text{ER}}/c$  and that transferred by the reflected light is also  $p = T_{\text{ER}}/c$ . Therefore,

$$p = \frac{2T_{\text{ER}}}{c}$$
 (complete reflection) (34.29)

The radiation pressure exerted on a perfectly reflecting surface for normal incidence of the wave is

$$P = \frac{2S}{c} \qquad \text{(complete reflection)} \tag{34.30}$$

The pressure on a surface having a reflectivity somewhere between these two extremes has a value between S/c and 2S/c, depending on the properties of the surface.

Although radiation pressures are very small (about  $5 \times 10^{-6}$  N/m² for direct sunlight), *solar sailing* is a low-cost means of sending spacecraft to the planets. Large

Radiation pressure exerted on a perfectly absorbing surface

#### Pitfall Prevention 34.5

**So Many p's** We have *p* for momentum and *P* for pressure, and they are both related to *P* for power! Be sure to keep all these symbols straight.

Radiation pressure exerted on a perfectly reflecting surface sheets experience radiation pressure from sunlight and are used in much the way canvas sheets are used on earthbound sailboats. In 2010, the Japan Aerospace Exploration Agency (JAXA) launched the first spacecraft to use solar sailing as its primary propulsion, *IKAROS* (Interplanetary Kite-craft Accelerated by Radiation of the Sun). Successful testing of this spacecraft would lead to a larger effort to send a spacecraft to Jupiter by radiation pressure later in the present decade.

**Q** uick Quiz 34.4 To maximize the radiation pressure on the sails of a spacecraft

- using solar sailing, should the sheets be (a) very black to absorb as much sun-
- light as possible or (b) very shiny to reflect as much sunlight as possible?

# Conceptual Example 34.4 Sweeping the Solar System

A great amount of dust exists in interplanetary space. Although in theory these dust particles can vary in size from molecular size to a much larger size, very little of the dust in our solar system is smaller than about  $0.2 \mu m$ . Why?

# SOLUTION

The dust particles are subject to two significant forces: the gravitational force that draws them toward the Sun and the radiation-pressure force that pushes them away from the Sun. The gravitational force is proportional to the cube of the radius of a spherical dust particle because it is proportional to the mass and therefore to the volume  $4\pi r^3/3$  of the particle. The radiation pressure is proportional to the square of the radius because it depends on the planar cross section of the particle. For large particles, the gravitational force is greater than the force from radiation pressure. For particles having radii less than about 0.2  $\mu$ m, the radiation-pressure force is greater than the gravitational force. As a result, these particles are swept out of our solar system by sunlight.

# Example 34.5 Pressure from a Laser Pointer

When giving presentations, many people use a laser pointer to direct the attention of the audience to information on a screen. If a 3.0-mW pointer creates a spot on a screen that is 2.0 mm in diameter, determine the radiation pressure on a screen that reflects 70% of the light that strikes it. The power 3.0 mW is a time-averaged value.

## SOLUTION

**Conceptualize** Imagine the waves striking the screen and exerting a radiation pressure on it. The pressure should not be very large.

**Categorize** This problem involves a calculation of radiation pressure using an approach like that leading to Equation 34.28 or Equation 34.30, but it is complicated by the 70% reflection.

Analyze We begin by determining the magnitude of the beam's Poynting vector.

Divide the time-averaged power delivered via the electromagnetic wave by the crosssectional area of the beam:

$$S_{\text{avg}} = \frac{(Power)_{\text{avg}}}{A} = \frac{(Power)_{\text{avg}}}{\pi r^2} = \frac{3.0 \times 10^{-3} \text{ W}}{\pi \left(\frac{2.0 \times 10^{-3} \text{ m}}{2}\right)^2} = 955 \text{ W/m}^2$$

Now let's determine the radiation pressure from the laser beam. Equation 34.30 indicates that a completely reflected beam would apply an average pressure of  $P_{\text{avg}} = 2S_{\text{avg}}/c$ . We can model the actual reflection as follows. Imagine that the surface absorbs the beam, resulting in pressure  $P_{\text{avg}} = S_{\text{avg}}/c$ . Then the surface emits the beam, resulting in additional pressure  $P_{\text{avg}} = S_{\text{avg}}/c$ . If the surface emits only a fraction *f* of the beam (so that *f* is the amount of the incident beam reflected), the pressure due to the emitted beam is  $P_{\text{avg}} = fS_{\text{avg}}/c$ .

Use this model to find the total pressure on the surface due to absorption and re-emission (reflection):

$$P_{\text{avg}} = \frac{S_{\text{avg}}}{c} + f \frac{S_{\text{avg}}}{c} = (1+f) \frac{S_{\text{avg}}}{c}$$

continued

#### 34.5 continued

Evaluate this pressure for a beam that is 70% reflected:

$$P_{\text{avg}} = (1 + 0.70) \frac{955 \text{ W/m}^2}{3.0 \times 10^8 \text{ m/s}} = 5.4 \times 10^{-6} \text{ N/m}^2$$

**Finalize** The pressure has an extremely small value, as expected. (Recall from Section 14.2 that atmospheric pressure is approximately  $10^5 \text{ N/m}^2$ .) Consider the magnitude of the Poynting vector,  $S_{\text{avg}} = 955 \text{ W/m}^2$ . It is about the same as the intensity of sunlight at the Earth's surface. For this reason, it is not safe to shine the beam of a laser pointer into a person's eyes, which may be more dangerous than looking directly at the Sun.

**WHAT IF?** What if the laser pointer is moved twice as far away from the screen? Does that affect the radiation pressure on the screen?

**Answer** Because a laser beam is popularly represented as a beam of light with constant cross section, you might think that the intensity of radiation, and therefore the radiation pressure, is independent of distance from the screen. A laser beam, however, does not have a constant cross section at all distances from the source; rather, there is a small but measurable divergence of the beam. If the laser is moved farther away from the screen, the area of illumination on the screen increases, decreasing the intensity. In turn, the radiation pressure is reduced.

In addition, the doubled distance from the screen results in more loss of energy from the beam due to scattering from air molecules and dust particles as the light travels from the laser to the screen. This energy loss further reduces the radiation pressure on the screen.

The electric field lines resemble those of an electric dipole (shown in Fig. 23.20).



Figure 34.11 A half-wave antenna consists of two metal rods connected to an alternating voltage source. This diagram shows  $\vec{E}$ and  $\vec{B}$  at an arbitrary instant when the current is upward.

# 34.6 Production of Electromagnetic Waves by an Antenna

Stationary charges and steady currents cannot produce electromagnetic waves. If the current in a wire changes with time, however, the wire emits electromagnetic waves. The fundamental mechanism responsible for this radiation is the acceleration of a charged particle. Whenever a charged particle accelerates, energy is transferred away from the particle by electromagnetic radiation.

Let's consider the production of electromagnetic waves by a half-wave antenna. In this arrangement, two conducting rods are connected to a source of alternating voltage (such as an LC oscillator) as shown in Figure 34.11. The length of each rod is equal to one-quarter the wavelength of the radiation emitted when the oscillator operates at frequency f. The oscillator forces charges to accelerate back and forth between the two rods. Figure 34.11 shows the configuration of the electric and magnetic fields at some instant when the current is upward. The separation of charges in the upper and lower portions of the antenna make the electric field lines resemble those of an electric dipole. (As a result, this type of antenna is sometimes called a *dipole antenna*.) Because these charges are continuously oscillating between the two rods, the antenna can be approximated by an oscillating electric dipole. The current representing the movement of charges between the ends of the antenna produces magnetic field lines forming concentric circles around the antenna that are perpendicular to the electric field lines at all points. The magnetic field is zero at all points along the axis of the antenna. Furthermore,  $\mathbf{E}$  and  $\mathbf{B}$  are 90° out of phase in time; for example, the current is zero when the charges at the outer ends of the rods are at a maximum.

At the two points where the magnetic field is shown in Figure 34.11, the Poynting vector  $\vec{S}$  is directed radially outward, indicating that energy is flowing away from the antenna at this instant. At later times, the fields and the Poynting vector reverse direction as the current alternates. Because  $\vec{E}$  and  $\vec{B}$  are 90° out of phase at points near the dipole, the net energy flow is zero. From this fact, you might conclude (incorrectly) that no energy is radiated by the dipole.

Energy is indeed radiated, however. Because the dipole fields fall off as  $1/r^3$  (as shown in Example 23.6 for the electric field of a static dipole), they are negligible at great distances from the antenna. At these great distances, something else causes

a type of radiation different from that close to the antenna. The source of this radiation is the continuous induction of an electric field by the time-varying magnetic field and the induction of a magnetic field by the time-varying electric field, predicted by Equations 34.6 and 34.7. The electric and magnetic fields produced in this manner are in phase with each other and vary as 1/r. The result is an outward flow of energy at all times.

The angular dependence of the radiation intensity produced by a dipole antenna is shown in Figure 34.12. Notice that the intensity and the power radiated are a maximum in a plane that is perpendicular to the antenna and passing through its midpoint. Furthermore, the power radiated is zero along the antenna's axis. A mathematical solution to Maxwell's equations for the dipole antenna shows that the intensity of the radiation varies as  $(\sin^2 \theta)/r^2$ , where  $\theta$  is measured from the axis of the antenna.

Electromagnetic waves can also induce currents in a receiving antenna. The response of a dipole receiving antenna at a given position is a maximum when the antenna axis is parallel to the electric field at that point and zero when the axis is perpendicular to the electric field.

• uick Quiz 34.5 If the antenna in Figure 34.11 represents the source of a distant

radio station, what would be the best orientation for your portable radio antenna

located to the right of the figure? (a) up-down along the page (b) left-right along

• the page (c) perpendicular to the page

# **34.7** The Spectrum of Electromagnetic Waves

The various types of electromagnetic waves are listed in Figure 34.13 (page 1046), which shows the **electromagnetic spectrum.** Notice the wide ranges of frequencies and wavelengths. No sharp dividing point exists between one type of wave and the next. Remember that all forms of the various types of radiation are produced by the same phenomenon: acceleration of electric charges. The names given to the types of waves are simply a convenient way to describe the region of the spectrum in which they lie.

**Radio waves,** whose wavelengths range from more than  $10^4$  m to about 0.1 m, are the result of charges accelerating through conducting wires. They are generated by such electronic devices as *LC* oscillators and are used in radio and television communication systems.

**Microwaves** have wavelengths ranging from approximately 0.3 m to  $10^{-4} \text{ m}$  and are also generated by electronic devices. Because of their short wavelengths, they are well suited for radar systems and for studying the atomic and molecular properties of matter. Microwave ovens are an interesting domestic application of these waves. It has been suggested that solar energy could be harnessed by beaming microwaves to the Earth from a solar collector in space.

Infrared waves have wavelengths ranging from approximately  $10^{-3}$  m to the longest wavelength of visible light,  $7 \times 10^{-7}$  m. These waves, produced by molecules and room-temperature objects, are readily absorbed by most materials. The infrared (IR) energy absorbed by a substance appears as internal energy because the energy agitates the object's atoms, increasing their vibrational or translational motion, which results in a temperature increase. Infrared radiation has practical and scientific applications in many areas, including physical therapy, IR photography, and vibrational spectroscopy.

**Visible light,** the most familiar form of electromagnetic waves, is the part of the electromagnetic spectrum the human eye can detect. Light is produced by the rearrangement of electrons in atoms and molecules. The various wavelengths of visible light, which correspond to different colors, range from red ( $\lambda \approx 7 \times 10^{-7}$  m) to violet ( $\lambda \approx 4 \times 10^{-7}$  m). The sensitivity of the human eye is a function of wavelength, being a maximum at a wavelength of about  $5.5 \times 10^{-7}$  m. With that in mind, why do you suppose tennis balls often have a yellow-green color? Table 34.1 provides

The distance from the origin to a point on the edge of the tan shape is proportional to the magnitude of the Poynting vector and the intensity of radiation in that direction.



**Figure 34.12** Angular dependence of the intensity of radiation produced by an oscillating electric dipole.



"Heat Rays" Infrared rays are often called "heat rays," but this terminology is a misnomer. Although infrared radiation is used to raise or maintain temperature as in the case of keeping food warm with "heat lamps" at a fastfood restaurant, all wavelengths of electromagnetic radiation carry energy that can cause the temperature of a system to increase. As an example, consider a potato baking in your microwave oven.



Wavelengths of Visible Light and Color

Wavelength Range (nm)	Color Description
400-430	Violet
430-485	Blue
485-560	Green
560-590	Yellow
590-625	Orange
625-700	Red

*Note:* The wavelength ranges here are approximate. Different people will describe colors differently.

Figure 34.13 The electromagnetic spectrum.



approximate correspondences between the wavelength of visible light and the color assigned to it by humans. Light is the basis of the science of optics and optical instruments, to be discussed in Chapters 35 through 38.

**Ultraviolet waves** cover wavelengths ranging from approximately  $4 \times 10^{-7}$  m to  $6 \times 10^{-10}$  m. The Sun is an important source of ultraviolet (UV) light, which is the main cause of sunburn. Sunscreen lotions are transparent to visible light but absorb most UV light. The higher a sunscreen's solar protection factor, or SPF, the greater the percentage of UV light absorbed. Ultraviolet rays have also been implicated in the formation of cataracts, a clouding of the lens inside the eye.

Most of the UV light from the Sun is absorbed by ozone  $(O_3)$  molecules in the Earth's upper atmosphere, in a layer called the stratosphere. This ozone shield converts lethal high-energy UV radiation to IR radiation, which in turn warms the stratosphere.

**X-rays** have wavelengths in the range from approximately  $10^{-8}$  m to  $10^{-12}$  m. The most common source of x-rays is the stopping of high-energy electrons upon bombarding a metal target. X-rays are used as a diagnostic tool in medicine and as a treatment for certain forms of cancer. Because x-rays can damage or destroy living tissues and organisms, care must be taken to avoid unnecessary exposure or overexposure. X-rays are also used in the study of crystal structure because x-ray wavelengths are comparable to the atomic separation distances in solids (about 0.1 nm).

**Gamma rays** are electromagnetic waves emitted by radioactive nuclei and during certain nuclear reactions. High-energy gamma rays are a component of cosmic rays that enter the Earth's atmosphere from space. They have wavelengths ranging from approximately  $10^{-10}$  m to less than  $10^{-14}$  m. Gamma rays are highly penetrating and produce serious damage when absorbed by living tissues. Consequently, those working near such dangerous radiation must be protected with heavily absorbing materials such as thick layers of lead.



Wearing sunglasses that do not block ultraviolet (UV) light is worse for your eyes than wearing no sunglasses at all. The lenses of any sunglasses absorb some visible light, thereby causing the wearer's pupils to dilate. If the glasses do not also block UV light, more damage may be done to the lens of the eye because of the dilated pupils. If you wear no sunglasses at all, your pupils are contracted, you squint, and much less UV light enters your eyes. High-quality sunglasses block nearly all the eyedamaging UV light.

1047

uick Quiz 34.6 In many kitchens, a microwave oven is used to cook food. The frequency of the microwaves is on the order of 10¹⁰ Hz. Are the wavelengths of these microwaves on the order of (a) kilometers, (b) meters, (c) centimeters, or (d) micrometers?

• uick Quiz 34.7 A radio wave of frequency on the order of 10⁵ Hz is used to carry a sound wave with a frequency on the order of 10³ Hz. Is the wavelength of this radio wave on the order of (a) kilometers, (b) meters, (c) centimeters, or

• (d) micrometers?

# Summary

# Definitions

In a region of space in which there is a changing electric field, there is a **displacement current** defined as

$$I_d \equiv \epsilon_0 \frac{d\Phi_E}{dt}$$

where  $\epsilon_0$  is the permittivity of free space (see Section 23.3) and  $\Phi_E = \int \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$  is the electric flux.

**Electromagnetic waves**, which are predicted by Max-

well's equations, have the following properties and are described by the following mathematical representations

of the traveling wave model for electromagnetic waves.

 $\frac{\partial^2 E}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2}$ 

 $\frac{\partial^2 B}{\partial x^2} = \mu_0 \epsilon_0 \, \frac{\partial^2 B}{\partial t^2}$ 

• The waves travel through a vacuum with the speed of

• The electric field and the magnetic field each satisfy a wave equation. These two wave equations, which can be obtained from Maxwell's third and fourth The rate at which energy passes through a unit area by electromagnetic radiation is described by the **Poynting vector**  $\vec{S}$ , where

$$\vec{\mathbf{S}} \equiv \frac{1}{\mu_0} \vec{\mathbf{E}} \times \vec{\mathbf{B}}$$
 (34.22)

# **Concepts and Principles**

equations, are

light c, where

When used with the Lorentz force law,  $\vec{\mathbf{F}} = q\vec{\mathbf{E}} + q\vec{\mathbf{v}} \times \vec{\mathbf{B}}$ , Maxwell's equations describe all electromagnetic phenomena:

(34.15)

(34.16)

(34.1)

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q}{\epsilon_0}$$
(34.4)  
$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0$$
(34.5)

• Numerically, the speed of electromagnetic waves in a vacuum is  $3.00 \times 10^8$  m/s.

 $\oint \vec{\mathbf{E}} \cdot d \vec{\mathbf{s}} = -\frac{d\Phi_B}{dt}$ 

 $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 I + \epsilon_0 \mu_0 \frac{d\Phi_E}{dt}$ 

• The wavelength and frequency of electromagnetic waves are related by

$$\lambda = \frac{c}{f} = \frac{3.00 \times 10^8 \,\mathrm{m/s}}{f}$$
(34.20)

- The electric and magnetic fields are perpendicular to each other and perpendicular to the direction of wave propagation.
- The instantaneous magnitudes of **É** and **B** in an electromagnetic wave are related by the expression

$$\frac{E}{B} = c \tag{34.21}$$

- Electromagnetic waves carry energy.
- Electromagnetic waves carry momentum.

continued

(34.6)

(34.7)

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$
(34.17)

Because electromagnetic waves carry momentum, they exert pressure on surfaces. If an electromagnetic wave whose Poynting vector is  $\vec{\mathbf{S}}$  is completely absorbed by a surface upon which it is normally incident, the radiation pressure on that surface is

$$P = \frac{S}{c} \quad (\text{complete absorption}) \tag{34.28}$$

If the surface totally reflects a normally incident wave, the pressure is doubled.

The average value of the Poynting vector for a plane electromagnetic wave has a magnitude

$$S_{\text{avg}} = \frac{E_{\text{max}} B_{\text{max}}}{2\mu_0} = \frac{E_{\text{max}}^2}{2\mu_0 c} = \frac{c B_{\text{max}}^2}{2\mu_0}$$
(34.24)

The intensity of a sinusoidal plane electromagnetic wave equals the average value of the Poynting vector taken over one or more cycles.

# **Objective Questions**

#### 1. denotes answer available in Student Solutions Manual/Study Guide

- 1. A spherical interplanetary grain of dust of radius 0.2  $\mu$ m is at a distance  $r_1$  from the Sun. The gravitational force exerted by the Sun on the grain just balances the force due to radiation pressure from the Sun's light. (i) Assume the grain is moved to a distance  $2r_1$  from the Sun and released. At this location, what is the net force exerted on the grain? (a) toward the Sun (b) away from the Sun (c) zero (d) impossible to determine without knowing the mass of the grain (ii) Now assume the grain is moved back to its original location at  $r_1$ , compressed so that it crystallizes into a sphere with significantly higher density, and then released. In this situation, what is the net force exerted on the grain? Choose from the same possibilities as in part (i).
- 2. A small source radiates an electromagnetic wave with a single frequency into vacuum, equally in all directions.
  (i) As the wave moves, does its frequency (a) increase, (b) decrease, or (c) stay constant? Using the same choices, answer the same question about (ii) its wavelength, (iii) its speed, (iv) its intensity, and (v) the amplitude of its electric field.
- **3.** A typical microwave oven operates at a frequency of 2.45 GHz. What is the wavelength associated with the electromagnetic waves in the oven? (a) 8.20 m (b) 12.2 cm (c)  $1.20 \times 10^8 \text{ m}$  (d)  $8.20 \times 10^{-9} \text{ m}$  (e) none of those answers
- **4.** A student working with a transmitting apparatus like Heinrich Hertz's wishes to adjust the electrodes to generate electromagnetic waves with a frequency half as large as before. (i) How large should she make the effective capacitance of the pair of electrodes? (a) four times larger than before (b) two times larger than

The electric and magnetic fields of a sinusoidal plane electromagnetic wave propagating in the positive *x* direction can be written as

$$E = E_{\max} \cos (kx - \omega t)$$
 (34.18)

$$B = B_{\max} \cos (kx - \omega t)$$
 (34.19)

where k is the angular wave number and  $\omega$  is the angular frequency of the wave. These equations represent special solutions to the wave equations for E and B.

The electromagnetic spectrum includes waves covering a broad range of wavelengths, from long radio waves at more than 10⁴ m to gamma rays at less than 10⁻¹⁴ m.

before (c) one-half as large as before (d) one-fourth as large as before (e) none of those answers (ii) After she makes the required adjustment, what will the wavelength of the transmitted wave be? Choose from the same possibilities as in part (i).

- 5. Assume you charge a comb by running it through your hair and then hold the comb next to a bar magnet. Do the electric and magnetic fields produced constitute an electromagnetic wave? (a) Yes they do, necessarily. (b) Yes they do because charged particles are moving inside the bar magnet. (c) They can, but only if the electric field of the comb and the magnetic field of the magnet are perpendicular. (d) They can, but only if both the comb and the magnet are moving. (e) They can, if either the comb or the magnet or both are accelerating.
- 6. Which of the following statements are true regarding electromagnetic waves traveling through a vacuum? More than one statement may be correct. (a) All waves have the same wavelength. (b) All waves have the same frequency. (c) All waves travel at  $3.00 \times 10^8$  m/s. (d) The electric and magnetic fields associated with the waves are perpendicular to each other and to the direction of wave propagation. (e) The speed of the waves depends on their frequency.
- 7. A plane electromagnetic wave with a single frequency moves in vacuum in the positive *x* direction. Its amplitude is uniform over the *yz* plane. (i) As the wave moves, does its frequency (a) increase, (b) decrease, or (c) stay constant? Using the same choices, answer the same question about (ii) its wavelength, (iii) its speed, (iv) its intensity, and (v) the amplitude of its magnetic field.

- 8. Assume the amplitude of the electric field in a plane electromagnetic wave is  $E_1$  and the amplitude of the magnetic field is  $B_1$ . The source of the wave is then adjusted so that the amplitude of the electric field doubles to become  $2E_1$ . (i) What happens to the amplitude of the magnetic field in this process? (a) It becomes four times larger. (b) It becomes two times larger. (c) It can stay constant. (d) It becomes one-half as large. (e) It becomes one-fourth as large. (ii) What happens to the intensity of the wave? Choose from the same possibilities as in part (i).
- **9.** An electromagnetic wave with a peak magnetic field magnitude of  $1.50 \times 10^{-7}$  T has an associated peak electric field of what magnitude? (a)  $0.500 \times 10^{-15}$  N/C (b)  $2.00 \times 10^{-5}$  N/C (c)  $2.20 \times 10^{4}$  N/C (d) 45.0 N/C (e) 22.0 N/C
- **10.** (i) Rank the following kinds of waves according to their wavelength ranges from those with the largest typical or average wavelength to the smallest, noting any cases of equality: (a) gamma rays (b) microwaves (c) radio waves (d) visible light (e) x-rays (ii) Rank the kinds of waves according to their frequencies from highest to lowest. (iii) Rank the kinds of waves

according to their speeds in vacuum from fastest to slowest.

**11.** Consider an electromagnetic wave traveling in the positive *y* direction. The magnetic field associated with the wave at some location at some instant points in the negative *x* direction as shown in Figure OQ34.11. What is the direction of the electric field at this position and at this instant? (a) the positive *x* direction (b) the positive *y* direction (c) the positive *z* direction (d) the negative *z* direction (e) the negative *y* direction



**Conceptual Questions** 

1. denotes answer available in Student Solutions Manual/Study Guide

- **1.** Suppose a creature from another planet has eyes that are sensitive to infrared radiation. Describe what the alien would see if it looked around your library. In particular, what would appear bright and what would appear dim?
- **2.** For a given incident energy of an electromagnetic wave, why is the radiation pressure on a perfectly reflecting surface twice as great as that on a perfectly absorbing surface?
- **3.** Radio stations often advertise "instant news." If that means you can hear the news the instant the radio announcer speaks it, is the claim true? What approximate time interval is required for a message to travel from Maine to California by radio waves? (Assume the waves can be detected at this range.)
- **4.** List at least three differences between sound waves and light waves.
- **5.** If a high-frequency current exists in a solenoid containing a metallic core, the core becomes warm due to induction. Explain why the material rises in temperature in this situation.
- 6. When light (or other electromagnetic radiation) travels across a given region, (a) what is it that oscillates? (b) What is it that is transported?
- **7.** Why should an infrared photograph of a person look different from a photograph taken with visible light?
- 8. Do Maxwell's equations allow for the existence of magnetic monopoles? Explain.

**9.** Despite the advent of digital television, some viewers still use "rabbit ears" atop their sets (Fig. CQ34.9) instead of purchasing cable television service or satellite dishes. Certain orientations of the receiving antenna on a television set give better reception than others. Furthermore, the best orientation varies from station to station. Explain.



Figure CO34.9 Conceptual Question 9 and Problem 78.

- **10.** What does a radio wave do to the charges in the receiving antenna to provide a signal for your car radio?
- **11.** Describe the physical significance of the Poynting vector.
- **12.** An empty plastic or glass dish being removed from a microwave oven can be cool to the touch, even when food on an adjoining dish is hot. How is this phenomenon possible?
- **13.** What new concept did Maxwell's generalized form of Ampère's law include?



# Section 34.1 Displacement Current and the General Form of Ampère's Law

1. Consider the situation shown in Figure P34.1. An electric field of 300 V/m is confined to a circular area d = 10.0 cm in diameter and directed outward perpendicular to the plane of the figure. If the field is increasing at a rate of 20.0 V/m  $\cdot$  s, what are (a) the direction and (b) the magnitude of the magnetic field at the point *P*, r = 15.0 cm from the center of the circle?





- 2. A 0.200-A current is charging a capacitor that has cirwin cular plates 10.0 cm in radius. If the plate separation is 4.00 mm, (a) what is the time rate of increase of electric field between the plates? (b) What is the magnetic field between the plates 5.00 cm from the center?
- A 0.100-A current is charging a capacitor that has
  M square plates 5.00 cm on each side. The plate separation is 4.00 mm. Find (a) the time rate of change of electric flux between the plates and (b) the displacement current between the plates.

#### Section 34.2 Maxwell's Equations and Hertz's Discoveries

- 4. An electron moves through a uniform electric field **AMT**  $\vec{\mathbf{E}} = (2.50\hat{\mathbf{i}} + 5.00\hat{\mathbf{j}})$  V/m and a uniform magnetic field **W**  $\vec{\mathbf{B}} = 0.400\hat{\mathbf{k}}$  T. Determine the acceleration of the electron when it has a velocity  $\vec{\mathbf{v}} = 10.0\hat{\mathbf{i}}$  m/s.
- **5.** A proton moves through a region containing a uniform electric field given by  $\vec{\mathbf{E}} = 50.0\hat{\mathbf{j}}$  V/m and a uniform magnetic field  $\vec{\mathbf{B}} = (0.200\hat{\mathbf{i}} + 0.300\hat{\mathbf{j}} + 0.400\hat{\mathbf{k}})$ T. Determine the acceleration of the proton when it has a velocity  $\vec{\mathbf{v}} = 200\hat{\mathbf{i}}$  m/s.
- 6. A very long, thin rod carries electric charge with the linear density 35.0 nC/m. It lies along the *x* axis and moves in the *x* direction at a speed of 1.50 × 10⁷ m/s. (a) Find the electric field the rod creates at the point (*x* = 0, *y* = 20.0 cm, *z* = 0). (b) Find the magnetic field it creates at the same point. (c) Find the force exerted on an electron at this point, moving with a velocity of (2.40 × 10⁸) î m/s.

#### Section 34.3 Plane Electromagnetic Waves

*Note:* Assume the medium is vacuum unless specified otherwise.

- 7. Suppose you are located 180 m from a radio transmitter. (a) How many wavelengths are you from the transmitter if the station calls itself 1150 AM? (The AM band frequencies are in kilohertz.) (b) What if this station is 98.1 FM? (The FM band frequencies are in megahertz.)
- 8. A diathermy machine, used in physiotherapy, generates electromagnetic radiation that gives the effect of "deep heat" when absorbed in tissue. One assigned frequency for diathermy is 27.33 MHz. What is the wavelength of this radiation?
- 9. The distance to the North Star, Polaris, is approximately 6.44 × 10¹⁸ m. (a) If Polaris were to burn out today, how many years from now would we see it disappear? (b) What time interval is required for sunlight to reach the Earth? (c) What time interval is required for a microwave signal to travel from the Earth to the Moon and back?
- **10.** The red light emitted by a helium–neon laser has a wavelength of 632.8 nm. What is the frequency of the light waves?
- **11. Review.** A standing-wave pattern is set up by radio waves between two metal sheets 2.00 m apart, which is the shortest distance between the plates that produces a standing-wave pattern. What is the frequency of the radio waves?

12. An electromagnetic wave in vacuum has an electricW field amplitude of 220 V/m. Calculate the amplitude of the corresponding magnetic field.

- 13. The speed of an electromagnetic wave traveling in a transparent nonmagnetic substance is  $v = 1/\sqrt{\kappa\mu_0\epsilon_0}$ , where  $\kappa$  is the dielectric constant of the substance. Determine the speed of light in water, which has a dielectric constant of 1.78 at optical frequencies.
- 14. A radar pulse returns to the transmitter–receiver after a total travel time of  $4.00 \times 10^{-4}$  s. How far away is the object that reflected the wave?

15. Figure P34.15 shows a plane electromagnetic sinusoiM dal wave propagating in the *x* direction. Suppose the wavelength is 50.0 m and the electric field vibrates in the *xy* plane with an amplitude of 22.0 V/m. Calculate

(a) the frequency of the wave and (b) the magnetic field  $\vec{\mathbf{B}}$  when the electric field has its maximum value in the negative *y* direction. (c) Write an expression for  $\vec{\mathbf{B}}$  with the correct unit vector, with numerical values for  $B_{\text{max}}$ , *k*, and  $\omega$ , and with its magnitude in the form



Figure P34.15 Problems 15 and 70.

**16.** Verify by substitution that the following equations are solutions to Equations 34.15 and 34.16, respectively:

$$E = E_{\max} \cos (kx - \omega t)$$
$$B = B_{\max} \cos (kx - \omega t)$$

- 17. Review. A microwave oven is powered by a magnetron, an electronic device that generates electromagnetic waves of frequency 2.45 GHz. The microwaves enter the oven and are reflected by the walls. The standing-wave pattern produced in the oven can cook food unevenly, with hot spots in the food at antinodes and cool spots at nodes, so a turntable is often used to rotate the food and distribute the energy. If a microwave oven intended for use with a turntable is instead used with a cooking dish in a fixed position, the antinodes can appear as burn marks on foods such as carrot strips or cheese. The separation distance between the burns is measured to be 6 cm  $\pm$  5%. From these data, calculate the speed of the microwaves.
- **18.** Why is the following situation impossible? An electromagnetic wave travels through empty space with electric and magnetic fields described by

$$\begin{split} E &= 9.00 \times 10^3 \cos \left[ (9.00 \times 10^6) x - (3.00 \times 10^{15}) t \right] \\ B &= 3.00 \times 10^{-5} \cos \left[ (9.00 \times 10^6) x - (3.00 \times 10^{15}) t \right] \end{split}$$

where all numerical values and variables are in SI units.

**19.** In SI units, the electric field in an electromagnetic **M** wave is described by

 $E_{y} = 100 \sin (1.00 \times 10^{7} x - \omega t)$ 

Find (a) the amplitude of the corresponding magnetic field oscillations, (b) the wavelength  $\lambda$ , and (c) the frequency *f*.

#### Section 34.4 Energy Carried by Electromagnetic Waves

- **20.** At what distance from the Sun is the intensity of sunlight three times the value at the Earth? (The average Earth–Sun separation is  $1.496 \times 10^{11}$  m.)
- **21.** If the intensity of sunlight at the Earth's surface under **W** a fairly clear sky is 1 000 W/m², how much electromag
  - netic energy per cubic meter is contained in sunlight?

- 22. The power of sunlight reaching each square meter of the Earth's surface on a clear day in the tropics is close to 1 000 W. On a winter day in Manitoba, the power concentration of sunlight can be 100 W/m². Many human activities are described by a power per unit area on the order of  $10^2$  W/m² or less. (a) Consider, for example, a family of four paying \$66 to the electric company every 30 days for 600 kWh of energy carried by electrical transmission to their house, which has floor dimensions of 13.0 m by 9.50 m. Compute the power per unit area used by the family. (b) Consider a car 2.10 m wide and 4.90 m long traveling at 55.0 mi/h using gasoline having "heat of combustion" 44.0 MJ/kg with fuel economy 25.0 mi/gal. One gallon of gasoline has a mass of 2.54 kg. Find the power per unit area used by the car. (c) Explain why direct use of solar energy is not practical for running a conventional automobile. (d) What are some uses of solar energy that are more practical?
- 23. A community plans to build a facility to convert solar radiation to electrical power. The community requires 1.00 MW of power, and the system to be installed has an efficiency of 30.0% (that is, 30.0% of the solar energy incident on the surface is converted to useful energy that can power the community). Assuming sunlight has a constant intensity of 1 000 W/m², what must be the effective area of a perfectly absorbing surface used in such an installation?
- 24. In a region of free space, the electric field at an instant of time is **E** = (80.0**î** + 32.0**ĵ** 64.0**k̂**) N/C and the magnetic field is **B** = (0.200**î** + 0.080 0**ĵ** + 0.290**k̂**) μT. (a) Show that the two fields are perpendicular to each other. (b) Determine the Poynting vector for these fields.
- **25.** When a high-power laser is used in the Earth's atmosphere, the electric field associated with the laser beam can ionize the air, turning it into a conducting plasma that reflects the laser light. In dry air at 0°C and 1 atm, electric breakdown occurs for fields with amplitudes above about 3.00 MV/m. (a) What laser beam intensity will produce such a field? (b) At this maximum intensity, what power can be delivered in a cylindrical beam of diameter 5.00 mm?
- 26. Review. Model the electromagnetic wave in a microwave oven as a plane traveling wave moving to the left, with an intensity of 25.0 kW/m². An oven contains two cubical containers of small mass, each full of water. One has an edge length of 6.00 cm, and the other, 12.0 cm. Energy falls perpendicularly on one face of each container. The water in the smaller container absorbs 70.0% of the energy that falls on it. The water in the larger container absorbs 91.0%. That is, the fraction 0.300 of the incoming microwave energy passes through a 6.00-cm thickness of water, and the fraction (0.300)(0.300) = 0.090 passes through a 12.0-cm thickness. Assume a negligible amount of energy leaves either container by heat. Find the temperature change of the water in each container over a time interval of 480 s.

1051

27. High-power lasers in factories are used to cut through cloth and metal (Fig. P34.27). One such laser has a beam diameter of 1.00 mm and generates an electric field having an amplitude of 0.700 MV/m at the target. Find (a) the amplitude of the magnetic field produced, (b) the intensity of the laser, and (c) the power delivered by the laser.



Plailly/SPL/Photo

inne

# Figure P34.27

- **28.** Consider a bright star in our night sky. Assume its distance from the Earth is 20.0 light-years (ly) and its power output is  $4.00 \times 10^{28}$  W, about 100 times that of the Sun. (a) Find the intensity of the starlight at the Earth. (b) Find the power of the starlight the Earth intercepts. One light-year is the distance traveled by light through a vacuum in one year.
- 29. What is the average magnitude of the Poynting vector
   M 5.00 mi from a radio transmitter broadcasting isotropically (equally in all directions) with an average power of 250 kW?
- **30.** Assuming the antenna of a 10.0-kW radio station radiates spherical electromagnetic waves, (a) compute the maximum value of the magnetic field 5.00 km from the antenna and (b) state how this value compares with the surface magnetic field of the Earth.
- 31. Review. An AM radio station broadcasts isotropically
- ♥ (equally in all directions) with an average power of 4.00 kW. A receiving antenna 65.0 cm long is at a location 4.00 mi from the transmitter. Compute the amplitude of the emf that is induced by this signal between the ends of the receiving antenna.
- 32. At what distance from a 100-W electromagnetic wave point source does  $E_{\text{max}} = 15.0 \text{ V/m}$ ?
- 33. The filament of an incandescent lamp has a 150-Ω resistance and carries a direct current of 1.00 A. The filament is 8.00 cm long and 0.900 mm in radius.
  (a) Calculate the Poynting vector at the surface of the filament, associated with the static electric field producing the current and the current's static magnetic field. (b) Find the magnitude of the static electric and magnetic fields at the surface of the filament.
- 34. At one location on the Earth, the rms value of the magnetic field caused by solar radiation is 1.80  $\mu$ T. From this value, calculate (a) the rms electric field

due to solar radiation, (b) the average energy density of the solar component of electromagnetic radiation at this location, and (c) the average magnitude of the Poynting vector for the Sun's radiation.

# Section 34.5 Momentum and Radiation Pressure

- **35.** A 25.0-mW laser beam of diameter 2.00 mm is reflected at normal incidence by a perfectly reflecting mirror. Calculate the radiation pressure on the mirror.
- **36.** A radio wave transmits 25.0 W/m² of power per unit area. A flat surface of area A is perpendicular to the direction of propagation of the wave. Assuming the surface is a perfect absorber, calculate the radiation pressure on it.
- 37. A 15.0-mW helium-neon laser emits a beam of circular
  M cross section with a diameter of 2.00 mm. (a) Find the maximum electric field in the beam. (b) What total energy is contained in a 1.00-m length of the beam? (c) Find the momentum carried by a 1.00-m length of the beam.
- 38. A helium–neon laser emits a beam of circular cross section with a radius *r* and a power *P*. (a) Find the maximum electric field in the beam. (b) What total energy is contained in a length *l* of the beam? (c) Find the momentum carried by a length *l* of the beam.
- **39** A uniform circular disk of mass m = 24.0 g and radius **AMT** r = 40.0 cm hangs vertically from a fixed, frictionless, horizontal hinge at a point on its circumference as shown in Figure P34.39a. A beam of electromagnetic radiation with intensity 10.0 MW/m² is incident on the disk in a direction perpendicular to its surface. The disk is perfectly absorbing, and the resulting radiation pressure makes the disk rotate. Assuming the radiation is *always* perpendicular to the surface of the disk, find the angle  $\theta$  through which the disk rotates from the vertical as it reaches its new equilibrium position shown in Figure 34.39b.



- **40.** The intensity of sunlight at the Earth's distance from the Sun is 1 370 W/m². Assume the Earth absorbs all the sunlight incident upon it. (a) Find the total force the Sun exerts on the Earth due to radiation pressure. (b) Explain how this force compares with the Sun's gravitational attraction.
- 41. A plane electromagnetic wave of intensity 6.00 W/m², moving in the *x* direction, strikes a small perfectly reflecting pocket mirror, of area 40.0 cm², held in the *yz* plane. (a) What momentum does the wave trans-

fer to the mirror each second? (b) Find the force the wave exerts on the mirror. (c) Explain the relationship between the answers to parts (a) and (b).

- **42.** Assume the intensity of solar radiation incident on the upper atmosphere of the Earth is 1 370 W/m² and use data from Table 13.2 as necessary. Determine (a) the intensity of solar radiation incident on Mars, (b) the total power incident on Mars, and (c) the radiation force that acts on that planet if it absorbs nearly all the light. (d) State how this force compares with the gravitational attraction exerted by the Sun on Mars. (e) Compare the ratio of the gravitational force to the light-pressure force exerted on the Earth and the ratio of these forces exerted on Mars, found in part (d).
- 43. A possible means of space flight is to place a perfectly
  AMT reflecting aluminized sheet into orbit around the Earth
  W and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 6.00 × 10⁵ m² and mass m = 6.00 × 10³ kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1 370 W/m². (a) What force is exerted on the sail? (b) What is the sail's acceleration? (c) Assuming the acceleration calculated in part (b) remains constant, find the time interval required for the sail to reach the Moon, 3.84 × 10⁸ m away, starting from rest at the Earth.

# Section 34.6 Production of Electromagnetic Waves by an Antenna

- 44. Extremely low-frequency (ELF) waves that can penetrate the oceans are the only practical means of communicating with distant submarines. (a) Calculate the length of a quarter-wavelength antenna for a transmitter generating ELF waves of frequency 75.0 Hz into air. (b) How practical is this means of communication?
- **45.** A Marconi antenna, used by most AM radio stations, consists of the top half of a Hertz antenna (also known as a half-wave antenna because its length is  $\lambda/2$ ). The lower end of this Marconi (quarter-wave) antenna is connected to Earth ground, and the ground itself serves as the missing lower half. What are the heights of the Marconi antennas for radio stations broadcasting at (a) 560 kHz and (b) 1 600 kHz?
- **46.** A large, flat sheet carries a uniformly distributed electric current with current per unit width  $J_s$ . This current creates a magnetic field on both sides of the sheet, parallel to the sheet and perpendicular to the current, with magnitude  $B = \frac{1}{2}\mu_0 J_s$ . If the current is in the *y* direction and oscillates in time according to

$$J_{\max} (\cos \omega t) \hat{\mathbf{j}} = J_{\max} [\cos (-\omega t)] \hat{\mathbf{j}}$$

the sheet radiates an electromagnetic wave. Figure P34.46 shows such a wave emitted from one point on the sheet chosen to be the origin. Such electromagnetic waves are emitted from all points on the sheet. The magnetic field of the wave to the right of the sheet is described by the wave function

$$\vec{\mathbf{B}} = \frac{1}{2}\mu_0 J_{\max} \left[ \cos \left( kx - \omega t \right) \right] \hat{\mathbf{k}}$$

(a) Find the wave function for the electric field of the wave to the right of the sheet. (b) Find the Poynting vector as a function of *x* and *t*. (c) Find the intensity of the wave. (d) **What If?** If the sheet is to emit radiation in each direction (normal to the plane of the sheet) with intensity 570 W/m², what maximum value of sinusoidal current density is required?



- **47. Review.** Accelerating charges radiate electromagnetic waves. Calculate the wavelength of radiation produced by a proton in a cyclotron with a magnetic field of 0.350 T.
- **48. Review.** Accelerating charges radiate electromagnetic waves. Calculate the wavelength of radiation produced by a proton of mass  $m_p$  moving in a circular path perpendicular to a magnetic field of magnitude *B*.
- **49.** Two vertical radio-transmitting antennas are separated by half the broadcast wavelength and are driven in phase with each other. In what horizontal directions are (a) the strongest and (b) the weakest signals radiated?

#### Section 34.7 The Spectrum of Electromagnetic Waves

- **50.** Compute an order-of-magnitude estimate for the frew quency of an electromagnetic wave with wavelength equal to (a) your height and (b) the thickness of a sheet of paper. How is each wave classified on the electromagnetic spectrum?
- **51.** What are the wavelengths of electromagnetic waves in free space that have frequencies of (a)  $5.00 \times 10^{19}$  Hz and (b)  $4.00 \times 10^{9}$  Hz?
- **52.** An important news announcement is transmitted by radio waves to people sitting next to their radios 100 km from the station and by sound waves to people sitting across the newsroom 3.00 m from the news-caster. Taking the speed of sound in air to be 343 m/s, who receives the news first? Explain.
- **53.** In addition to cable and satellite broadcasts, television stations still use VHF and UHF bands for digitally broadcasting their signals. Twelve VHF television channels (channels 2 through 13) lie in the range of frequencies between 54.0 MHz and 216 MHz. Each channel is assigned a width of 6.00 MHz, with the two ranges 72.0–76.0 MHz and 88.0–174 MHz reserved for non-TV purposes. (Channel 2, for example, lies

between 54.0 and 60.0 MHz.) Calculate the broadcast wavelength range for (a) channel 4, (b) channel 6, and (c) channel 8.

# **Additional Problems**

- 54. Classify waves with frequencies of 2 Hz, 2 kHz, 2 MHz, 2 GHz, 2 THz, 2 PHz, 2 EHz, 2 ZHz, and 2 YHz on the electromagnetic spectrum. Classify waves with wavelengths of 2 km, 2 m, 2 mm, 2  $\mu$ m, 2 nm, 2 pm, 2 fm, and 2 am.
- **55.** Assume the intensity of solar radiation incident on the cloud tops of the Earth is 1 370 W/m². (a) Taking the average Earth–Sun separation to be  $1.496 \times 10^{11}$  m, calculate the total power radiated by the Sun. Determine the maximum values of (b) the electric field and (c) the magnetic field in the sunlight at the Earth's location.
- **56.** In 1965, Arno Penzias and Robert Wilson discovered the cosmic microwave radiation left over from the big bang expansion of the Universe. Suppose the energy density of this background radiation is  $4.00 \times 10^{-14} \text{ J/m}^3$ . Determine the corresponding electric field amplitude.
- 57. The eye is most sensitive to light having a frequency of  $5.45 \times 10^{14}$  Hz, which is in the green-yellow region of the visible electromagnetic spectrum. What is the wavelength of this light?
- **58.** Write expressions for the electric and magnetic fields of a sinusoidal plane electromagnetic wave having an electric field amplitude of 300 V/m and a frequency of 3.00 GHz and traveling in the positive *x* direction.
- 59. One goal of the Russian space program is to illuminate dark northern cities with sunlight reflected to the Earth from a 200-m diameter mirrored surface in orbit. Several smaller prototypes have already been constructed and put into orbit. (a) Assume that sunlight with intensity 1 370  $W/m^2$  falls on the mirror nearly perpendicularly and that the atmosphere of the Earth allows 74.6% of the energy of sunlight to pass though it in clear weather. What is the power received by a city when the space mirror is reflecting light to it? (b) The plan is for the reflected sunlight to cover a circle of diameter 8.00 km. What is the intensity of light (the average magnitude of the Poynting vector) received by the city? (c) This intensity is what percentage of the vertical component of sunlight at St. Petersburg in January, when the sun reaches an angle of 7.00° above the horizon at noon?
- **60.** A microwave source produces pulses of 20.0-GHz radiation, with each pulse lasting 1.00 ns. A parabolic reflector with a face area of radius 6.00 cm is used to focus the microwaves into a parallel beam of radiation as shown in Figure P34.60. The average power during each pulse is 25.0 kW. (a) What is the wavelength of these microwaves? (b) What is the total energy contained in each pulse? (c) Compute the average energy density inside each pulse. (d) Determine the amplitude

of the electric and magnetic fields in these microwaves. (e) Assuming that this pulsed beam strikes an absorbing surface, compute the force exerted on the surface during the 1.00-ns duration of each pulse.



- 61. The intensity of solar radiation at the top of the Earth's atmosphere is 1 370 W/m². Assuming 60% of the incoming solar energy reaches the Earth's surface and you absorb 50% of the incident energy, make an order-of-magnitude estimate of the amount of solar energy you absorb if you sunbathe for 60 minutes.
- **62.** Two handheld radio transceivers with dipole antennas are separated by a large, fixed distance. If the transmitting antenna is vertical, what fraction of the maximum received power will appear in the receiving antenna when it is inclined from the vertical (a) by 15.0°? (b) By 45.0°? (c) By 90.0°?
- **63.** Consider a small, spherical particle of radius *r* located **AMT** in space a distance  $R = 3.75 \times 10^{11}$  m from the Sun. Assume the particle has a perfectly absorbing surface and a mass density of  $\rho = 1.50$  g/cm³. Use S = 214 W/m² as the value of the solar intensity at the location of the particle. Calculate the value of *r* for which the particle is in equilibrium between the gravitational force and the force exerted by solar radiation.
- 64. Consider a small, spherical particle of radius r located in space a distance R from the Sun, of mass  $M_S$ . Assume the particle has a perfectly absorbing surface and a mass density  $\rho$ . The value of the solar intensity at the particle's location is S. Calculate the value of r for which the particle is in equilibrium between the gravitational force and the force exerted by solar radiation. Your answer should be in terms of S, R,  $\rho$ , and other constants.
- 65. A dish antenna having a diameter of 20.0 m receives (at m normal incidence) a radio signal from a distant source as shown in Figure P34.65. The radio signal is a continuous sinusoidal wave with amplitude  $E_{max} = 0.200 \,\mu\text{V/m}$ .



Figure P34.65

Assume the antenna absorbs all the radiation that falls on the dish. (a) What is the amplitude of the magnetic field in this wave? (b) What is the intensity of the radiation received by this antenna? (c) What is the power received by the antenna? (d) What force is exerted by the radio waves on the antenna?

- 66. The Earth reflects approximately 38.0% of the incident sunlight from its clouds and surface. (a) Given that the intensity of solar radiation at the top of the atmosphere is 1 370 W/m², find the radiation pressure on the Earth, in pascals, at the location where the Sun is straight overhead. (b) State how this quantity compares with normal atmospheric pressure at the Earth's surface, which is 101 kPa.
- 67. Review. A 1.00-m-diameter circular mirror focuses the Sun's rays onto a circular absorbing plate 2.00 cm in radius, which holds a can containing 1.00 L of water at 20.0°C. (a) If the solar intensity is 1.00 kW/m², what is the intensity on the absorbing plate? At the plate, what are the maximum magnitudes of the fields (b)  $\vec{E}$  and (c)  $\vec{B}$ ? (d) If 40.0% of the energy is absorbed, what time interval is required to bring the water to its boiling point?
- **68.** (a) A stationary charged particle at the origin creates an electric flux of  $487 \text{ N} \cdot \text{m}^2/\text{C}$  through any closed surface surrounding the charge. Find the electric field it creates in the empty space around it as a function of radial distance *r* away from the particle. (b) A small source at the origin emits an electromagnetic wave with a single frequency into vacuum, equally in all directions, with power 25.0 W. Find the electric field amplitude as a function of radial distance away from the source. (c) At what distance is the amplitude of the electric field in the wave equal to 3.00 MV/m, representing the dielectric strength of air? (d) As the distance from the source doubles, what happens to the field amplitude? (e) State how the behavior shown in part (d) compares with the behavior of the field in part (a).
- **69. Review.** (a) A homeowner has a solar water heater installed on the roof of his house (Fig. P34.69). The heater is a flat, closed box with excellent thermal insulation. Its interior is painted black, and its front face is made of insulating glass. Its emissivity for visible light



Figure P34.69

is 0.900, and its emissivity for infrared light is 0.700. Light from the noontime Sun is incident perpendicular to the glass with an intensity of 1 000 W/m², and no water enters or leaves the box. Find the steady-state temperature of the box's interior. (b) **What If?** The homeowner builds an identical box with no water tubes. It lies flat on the ground in front of the house. He uses it as a cold frame, where he plants seeds in early spring. Assuming the same noontime Sun is at an elevation angle of  $50.0^{\circ}$ , find the steady-state temperature of the box when its ventilation slots are tightly closed.

- 70. You may wish to review Sections 16.5 and 17.3 on the GP transport of energy by string waves and sound. Figure P34.15 is a graphical representation of an electromagnetic wave moving in the *x* direction. We wish to find an expression for the intensity of this wave by means of a different process from that by which Equation 34.24 was generated. (a) Sketch a graph of the electric field in this wave at the instant t = 0, letting your flat paper represent the xy plane. (b) Compute the energy density  $u_F$  in the electric field as a function of x at the instant t = 0. (c) Compute the energy density in the magnetic field  $u_B$  as a function of x at that instant. (d) Find the total energy density u as a function of x, expressed in terms of only the electric field amplitude. (e) The energy in a "shoebox" of length  $\lambda$  and frontal area A is  $E_{\lambda} = \int_{0}^{\lambda} uA \, dx$ . (The symbol  $E_{\lambda}$  for energy in a wavelength imitates the notation of Section 16.5.) Perform the integration to compute the amount of this energy in terms of A,  $\lambda$ ,  $E_{\text{max}}$ , and universal constants. (f) We may think of the energy transport by the whole wave as a series of these shoeboxes going past as if carried on a conveyor belt. Each shoebox passes by a point in a time interval defined as the period T = 1/f of the wave. Find the power the wave carries through area A. (g) The intensity of the wave is the power per unit area through which the wave passes. Compute this intensity in terms of  $E_{\text{max}}$  and universal constants. (h) Explain how your result compares with that given in Equation 34.24.
- **71.** Lasers have been used to suspend spherical glass beads in the Earth's gravitational field. (a) A black bead has a radius of 0.500 mm and a density of 0.200 g/cm³. Determine the radiation intensity needed to support the bead. (b) What is the minimum power required for this laser?
- **72.** Lasers have been used to suspend spherical glass beads in the Earth's gravitational field. (a) A black bead has radius *r* and density  $\rho$ . Determine the radiation intensity needed to support the bead. (b) What is the minimum power required for this laser?
- **73. Review.** A 5.50-kg black cat and her four black kittens, each with mass 0.800 kg, sleep snuggled together on a mat on a cool night, with their bodies forming a hemisphere. Assume the hemisphere has a surface temperature of 31.0°C, an emissivity of 0.970, and a uniform density of 990 kg/m³. Find (a) the radius of the hemisphere, (b) the area of its curved surface, (c) the

radiated power emitted by the cats at their curved surface, and (d) the intensity of radiation at this surface. You may think of the emitted electromagnetic wave as having a single predominant frequency. Find (e) the amplitude of the electric field in the electromagnetic wave just outside the surface of the cozy pile and (f) the amplitude of the magnetic field. (g) **What If?** The next night, the kittens all sleep alone, curling up into separate hemispheres like their mother. Find the total radiated power of the family. (For simplicity, ignore the cats' absorption of radiation from the environment.)

74. The electromagnetic power radiated by a nonrelativistic particle with charge q moving with acceleration a is

$$P = \frac{q^2 a^2}{6\pi\epsilon_0 c^3}$$

where  $\epsilon_0$  is the permittivity of free space (also called the permittivity of vacuum) and *c* is the speed of light in vacuum. (a) Show that the right side of this equation has units of watts. An electron is placed in a constant electric field of magnitude 100 N/C. Determine (b) the acceleration of the electron and (c) the electromagnetic power radiated by this electron. (d) **What If?** If a proton is placed in a cyclotron with a radius of 0.500 m and a magnetic field of magnitude 0.350 T, what electromagnetic power does this proton radiate just before leaving the cyclotron?

**75.** Review. Gliese 581c is the first Earth-like extrasolar terrestrial planet discovered. Its parent star, Gliese 581, is a red dwarf that radiates electromagnetic waves with power  $5.00 \times 10^{24}$  W, which is only 1.30% of the power of the Sun. Assume the emissivity of the planet is equal for infrared and for visible light and the planet has a uniform surface temperature. Identify (a) the projected area over which the planet absorbs light from Gliese 581 and (b) the radiating area of the planet. (c) If an average temperature of 287 K is necessary for life to exist on Gliese 581c, what should the radius of the planet's orbit be?

# **Challenge Problems**

**76.** A plane electromagnetic wave varies sinusoidally at 90.0 MHz as it travels through vacuum along the positive *x* direction. The peak value of the electric field is 2.00 mV/m, and it is directed along the positive *y* direction. Find (a) the wavelength, (b) the period, and (c) the maximum value of the magnetic field. (d) Write expressions in SI units for the space and time variations of the electric field and of the magnetic field.

Include both numerical values and unit vectors to indicate directions. (e) Find the average power per unit area this wave carries through space. (f) Find the average energy density in the radiation (in joules per cubic meter). (g) What radiation pressure would this wave exert upon a perfectly reflecting surface at normal incidence?

- 77. A linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form  $B = B_{\text{max}} \sin (kx \omega t)$ , give values for (a)  $B_{\text{max}}$ , (b) k, and (c)  $\omega$ . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m  $\times$  0.750 m?
- 78. Review. In the absence of cable input or a satellite dish, a television set can use a dipole-receiving antenna for VHF channels and a loop antenna for UHF channels. In Figure CQ34.9, the "rabbit ears" form the VHF antenna and the smaller loop of wire is the UHF antenna. The UHF antenna produces an emf from the changing magnetic flux through the loop. The television station broadcasts a signal with a frequency f, and the signal has an electric field amplitude  $E_{\text{max}}$  and a magnetic field amplitude  $B_{\text{max}}$  at the location of the receiving antenna. (a) Using Faraday's law, derive an expression for the amplitude of the emf that appears in a single-turn, circular loop antenna with a radius rthat is small compared with the wavelength of the wave. (b) If the electric field in the signal points vertically, what orientation of the loop gives the best reception?
- **79. Review.** An astronaut, stranded in space 10.0 m from **AMT** her spacecraft and at rest relative to it, has a mass (including equipment) of 110 kg. Because she has a 100-W flashlight that forms a directed beam, she considers using the beam as a photon rocket to propel herself continuously toward the spacecraft. (a) Calculate the time interval required for her to reach the spacecraft by this method. (b) **What If?** Suppose she throws the 3.00-kg flashlight in the direction away from the spacecraft instead. After being thrown, the flashlight moves at 12.0 m/s relative to the recoiling astronaut. After what time interval will the astronaut reach the spacecraft?

# Light and Optics

# PART 5

The Grand Tetons in western Wyoming are reflected in a smooth lake at sunset. The optical principles we study in this part of the book will explain the nature of the reflected image of the mountains and why the sky appears red. (David Muench/ Terra/Corbis)

Light is basic to almost all life on the Earth. For example, plants convert the energy transferred by sunlight to chemical energy through photosynthesis. In addition, light is the principal means by which we are able to transmit and receive information to and from objects around us and throughout the Universe. Light is a form of electromagnetic radiation and represents energy transfer from the source to the observer.

Many phenomena in our everyday life depend on the properties of light. When you watch a television or view photos on a computer monitor, you are seeing millions of colors formed from combinations of only three colors that are physically on the screen: red, blue, and green. The blue color of the daytime sky is a result of the optical phenomenon of *scattering* of light by air molecules, as are the red and orange colors of sunrises and sunsets. You see your image in your bathroom mirror in the morning or the images of other cars in your rearview mirror when you are driving. These images result from *reflection* of light. If you wear glasses or contact lenses, you are depending on *refraction* of light for clear vision. The colors of a rainbow result from *dispersion* of light as it passes through raindrops hovering in the sky after a rainstorm. If you have ever seen the colored circles of the glory surrounding the shadow of your airplane on clouds as you fly above them, you are seeing an effect that results from *interference* of light. The phenomena mentioned here have been studied by scientists and are well understood.

In the introduction to Chapter 35, we discuss the dual nature of light. In some cases, it is best to model light as a stream of particles; in others, a wave model works better. Chapters 35 through 38 concentrate on those aspects of light that are best understood through the wave model of light. In Part 6, we will investigate the particle nature of light.

# CHAPTER 35

# The Nature of Light and the Principles of Ray Optics



35.1 The Nature of Light

- 35.2 Measurements of the Speed of Light
- 35.3 The Ray Approximation in Ray Optics
- 35.4 Analysis Model: Wave Under Reflection
- 35.5 Analysis Model: Wave Under Refraction
- **35.6** Huygens's Principle
- 35.7 Dispersion
- **35.8** Total Internal Reflection

This photograph of a rainbow shows the range of colors from red on the top to violet on the bottom. The appearance of the rainbow depends on three optical phenomena discussed in this chapter: reflection, refraction, and dispersion. The faint pastel-colored bows beneath the main rainbow are called supernumerary bows. They are formed by interference between rays of light leaving raindrops below those causing the main rainbow. (John W. Jewett, Jr.) This first chapter on optics begins by introducing two historical models for light and discussing early methods for measuring the speed of light. Next we study the fundamental phenomena of geometric optics: reflection of light from a surface and refraction as the light crosses the boundary between two media. We also study the dispersion of light as it refracts into materials, resulting in visual displays such as the rainbow. Finally, we investigate the phenomenon of total internal reflection, which is the basis for the operation of optical fibers and the technology of fiber optics.

# 35.1 The Nature of Light

Before the beginning of the 19th century, light was considered to be a stream of particles that either was emitted by the object being viewed or emanated from the eyes of the viewer. Newton, the chief architect of the particle model of light, held that particles were emitted from a light source and that these particles stimulated

the sense of sight upon entering the eye. Using this idea, he was able to explain reflection and refraction.

Most scientists accepted Newton's particle model. During Newton's lifetime, however, another model was proposed, one that argued that light might be some sort of wave motion. In 1678, Dutch physicist and astronomer Christian Huygens showed that a wave model of light could also explain reflection and refraction.

In 1801, Thomas Young (1773-1829) provided the first clear experimental demonstration of the wave nature of light. Young showed that under appropriate conditions light rays interfere with one another according to the waves in interference model, just like mechanical waves (Chapter 18). Such behavior could not be explained at that time by a particle model because there was no conceivable way in which two or more particles could come together and cancel one another. Additional developments during the 19th century led to the general acceptance of the wave model of light, the most important resulting from the work of Maxwell, who in 1873 asserted that light was a form of high-frequency electromagnetic wave. As discussed in Chapter 34, Hertz provided experimental confirmation of Maxwell's theory in 1887 by producing and detecting electromagnetic waves.

Although the wave model and the classical theory of electricity and magnetism were able to explain most known properties of light, they could not explain some subsequent experiments. The most striking phenomenon is the photoelectric effect, also discovered by Hertz: when light strikes a metal surface, electrons are sometimes ejected from the surface. As one example of the difficulties that arose, experiments showed that the kinetic energy of an ejected electron is independent of the light intensity. This finding contradicted the wave model, which held that a more intense beam of light should add more energy to the electron. Einstein proposed an explanation of the photoelectric effect in 1905 using a model based on the concept of quantization developed by Max Planck (1858-1947) in 1900. The quantization model assumes the energy of a light wave is present in particles called *photons;* hence, the energy is said to be quantized. According to Einstein's theory, the energy of a photon is proportional to the frequency of the electromagnetic wave:



Christian Huygens Dutch Physicist and Astronomer (1629-1695)

Huygens is best known for his contributions to the fields of optics and dynamics. To Huygens, light was a type of vibratory motion, spreading out and producing the sensation of light when impinging on the eye. On the basis of this theory, he deduced the laws of reflection and refraction and explained the phenomenon of double refraction.

# Energy of a photon

E = hf (35.1) where the constant of proportionality  $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$  is called *Planck's con*stant. We study this theory in Chapter 40.

In view of these developments, light must be regarded as having a dual nature. Light exhibits the characteristics of a wave in some situations and the characteristics of a particle in other situations. Light is light, to be sure. The question "Is light a wave or a particle?" is inappropriate, however. Sometimes light acts like a wave, and other times it acts like a particle. In the next few chapters, we investigate the wave nature of light.

# 35.2 Measurements of the Speed of Light

Light travels at such a high speed (to three digits,  $c = 3.00 \times 10^8$  m/s) that early attempts to measure its speed were unsuccessful. Galileo attempted to measure the speed of light by positioning two observers in towers separated by approximately 10 km. Each observer carried a shuttered lantern. One observer would open his lantern first, and then the other would open his lantern at the moment he saw the light from the first lantern. Galileo reasoned that by knowing the transit time of the light beams from one lantern to the other and the distance between the two lanterns, he could obtain the speed. His results were inconclusive. Today, we realize (as Galileo concluded) that it is impossible to measure the speed of light in this manner because the transit time for the light is so much less than the reaction time of the observers.

In the time interval during which the Earth travels 90° around the Sun (three months), Jupiter travels only about 7.5°.



**Figure 35.1** Roemer's method for measuring the speed of light (drawing not to scale).



**Figure 35.2** Fizeau's method for measuring the speed of light using a rotating toothed wheel. The light source is considered to be at the location of the wheel; therefore, the distance *d* is known.

# **Roemer's Method**

In 1675, Danish astronomer Ole Roemer (1644–1710) made the first successful estimate of the speed of light. Roemer's technique involved astronomical observations of Io, one of the moons of Jupiter. Io has a period of revolution around Jupiter of approximately 42.5 h. The period of revolution of Jupiter around the Sun is about 12 yr; therefore, as the Earth moves through 90° around the Sun, Jupiter revolves through only  $(\frac{1}{12})90^\circ = 7.5^\circ$  (Fig. 35.1).

An observer using the orbital motion of Io as a clock would expect the orbit to have a constant period. After collecting data for more than a year, however, Roemer observed a systematic variation in Io's period. He found that the periods were longer than average when the Earth was receding from Jupiter and shorter than average when the Earth was approaching Jupiter. Roemer attributed this variation in period to the distance between the Earth and Jupiter changing from one observation to the next.

Using Roemer's data, Huygens estimated the lower limit for the speed of light to be approximately  $2.3 \times 10^8$  m/s. This experiment is important historically because it demonstrated that light does have a finite speed and gave an estimate of this speed.

# Fizeau's Method

The first successful method for measuring the speed of light by means of purely terrestrial techniques was developed in 1849 by French physicist Armand H. L. Fizeau (1819–1896). Figure 35.2 represents a simplified diagram of Fizeau's apparatus. The basic procedure is to measure the total time interval during which light travels from some point to a distant mirror and back. If *d* is the distance between the light source (considered to be at the location of the wheel) and the mirror and if the time interval for one round trip is  $\Delta t$ , the speed of light is  $c = 2d/\Delta t$ .

To measure the transit time, Fizeau used a rotating toothed wheel, which converts a continuous beam of light into a series of light pulses. The rotation of such a wheel controls what an observer at the light source sees. For example, if the pulse traveling toward the mirror and passing the opening at point A in Figure 35.2 should return to the wheel at the instant tooth B had rotated into position to cover the return path, the pulse would not reach the observer. At a greater rate of rotation, the opening at point C could move into position to allow the reflected pulse to reach the observer. Knowing the distance d, the number of teeth in the wheel, and the angular speed of the wheel, Fizeau arrived at a value of  $3.1 \times 10^8$  m/s. Similar measurements made by subsequent investigators yielded more precise values for c, which led to the currently accepted value of 2.997 924 58  $\times 10^8$  m/s.

# Example 35.1 Measuring the Speed of Light with Fizeau's Wheel AM

Assume Fizeau's wheel has 360 teeth and rotates at 27.5 rev/s when a pulse of light passing through opening A in Figure 35.2 is blocked by tooth B on its return. If the distance to the mirror is 7 500 m, what is the speed of light?

# SOLUTION

**Conceptualize** Imagine a pulse of light passing through opening *A* in Figure 35.2 and reflecting from the mirror. By the time the pulse arrives back at the wheel, tooth *B* has rotated into the position previously occupied by opening *A*.

**Categorize** The wheel is a rigid object rotating at constant angular speed. We model the pulse of light as a *particle under constant speed*.

.....

**Analyze** The wheel has 360 teeth, so it must have 360 openings. Therefore, because the light passes through opening *A* but is blocked by the tooth immediately adjacent to *A*, the wheel must rotate through an angular displacement of  $\frac{1}{720}$  rev in the time interval during which the light pulse makes its round trip.

Use Equation 10.2, with the angular speed constant, to find the time interval for the pulse's round trip:

$$\Delta t = \frac{\Delta \theta}{\omega} = \frac{\frac{1}{720} \text{ rev}}{27.5 \text{ rev/s}} = 5.05 \times 10^{-5} \text{ s}$$

# **35.1** continued

From the particle under constant speed model, find the speed of the pulse of light:

$$c = \frac{2d}{\Delta t} = \frac{2(7\ 500\ \mathrm{m})}{5.05 \times 10^{-5}\ \mathrm{s}} = 2.97 \times 10^8\ \mathrm{m/s}$$

speed of the pulse of light.

Finalize This result is very close to the actual value of the speed of light.

# 35.3 The Ray Approximation in Ray Optics

The field of **ray optics** (sometimes called *geometric optics*) involves the study of the propagation of light. Ray optics assumes light travels in a fixed direction in a straight line as it passes through a uniform medium and changes its direction when it meets the surface of a different medium or if the optical properties of the medium are nonuniform in either space or time. In our study of ray optics here and in Chapter 36, we use what is called the **ray approximation.** To understand this approximation, first notice that the rays of a given wave are straight lines perpendicular to the wave fronts as illustrated in Figure 35.3 for a plane wave. In the ray approximation, a wave moving through a medium travels in a straight line in the direction of its rays.

If the wave meets a barrier in which there is a circular opening whose diameter is much larger than the wavelength as in Figure 35.4a, the wave emerging from the opening continues to move in a straight line (apart from some small edge effects); hence, the ray approximation is valid. If the diameter of the opening is on the order of the wavelength as in Figure 35.4b, the waves spread out from the opening in all directions. This effect, called *diffraction*, will be studied in Chapter 37. Finally, if the opening is much smaller than the wavelength, the opening can be approximated as a point source of waves as shown in Fig. 35.4c.

Similar effects are seen when waves encounter an opaque object of dimension *d*. In that case, when  $\lambda \ll d$ , the object casts a sharp shadow.

The ray approximation and the assumption that  $\lambda \ll d$  are used in this chapter and in Chapter 36, both of which deal with ray optics. This approximation is very good for the study of mirrors, lenses, prisms, and associated optical instruments such as telescopes, cameras, and eyeglasses.

# 35.4 Analysis Model: Wave Under Reflection

We introduced the concept of reflection of waves in a discussion of waves on strings in Section 16.4. As with waves on strings, when a light ray traveling in one medium encounters a boundary with another medium, part of the incident light







**Figure 35.3** A plane wave propagating to the right.



**Figure 35.5** Schematic representation of (a) specular reflection, where the reflected rays are all parallel to one another, and (b) diffuse reflection, where the reflected rays travel in random directions. (c) and (d) Photographs of specular and diffuse reflection using laser light.



The incident ray, the reflected ray, and the normal all lie in the same plane, and  $\theta'_1 = \theta_1$ .



Figure 35.6 The wave under reflection model.

#### **Pitfall Prevention 35.1**

**Subscript Notation** The subscript 1 refers to parameters for the light in the initial medium. When light travels from one medium to another, we use the subscript 2 for the parameters associated with the light in the new medium. In this discussion, the light stays in the same medium, so we only have to use the subscript 1.

#### Law of reflection >

is reflected. For waves on a one-dimensional string, the reflected wave must necessarily be restricted to a direction along the string. For light waves traveling in threedimensional space, no such restriction applies and the reflected light waves can be in directions different from the direction of the incident waves. Figure 35.5a shows several rays of a beam of light incident on a smooth, mirror-like, reflecting surface. The reflected rays are parallel to one another as indicated in the figure. The direction of a reflected ray is in the plane perpendicular to the reflecting surface that contains the incident ray. Reflection of light from such a smooth surface is called **specular reflection.** If the reflecting surface is rough as in Figure 35.5b, the surface reflects the rays not as a parallel set but in various directions. Reflection from any rough surface is known as **diffuse reflection.** A surface behaves as a smooth surface as long as the surface variations are much smaller than the wavelength of the incident light.

The difference between these two kinds of reflection explains why it is more difficult to see while driving on a rainy night than on a dry night. If the road is wet, the smooth surface of the water specularly reflects most of your headlight beams away from your car (and perhaps into the eyes of oncoming drivers). When the road is dry, its rough surface diffusely reflects part of your headlight beam back toward you, allowing you to see the road more clearly. Your bathroom mirror exhibits specular reflection, whereas light reflecting from this page experiences diffuse reflection. In this book, we restrict our study to specular reflection and use the term *reflection* to mean specular reflection.

Consider a light ray traveling in air and incident at an angle on a flat, smooth surface as shown in Figure 35.6. The incident and reflected rays make angles  $\theta_1$  and  $\theta'_1$ , respectively, where the angles are measured between the normal and the rays. (The normal is a line drawn perpendicular to the surface at the point where the incident ray strikes the surface.) Experiments and theory show that the angle of reflection equals the angle of incidence:

$$\theta_1' = \theta_1 \tag{35.2}$$

This relationship is called the **law of reflection**. Because reflection of waves from an interface between two media is a common phenomenon, we identify an analysis model for this situation: the **wave under reflection**. Equation 35.2 is the mathematical representation of this model.

uick Quiz 35.1 In the movies, you sometimes see an actor looking in a mirror and you can see his face in the mirror. It can be said with certainty that during the filming of such a scene, the actor sees in the mirror: (a) his face (b) your
face (c) the director's face (d) the movie camera (e) impossible to determine

# Example 35.2

# The Double-Reflected Light Ray AM

Two mirrors make an angle of  $120^{\circ}$  with each other as illustrated in Figure 35.7a. A ray is incident on mirror  $M_1$  at an angle of 65° to the normal. Find the direction of the ray after it is reflected from mirror  $M_2$ .

# SOLUTION

**Conceptualize** Figure 35.7a helps conceptualize this situation. The incoming ray reflects from the first mirror, and the reflected ray is directed toward the second mirror. Therefore, there is a second reflection from the second mirror.

**Categorize** Because the interactions with both mirrors are simple reflections, we apply the *wave under reflection* model and some geometry.

**Analyze** From the law of reflection, the first reflected ray makes an angle of 65° with the normal.

Find the angle the first reflected ray makes with the horizontal:

From the triangle made by the first reflected ray and the two mirrors, find the angle the reflected ray makes with  $M_2$ :

Find the angle the first reflected ray makes with the normal to  $M_2$ :

From the law of reflection, find the angle the second reflected ray makes with the normal to  $M_2$ :

ray makes with the normal to 142.

Finalize Let's explore variations in the angle between the mirrors as follows.

WHAT IF? If the incoming and outgoing rays in Figure 35.7a are extended behind the mirror, they cross at an angle of 60° and the overall change in direction of the light ray is 120°. This angle is the same as that between the mirrors. What if the angle between the mirrors is changed? Is the overall change in the direction of the light ray always equal to the angle between the mirrors?

**Answer** Making a general statement based on one data point or one observation is always a dangerous practice! Let's investigate the change in direction for a general situation. Figure 35.7b shows the mirrors at an arbitrary angle  $\phi$  and the incoming light ray striking the mirror at an arbitrary angle  $\theta$  with respect to the normal to the mirror surface. In accordance with the law of reflection and the sum of the interior angles of a triangle, the angle  $\gamma$  is given by  $\gamma = 180^{\circ} - (90^{\circ} - \theta) - \phi = 90^{\circ} + \theta - \phi$ .

Consider the triangle highlighted in yellow in Figure 35.7b and determine  $\alpha$ :

Notice from Figure 35.7b that the change in direction of the light ray is angle  $\beta$ . Use the geometry in the figure to solve for  $\beta$ :

Notice that  $\beta$  is not equal to  $\phi$ . For  $\phi = 120^{\circ}$ , we obtain  $\beta = 120^{\circ}$ , which happens to be the same as the mirror angle; that is true only for this special angle between the mirrors, however. For example, if  $\phi = 90^{\circ}$ , we obtain  $\beta = 180^{\circ}$ . In that case, the light is reflected straight back to its origin.

If the angle between two mirrors is 90°, the reflected beam returns to the source parallel to its original path as discussed in the What If? section of the preceding example. This phenomenon, called *retroreflection*, has many practical applications. If a third mirror is placed perpendicular to the first two so that the three form the



**Figure 35.7** (Example 35.2) (a) Mirrors  $M_1$  and  $M_2$  make an angle of 120° with each other. (b) The geometry for an arbitrary mirror angle.

$$5 = 90^{\circ} - 65^{\circ} = 25^{\circ}$$
  
 $y = 180^{\circ} - 25^{\circ} - 120^{\circ} = 35^{\circ}$ 

$$\theta_{\rm M_2} = 90^\circ - 35^\circ = 55^\circ$$

 $\theta'_{M_2} = \theta_{M_2} = 55^{\circ}$ 

 $\alpha + 2\gamma + 2(90^\circ - \theta) = 180^\circ \rightarrow \alpha = 2(\theta - \gamma)$ 

$$\beta = 180^{\circ} - \alpha = 180^{\circ} - 2(\theta - \gamma)$$
  
= 180^{\circ} - 2[\theta - (90^{\circ} + \theta - \phi)] = 360^{\circ} - 2\phi





corner of a cube, retroreflection works in three dimensions. In 1969, a panel of many small reflectors was placed on the Moon by the *Apollo 11* astronauts (Fig. 35.8a). A laser beam from the Earth is reflected directly back on itself, and its transit time is measured. This information is used to determine the distance to the Moon with an uncertainty of 15 cm. (Imagine how difficult it would be to align a regular flat mirror on the Moon so that the reflected laser beam would hit a particular location on the Earth!) A more everyday application is found in automobile taillights. Part of the plastic making up the taillight is formed into many tiny cube corners (Fig. 35.8b) so that headlight beams from cars approaching from the rear are reflected back to the drivers. Instead of cube corners, small spherical bumps are sometimes used (Fig. 35.8c). Tiny clear spheres are used in a coating material found on many road signs. Due to retroreflection from these spheres, the stop sign in Figure 35.8d appears much brighter than it would if it were simply a flat, shiny surface. Retroreflectors are also used for reflective panels on running shoes and running clothing to allow joggers to be seen at night.

Another practical application of the law of reflection is the digital projection of movies, television shows, and computer presentations. A digital projector uses an optical semiconductor chip called a *digital micromirror device*. This device contains an array of tiny mirrors (Fig. 35.9a) that can be individually tilted by means of signals to an address electrode underneath the edge of the mirror. Each mirror corresponds to a pixel in the projected image. When the pixel corresponding to a given mirror is to be bright, the mirror is in the "on" position and is oriented so as to reflect light from a source illuminating the array to the screen (Fig. 35.9b). When the pixel for this mirror is to be dark, the mirror is "off" and is tilted so that the light is reflected away from the screen. The bright-



This leg of an ant gives a scale





b

ness of the pixel is determined by the total time interval during which the mirror is in the "on" position during the display of one image.

Digital movie projectors use three micromirror devices, one for each of the primary colors red, blue, and green, so that movies can be displayed with up to 35 trillion colors. Because information is stored as binary data, a digital movie does not degrade with time as does film. Furthermore, because the movie is entirely in the form of computer software, it can be delivered to theaters by means of satellites, optical discs, or optical fiber networks.

# Analysis Model Wave Under Reflection

Imagine a wave (electromagnetic or mechanical) traveling through space and striking a flat surface at an angle  $\theta_1$  with respect to the normal to the surface. The wave will reflect from the surface in a direction described by the

**law of reflection**—the angle of reflection  $\theta'_1$  equals the angle of incidence  $\theta_1$ :

 $\theta_1' = \theta_1 \tag{35.2}$ 

#### **Examples:**

- sound waves from an orchestra reflect from a bandshell out to the audience
- a mirror is used to deflect a laser beam in a laser light show
- your bathroom mirror reflects light from your face back to you to form an image of your face (Chapter 36)
- x-rays reflected from a crystalline material create an optical pattern that can be used to understand the structure of the solid (Chapter 38)

# 35.5 Analysis Model: Wave Under Refraction

In addition to the phenomenon of reflection discussed for waves on strings in Section 16.4, we also found that some of the energy of the incident wave transmits into the new medium. For example, consider Figures 16.15 and 16.16, in which a pulse on a string approaching a junction with another string both reflects from and transmits past the junction and into the second string. Similarly, when a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium as shown in Figure 35.10, part of the energy is reflected and part enters the second medium. As with reflection, the direction of the transmitted wave exhibits an interesting behavior because of the three-dimensional nature of the light waves. The ray that enters the second medium changes its direction of propagation at the boundary and is said to be **refracted**. The incident ray, the reflected ray, and the refracted ray all lie in the same plane. The **angle of refraction**,  $\theta_2$  in Figure 35.10a, depends on the properties of the two media and on the angle of incidence  $\theta_1$  through the relationship

$$\frac{\sin\theta_2}{\sin\theta_1} = \frac{v_2}{v_1}$$
(35.3)

where  $v_1$  is the speed of light in the first medium and  $v_2$  is the speed of light in the second medium.

The path of a light ray through a refracting surface is reversible. For example, the ray shown in Figure 35.10a travels from point *A* to point *B*. If the ray originated at *B*, it would travel along line *BA* to reach point *A* and the reflected ray would point downward and to the left in the glass.

uick Quiz 35.2 If beam ① is the incoming beam in Figure 35.10b,
 which of the other four red lines are reflected beams and which are
 refracted beams?

All rays and the normal lie in the same plane, and the refracted ray is bent toward the normal because  $v_2 < v_1$ .





**Figure 35.10** (a) The wave under refraction model. (b) Light incident on the Lucite block refracts both when it enters the block and when it leaves the block.

**Figure 35.11** The refraction of light as it (a) moves from air into glass and (b) moves from glass into air.



From Equation 35.3, we can infer that when light moves from a material in which its speed is high to a material in which its speed is lower as shown in Figure 35.11a, the angle of refraction  $\theta_2$  is less than the angle of incidence  $\theta_1$  and the ray is bent *toward* the normal. If the ray moves from a material in which light moves slowly to a material in which it moves more rapidly as illustrated in Figure 35.11b, then  $\theta_2$  is greater than  $\theta_1$  and the ray is bent *away* from the normal.

The behavior of light as it passes from air into another substance and then reemerges into air is often a source of confusion to students. When light travels in air, its speed is  $3.00 \times 10^8$  m/s, but this speed is reduced to approximately  $2 \times 10^8$  m/s when the light enters a block of glass. When the light re-emerges into air, its speed instantaneously increases to its original value of  $3.00 \times 10^8$  m/s. This effect is far different from what happens, for example, when a bullet is fired through a block of wood. In that case, the speed of the bullet decreases as it moves through the wood because some of its original energy is used to tear apart the wood fibers. When the bullet enters the air once again, it emerges at a speed lower than it had when it entered the wood.

To see why light behaves as it does, consider Figure 35.12, which represents a beam of light entering a piece of glass from the left. Once inside the glass, the light may encounter an electron bound to an atom, indicated as point *A*. Let's assume light is absorbed by the atom, which causes the electron to oscillate (a detail represented by the double-headed vertical arrows). The oscillating electron then acts as an antenna and radiates the beam of light toward an atom at *B*, where the light is again absorbed. The details of these absorptions and radiations are best explained in terms of quantum mechanics (Chapter 42). For now, it is sufficient to think of light passing from one atom to another through the glass. Although light travels from one atom to another at  $3.00 \times 10^8$  m/s, the absorption and radiation that take place cause the *average* light speed through the material to fall to approximately  $2 \times 10^8$  m/s. Once the light emerges into the air, absorption and radiation cease and the light travels at a constant speed of  $3.00 \times 10^8$  m/s.

A mechanical analog of refraction is shown in Figure 35.13. When the left end of the rolling barrel reaches the grass, it slows down, whereas the right end remains on the concrete and moves at its original speed. This difference in speeds causes the barrel to pivot, which changes the direction of travel.

# **Index of Refraction**

In general, the speed of light in any material is *less* than its speed in vacuum. In fact, *light travels at its maximum speed c in vacuum*. It is convenient to define the **index** of refraction n of a medium to be the ratio

$$n \equiv \frac{\text{speed of light in vacuum}}{\text{speed of light in a medium}} \equiv \frac{c}{v}$$
(35.4)



**Figure 35.12** Light passing from one atom to another in a medium. The blue spheres are electrons, and the vertical arrows represent their oscillations.



This end slows first; as a result, the barrel turns.

**Figure 35.13** Overhead view of a barrel rolling from concrete onto grass.

Index of refraction >

This definition shows that the index of refraction is a dimensionless number greater than unity because v is always less than c. Furthermore, n is equal to unity for vacuum. The indices of refraction for various substances are listed in Table 35.1.

As light travels from one medium to another, its frequency does not change but its wavelength does. To see why that is true, consider Figure 35.14. Waves pass an observer at point A in medium 1 with a certain frequency and are incident on the boundary between medium 1 and medium 2. The frequency with which the waves pass an observer at point B in medium 2 must equal the frequency at which they pass point A. If that were not the case, energy would be piling up or disappearing at the boundary. Because there is no mechanism for that to occur, the frequency must be a constant as a light ray passes from one medium into another. Therefore, because the relationship  $v = \lambda f$  (Eq. 16.12) from the traveling wave model must be valid in both media and because  $f_1 = f_2 = f$ , we see that

$$v_1 = \lambda_1 f$$
 and  $v_2 = \lambda_2 f$  (35.5)

Because  $v_1 \neq v_2$ , it follows that  $\lambda_1 \neq \lambda_2$  as shown in Figure 35.14.

We can obtain a relationship between index of refraction and wavelength by dividing the first Equation 35.5 by the second and then using Equation 35.4:

$$\frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2} = \frac{c/n_1}{c/n_2} = \frac{n_2}{n_1}$$
(35.6)

This expression gives

$$\lambda_1 n_1 = \lambda_2 n$$

If medium 1 is vacuum or, for all practical purposes, air, then  $n_1 = 1$ . Hence, it follows from Equation 35.6 that the index of refraction of any medium can be expressed as the ratio

 $m = \frac{\lambda}{2}$ 

$$n = \frac{\lambda}{\lambda_n}$$
 (35.7)  
a of light in vacuum and  $\lambda_n$  is the wavelength of light in the

where  $\lambda$  is the wavelength of light in vacuum and  $\lambda_n$  is the wavelength of light in the medium whose index of refraction is *n*. From Equation 35.7, we see that because n > 1,  $\lambda_n < \lambda$ .

We are now in a position to express Equation 35.3 in an alternative form. Replacing the  $v_2/v_1$  term in Equation 35.3 with  $n_1/n_2$  from Equation 35.6 gives

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \tag{35.8}$$

The experimental discovery of this relationship is usually credited to Willebrord Snell (1591–1626) and it is therefore known as **Snell's law of refraction.** We shall

	Index of		Index of
Substance	Refraction	Substance	Kerraction
Solids at 20°C		Liquids at 20°C	
Cubic zirconia	2.20	Benzene	1.501
Diamond (C)	2.419	Carbon disulfide	1.628
Fluorite ( $CaF_2$ )	1.434	Carbon tetrachloride	1.461
Fused quartz $(SiO_2)$	1.458	Ethyl alcohol	1.361
Gallium phosphide	3.50	Glycerin	1.473
Glass, crown	1.52	Water	1.333
Glass, flint	1.66		
Ice $(H_2O)$	1.309	Gases at 0°C, 1 atm	
Polystyrene	1.49	Air	$1.000\ 293$
Sodium chloride (NaCl)	1.544	Carbon dioxide	$1.000\ 45$

Note: All values are for light having a wavelength of 589 nm in vacuum.





**Figure 35.14** A wave travels from medium 1 to medium 2, in which it moves with lower speed.

#### Pitfall Prevention 35.2

An Inverse Relationship The index of refraction is *inversely* proportional to the wave speed. As the wave speed v decreases, the index of refraction n increases. Therefore, the higher the index of refraction of a material, the more it *slows down* light from its speed in vacuum. The more the light slows down, the more  $\theta_2$  differs from  $\theta_1$  in Equation 35.8.

#### Snell's law of refraction

#### **Pitfall Prevention 35.3**

*n* Is Not an Integer Here The symbol n has been used several times as an integer, such as in Chapter 18 to indicate the standing wave mode on a string or in an air column. The index of refraction n is *not* an integer.

examine this equation further in Section 35.6. Refraction of waves at an interface between two media is a common phenomenon, so we identify an analysis model for this situation: the **wave under refraction**. Equation 35.8 is the mathematical representation of this model for electromagnetic radiation. Other waves, such as seismic waves and sound waves, also exhibit refraction according to this model, and the mathematical representation of the model for these waves is Equation 35.3.

uick Quiz 35.3 Light passes from a material with index of refraction 1.3 into one with index of refraction 1.2. Compared to the incident ray, what happens to the refracted ray? (a) It bends toward the normal. (b) It is undeflected. (c) It
 bends away from the normal.

# Analysis Model Wave Under Refraction

Imagine a wave (electromagnetic or mechanical) traveling through space and striking a flat surface at an angle  $\theta_1$  with respect to the normal to the surface. Some of the energy of the wave refracts into

the medium below the surface in a direction  $\theta_2$  described by the **law of refraction**—

$$\frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1}$$
(35.3)

where  $v_1$  and  $v_2$  are the speeds of the wave in medium 1 and medium 2, respectively.

For light waves, Snell's law of refraction states that

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \tag{35.8}$$

where  $n_1$  and  $n_2$  are the indices of refraction in the two media.

## **Examples:**

 $n_1$ 

 $n_2$ 

- sound waves moving upward from the shore of a lake refract in warmer layers of air higher above the lake and travel downward to a listener in a boat, making sounds from the shore louder than expected
- light from the sky approaches a hot roadway at a grazing angle and refracts upward so as to miss the roadway and enter a driver's eye, giving the illusion of a pool of water on the distant roadway
- light is sent over long distances in an optical fiber because of a difference in index of refraction between the fiber and the surrounding material (Section 35.8)
- a magnifying glass forms an enlarged image of a postage stamp due to refraction of light through the lens (Chapter 36)

# Example 35.3 Angle of Refraction for Glass AM

A light ray of wavelength 589 nm traveling through air is incident on a smooth, flat slab of crown glass at an angle of 30.0° to the normal.

# (A) Find the angle of refraction.

# SOLUTION

**Conceptualize** Study Figure 35.11a, which illustrates the refraction process occurring in this problem. We expect that  $\theta_2 < \theta_1$  because the speed of light is lower in the glass.

**Categorize** This is a typical problem in which we apply the *wave under refraction* model.

**Analyze** Rearrange Snell's law of refraction to find  $\sin \theta_2$ :

$$\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1$$
$$\theta_2 = \sin^{-1} \left( \frac{n_1}{n_2} \sin \theta_1 \right)$$

 $\theta_2 = \sin^{-1}\left(\frac{1.00}{1.52} \sin 30.0^\circ\right) = 19.2^\circ$ 

Solve for  $\theta_2$ :

Substitute indices of refraction from Table 35.1 and the incident angle:

(B) Find the speed of this light once it enters the glass.

# **35.3** continued

# SOLUTION

Solve Equation 35.4 for the speed of light in the glass:

Substitute numerical values:

(C) What is the wavelength of this light in the glass?

# SOLUTION

Use Equation 35.7 to find the wavelength in the glass:

 $v = \frac{3.00 \times 10^8 \,\mathrm{m/s}}{1.52} = 1.97 \times 10^8 \,\mathrm{m/s}$ 

$$\lambda_n = \frac{\lambda}{n} = \frac{589 \text{ nm}}{1.52} = 388 \text{ nm}$$

**Finalize** In part (A), note that  $\theta_2 < \theta_1$ , consistent with the slower speed of the light found in part (B). In part (C), we see that the wavelength of the light is shorter in the glass than in the air.

 $v = -\frac{v}{2}$ 

# Example 35.4 Light Passing Through a Slab AM

A light beam passes from medium 1 to medium 2, with the latter medium being a thick slab of material whose index of refraction is  $n_2$  (Fig. 35.15). Show that the beam emerging into medium 1 from the other side is parallel to the incident beam.

# SOLUTION

**Conceptualize** Follow the path of the light beam as it enters and exits the slab of material in Figure 35.15, where we have assumed that  $n_2 \ge n_1$ . The ray bends toward the normal upon entering and away from the normal upon leaving.

**Figure 35.15** (Example 35.4) The dashed line drawn parallel to the ray coming out the bottom of the slab represents the path the light would take were the slab not there.

**Categorize** Like Example 35.3, this is another typical problem in which we apply the *wave under refraction* model.

Analyze Apply Snell's law of refraction to the upper surface:(1)  $\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1$ Apply Snell's law to the lower surface:(2)  $\sin \theta_3 = \frac{n_2}{n_1} \sin \theta_2$ Substitute Equation (1) into Equation (2): $\sin \theta_3 = \frac{n_2}{n_1} \left( \frac{n_1}{n_2} \sin \theta_1 \right) = \sin \theta_1$ 

**Finalize** Therefore,  $\theta_3 = \theta_1$  and the slab does not alter the direction of the beam. It does, however, offset the beam parallel to itself by the distance *d* shown in Figure 35.15.

WHAT IF? What if the thickness *t* of the slab is doubled? Does the offset distance *d* also double?

**Answer** Consider the region of the light path within the slab in Figure 35.15. The distance *a* is the hypotenuse of two right triangles.

Find an expression for <i>a</i> from the yellow triangle:	$a = \frac{\iota}{\cos \theta_2}$
Find an expression for $d$ from the red triangle:	$d = a \sin \gamma = a \sin (\theta_1 - \theta_2)$
Combine these equations:	$d = \frac{t}{\cos \theta_2} \sin \left( \theta_1 - \theta_2 \right)$

For a given incident angle  $\theta_1$ , the refracted angle  $\theta_2$  is determined solely by the index of refraction, so the offset distance *d* is proportional to *t*. If the thickness doubles, so does the offset distance.





In Example 35.4, the light passes through a slab of material with parallel sides. What happens when light strikes a prism with nonparallel sides as shown in Figure 35.16? In this case, the outgoing ray does not propagate in the same direction as the incoming ray. A ray of single-wavelength light incident on the prism from the left emerges at angle  $\delta$  from its original direction of travel. This angle  $\delta$  is called the **angle of deviation.** The **apex angle**  $\Phi$  of the prism, shown in the figure, is defined as the angle between the surface at which the light enters the prism and the second surface that the light encounters.

# Example 35.5 Measuring *n* Using a Prism

Although we do not prove it here, the minimum angle of deviation  $\delta_{\min}$  for a prism occurs when the angle of incidence  $\theta_1$  is such that the refracted ray inside the prism makes the same angle with the normal to the two prism faces¹ as shown in Figure 35.17. Obtain an expression for the index of refraction of the prism material in terms of the minimum angle of deviation and the apex angle  $\Phi$ .

# SOLUTION

**Conceptualize** Study Figure 35.17 carefully and be sure you understand why the light ray comes out of the prism traveling in a different direction.

**Categorize** In this example, light enters a material through one surface and leaves the material at another surface. Let's apply the *wave under refraction* model to the light passing through the prism.



**Figure 35.17** (Example 35.5) A light ray passing through a prism at the minimum angle of deviation  $\delta_{\min}$ .

**Analyze** Consider the geometry in Figure 35.17, where we have used symmetry to label several angles. The reproduction of the angle  $\Phi/2$  at the location of the incoming light ray shows that  $\theta_2 = \Phi/2$ . The theorem that an exterior angle of any triangle equals the sum of the two opposite interior angles shows that  $\delta_{\min} = 2\alpha$ . The geometry also shows that  $\theta_1 = \theta_2 + \alpha$ .

AM

Combine these three geometric results:

$$\theta_1 = \theta_2 + \alpha = \frac{\Phi}{2} + \frac{\delta_{\min}}{2} = \frac{\Phi + \delta_{\min}}{2}.$$

Apply the wave under refraction model at the left surface and solve for 
$$n$$
:

(1.00) 
$$\sin \theta_1 = n \sin \theta_2 \rightarrow n = \frac{\sin \theta}{\sin \theta}$$

Substitute for the incident and refracted angles:

$$n = \frac{\sin\left(\frac{\Phi + \delta_{\min}}{2}\right)}{\sin\left(\Phi/2\right)}$$
(35.9)

#### 35.5 continued

**Finalize** Knowing the apex angle  $\Phi$  of the prism and measuring  $\delta_{\min}$ , you can calculate the index of refraction of the prism material. Furthermore, a hollow prism can be used to determine the values of *n* for various liquids filling the prism.

# 35.6 Huygens's Principle

The laws of reflection and refraction were stated earlier in this chapter without proof. In this section, we develop these laws by using a geometric method proposed by Huygens in 1678. **Huygens's principle** is a geometric construction for using knowledge of an earlier wave front to determine the position of a new wave front at some instant:

All points on a given wave front are taken as point sources for the production of spherical secondary waves, called wavelets, that propagate outward through a medium with speeds characteristic of waves in that medium. After some time interval has passed, the new position of the wave front is the surface tangent to the wavelets.

First, consider a plane wave moving through free space as shown in Figure 35.18a. At t = 0, the wave front is indicated by the plane labeled AA'. In Huygens's construction, each point on this wave front is considered a point source. For clarity, only three point sources on AA' are shown. With these sources for the wavelets, we draw circular arcs, each of radius  $c \Delta t$ , where c is the speed of light in vacuum and  $\Delta t$  is some time interval during which the wave propagates. The surface drawn tangent to these wavelets is the plane BB', which is the wave front at a later time, and is parallel to AA'. In a similar manner, Figure 35.18b shows Huygens's construction for a spherical wave.

# Huygens's Principle Applied to Reflection and Refraction

We now derive the laws of reflection and refraction, using Huygens's principle.

For the law of reflection, refer to Figure 35.19. The line *AB* represents a plane wave front of the incident light just as ray 1 strikes the surface. At this instant, the wave at *A* sends out a Huygens wavelet (appearing at a later time as the light brown circular arc passing through *D*); the reflected light makes an angle  $\gamma'$  with the surface. At the



Of What Use Is Huygens's Principle? At this point, the importance of Huygens's principle may not be evident. Predicting the position of a future wave front may not seem to be very critical. We will use Huygens's principle here to generate the laws of reflection and refraction and in later chapters to explain additional wave phenomena for light.



**Figure 35.18** Huygens's construction for (a) a plane wave propagating to the right and (b) a spherical wave propagating to the right.



**Figure 35.19** Huygens's construction for proving the law of reflection.

same time, the wave at *B* emits a Huygens wavelet (the light brown circular arc passing through *C*) with the incident light making an angle  $\gamma$  with the surface. Figure 35.19 shows these wavelets after a time interval  $\Delta t$ , after which ray 2 strikes the surface. Because both rays 1 and 2 move with the same speed, we must have  $AD = BC = c \Delta t$ .

The remainder of our analysis depends on geometry. Notice that the two triangles ABC and ADC are congruent because they have the same hypotenuse AC and because AD = BC. Figure 35.19 shows that

4 D

$$\cos \gamma = \frac{BC}{AC}$$
 and  $\cos \gamma' = \frac{AD}{AC}$   
where  $\gamma = 90^\circ - \theta_1$  and  $\gamma' = 90^\circ - \theta'_1$ . Because  $AD = BC$ ,

$$\cos \gamma = \cos \gamma'$$

$$\begin{split} \gamma &= \gamma' \\ 90^\circ - \theta_1 &= 90^\circ - \theta_1' \end{split}$$

 $\theta_1=\theta_1'$ 

Therefore,



1072

Figure 35.20 Huygens's construction for proving Snell's law of refraction.



**Figure 35.21** Variation of index of refraction with vacuum wavelength for three materials.

and

which is the law of reflection.

Now let's use Huygens's principle to derive Snell's law of refraction. We focus our attention on the instant ray 1 strikes the surface and the subsequent time interval until ray 2 strikes the surface as in Figure 35.20. During this time interval, the wave at *A* sends out a Huygens wavelet (the light brown arc passing through *D*) and the light refracts into the material, making an angle  $\theta_2$  with the normal to the surface. In the same time interval, the wave at *B* sends out a Huygens wavelet (the light brown arc passing through *C*) and the light continues to propagate in the same direction. Because these two wavelets travel through different media, the radii of the wavelets are different. The radius of the wavelet from *A* is  $AD = v_2 \Delta t$ , where  $v_2$  is the wave speed in the second medium. The radius of the wavelet from *B* is  $BC = v_1 \Delta t$ , where  $v_1$  is the wave speed in the original medium.

From triangles ABC and ADC, we find that

$$\sin \theta_1 = \frac{BC}{AC} = \frac{v_1 \Delta t}{AC}$$
 and  $\sin \theta_2 = \frac{AD}{AC} = \frac{v_2 \Delta t}{AC}$ 

Dividing the first equation by the second gives

 $\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2}$ 

From Equation 35.4, however, we know that  $v_1 = c/n_1$  and  $v_2 = c/n_2$ . Therefore,

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{c/n_1}{c/n_2} = \frac{n_2}{n_1}$$

and

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

which is Snell's law of refraction.

35.7 Dispersion

An important property of the index of refraction n is that, for a given material, the index varies with the wavelength of the light passing through the material as Figure 35.21 shows. This behavior is called **dispersion**. Because n is a function of wavelength, Snell's law of refraction indicates that light of different wavelengths is refracted at different angles when incident on a material.



**Figure 35.22** White light enters a glass prism at the upper left.



**Figure 35.23** Path of sunlight through a spherical raindrop. Light following this path contributes to the visible rainbow.

#### **Pitfall Prevention 35.5**

A Rainbow of Many Light Rays Pictorial representations such as Figure 35.23 are subject to misinterpretation. The figure shows one ray of light entering the raindrop and undergoing reflection and refraction, exiting the raindrop in a range of 40° to 42° from the entering ray. This illustration might be interpreted incorrectly as meaning that all light entering the raindrop exits in this small range of angles. In reality, light exits the raindrop over a much larger range of angles, from 0° to 42°. A careful analysis of the reflection and refraction from the spherical raindrop shows that the range of 40° to 42° is where the highest-intensity *light* exits the raindrop.

Figure 35.21 shows that the index of refraction generally decreases with increasing wavelength. For example, violet light refracts more than red light does when passing into a material.

Now suppose a beam of *white light* (a combination of all visible wavelengths) is incident on a prism as illustrated in Figure 35.22. Clearly, the angle of deviation  $\delta$  depends on wavelength. The rays that emerge spread out in a series of colors known as the **visible spectrum**. These colors, in order of decreasing wavelength, are red, orange, yellow, green, blue, and violet. Newton showed that each color has a particular angle of deviation and that the colors can be recombined to form the original white light.

The dispersion of light into a spectrum is demonstrated most vividly in nature by the formation of a rainbow, which is often seen by an observer positioned between the Sun and a rain shower. To understand how a rainbow is formed, consider Figure 35.23. We will need to apply both the wave under reflection and wave under refraction models. A ray of sunlight (which is white light) passing overhead strikes a drop of water in the atmosphere and is refracted and reflected as follows. It is first refracted at the front surface of the drop, with the violet light deviating the most and the red light the least. At the back surface of the drop, the light is reflected and returns to the front surface, where it again undergoes refraction as it moves from water into air. The rays leave the drop such that the angle between the incident white light and the most intense returning violet ray is 40° and the angle between the incident white light and the most intense returning red ray is 42°. This small angular difference between the returning rays causes us to see a colored bow.

Now suppose an observer is viewing a rainbow as shown in Figure 35.24. If a raindrop high in the sky is being observed, the most intense red light returning from the drop reaches the observer because it is deviated the least; the most intense violet light, however, passes over the observer because it is deviated the most. Hence, the observer sees red light coming from this drop. Similarly, a drop lower in the sky directs the most intense violet light toward the observer and appears violet to the observer. (The most intense red light from this drop passes below the observer's eye and is not seen.) The most intense light from other colors of the spectrum reaches the observer from raindrops lying between these two extreme positions.

Figure 35.25 (page 1074) shows a *double rainbow*. The secondary rainbow is fainter than the primary rainbow, and the colors are reversed. The secondary rainbow arises from light that makes two reflections from the interior surface before exiting

The highest-intensity light traveling from higher raindrops toward the eyes of the observer is red, whereas the most intense light from lower drops is violet.



**Figure 35.24** The formation of a rainbow seen by an observer standing with the Sun behind his back.



**Figure 35.25** This photograph of a rainbow shows a distinct secondary rainbow with the colors reversed.

Critical angle for total internal reflection the raindrop. In the laboratory, rainbows have been observed in which the light makes more than 30 reflections before exiting the water drop. Because each reflection involves some loss of light due to refraction of part of the incident light out of the water drop, the intensity of these higher-order rainbows is small compared with that of the primary rainbow.

uick Quiz 35.4 In photography, lenses in a camera use refraction to form an image on a light-sensitive surface. Ideally, you want all the colors in the light from the object being photographed to be refracted by the same amount. Of the materials shown in Figure 35.21, which would you choose for a single-element camera
lens? (a) crown glass (b) acrylic (c) fused quartz (d) impossible to determine

# 35.8 Total Internal Reflection

An interesting effect called **total internal reflection** can occur when light is directed from a medium having a given index of refraction toward one having a lower index of refraction. Consider Figure 35.26a, in which a light ray travels in medium 1 and meets the boundary between medium 1 and medium 2, where  $n_1$ is greater than  $n_2$ . In the figure, labels 1 through 5 indicate various possible directions of the ray consistent with the wave under refraction model. The refracted rays are bent away from the normal because  $n_1$  is greater than  $n_2$ . At some particular angle of incidence  $\theta_c$ , called the **critical angle**, the refracted light ray moves parallel to the boundary so that  $\theta_2 = 90^\circ$  (Fig. 35.26b). For angles of incidence greater than  $\theta_c$ , the ray is entirely reflected at the boundary as shown by ray 5 in Figure 35.26a.

We can use Snell's law of refraction to find the critical angle. When  $\theta_1 = \theta_c$ ,  $\theta_2 = 90^\circ$  and Equation 35.8 gives

$$n_1 \sin \theta_c = n_2 \sin 90^\circ = n_2$$
  
 $\sin \theta_c = \frac{n_2}{n_1} \quad (\text{for } n_1 > n_2)$  (35.10)

This equation can be used only when  $n_1$  is greater than  $n_2$ . That is, total internal reflection occurs only when light is directed from a medium of a given index of refraction toward a medium of lower index of refraction. If  $n_1$  were less than  $n_2$ ,



**Figure 35.26** (a) Rays travel from a medium of index of refraction  $n_1$  into a medium of index of refraction  $n_2$ , where  $n_2 < n_1$ . (b) Ray 4 is singled out.
Equation 35.10 would give  $\sin \theta_c > 1$ , which is a meaningless result because the sine of an angle can never be greater than unity.

The critical angle for total internal reflection is small when  $n_1$  is considerably greater than  $n_2$ . For example, the critical angle for a diamond in air is 24°. Any ray inside the diamond that approaches the surface at an angle greater than 24° is completely reflected back into the crystal. This property, combined with proper faceting, causes diamonds to sparkle. The angles of the facets are cut so that light is "caught" inside the crystal through multiple internal reflections. These multiple reflections give the light a long path through the medium, and substantial dispersion of colors occurs. By the time the light exits through the top surface of the crystal, the rays associated with different colors have been fairly widely separated from one another.

Cubic zirconia also has a high index of refraction and can be made to sparkle very much like a diamond. If a suspect jewel is immersed in corn syrup, the difference in n for the cubic zirconia and that for the corn syrup is small and the critical angle is therefore great. Hence, more rays escape sooner; as a result, the sparkle completely disappears. A real diamond does not lose all its sparkle when placed in corn syrup.

uick Quiz 35.5 In Figure 35.27, five light rays enter a glass prism from the left.
(i) How many of these rays undergo total internal reflection at the slanted surface of the prism? (a) one (b) two (c) three (d) four (e) five (ii) Suppose the prism in Figure 35.27 can be rotated in the plane of the paper. For *all five* rays to experience total internal reflection from the slanted surface, should the
prism be rotated (a) clockwise or (b) counterclockwise?



**Figure 35.27** (Quick Quiz 35.5) Five nonparallel light rays enter a glass prism from the left.

# Example 35.6 A View from the Fish's Eye

Find the critical angle for an air-water boundary. (Assume the index of refraction of water is 1.33.)

#### SOLUTION

**Conceptualize** Study Figure 35.26 to understand the concept of total internal reflection and the significance of the critical angle.

Categorize We use concepts developed in this section, so we categorize this example as a substitution problem.

Apply Equation 35.10 to the air–water interface:	$\sin \theta_c = \frac{n_2}{n_1} = \frac{1.00}{1.33} = 0.752$	
	$\theta_{1} = 48.8^{\circ}$	

WHAT IF? What if a fish in a still pond looks upward toward the water's surface at different angles relative to the surface as in Figure 35.28? What does it see?

**Answer** Because the path of a light ray is reversible, light traveling from medium 2 into medium 1 in Figure 35.26a follows the paths shown, but in the *opposite* direction. A fish looking upward toward the water surface as in Figure 35.28 can see out of the water if it looks toward the surface at an angle less than the critical angle. Therefore, when the fish's line of vision makes an angle of  $\theta = 40^{\circ}$  with the normal to the surface, for example, light from above the water reaches the fish's eye. At  $\theta = 48.8^{\circ}$ , the critical angle for water, the light has to skim along the water's surface before being refracted to the fish's eye; at this angle, the fish can, in principle, see the entire shore of the pond. At angles greater than the critical angle, the light reaching the fish comes by means of total internal reflection at the surface. Therefore, at  $\theta = 60^{\circ}$ , the fish sees a reflection of the bottom of the pond.



Figure 35.28 (Example 35.6) What If? A fish looks upward toward the water surface.

# **Optical Fibers**

Another interesting application of total internal reflection is the use of glass or transparent plastic rods to "pipe" light from one place to another. As indicated in Figure 35.29 (page 1076), light is confined to traveling within a rod, even around curves, as the result of successive total internal reflections. Such a light pipe is flexible



**Figure 35.29** Light travels in a curved transparent rod by multiple internal reflections.



**Figure 35.30** The construction of an optical fiber. Light travels in the core, which is surrounded by a cladding and a protective jacket.

if thin fibers are used rather than thick rods. A flexible light pipe is called an **optical fiber.** If a bundle of parallel fibers is used to construct an optical transmission line, images can be transferred from one point to another. Part of the 2009 Nobel Prize in Physics was awarded to Charles K. Kao (b. 1933) for his discovery of how to transmit light signals over long distances through thin glass fibers. This discovery has led to the development of a sizable industry known as *fiber optics*.

A practical optical fiber consists of a transparent core surrounded by a *cladding*, a material that has a lower index of refraction than the core. The combination may be surrounded by a plastic *jacket* to prevent mechanical damage. Figure 35.30 shows a cutaway view of this construction. Because the index of refraction of the cladding is less than that of the core, light traveling in the core experiences total internal reflection if it arrives at the interface between the core and the cladding at an angle of incidence that exceeds the critical angle. In this case, light "bounces" along the core of the optical fiber, losing very little of its intensity as it travels.

Any loss in intensity in an optical fiber is essentially due to reflections from the two ends and absorption by the fiber material. Optical fiber devices are particularly useful for viewing an object at an inaccessible location. For example, physicians often use such devices to examine internal organs of the body or to perform surgery without making large incisions. Optical fiber cables are replacing copper wiring and coaxial cables for telecommunications because the fibers can carry a much greater volume of telephone calls or other forms of communication than electrical wires can.

Figure 35.31a shows a bundle of optical fibers gathered into an optical cable that can be used to carry communication signals. Figure 35.31b shows laser light following the curves of a coiled bundle by total internal reflection. Many computers and other electronic equipment now have optical ports as well as electrical ports for transferring information.



Figure 35.31 (a) Strands of glass optical fibers are used to carry voice, video, and data signals in telecommunication networks. (b) A bundle of optical fibers is illuminated by a laser.

# Summary

# Definition

The **index of refraction** *n* of a medium is defined by the ratio

$$n \equiv \frac{c}{v}$$

(35.4)

where c is the speed of light in vacuum and v is the speed of light in the medium.

# **Concepts and Principles**

In geometric optics, we use the **ray approximation**, in which a wave travels through a uniform medium in straight lines in the direction of the rays.

**Total internal reflection** occurs when light travels from a medium of high index of refraction to one of lower index of refraction. The **critical angle**  $\theta_c$  for which total internal reflection occurs at an interface is given by

$$\sin \theta_c = \frac{n_2}{n_1}$$
 (for  $n_1 > n_2$ ) (35.10)

# Analysis Models for Problem Solving

**Wave Under Reflection.** The **law** of reflection states that for a light ray (or other type of wave) incident on a smooth surface, the angle of reflection  $\theta'_1$  equals the angle of incidence  $\theta_1$ :



**Wave Under Refraction.** A wave crossing a boundary as it travels from medium 1 to medium 2 is **refracted.** The angle of refraction  $\theta_2$  is related to the incident angle  $\theta_1$  by the relationship

 $\frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1}$ (35.3)

where  $v_1$  and  $v_2$  are the speeds of the wave in medium 1 and medium 2, respectively. The incident ray, the reflected ray, the refracted ray, and the normal to the surface all lie in the same plane.

For light waves, Snell's law of refraction states that

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \tag{35.8}$$

where  $n_1$  and  $n_2$  are the indices of refraction in the two media.

**Objective Questions** 

1. denotes answer available in Student Solutions Manual/Study Guide

- 1. In each of the following situations, a wave passes through an opening in an absorbing wall. Rank the situations in order from the one in which the wave is best described by the ray approximation to the one in which the wave coming through the opening spreads out most nearly equally in all directions in the hemisphere beyond the wall. (a) The sound of a low whistle at 1 kHz passes through a doorway 1 m wide. (b) Red light passes through the pupil of your eye. (c) Blue light passes through the pupil of your eye. (d) The wave broadcast by an AM radio station passes through a doorway 1 m wide. (e) An x-ray passes through the space between bones in your elbow joint.
- **2.** A source emits monochromatic light of wavelength 495 nm in air. When the light passes through a liquid, its wavelength reduces to 434 nm. What is the liquid's index of refraction? (a) 1.26 (b) 1.49 (c) 1.14 (d) 1.33 (e) 2.03
- **3.** Carbon disulfide (n = 1.63) is poured into a container made of crown glass (n = 1.52). What is the critical angle for total internal reflection of a light ray in the liquid when it is incident on the liquid-to-glass surface? (a)  $89.2^{\circ}$  (b)  $68.8^{\circ}$  (c)  $21.2^{\circ}$  (d)  $1.07^{\circ}$  (e)  $43.0^{\circ}$

- 4. A light wave moves between medium 1 and medium 2. Which of the following are correct statements relating its speed, frequency, and wavelength in the two media, the indices of refraction of the media, and the angles of incidence and refraction? More than one statement may be correct. (a)  $v_1/\sin \theta_1 = v_2/\sin \theta_2$  (b)  $\csc \theta_1/n_1 = \csc \theta_2/n_2$  (c)  $\lambda_1/\sin \theta_1 = \lambda_2/\sin \theta_2$  (d)  $f_1/\sin \theta_1 = f_2/\sin \theta_2$  (e)  $n_1/\cos \theta_1 = n_2/\cos \theta_2$
- 5. What happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.
- 6. The index of refraction for water is about  $\frac{4}{3}$ . What happens as a beam of light travels from air into water? (a) Its speed increases to  $\frac{4}{3}c$ , and its frequency decreases. (b) Its speed decreases to  $\frac{3}{4}c$ , and its wavelength decreases by a factor of  $\frac{3}{4}$ . (c) Its speed decreases to  $\frac{3}{4}c$ , and its wavelength increases by a factor of  $\frac{4}{3}$ . (d) Its speed and frequency remain the same. (e) Its speed decreases to  $\frac{3}{4}c$ , and its frequency increases.
- **7.** Light can travel from air into water. Some possible paths for the light ray in the water are shown in Figure

 $n_1$ 

 $n_2$ 

OQ35.7. Which path will the light most likely follow? (a) A (b) B (c) C (d) D (e) E



Figure 0035.7

- 8. What is the order of magnitude of the time interval required for light to travel 10 km as in Galileo's attempt to measure the speed of light? (a) several seconds (b) several milliseconds (c) several microseconds (d) several nanoseconds
- **9.** A light ray containing both blue and red wavelengths is incident at an angle on a slab of glass. Which of the sketches in Figure OQ35.9 represents the most likely outcome? (a) *A* (b) *B* (c) *C* (d) *D* (e) none of them



#### Figure 0035.9

10. For the following questions, choose from the following possibilities: (a) yes; water (b) no; water (c) yes; air (d) no; air. (i) Can light undergo total internal reflection at a smooth interface between air and water? If so, in which medium must it be traveling originally? (ii) Can sound undergo total internal reflection at a

### **Conceptual Questions**

1. denotes answer available in Student Solutions Manual/Study Guide

- 1. The level of water in a clear, colorless glass can easily be observed with the naked eye. The level of liquid helium in a clear glass vessel is extremely difficult to see with the naked eye. Explain.
- **2.** A complete circle of a rainbow can sometimes be seen from an airplane. With a stepladder, a lawn sprinkler, and a sunny day, how can you show the complete circle to children?
- You take a child for walks around the neighborhood. She loves to listen to echoes from houses when she shouts or when you clap loudly. A house with a large, flat front wall can produce an echo if you stand straight in front of it and reasonably far away.
   (a) Draw a bird's-eye view of the situation to explain the production of the echo. Shade the area where you can stand to hear the echo. For parts (b) through (e), explain your answers with diagrams. (b) What If? The

smooth interface between air and water? If so, in which medium must it be traveling originally?

- 11. A light ray travels from vacuum into a slab of material with index of refraction  $n_1$  at incident angle  $\theta$  with respect to the surface. It subsequently passes into a second slab of material with index of refraction  $n_2$  before passing back into vacuum again. The surfaces of the different materials are all parallel to one another. As the light exits the second slab, what can be said of the final angle  $\phi$  that the outgoing light makes with the normal? (a)  $\phi > \theta$  (b)  $\phi < \theta$  (c)  $\phi = \theta$  (d) The angle depends on the magnitudes of  $n_1$  and  $n_2$ . (e) The angle depends on the wavelength of the light.
- **12.** Suppose you find experimentally that two colors of light, A and B, originally traveling in the same direction in air, are sent through a glass prism, and A changes direction more than B. Which travels more slowly in the prism, A or B? Alternatively, is there insufficient information to determine which moves more slowly?
- 13. The core of an optical fiber transmits light with minimal loss if it is surrounded by what? (a) water (b) diamond (c) air (d) glass (e) fused quartz
- 14. Which color light refracts the most when entering crown glass from air at some incident angle θ with respect to the normal? (a) violet (b) blue (c) green (d) yellow (e) red
- **15.** Light traveling in a medium of index of refraction  $n_1$  is incident on another medium having an index of refraction  $n_2$ . Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation  $n_2 > n_1$ . (b) The indices of refraction have the relation  $n_1 > n_2$ . (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.

child helps you discover that a house with an L-shaped floor plan can produce echoes if you are standing in a wider range of locations. You can be standing at any reasonably distant location from which you can see the inside corner. Explain the echo in this case and compare with your diagram in part (a). (c) **What If?** What if the two wings of the house are not perpendicular? Will you and the child, standing close together, hear echoes? (d) **What If?** What if a rectangular house and its garage have perpendicular walls that would form an inside corner but have a breezeway between them so that the walls do not meet? Will the structure produce strong echoes for people in a wide range of locations?

**4.** The F-117A stealth fighter (Fig. CQ35.4) is specifically designed to be a *non*retroreflector of radar. What aspects of its design help accomplish this purpose?



#### Figure CQ35.4

- **5.** Retroreflection by transparent spheres, mentioned in Section 35.4, can be observed with dewdrops. To do so, look at your head's shadow where it falls on dewy grass. The optical display around the shadow of your head is called *heiligenschein*, which is German for *holy light*. Renaissance artist Benvenuto Cellini described the phenomenon and his reaction in his *Autobiography*, at the end of Part One, and American philosopher Henry David Thoreau did the same in *Walden*, "Baker Farm," second paragraph. Do some Internet research to find out more about the heiligenschein.
- **6.** Sound waves have much in common with light waves, including the properties of reflection and refraction. Give an example of each of these phenomena for sound waves.
- 7. Total internal reflection is applied in the periscope of a submerged submarine to let the user observe events above the water surface. In this device, two prisms are arranged as shown in Figure CQ35.7 so that an incident beam of light follows the path shown. Parallel tilted, silvered mirrors could be used, but glass prisms with no silvered surfaces give higher light throughput. Propose a reason for the higher efficiency.



- **8.** Explain why a diamond sparkles more than a glass crystal of the same shape and size.
- **9.** A laser beam passing through a nonhomogeneous sugar solution follows a curved path. Explain.
- **10.** The display windows of some department stores are slanted slightly inward at the bottom. This tilt is to decrease the glare from streetlights and the Sun, which would make it difficult for shoppers to see the display inside. Sketch a light ray reflecting from such a window to show how this design works.
- **11.** At one restaurant, a worker uses colored chalk to write the daily specials on a blackboard illuminated

with a spotlight. At another restaurant, a worker writes with colored grease pencils on a flat, smooth sheet of transparent acrylic plastic with an index of refraction 1.55. The panel hangs in front of a piece of black felt. Small, bright fluorescent tube lights are installed all along the edges of the sheet,



inside an opaque channel. Figure CQ35.11 shows a cutaway view of the sign. (a) Explain why viewers at both restaurants see the letters shining against a black background. (b) Explain why the sign at the second restaurant may use less energy from the electric company than the illuminated blackboard at the first restaurant. (c) What would be a good choice for the index of refraction of the material in the grease pencils?

- 12. (a) Under what conditions is a mirage formed? While driving on a hot day, sometimes you see what appears to be water on the road far ahead. When you arrive at the location of the water, however, the road is perfectly dry. Explain this phenomenon. (b) The mirage called *fata morgana* often occurs over water or in cold regions covered with snow or ice. It can cause islands to sometimes become visible, even though they are not normally visible because they are below the horizon due to the curvature of the Earth. Explain this phenomenon.
- **13.** Figure CQ35.13 shows a pencil partially immersed in a cup of water. Why does the pencil appear to be bent?



Figure CQ35.13

- **14.** A scientific supply catalog advertises a material having an index of refraction of 0.85. Is that a good product to buy? Why or why not?
- **15.** Why do astronomers looking at distant galaxies talk about looking backward in time?

## 1080 Chapter 35 The Nature of Light and the Principles of Ray Optics

**16.** Try this simple experiment on your own. Take two opaque cups, place a coin at the bottom of each cup near the edge, and fill one cup with water. Next, view the cups at some angle from the side so that the coin in water is just visible as shown on the left in Figure CQ35.16. Notice that the coin in air is not visible as shown on the right in Figure CQ35.16. Explain this observation.



Figure CQ35.16

**17.** Figure CQ35.17a shows a desk ornament globe containing a photograph. The flat photograph is in air, inside a vertical slot located behind a water-filled compart-

ment having the shape of one half of a cylinder. Suppose you are looking at the center of the photograph and then rotate the globe about a vertical axis. You find that the center of the photograph disappears when you rotate the globe beyond a certain maximum angle (Fig. CQ35.17b). (a) Account for this phenomenon and (b) describe what you see when you turn the globe beyond this angle.



Figure CQ35.17

#### **Problems** AMT Analysis Model tutorial available in The problems found in this Web**Assign** Enhanced WebAssign chapter may be assigned online in Enhanced WebAssign GP Guided Problem M Master It tutorial available in Enhanced 1. straightforward; 2. intermediate; **3.** challenging WebAssign Watch It video solution available in 1. full solution available in the Student W Enhanced WebAssign Solutions Manual/Study Guide

#### Section 35.1 The Nature of Light

## Section 35.2 Measurements of the Speed of Light

- Find the energy of (a) a photon having a frequency of
   5.00 × 10¹⁷ Hz and (b) a photon having a wavelength of 3.00 × 10² nm. Express your answers in units of electron volts, noting that 1 eV = 1.60 × 10⁻¹⁹ J.
- 2. The *Apollo 11* astronauts set up a panel of efficient corner-cube retroreflectors on the Moon's surface (Fig. 35.8a). The speed of light can be found by measuring the time interval required for a laser beam to travel from the Earth, reflect from the panel, and return to the Earth. Assume this interval is measured to be 2.51 s at a station where the Moon is at the zenith and take the center-to-center distance from the Earth to the Moon to be equal to  $3.84 \times 10^8$  m. (a) What is the measured speed of light? (b) Explain whether it is necessary to consider the sizes of the Earth and the Moon in your calculation.

**3.** In an experiment to measure the speed of light using **AMT** the apparatus of Armand H. L. Fizeau (see Fig. 35.2), **M** the distance between light source and mirror was 11.45 km and the wheel had 720 notches. The experimentally determined value of c was 2.998  $\times$  10⁸ m/s when

the outgoing light passed through one notch and then returned through the next notch. Calculate the minimum angular speed of the wheel for this experiment.

4. As a result of his observations, Ole Roemer concluded that eclipses of Io by Jupiter were delayed by 22 min during a six-month period as the Earth moved from the point in its orbit where it is closest to Jupiter to the diametrically opposite point where it is farthest from Jupiter. Using the value  $1.50 \times 10^8$  km as the average radius of the Earth's orbit around the Sun, calculate the speed of light from these data.

# Section 35.3 The Ray Approximation in Ray Optics Section 35.4 Analysis Model: Wave Under Reflection Section 35.5 Analysis Model: Wave Under Refraction

*Notes:* You may look up indices of refraction in Table 35.1. Unless indicated otherwise, assume the medium surrounding a piece of material is air with n = 1.000 293.

5. The wavelength of red helium-neon laser light in airW is 632.8 nm. (a) What is its frequency? (b) What is its wavelength in glass that has an index of refraction of 1.50? (c) What is its speed in the glass?

- **7.** A ray of light is incident on a flat surface of a block of crown glass that is surrounded by water. The angle of refraction is 19.6°. Find the angle of reflection.
- 8. Figure P35.8 shows a refracted light beam in linseed oil
- **W** making an angle of  $\phi = 20.0^{\circ}$  with the normal line *NN'*. The index of refraction of linseed oil is 1.48. Determine the angles (a)  $\theta$  and (b)  $\theta'$ .



Figure P35.8

- **9.** Find the speed of light in (a) flint glass, (b) water, and (c) cubic zirconia.
- 10. A dance hall is built without pillars and with a horizontal ceiling 7.20 m above the floor. A mirror is fastened flat against one section of the ceiling. Following an earthquake, the mirror is in place and unbroken. An engineer makes a quick check of whether the ceiling is sagging by directing a vertical beam of laser light up at the mirror and observing its reflection on the floor. (a) Show that if the mirror has rotated to make an angle  $\phi$  with the horizontal, the normal to the mirror makes an angle  $\phi$  with the vertical. (b) Show that the reflected laser light makes an angle  $2\phi$  with the vertical. (c) Assume the reflected laser light makes a spot on the floor 1.40 cm away from the point vertically below the laser. Find the angle  $\phi$ .
- 11. A ray of light travels from air into another medium, making an angle of  $\theta_1 = 45.0^\circ$  with the normal as in Figure P35.11. Find the angle of refraction  $\theta_2$  if the second medium is (a) fused quartz, (b) carbon disulfide, and (c) water.



- **12.** A ray of light strikes a flat block of glass (n = 1.50) of thickness 2.00 cm at an angle of  $30.0^{\circ}$  with the normal. Trace the light beam through the glass and find the angles of incidence and refraction at each surface.
- **13.** A prism that has an apex angle of 50.0° is made of cubic zirconia. What is its minimum angle of deviation?
- 14. A plane sound wave in air at 20°C, with wavelength 589 mm, is incident on a smooth surface of water at 25°C at an angle of incidence of 13.0°. Determine (a) the angle of refraction for the sound wave and (b) the wavelength of the sound in water. A narrow

beam of sodium yellow light, with wavelength 589 nm in vacuum, is incident from air onto a smooth water surface at an angle of incidence of 13.0°. Determine (c) the angle of refraction and (d) the wavelength of the light in water. (e) Compare and contrast the behavior of the sound and light waves in this problem.

- **15.** A light ray initially in water enters a transparent substance at an angle of incidence of 37.0°, and the transmitted ray is refracted at an angle of 25.0°. Calculate the speed of light in the transparent substance.
- 16. A laser beam is incident at an angle of 30.0° from the vertical onto a solution of corn syrup in water. The beam is refracted to 19.24° from the vertical. (a) What is the index of refraction of the corn syrup solution? Assume that the light is red, with vacuum wavelength 632.8 nm. Find its (b) wavelength, (c) frequency, and (d) speed in the solution.
- 17. A ray of light strikes the midpoint of one face of an equiangular  $(60^\circ-60^\circ-60^\circ)$  glass prism (n = 1.5) at an angle of incidence of  $30^\circ$ . (a) Trace the path of the light ray through the glass and find the angles of incidence and refraction at each surface. (b) If a small fraction of light is also reflected at each surface, what are the angles of reflection at the surfaces?
- 18. The reflecting surfaces of two intersecting flat mirrors are at an angle θ (0° < θ < 90°) as shown in Figure P35.18. For a light ray that strikes the horizontal mirror, show that the emerging ray will intersect the incident ray at an angle β = 180° 2θ.</li>



#### Figure P35.18

- **19.** When you look through a window, by what time interval is the light you see delayed by having to go through glass instead of air? Make an order-of-magnitude estimate on the basis of data you specify. By how many wavelengths is it delayed?
- **20.** Two flat, rectangular mirrors, both perpendicular to a horizontal sheet of paper, are set edge to edge with their reflecting surfaces perpendicular to each other. (a) A light ray in the plane of the paper strikes one of the mirrors at an arbitrary angle of incidence  $\theta_1$ . Prove that the final direction of the ray, after reflection from both mirrors, is opposite its initial direction. (b) **What If?** Now assume the paper is replaced with a third flat mirror, touching edges with the other two and perpendicular to both, creating a corner-cube retroreflector (Fig. 35.8a). A ray of light is incident from any direction within the octant of space bounded by the reflecting surfaces. Argue that the ray will reflect once from each mirror and that its final direction will be opposite its original direction. The *Apollo 11* astronauts

placed a panel of corner-cube retroreflectors on the Moon. Analysis of timing data taken with it reveals that the radius of the Moon's orbit is increasing at the rate of 3.8 cm/yr as it loses kinetic energy because of tidal friction.

- 21. The two mirrors illustrated
  W in Figure P35.21 meet at a right angle. The beam of light in the vertical plane indicated by the dashed lines strikes mirror 1 as shown. (a) Determine the distance the reflected light beam travels before striking mirror 2. (b) In what direction does the light beam travel after being reflected from mirror 2?
- 22. When the light ray illustrated in Figure P35.22 passes through the glass block of index of refraction n = 1.50, it is shifted laterally by the distance d. (a) Find the value of d. (b) Find the time interval required for the light to pass through the glass block.



#### Figure P35.22

- **23.** Two light pulses are emitted simultaneously from a source. Both pulses travel through the same total length of air to a detector, but mirrors shunt one pulse along a path that carries it through an extra length of 6.20 m of ice along the way. Determine the difference in the pulses' times of arrival at the detector.
- 24. Light passes from air into flint glass at a nonzero angle of incidence. (a) Is it possible for the component of its velocity perpendicular to the interface to remain constant? Explain your answer. (b) What If? Can the component of velocity parallel to the interface remain constant during refraction? Explain your answer.
- **25.** A laser beam with vacuum wavelength 632.8 nm is incident from air onto a block of Lucite as shown in Figure 35.10b. The line of sight of the photograph is perpendicular to the plane in which the light moves. Find (a) the speed, (b) the frequency, and (c) the wavelength of the light in the Lucite. *Suggestion:* Use a protractor.
- **26.** A narrow beam of ultrasonic waves reflects off the liver tumor illustrated in Figure P35.26. The speed of the wave is 10.0% less in the liver than in the surrounding medium. Determine the depth of the tumor.



Figure P35.26

27. An opaque cylindrical tank AMT with an open top has a diam-M eter of 3.00 m and is completely

♥ filled with water. When the afternoon Sun reaches an angle of 28.0° above the horizon, sunlight ceases to illuminate any part of the bottom of the tank. How deep is the tank?

- 28. A triangular glass prism with apex angle 60.0° has an index of refraction of 1.50. (a) Show that if its angle of incidence on the first surface is θ₁ = 48.6°, light will pass symmetrically through the prism as shown in Figure 35.17. (b) Find the angle of deviation δ_{min} for θ₁ = 48.6°. (c) What If? Find the angle of deviation if the angle of incidence on the first surface is 45.6°. (d) Find the angle of deviation if θ₁ = 51.6°.
- **29.** Light of wavelength 700 nm is incident on the face of a fused quartz prism (n = 1.458 at 700 nm) at an incidence angle of 75.0°. The apex angle of the prism is 60.0°. Calculate the angle (a) of refraction at the first surface, (b) of incidence at the second surface, (c) of refraction at the second surface, and (d) between the incident and emerging rays.
- **30.** Figure P35.30 shows a light ray incident on a series of slabs having different refractive indices, where  $n_1 < n_2 < n_3 < n_4$ . Notice that the path of the ray steadily bends toward the normal. If the variation in *n* were continuous, the path would



Figure P35.30

form a smooth curve. Use this idea and a ray diagram to explain why you can see the Sun at sunset after it has fallen below the horizon.

- 31 Three sheets of plastic have unknown indices of refraction. Sheet 1 is placed on top of sheet 2, and a laser beam is directed onto the sheets from above. The laser beam enters sheet 1 and then strikes the interface between sheet 1 and sheet 2 at an angle of 26.5° with the normal. The refracted beam in sheet 2 makes an angle of 31.7° with the normal. The experiment is repeated with sheet 3 on top of sheet 2, and, with the same angle of incidence on the sheet 3–sheet 2 interface, the refracted beam makes an angle of 36.7° with the normal. If the experiment is repeated again with sheet 1 on top of sheet 3, with that same angle of incidence on the sheet 1–sheet 3 interface, what is the expected angle of refraction in sheet 3?
- **32.** A person looking into an empty container is able to see the far edge of the container's bottom as shown in Figure P35.32a. The height of the container is h, and its width is d. When the container is completely filled with a fluid of index of refraction n and viewed from the same angle, the person can see the center of a coin at



the middle of the container's bottom as shown in Figure P35.32b. (a) Show that the ratio h/d is given by

$$\frac{h}{d} = \sqrt{\frac{n^2 - 1}{4 - n^2}}$$

(b) Assuming the container has a width of 8.00 cm and is filled with water, use the expression above to find the height of the container. (c) For what range of values of n will the center of the coin not be visible for any values of h and d?

**33.** A laser beam is incident on a  $45^{\circ}-45^{\circ}-90^{\circ}$  prism perpendicular to one of its faces as shown in Figure P35.33. The transmitted beam that exits the hypotenuse of the prism makes an angle of  $\theta = 15.0^{\circ}$  with the direc-



tion of the incident beam. Find the index of refraction of the prism.

- 34. A submarine is 300 m horizontally from the shore of a
  GP freshwater lake and 100 m beneath the surface of the water. A laser beam is sent from the submarine so that the beam strikes the surface of the water 210 m from the shore. A building stands on the shore, and the laser beam hits a target at the top of the building. The goal is to find the height of the target above sea level. (a) Draw a diagram of the situation, identifying the two triangles that are important in finding the solution. (b) Find the angle of incidence of the beam striking the water-air interface. (c) Find the angle of refracted beam make with the horizontal? (e) Find the height of the target above sea level.
- **35.** A beam of light both reflects and refracts at the surface between air and glass as shown in Figure P35.35. If the refractive index of the glass is  $n_g$ , find the angle of incidence  $\theta_1$  in the air that would result in the reflected ray and the refracted ray being perpendicular to each other.



## Section 35.6 Huygens's Principle Section 35.7 Dispersion

- **36.** The index of refraction for red light in water is 1.331 and that for blue light is 1.340. If a ray of white light enters the water at an angle of incidence of 83.0°, what are the underwater angles of refraction for the (a) red and (b) blue components of the light?
- **37.** A light beam containing red and violet wavelengths is incident on a slab of quartz at an angle of incidence of 50.0°. The index of refraction of quartz is 1.455 at 600 nm (red light), and its index of refraction is 1.468 at 410 nm (violet light). Find the dispersion of the slab, which is defined as the difference in the angles of refraction for the two wavelengths.

**38.** The speed of a water wave is described by  $v = \sqrt{gd}$ , where d is the water depth, assumed to be small compared to the wavelength. Because their speed changes, water waves refract when moving into a region of different depth. (a) Sketch a map of an ocean beach on the eastern side of a landmass. Show contour lines of constant depth under water, assuming a reasonably uniform slope. (b) Suppose waves approach the coast from a storm far away to the north-northeast. Demonstrate that the waves move nearly perpendicular to the shoreline when they reach the beach. (c) Sketch a map of a coastline with alternating bays and headlands as suggested in Figure P35.38. Again make a reasonable guess about the shape of contour lines of constant depth. (d) Suppose waves approach the coast, carrying energy with uniform density along originally straight wave fronts. Show that the energy reaching the coast is concentrated at the headlands and has lower intensity in the bays.



Figure P35.38

39. The index of refraction for violet light in silica flint
M glass is 1.66, and that for red light is 1.62. What is the angular spread of visible light passing through a prism of apex angle 60.0° if the angle of incidence is 50.0°? See Figure P35.39.



Figure P35.39 Problems 39 and 40.

**40.** The index of refraction for violet light in silica flint glass is  $n_V$ , and that for red light is  $n_R$ . What is the angular spread of visible light passing through a prism of apex angle  $\Phi$  if the angle of incidence is  $\theta$ ? See Figure P35.39.

#### Section 35.8 Total Internal Reflection

**41.** A glass optical fiber (n = 1.50) is submerged in water (n = 1.33). What is the critical angle for light to stay inside the fiber?

- 42. For 589-nm light, calculate the critical angle for the W following materials surrounded by air: (a) cubic zirconia, (b) flint glass, and (c) ice.
- 43. A triangular glass prism with
  M apex angle Φ = 60.0° has an index of refraction n = 1.50 (Fig. P35.43). What is the smallest angle of incidence θ₁ for which a light ray can emerge from the other side?



Figure P35.43 Problems 43 and 44.

- **44.** A triangular glass prism with Problems 43 and 44. apex angle  $\Phi$  has an index of refraction *n* (Fig. P35.43). What is the smallest angle of incidence  $\theta_1$  for which a light ray can emerge from the other side?
- **45.** Assume a transparent rod of diameter  $d = 2.00 \ \mu \text{m}$  has an index of refraction of 1.36. Determine the maximum angle  $\theta$  for which the light rays incident on the end of the rod in Figure P35.45 are subject



#### Figure P35.45

to total internal reflection along the walls of the rod. Your answer defines the size of the *cone of acceptance* for the rod.

46. Consider a light ray traveling between air and a diamond cut in the shape shown in Figure P35.46. (a) Find the critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and the outside air. (b) Consider the light ray incident normally on the top surface of the diamond as shown in Figure P35.46. Show that the light traveling toward point P in the diamond is totally reflected. What If? Suppose the diamond is immersed in water. (c) What is the critical angle at the diamond-water interface? (d) When the diamond is immersed in water, does the light ray entering the top surface in Figure P35.46 undergo total internal reflection at P? Explain. (e) If the light ray entering the diamond remains vertical as shown in Figure P35.46, which way should the diamond in the water be rotated about an axis perpendicular to the page through O so that light will exit the diamond at P? (f) At what angle of rotation in part (e) will light first exit the diamond at point *P*?



47. Consider a common mirage formed by superheated air
M immediately above a roadway. A truck driver whose eyes are 2.00 m above the road, where n = 1.000 293, looks forward. She perceives the illusion of a patch of

water ahead on the road. The road appears wet only beyond a point on the road at which her line of sight makes an angle of 1.20° below the horizontal. Find the index of refraction of the air immediately above the road surface.

- **48.** A room contains air in which the speed of sound is 343 m/s. The walls of the room are made of concrete in which the speed of sound is 1 850 m/s. (a) Find the critical angle for total internal reflection of sound at the concrete–air boundary. (b) In which medium must the sound be initially traveling if it is to undergo total internal reflection? (c) "A bare concrete wall is a highly efficient mirror for sound." Give evidence for or against this statement.
- **49.** An optical fiber has an index of refraction n and diameter d. It is surrounded by vacuum. Light is sent into the fiber along its axis as shown in Figure P35.49. (a) Find the smallest outside radius  $R_{\min}$  permitted for a bend in the fiber if no light is to escape. (b) What If? What result does part (a) predict as



Figure P35.49

*d* approaches zero? Is this behavior reasonable? Explain. (c) As *n* increases? (d) As *n* approaches 1? (e) Evaluate  $R_{\min}$  assuming the fiber diameter is 100  $\mu$ m and its index of refraction is 1.40.

50. Around 1968, Richard A. Thorud, an engineer at The Toro Company, invented a gasoline gauge for small engines diagrammed in Figure P35.50. The gauge has no moving parts. It consists of a flat slab of transparent plastic fitting vertically into a slot in the cap on the gas tank. None of the plastic has a reflective coating. The plastic projects from the horizontal top down nearly to the bottom of



Figure P35.50

the opaque tank. Its lower edge is cut with facets making angles of 45° with the horizontal. A lawn mower operator looks down from above and sees a boundary between bright and dark on the gauge. The location of the boundary, across the width of the plastic, indicates the quantity of gasoline in the tank. (a) Explain how the gauge works. (b) Explain the design requirements, if any, for the index of refraction of the plastic.

#### **Additional Problems**

- 51. A beam of light is incident from air on the surface of a
   M liquid. If the angle of incidence is 30.0° and the angle of refraction is 22.0°, find the critical angle for total internal reflection for the liquid when surrounded by air.
- 52. Consider a horizontal interface between air above and glass of index of refraction 1.55 below. (a) Draw a light ray incident from the air at angle of incidence 30.0°. Determine the angles of the reflected and refracted rays and show them on the diagram. (b) What If? Now suppose the light ray is incident from the glass at an angle of 30.0°. Determine the angles of the reflected

and refracted rays and show all three rays on a new diagram. (c) For rays incident from the air onto the air–glass surface, determine and tabulate the angles of reflection and refraction for all the angles of incidence at  $10.0^{\circ}$  intervals from  $0^{\circ}$  to  $90.0^{\circ}$ . (d) Do the same for light rays coming up to the interface through the glass.

- 53. A small light fixture on the bottom of a swimming pool
  M is 1.00 m below the surface. The light emerging from the still water forms a circle on the water surface. What is the diameter of this circle?
- **54.** *Why is the following situation impossible?* While at the bottom of a calm freshwater lake, a scuba diver sees the Sun at an apparent angle of 38.0° above the horizontal.
- 55. A digital video disc (DVD) records information in a spiral track approximately 1 µm wide. The track consists of a series of pits in the information layer (Fig. P35.55a) that scatter light from a laser beam sharply focused on them. The laser shines in from below through transparent plastic of thickness t = 1.20 mm and index of refraction 1.55 (Fig. P35.55b). Assume the width of the laser beam at the information layer must be  $a = 1.00 \ \mu m$  to read from only one track and not from its neighbors. Assume the width of the beam as it enters the transparent plastic is w = 0.700 mm. A lens makes the beam converge into a cone with an apex angle  $2\theta_1$  before it enters the DVD. Find the incidence angle  $\theta_1$  of the light at the edge of the conical beam. This design is relatively immune to small dust particles degrading the video quality.



**56.** How many times will the incident beam shown in Fig-AMT ure P35.56 be reflected by each of the parallel mirrors?



#### Figure P35.56

**57.** When light is incident normally on the interface between two transparent optical media, the intensity of the reflected light is given by the expression

$$S_1' = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2 S_1$$

In this equation,  $S_1$  represents the average magnitude of the Poynting vector in the incident light (the incident intensity),  $S'_1$  is the reflected intensity, and  $n_1$  and  $n_2$  are the refractive indices of the two media. (a) What fraction of the incident intensity is reflected for 589-nm light normally incident on an interface between air and crown glass? (b) Does it matter in part (a) whether the light is in the air or in the glass as it strikes the interface?

- 58. Refer to Problem 57 for its description of the reflected intensity of light normally incident on an interface between two transparent media. (a) For light normally incident on an interface between vacuum and a transparent medium of index *n*, show that the intensity  $S_2$  of the transmitted light is given by  $S_2/S_1 = 4n/(n + 1)^2$ . (b) Light travels perpendicularly through a diamond slab, surrounded by air, with parallel surfaces of entry and exit. Apply the transmission fraction in part (a) to find the approximate overall transmission through the slab of diamond, as a percentage. Ignore light reflected back and forth within the slab.
- 59. A light ray enters the atmosphere of the Earth and descends vertically to the surface a distance h = 100 km below. The index of refraction where the light enters the atmosphere is 1.00, and it increases linearly with distance to have the value n = 1.000 293 at the Earth's surface. (a) Over what time interval does the light traverse this path? (b) By what percentage is the time interval larger than that required in the absence of the Earth's atmosphere?
- 60. A light ray enters the atmosphere of a planet and descends vertically to the surface a distance h below. The index of refraction where the light enters the atmosphere is 1.00, and it increases linearly with distance to have the value n at the planet surface. (a) Over what time interval does the light traverse this path? (b) By what fraction is the time interval larger than that required in the absence of an atmosphere?
- **61.** A narrow beam of light is incident from air onto the surface of glass with index of refraction 1.56. Find

the angle of incidence for which the corresponding angle of refraction is half the angle of incidence. *Suggestion:* You might want to use the trigonometric identity  $\sin 2\theta = 2 \sin \theta \cos \theta$ .

62. One technique for measuring the apex angle of a prism is shown in Figure P35.62. Two parallel rays of light are directed onto the apex of the prism so that the rays reflect from opposite faces of the prism. The angular separation  $\gamma$  of the two reflected rays can be mer



#### Figure P35.62

reflected rays can be measured. Show that  $\phi = \frac{1}{2}\gamma$ .

**63.** A thief hides a precious jewel by placing it on the bottom of a public swimming pool. He places a circular raft on the surface of the water directly above and centered over the jewel as shown in Figure P35.63. The sur-

face of the water is calm. The raft, of diameter d = 4.54 m, prevents the jewel from being seen by any observer above the water, either on the raft or on the side of the pool. What is the maximum depth hof the pool for the jewel to remain unseen?



- 64. Review. A mirror is often "silvered" with aluminum. By adjusting the thickness of the metallic film, one can make a sheet of glass into a mirror that reflects anything between 3% and 98% of the incident light, transmitting the rest. Prove that it is impossible to construct a "one-way mirror" that would reflect 90% of the electromagnetic waves incident from one side and reflect 10% of those incident from the other side. *Suggestion:* Use Clausius's statement of the second law of thermodynamics.
- 65. The light beam in Fig M ure P35.65 strikes surface 2 at the critical angle. Determine the angle of incidence θ₁.
- 66. Why is the following situation impossible? A laser beam strikes one end of a slab of material of length L = 42.0 cm and thickness t = 3.10 mm as shown in Figure P35.66 (not to scale). It enters the material



at the center of the left end, striking it at an angle of incidence of  $\theta = 50.0^{\circ}$ . The index of refraction of the slab is n = 1.48. The light makes 85 internal reflections from the top and bottom of the slab before exiting at the other end.



#### Figure P35.66

67. A 4.00-m-long pole stands vertically in a freshwaterW lake having a depth of 2.00 m. The Sun is 40.0° above the horizontal. Determine the length of the pole's shadow on the bottom of the lake.

**68.** A light ray of wavelength 589 nm

is incident at an angle  $\theta$  on the top surface of a block of polystyrene as shown in Figure P35.68. (a) Find the maximum value of  $\theta$  for which the refracted ray undergoes total internal reflection at the point *P* located at the left vertical face of the block. What If? Repeat



Figure P35.68

the calculation for the case in which the polystyrene block is immersed in (b) water and (c) carbon disulfide. Explain your answers.

**69.** A light ray traveling in air is incident on one face of a right-angle prism with index of refraction n = 1.50 as shown in Figure P35.69, and the ray follows the path shown in the figure. Assuming  $\theta = 60.0^{\circ}$  and the base of the prism is mirrored, determine the angle  $\phi$  made by the outgoing ray with the normal to the right face of the prism.





70. As sunlight enters the Earth's atmosphere, it changes direction due to the small difference between the speeds of light in vacuum and in air. The duration of an optical day is defined as the time interval between the instant when the top of the rising Sun is just visible above the horizon and the instant when the top of the Sun just disappears below the horizontal plane. The duration of the geometric day is defined as the time interval between the instant a mathematically straight line between an observer and the top of the Sun just clears the horizon and the instant this line just dips below the horizon. (a) Explain which is longer, an optical day or a geometric day. (b) Find the difference between these two time intervals. Model the Earth's atmosphere as uniform, with index of refraction 1.000 293, a sharply defined upper surface, and depth 8 614 m. Assume the observer is at the Earth's equator so that the apparent path of the rising and setting Sun is perpendicular to the horizon.

71. A material having an index of refraction n is surrounded by vacuum and is in the shape of a quarter circle of radius R (Fig. P35.71). A light ray parallel to the base of the material is incident from the left at a distance L above the base and emerges from the material at the angle  $\theta$ . Determine an expression for  $\theta$  in terms of n, R, and L.



Figure P35.71

- 72. A ray of light passes from air into water. For its deviation angle  $\delta = |\theta_1 \theta_2|$  to be 10.0°, what must its angle of incidence be?
- **73.** As shown in Figure P35.73, a light ray is incident normal to one face of a  $30^{\circ}-60^{\circ}-90^{\circ}$  block of flint glass (a prism) that is immersed in water. (a) Determine the exit angle  $\theta_3$  of the ray. (b) A substance is dissolved in the water to increase the index of refraction  $n_2$ . At what value of  $n_2$  does total internal reflection cease at point *P*?



74. A transparent cylinder of radius R = 2.00 m has a mirrored surface on its right half as shown in Figure P35.74. A light ray traveling in air is incident on the left side of the cylinder. The incident light ray and exiting light ray are parallel, and d = 2.00 m. Determine the index of refraction of the material.



**75.** Figure P35.75 shows the path of a light beam through several slabs with different indices of refraction. (a) If  $\theta_1 = 30.0^\circ$ , what is the angle  $\theta_2$  of the emerging beam?

(b) What must the incident angle  $\theta_1$  be to have total internal reflection at the surface between the medium with n = 1.20 and the medium with n = 1.00?



76. A. H. Pfund's method for measuring the index of refraction of glass is illustrated in Figure P35.76. One face of a slab of thickness t is painted white, and a small hole scraped clear at point P serves as a source of diverging rays when the slab is illuminated from below. Ray PBB' strikes the clear surface at the critical angle and is totally reflected, as are rays such as PCC'. Rays such as PAA' emerge from the clear surface. On the painted surface, there appears a dark circle of diameter d surrounded by an illuminated region, or halo. (a) Derive an equation for n in terms of the measured quantities d and t. (b) What is the diameter of the dark circle if n = 1.52 for a slab 0.600 cm thick? (c) If white light is used, dispersion causes the critical angle to depend on color. Is the inner edge of the white halo tinged with red light or with violet light? Explain.



Figure P35.76

77. A light ray enters a rectwangular block of plastic at an angle θ₁ = 45.0° and emerges at an angle θ₂ = 76.0° as shown in Figure P35.77. (a) Determine the index of refraction of the plastic. (b) If the light ray enters



the plastic at a point L = 50.0 cm from the bottom edge, what time interval is required for the light ray to travel through the plastic?

**78.** Students allow a narrow beam of laser light to strike a water surface. They measure the angle of refraction for selected angles of incidence and record the data shown in the accompanying table. (a) Use the data to verify Snell's law of refraction by plotting the sine of the angle of incidence versus the sine of the angle of refraction. (b) Explain what the shape of the graph demonstrates. (c) Use the resulting plot to deduce the index of refraction of water, explaining how you do so.

Angle of Refraction (degrees)
7.5
15.1
22.3
28.7
35.2
40.3
45.3
47.7

- 79. The walls of an ancient shrine are perpendicular to the four cardinal compass directions. On the first day of spring, light from the rising Sun enters a rectangular window in the eastern wall. The light traverses 2.37 m horizontally to shine perpendicularly on the wall opposite the window. A tourist observes the patch of light moving across this western wall. (a) With what speed does the illuminated rectangle move? (b) The tourist holds a small, square mirror flat against the western wall at one corner of the rectangle of light. The mirror reflects light back to a spot on the eastern wall close beside the window. With what speed does the smaller square of light move across that wall? (c) Seen from a latitude of  $40.0^{\circ}$  north, the rising Sun moves through the sky along a line making a 50.0° angle with the southeastern horizon. In what direction does the rectangular patch of light on the western wall of the shrine move? (d) In what direction does the smaller square of light on the eastern wall move?
- 80. Figure P35.80 shows a top view of a square enclosure. The inner surfaces are plane mirrors. A ray of light enters a small hole in the center of one mirror. (a) At what angle θ must the ray enter if it exits through the hole after being reflected once by each of the other three mirrors? (b) What If? Are there other values of θ for which



Figure P35.80

t =

the ray can exit after multiple reflections? If so, sketch one of the ray's paths.

#### **Challenge Problems**

- 81. A hiker stands on an isolated mountain peak near sunset and observes a rainbow caused by water droplets in the air at a distance of 8.00 km along her line of sight to the most intense light from the rainbow. The valley is 2.00 km below the mountain peak and entirely flat. What fraction of the complete circular arc of the rainbow is visible to the hiker?
- **82.** *Why is the following situation impossible?* The perpendicular distance of a lightbulb from a large plane mirror is twice the perpendicular distance of a person from the mirror. Light from the lightbulb reaches the person by

two paths: (1) it travels to the mirror and reflects from the mirror to the person, and (2) it travels directly to the person without reflecting off the mirror. The total distance traveled by the light in the first case is 3.10 times the distance traveled by the light in the second case.

83. Figure P35.83 shows an overhead view of a room of square floor area and side L. At the center of the room is a mirror set in a vertical plane and rotating on a vertical shaft at angular speed  $\omega$  about an axis coming out of the page. A bright red laser beam enters from the center point on one wall of the



room and strikes the mirror. As the mirror rotates, the reflected laser beam creates a red spot sweeping across the walls of the room. (a) When the spot of light on the wall is at distance *x* from point *O*, what is its speed? (b) What value of *x* corresponds to the minimum value for the speed? (c) What is the minimum value for the speed? (d) What is the maximum speed of the spot on the wall? (e) In what time interval does the spot change from its minimum to its maximum speed?

84. Pierre de Fermat (1601–1665) showed that whenever light travels from one point to another, its actual path is the path that requires the smallest time interval. This statement is known as Fermat's principle. The simplest example is for light propagating in a homogeneous medium. It moves in a straight line because a straight line is the shortest distance between two points. Derive Snell's law of refraction from Fermat's principle. Proceed as follows. In Figure P35.84, a light ray travels from point *P* in medium 1 to point *Q* in medium 2. The two points are, respectively, at perpendicular distances a and b from the interface. The displacement from P to Q has the component d parallel to the interface, and we let x represent the coordinate of the point where the ray enters the second medium. Let t = 0 be the instant the light starts from P. (a) Show that the time at which the light arrives at Q is

$$= \frac{r_1}{v_1} + \frac{r_2}{v_2} = \frac{n_1\sqrt{a^2 + x^2}}{c} + \frac{n_2\sqrt{b^2 + (d - x)^2}}{c}$$

Figure P35.84 Problems 84 and 85.

(b) To obtain the value of x for which t has its minimum value, differentiate t with respect to x and set the derivative equal to zero. Show that the result implies

$$\frac{n_1 x}{\sqrt{a^2 + x^2}} = \frac{n_2(d - x)}{\sqrt{b^2 + (d - x)^2}}$$

(c) Show that this expression in turn gives Snell's law,

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

- 85. Refer to Problem 84 for the statement of Fermat's principle of least time. Derive the law of reflection (Eq. 35.2) from Fermat's principle.
- 86. Suppose a luminous sphere of radius  $R_1$  (such as the Sun) is surrounded by a uniform atmosphere of radius  $R_2 > R_1$  and index of refraction *n*. When the sphere is viewed from a location far away in vacuum, what is its apparent radius (a) when  $R_2 > nR_1$  and (b) when  $R_2 < nR_1$ ?
- 87. This problem builds upon the results of Problems 57 and 58. Light travels perpendicularly through a diamond slab, surrounded by air, with parallel surfaces of entry and exit. The intensity of the transmitted light is what fraction of the incident intensity? Include the effects of light reflected back and forth inside the slab.

www.aswarphysics.weephy.c

# CHAPTER 36

- 36.1 Images Formed by Flat Mirrors
- 36.2 Images Formed by Spherical Mirrors
- 36.3 Images Formed by Refraction
- 36.4 Images Formed by Thin Lenses
- 36.5 Lens Aberrations
- **36.6** The Camera
- 36.7 The Eye
- 36.8 The Simple Magnifier
- **36.9** The Compound Microscope
- 36.10 The Telescope

# **Image Formation**



The light rays coming from the leaves in the background of this scene did not form a focused image in the camera that took this photograph. Consequently, the background appears very blurry. Light rays passing though the raindrop, however, have been altered so as to form a focused image of the background leaves for the camera. In this chapter, we investigate the formation of images as light rays reflect from mirrors and refract through lenses. (Don Hammond Photography Ltd. RF) This chapter is concerned with the images that result when light rays encounter flat or curved surfaces between two media. Images can be formed by either reflection or refraction due to these surfaces. We can design mirrors and lenses to form images with desired characteristics. In this chapter, we continue to use the ray approximation and assume light travels in straight lines. We first study the formation of images by mirrors and lenses and techniques for locating an image and determining its size. Then we investigate how to combine these elements into several useful optical instruments such as microscopes and telescopes.

# 36.1 Images Formed by Flat Mirrors

Image formation by mirrors can be understood through the behavior of light rays as described by the wave under reflection analysis model. We begin by considering the simplest possible mirror, the flat mirror. Consider a point source of light placed at O in Figure 36.1, a distance p in front of a flat mirror. The distance p is called the **object distance**. Diverging light rays leave the source and are reflected from the mirror. Upon reflection, the rays continue to diverge. The dashed lines in Figure 36.1 are extensions of the diverging rays back to a point of

intersection at *I*. The diverging rays appear to the viewer to originate at the point *I* behind the mirror. Point *I*, which is a distance *q* behind the mirror, is called the **image** of the object at *O*. The distance *q* is called the **image distance**. Regardless of the system under study, images can always be located by extending diverging rays back to a point at which they intersect. Images are located either at a point from which rays of light *actually* diverge or at a point from which they *appear* to diverge.

Images are classified as *real* or *virtual*. A **real image** is formed when all light rays pass through and diverge from the image point; a **virtual image** is formed when most if not all of the light rays do *not* pass through the image point but only appear to diverge from that point. The image formed by the mirror in Figure 36.1 is virtual. No light rays from the object exist behind the mirror, at the location of the image, so the light rays in front of the mirror is *always* virtual. Real images can be displayed on a screen (as at a movie theater), but virtual images cannot be displayed on a screen. We shall see an example of a real image in Section 36.2.

We can use the simple geometry in Figure 36.2 to examine the properties of the images of extended objects formed by flat mirrors. Even though there are an infinite number of choices of direction in which light rays could leave each point on the object (represented by a gray arrow), we need to choose only two rays to determine where an image is formed. One of those rays starts at P, follows a path perpendicular to the mirror to Q, and reflects back on itself. The second ray follows the oblique path PR and reflects as shown in Figure 36.2 according to the law of reflection. An observer in front of the mirror would extend the two reflected rays back to the point at which they appear to have originated, which is point P' behind the mirror. A continuation of this process for points other than P on the object behind the mirror. Because triangles PQR and P'QR are congruent, PQ = P'Q, so |p| = |q|. Therefore, the image formed of an object placed in front of a flat mirror is as far behind the mirror as the object is in front of the mirror.

The geometry in Figure 36.2 also reveals that the object height h equals the image height h'. Let us define **lateral magnification** M of an image as follows:

$$M = \frac{\text{image height}}{\text{object height}} = \frac{h'}{h}$$
(36.1)

This general definition of the lateral magnification for an image from any type of mirror is also valid for images formed by lenses, which we study in Section 36.4. For a flat mirror, M = +1 for any image because h' = h. The positive value of the magnification signifies that the image is upright. (By upright we mean that if the object arrow points upward as in Figure 36.2, so does the image arrow.)

A flat mirror produces an image that has an *apparent* left–right reversal. You can see this reversal by standing in front of a mirror and raising your right hand as shown in Figure 36.3. The image you see raises its left hand. Likewise, your hair appears to be parted on the side opposite your real part, and a mole on your right cheek appears to be on your left cheek.

This reversal is not *actually* a left–right reversal. Imagine, for example, lying on your left side on the floor with your body parallel to the mirror surface. Now your head is on the left and your feet are on the right. If you shake your feet, the image does not shake its head! If you raise your right hand, however, the image again raises its left hand. Therefore, the mirror again appears to produce a left–right reversal but in the up–down direction!

The reversal is actually a *front-back reversal*, caused by the light rays going forward toward the mirror and then reflecting back from it. An interesting



**Figure 36.1** An image formed by reflection from a flat mirror.



**Figure 36.2** A geometric construction that is used to locate the image of an object placed in front of a flat mirror.

The thumb is on the left side of both real hands and on the left side of the image. That the thumb is not on the right side of the image indicates that there is no left-to-right reversal.



Figure 36.3 The image in the mirror of a person's right hand is reversed front to back, which makes the right hand appear to be a left hand.

exercise is to stand in front of a mirror while holding an overhead transparency in front of you so that you can read the writing on the transparency. You will also be able to read the writing on the image of the transparency. You may have had a similar experience if you have attached a transparent decal with words on it to the rear window of your car. If the decal can be read from outside the car, you can also read it when looking into your rearview mirror from inside the car.

**Q**uick Quiz 36.1 You are standing approximately 2 m away from a mirror. The

- mirror has water spots on its surface. True or False: It is possible for you to see
- the water spots and your image both in focus at the same time.

# Conceptual Example 36.1 Multiple Images Formed by Two Mirrors

Two flat mirrors are perpendicular to each other as in Figure 36.4, and an object is placed at point *O*. In this situation, multiple images are formed. Locate the positions of these images.

#### SOLUTION

The image of the object is at  $I_1$  in mirror 1 (green rays) and at  $I_2$  in mirror 2 (red rays). In addition, a third image is formed at  $I_3$  (blue rays). This third image is the image of  $I_1$  in mirror 2 or, equivalently, the image of  $I_2$  in mirror 1. That is, the image at  $I_1$  (or  $I_2$ ) serves as the object for  $I_3$ . To form this image at  $I_3$ , the rays reflect twice after leaving the object at O.

#### **Figure 36.4** (Conceptual Example 36.1) When an object is placed in front of two mutually perpendicular mirrors as shown, three images are formed. Follow the different-colored light rays to understand the formation of each image.



# **Conceptual Example 36.2**

# The Tilting Rearview Mirror

Most rearview mirrors in cars have a day setting and a night setting. The night setting greatly diminishes the intensity of the image so that lights from trailing vehicles do not temporarily blind the driver. How does such a mirror work?

#### SOLUTION

Figure 36.5 shows a cross-sectional view of a rearview mirror for each setting. The unit consists of a reflective coating on the back of a wedge of glass. In the day setting (Fig. 36.5a), the light from an object behind the car strikes the glass wedge at point 1. Most of the light enters the wedge, refracting as it crosses the front surface, and reflects from the back surface to return to the front surface, where it is refracted again as it re-enters the air as ray B (for *bright*). In addition, a small portion of the light is reflected at the front surface of the glass as indicated by ray D (for *dim*).



**Figure 36.5** (Conceptual Example 36.2) Cross-sectional views of a rearview mirror.

This dim reflected light is responsible for the image observed when the mirror is in the night setting (Fig. 36.5b). In that case, the wedge is rotated so that the path followed by the bright light (ray B) does not lead to the eye. Instead, the dim light reflected from the front surface of the wedge travels to the eye, and the brightness of trailing headlights does not become a hazard.



**Figure 36.6** (a) A concave mirror of radius *R*. The center of curvature *C* is located on the principal axis. (b) A point object placed at *O* in front of a concave spherical mirror of radius *R*, where *O* is any point on the principal axis farther than *R* from the mirror surface, forms a real image at *I*.

b

# 36.2 Images Formed by Spherical Mirrors

In the preceding section, we considered images formed by flat mirrors. Now we study images formed by curved mirrors. Although a variety of curvatures are possible, we will restrict our investigation to spherical mirrors. As its name implies, a **spherical mirror** has the shape of a section of a sphere.

## **Concave Mirrors**

a

We first consider reflection of light from the inner, concave surface of a spherical mirror as shown in Figure 36.6. This type of reflecting surface is called a **concave mirror**. Figure 36.6a shows that the mirror has a radius of curvature R, and its center of curvature is point C. Point V is the center of the spherical section, and a line through C and V is called the **principal axis** of the mirror. Figure 36.6a shows a cross section of a spherical mirror, with its surface represented by the solid, curved dark blue line. (The lighter blue band represents the structural support for the mirrored surface, such as a curved piece of glass on which a silvered reflecting surface is deposited.) This type of mirror focuses incoming parallel rays to a point as demonstrated by the yellow light rays in Figure 36.7.

Now consider a point source of light placed at point O in Figure 36.6b, where O is any point on the principal axis to the left of C. Two diverging light rays that originate at O are shown. After reflecting from the mirror, these rays converge and cross at the image point I. They then continue to diverge from I as if an object were there. As a result, the image at point I is real.

In this section, we shall consider only rays that diverge from the object and make a small angle with the principal axis. Such rays are called **paraxial rays**. All paraxial rays reflect through the image point as shown in Figure 36.6b. Rays that are far from the principal axis such as those shown in Figure 36.8 converge to other points on the principal axis, producing a blurred image. This effect, called *spherical aberration*, is present to some extent for any spherical mirror and is discussed in Section 36.5.

If the object distance p and radius of curvature R are known, we can use Figure 36.9 (page 1094) to calculate the image distance q. By convention, these distances are measured from point V. Figure 36.9 shows two rays leaving the tip of the object. The red ray passes through the center of curvature C of the mirror, hitting the mirror perpendicular to the mirror surface and reflecting back on itself. The blue ray strikes the mirror at its center (point V) and reflects as shown, obeying the law of reflection. The image of the tip of the arrow is located at the point where these two rays intersect. From the large, red right triangle in Figure 36.9, we see that tan  $\theta = h/p$ , and from the yellow right triangle, we see that tan  $\theta = -h'/q$ . The



**Figure 36.7** Reflection of parallel rays from a concave mirror.



Figure 36.8 A spherical concave mirror exhibits spherical aberration when light rays make large angles with the principal axis.

#### Pitfall Prevention 36.1

Magnification Does Not Necessarily Imply Enlargement For optical elements other than flat mirrors, the magnification defined in Equation 36.2 can result in a number with a magnitude larger *or* smaller than 1. Therefore, despite the cultural usage of the word *magnification* to mean *enlargement*, the image could be smaller than the object.



**Figure 36.9** The image formed by a spherical concave mirror when the object *O* lies outside the center of curvature *C*. This geometric construction is used to derive Equation 36.4.

negative sign is introduced because the image is inverted, so h' is taken to be negative. Therefore, from Equation 36.1 and these results, we find that the magnification of the image is

$$M = \frac{h'}{h} = -\frac{q}{p}$$
(36.2)

Also notice from the green right triangle in Figure 36.9 and the smaller red right triangle that

$$\tan \alpha = \frac{-h'}{R-q}$$
 and  $\tan \alpha = \frac{h}{p-R}$ 

from which it follows that

 $\frac{h'}{h} = -\frac{R-q}{p-R}$  (36.3)

Comparing Equations 36.2 and 36.3 gives

$$\frac{R-q}{p-R} = \frac{q}{p}$$

Simple algebra reduces this expression to

 $\frac{1}{p} + \frac{1}{q} = \frac{2}{R}$  (36.4)

which is called the *mirror equation*. We present a modified version of this equation shortly.

If the object is very far from the mirror—that is, if p is so much greater than R that p can be said to approach infinity—then  $1/p \approx 0$ , and Equation 36.4 shows that  $q \approx R/2$ . That is, when the object is very far from the mirror, the image point is halfway between the center of curvature and the center point on the mirror as shown in Figure 36.10. The incoming rays from the object are essentially parallel in this figure because the source is assumed to be very far from the mirror. The image point in this special case is called the **focal point** *F*, and the image distance is called the **focal length** *f*, where

Focal length 🕨

$$f = \frac{R}{2} \tag{36.5}$$

The focal point is a distance f from the mirror, as noted in Figure 36.10. In Figure 36.7, the beams are traveling parallel to the principal axis and the mirror reflects all beams to the focal point.



iStockphoto.com/Maria Barsk

A satellite-dish antenna is a concave reflector for television signals from a satellite in orbit around the Earth. Because the satellite is so far away, the signals are carried by microwaves that are parallel when they arrive at the dish. These waves reflect from the dish and are focused on the receiver.

Mirror equation in terms of radius of curvature



**Figure 36.10** Light rays from a distant object  $(p \rightarrow \infty)$  reflect from a concave mirror through the focal point *F*.

#### **Pitfall Prevention 36.2**

The Focal Point Is Not the Focus Point The focal point *is usually not* the point at which the light rays focus to form an image. The focal point is determined solely by the curvature of the mirror; it does not depend on the location of the object. In general, an image forms at a point different from the focal point of a mirror (or a lens), as in Figure 36.9. The *only* exception is when the object is located infinitely far away from the mirror.

Because the focal length is a parameter particular to a given mirror, it can be used to compare one mirror with another. Combining Equations 36.4 and 36.5, the **mirror equation** can be expressed in terms of the focal length:

 $\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$ 

(36.6)

 Mirror equation in terms of focal length

Notice that the focal length of a mirror depends only on the curvature of the mirror and not on the material from which the mirror is made because the formation of the image results from rays reflected from the surface of the material. The situation is different for lenses; in that case, the light actually passes through the material and the focal length depends on the type of material from which the lens is made. (See Section 36.4.)

# **Convex Mirrors**

Figure 36.11 shows the formation of an image by a **convex mirror**, that is, one silvered so that light is reflected from the outer, convex surface. It is sometimes called a **diverging mirror** because the rays from any point on an object diverge after reflection as though they were coming from some point behind the mirror. The image in Figure 36.11 is virtual because the reflected rays only appear to originate at the image point as indicated by the dashed lines. Furthermore, the image is always upright and smaller than the object. This type of mirror is often used in stores to foil shoplifters. A single mirror can be used to survey a large field of view because it forms a smaller image of the interior of the store.

We do not derive any equations for convex spherical mirrors because Equations 36.2, 36.4, and 36.6 can be used for either concave or convex mirrors if we adhere to a strict sign convention. We will refer to the region in which light rays originate and move toward the mirror as the *front side* of the mirror and the other side as the



**Figure 36.11** Formation of an image by a spherical convex mirror.

#### Pitfall Prevention 36.3

Watch Your Signs Success in working mirror problems (as well as problems involving refracting surfaces and thin lenses) is largely determined by proper sign choices when substituting into the equations. The best way to success is to work a multitude of problems on your own.

Front, or	Back, or	
real, side	virtual, side	
<i>p</i> and <i>q</i> positive	<i>þ</i> and <i>q</i> negative	
Incident light	No light	
Reflected light		
Flat, convex, or concave		

mirrored surface

**Figure 36.12** Signs of p and q for all types of mirrors.

#### Pitfall Prevention 36.4

**Choose a Small Number of Rays** A *huge* number of light rays leave each point on an object (and pass through each point on an image). In a ray diagram, which displays the characteristics of the image, we choose only a few rays that follow simply stated rules. Locating the image by calculation complements the diagram.



Table 36.1         Sign Conventions for Mirrors			
Quantity	Positive When	Negative When	
Object location $(p)$	object is in front of mirror (real object).	object is in back of mirror (virtual object).	
Image location $(q)$	image is in front of mirror (real image).	image is in back of mirror (virtual image).	
Image height $(h')$	image is upright.	image is inverted.	
Focal length $(f)$ and radius $(R)$	mirror is concave.	mirror is convex.	
Magnification (M)	image is upright.	image is inverted.	

*back side.* For example, in Figures 36.9 and 36.11, the side to the left of the mirrors is the front side and the side to the right of the mirrors is the back side. Figure 36.12 states the sign conventions for object and image distances for any type of mirror, and Table 36.1 summarizes the sign conventions for all quantities. One entry in the table, a *virtual object*, is formally introduced in Section 36.4.

# **Ray Diagrams for Mirrors**

The positions and sizes of images formed by mirrors can be conveniently determined with *ray diagrams*. These pictorial representations reveal the nature of the image and can be used to check results calculated from the mathematical representation using the mirror and magnification equations. To draw a ray diagram, you must know the position of the object and the locations of the mirror's focal point and center of curvature. You then draw three rays to locate the image as shown by the examples in Figure 36.13. These rays all start from the same object point and are drawn as follows. You may choose any point on the object; here, let's choose the top of the object for simplicity. For concave mirrors (see Figs. 36.13a and 36.13b), draw the following three rays:

- Ray 1 is drawn from the top of the object parallel to the principal axis and is reflected through the focal point *F*.
- Ray 2 is drawn from the top of the object through the focal point (or as if coming from the focal point if *p* < *f* ) and is reflected parallel to the principal axis.
- Ray 3 is drawn from the top of the object through the center of curvature C (or as if coming from the center C if p < 2f) and is reflected back on itself.

The intersection of any two of these rays locates the image. The third ray serves as a check of the construction. The image point obtained in this fashion must always agree with the value of *q* calculated from the mirror equation. With concave mirrors, notice what happens as the object is moved closer to the mirror. The real, inverted image in Figure 36.13a moves to the left and becomes larger as the object approaches the focal point. When the object lies between the focal point, the image is infinitely far to the left. When the object lies between the focal point and the mirror surface as shown in Figure 36.13b, however, the image is to the right, behind the object, and virtual, upright, and enlarged. This latter situation applies when you use a shaving mirror or a makeup mirror, both of which are concave. Your face is closer to the mirror than the focal point, and you see an upright, enlarged image of your face.

For convex mirrors (see Fig. 36.13c), draw the following three rays:

• Ray 1 is drawn from the top of the object parallel to the principal axis and is reflected *away from* the focal point *F*.





- Ray 2 is drawn from the top of the object toward the focal point on the back side of the mirror and is reflected parallel to the principal axis.
- Ray 3 is drawn from the top of the object toward the center of curvature *C* on the back side of the mirror and is reflected back on itself.

#### Chapter 36 Image Formation



Figure 36.14 (Quick Quiz 36.3) What type of mirror is shown here?

In a convex mirror, the image of an object is always virtual, upright, and reduced in size as shown in Figure 36.13c. In this case, as the object distance decreases, the virtual image increases in size and moves away from the focal point toward the mirror as the object approaches the mirror. You should construct other diagrams to verify how image position varies with object position.

**Q** uick Quiz 36.2 You wish to start a fire by reflecting sunlight from a mirror onto some paper under a pile of wood. Which would be the best choice for the type of mirror? (a) flat (b) concave (c) convex

**Q** uick Quiz 36.3 Consider the image in the mirror in Figure 36.14. Based on the appearance of this image, would you conclude that (a) the mirror is concave and the image is real, (b) the mirror is concave and the image is virtual, (c) the mirror is convex and the image is real, or (d) the mirror is convex and the

ė image is virtual?

#### The Image Formed by a Concave Mirror Example 36.3

A spherical mirror has a focal length of +10.0 cm.

(A) Locate and describe the image for an object distance of 25.0 cm.

#### SOLUTION

**Conceptualize** Because the focal length of the mirror is positive, it is a concave mirror (see Table 36.1). We expect the possibilities of both real and virtual images.

**Categorize** Because the object distance in this part of the problem is larger than the focal length, we expect the image to be real. This situation is analogous to that in Figure 36.13a. 

<b>Analyze</b> Find the image distance by using Equation 36.6:	$\frac{1}{q} = \frac{1}{f} - \frac{1}{p}$
NOU	$\frac{1}{q} = \frac{1}{10.0 \text{ cm}} - \frac{1}{25.0 \text{ cm}}$
S	q = 16.7  cm
Find the magnification of the image from Equation 36.2:	$M = -\frac{q}{p} = -\frac{16.7 \text{ cm}}{25.0 \text{ cm}} = -0.667$

**Finalize** The absolute value of M is less than unity, so the image is smaller than the object, and the negative sign for M tells us that the image is inverted. Because q is positive, the image is located on the front side of the mirror and is real. Look into the bowl of a shiny spoon or stand far away from a shaving mirror to see this image.

(B) Locate and describe the image for an object distance of 10.0 cm.

#### SOLUTION

**Categorize** Because the object is at the focal point, we expect the image to be infinitely far away.

<b>Analyze</b> Find the image distance by using Equation 36.6:	$\frac{1}{q} = \frac{1}{f} - \frac{1}{p}$
	$\frac{1}{q} = \frac{1}{10.0 \text{ cm}} - \frac{1}{10.0 \text{ cm}}$
	$q = \infty$

1098

## **36.3** continued

**Finalize** This result means that rays originating from an object positioned at the focal point of a mirror are reflected so that the image is formed at an infinite distance from the mirror; that is, the rays travel parallel to one another after reflection. Such is the situation in a flashlight or an automobile headlight, where the bulb filament is placed at the focal point of a reflector, producing a parallel beam of light.

(C) Locate and describe the image for an object distance of 5.00 cm.

## SOLUTION

**Categorize** Because the object distance is smaller than the focal length, we expect the image to be virtual. This situation is analogous to that in Figure 36.13b.

**Analyze** Find the image distance by using Equation 36.6:

Find the magnification of the image from Equation 36.2:

$$\frac{1}{q} = \frac{1}{f} - \frac{1}{p}$$

$$\frac{1}{q} = \frac{1}{10.0 \text{ cm}} - \frac{1}{5.00 \text{ cm}}$$

$$q = -10.0 \text{ cm}$$

$$M = -\frac{q}{p} = -\left(\frac{-10.0 \text{ cm}}{5.00 \text{ cm}}\right) = +2.00$$

**Finalize** The image is twice as large as the object, and the positive sign for *M* indicates that the image is upright (see Fig. 36.13b). The negative value of the image distance tells us that the image is virtual, as expected. Put your face close to a shaving mirror to see this type of image.

WHAT IF? Suppose you set up the bottle and mirror apparatus illustrated in Figure 36.13a and described here in part (A). While adjusting the apparatus, you accidentally bump the bottle and it begins to slide toward the mirror at speed  $v_b$ . How fast does the image of the bottle move?

**Answer** Solve the mirror equation, Equation 36.6, for *q*:

Differentiate this equation with respect to time to find the velocity of the image:

Substitute numerical values from part (A):

$$q = \frac{fp}{p-f}$$
(1)  $v_q = \frac{dq}{dt} = \frac{d}{dt} \left(\frac{fp}{p-f}\right) = -\frac{f^2}{(p-f)^2} \frac{dp}{dt} = -\frac{f^2 v_p}{(p-f)^2}$ 
(10.0 cm)²  $v_p$ 

$$v_q = -\frac{(10.0 \text{ cm})^2}{(25.0 \text{ cm} - 10.0 \text{ cm})^2} = -0.444 v_p$$

Therefore, the speed of the image is less than that of the object in this case.

We can see two interesting behaviors of the function for  $v_q$  in Equation (1). First, the velocity is negative regardless of the value of p or f. Therefore, if the object moves toward the mirror, the image moves toward the left in Figure 36.13 without regard for the side of the focal point at which the object is located or whether the mirror is concave or convex. Second, in the limit of  $p \rightarrow 0$ , the velocity  $v_q$  approaches  $-v_p$ . As the object moves very close to the mirror, the mirror looks like a plane mirror, the image is as far behind the mirror as the object is in front, and both the object and the image move with the same speed.

# Example 36.4 The Image Formed by a Convex Mirror

An automobile rearview mirror as shown in Figure 36.15 (page 1100) shows an image of a truck located 10.0 m from the mirror. The focal length of the mirror is -0.60 m.

(A) Find the position of the image of the truck.

#### **36.4** continued

#### SOLUTION

**Conceptualize** This situation is depicted in Figure 36.13c.

**Categorize** Because the mirror is convex, we expect it to form an upright, reduced, virtual image for any object position.

**Figure 36.15** (Example 36.4) An approaching truck is seen in a convex mirror on the right side of an automobile. Notice that the image of the truck is in focus, but the frame of the mirror is not, which demonstrates that the image is not at the same location as the mirror surface.

 $\frac{1}{q} = \frac{1}{f} - \frac{1}{p}$ 

 $\frac{1}{q} = \frac{1}{-0.60 \text{ m}} -$ 

q = -0.57 m

 $M = -\frac{q}{p} =$ 

10.0 m



+0.057

**Analyze** Find the image distance by using Equation 36.6:

(B) Find the magnification of the image.

#### SOLUTION

Analyze Use Equation 36.2:

**Finalize** The negative value of q in part (A) indicates that the image is virtual, or behind the mirror, as shown in Figure 36.13c. The magnification in part (B) indicates that the image is much smaller than the truck and is upright because M is positive. The image is reduced in size, so the truck appears to be farther away than it actually is. Because of the image's small size, these mirrors carry the inscription, "Objects in this mirror are closer than they appear." Look into your rearview mirror or the back side of a shiny spoon to see an image of this type.

Rays making small angles with the principal axis diverge from a point object at *O* and are refracted through the image point *I*.



**Figure 36.16** An image formed by refraction at a spherical surface.

# 36.3 Images Formed by Refraction

In this section, we describe how images are formed when light rays follow the wave under refraction model at the boundary between two transparent materials. Consider two transparent media having indices of refraction  $n_1$  and  $n_2$ , where the boundary between the two media is a spherical surface of radius R (Fig. 36.16). We assume the object at O is in the medium for which the index of refraction is  $n_1$ . Let's consider the paraxial rays leaving O. As we shall see, all such rays are refracted at the spherical surface and focus at a single point I, the image point.

Figure 36.17 shows a single ray leaving point *O* and refracting to point *I*. Snell's law of refraction applied to this ray gives

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Because  $\theta_1$  and  $\theta_2$  are assumed to be small, we can use the small-angle approximation  $\sin \theta \approx \theta$  (with angles in radians) and write Snell's law as

$$n_1\theta_1 = n_2\theta_2$$

We know that an exterior angle of any triangle equals the sum of the two opposite interior angles, so applying this rule to triangles *OPC* and *PIC* in Figure 36.17 gives

 $\theta_1 = \alpha + \beta$  $\beta = \theta_2 + \gamma$ 



**Figure 36.17** Geometry used to derive Equation 36.8, assuming  $n_1 < n_2$ .

Combining all three expressions and eliminating  $\theta_1$  and  $\theta_2$  gives

$$n_1 \alpha + n_2 \gamma = (n_2 - n_1)\beta$$
 (36.7)

Figure 36.17 shows three right triangles that have a common vertical leg of length d. For paraxial rays (unlike the relatively large-angle ray shown in Fig. 36.17), the horizontal legs of these triangles are approximately p for the triangle containing angle  $\alpha$ , R for the triangle containing angle  $\beta$ , and q for the triangle containing angle  $\gamma$ . In the small-angle approximation,  $\tan \theta \approx \theta$ , so we can write the approximate relationships from these triangles as follows:

$$\tan \alpha \approx \alpha \approx \frac{d}{p}$$
  $\tan \beta \approx \beta \approx \frac{d}{R}$   $\tan \gamma \approx \gamma \approx \frac{d}{q}$ 

Substituting these expressions into Equation 36.7 and dividing through by d gives

$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R}$$
(36.8)

For a fixed object distance p, the image distance q is independent of the angle the ray makes with the axis. This result tells us that all paraxial rays focus at the same point I.

As with mirrors, we must use a sign convention to apply Equation 36.8 to a variety of cases. We define the side of the surface in which light rays originate as the front side. The other side is called the back side. In contrast with mirrors, where real images are formed in front of the reflecting surface, real images are formed by refraction of light rays to the back of the surface. Because of the difference in location of real images, the refraction sign conventions for q and R are opposite the reflection sign conventions. For example, q and R are both positive in Figure 36.17. The sign conventions for spherical refracting surfaces are summarized in Table 36.2.

We derived Equation 36.8 from an assumption that  $n_1 < n_2$  in Figure 36.17. This assumption is not necessary, however. Equation 36.8 is valid regardless of which index of refraction is greater.

Table 36.2         Sign Conventions for Refracting Surfaces			
Quantity		Positive When	Negative When
Object location	n ( <i>p</i> )	object is in front of surface (real object).	object is in back of surface (virtual object).
Image location	( <i>q</i> )	image is in back of surface (real image).	image is in front of surface (virtual image).
Image height (	h')	image is upright.	image is inverted.
Radius (R)		center of curvature is in back of surface.	center of curvature is in front of surface.

 Relation between object and image distance for a refracting surface The image is virtual and on the same side of the surface as the object.

# $n_1 > n_2$ $n_1$ $n_2$ p

**Figure 36.18** The image formed by a flat refracting surface. All rays are assumed to be paraxial.

# Flat Refracting Surfaces

If a refracting surface is flat, then R is infinite and Equation 36.8 reduces to

$$\frac{n_1}{p} = -\frac{n_2}{q}$$

$$q = -\frac{n_2}{n_1}p$$
(36.9)

From this expression, we see that the sign of q is opposite that of p. Therefore, according to Table 36.2, the image formed by a flat refracting surface is on the same side of the surface as the object as illustrated in Figure 36.18 for the situation in which the object is in the medium of index  $n_1$  and  $n_1$  is greater than  $n_2$ . In this case, a virtual image is formed between the object and the surface. If  $n_1$  is less than  $n_2$ , the rays on the back side diverge from one another at smaller angles than those in Figure 36.18. As a result, the virtual image is formed to the left of the object.

**1** uick Quiz 36.4 In Figure 36.16, what happens to the image point *I* as the object point *O* is moved to the right from very far away to very close to the refracting surface? (a) It is always to the right of the surface. (b) It is always to the left of the surface. (c) It starts off to the left, and at some position of *O*, *I* moves to the right of the surface. (d) It starts off to the right, and at some position of *O*, *I* moves to the left of the surface.

uick Quiz 36.5 In Figure 36.18, what happens to the image point *I* as the object point *O* moves toward the right-hand surface of the material of index of refraction n₁? (a) It always remains between *O* and the surface, arriving at the surface just as *O* does. (b) It moves toward the surface more slowly than *O* so that eventually *O* passes *I*. (c) It approaches the surface and then moves to the right of the surface.

# Conceptual Example 36.5 Let's Go Scuba Diving!

Objects viewed under water with the naked eye appear blurred and out of focus. A scuba diver using a mask, however, has a clear view of underwater objects. Explain how that works, using the information that the indices of refraction of the cornea, water, and air are 1.376, 1.333, and 1.000 29, respectively.

#### SOLUTION

Because the cornea and water have almost identical indices of refraction, very little refraction occurs when a person under water views objects with the naked eye. In this case, light rays from an object focus behind the retina, resulting in a blurred image. When a mask is used, however, the air space between the eye and the mask surface provides the normal amount of refraction at the eye–air interface; consequently, the light from the object focuses on the retina.

## Example 36.6

# Gaze into the Crystal Ball

A set of coins is embedded in a spherical plastic paperweight having a radius of 3.0 cm. The index of refraction of the plastic is  $n_1 = 1.50$ . One coin is located 2.0 cm from the edge of the sphere (Fig. 36.19). Find the position of the image of the coin. **Figure 36.19** (Example 36.6) Light rays from a coin embedded in a plastic sphere form a virtual image between the surface of the object and the sphere surface. Because the object is inside the sphere, the front of the refracting surface is the *interior* of the sphere.



#### SOLUTION

**Conceptualize** Because  $n_1 > n_2$ , where  $n_2 = 1.00$  is the index of refraction for air, the rays originating from the coin in Figure 36.19 are refracted away from the normal at the surface and diverge outward. Extending the outgoing rays backward shows an image point within the sphere.

### 36.6 continued

**Categorize** Because the light rays originate in one material and then pass through a curved surface into another material, this example involves an image formed by refraction.

	• • • • • • • • • • • • • • • • • • • •
<b>Analyze</b> Apply Equation 36.8, noting from Table 36.2 that <i>R</i> is negative: Substitute numerical values and solve for <i>q</i> :	$\frac{n_2}{q} = \frac{n_2 - n_1}{R} - \frac{n_1}{p}$ $\frac{1}{q} = \frac{1.00 - 1.50}{-3.0 \text{ cm}} - \frac{1.50}{2.0 \text{ cm}}$
	q = -1.7 cm

Finalize The negative sign for q indicates that the image is in front of the surface; in other words, it is in the same medium as the object as shown in Figure 36.19. Therefore, the image must be virtual. (See Table 36.2.) The coin appears to be closer to the paperweight surface than it actually is.

## Example 36.7

## The One That Got Away

A small fish is swimming at a depth d below the surface of a pond (Fig. 36.20).

(A) What is the apparent depth of the fish as viewed from directly overhead?

#### SOLUTION

**Conceptualize** Because  $n_1 > n_2$ , where  $n_2 = 1.00$  is the index of refraction for air, the rays originating from the fish in Figure 36.20a are refracted away from the normal at the surface and diverge outward. Extending the outgoing rays backward shows an image point under the water.

**Figure 36.20** (Example 36.7) (a) The apparent depth q of the fish is less than the true depth d. All rays are assumed to be paraxial. (b) Your face appears to the fish to be higher above the surface than it is.

**Categorize** Because the refracting surface is flat, *R* is infinite. Hence, we can use Equation 36.9 to determine the location of the image with p = d.

**Analyze** Use the indices of refraction given in Figure  $q = -\frac{n_2}{n_1}p = -\frac{1.00}{1.33}d = -0.752d$ 36.20a in Equation 36.9: 

**Finalize** Because q is negative, the image is virtual as indicated by the dashed lines in Figure 36.20a. The apparent depth is approximately three-fourths the actual depth.

(B) If your face is a distance d above the water surface, at what apparent distance above the surface does the fish see your face?

#### SOLUTION

**Conceptualize** The light rays from your face are shown in Figure 36.20b. Because the rays refract toward the normal, your face appears higher above the surface than it actually is.

**Categorize** Because the refracting surface is flat, R is infinite. Hence, we can use Equation 36.9 to determine the location of the image with p = d.

**Analyze** Use Equation 36.9 to find the image distance:

	<i>n</i>	1 2 2	
a =	$-\frac{n_2}{m}h =$	$-\frac{1.55}{d} =$	-1.33d
9	$n_1 P$	1.00	1.000

**Finalize** The negative sign for q indicates that the image is in the medium from which the light originated, which is the air above the water.



#### 36.7 continued

WHAT IF? What if you look more carefully at the fish and measure its apparent *height* from its upper fin to its lower fin? Is the apparent height h' of the fish different from the actual height h?

**Answer** Because all points on the fish appear to be fractionally closer to the observer, we expect the height to be smaller. Let the distance *d* in Figure 36.20a be measured to the top fin and let the distance to the bottom fin be d + h. Then the images of the top and bottom of the fish are located at

$$q_{\rm top} = -0.752d$$
$$q_{\rm bottom} = -0.752(d+h)$$

The apparent height h' of the fish is

$$h' = q_{\text{top}} - q_{\text{bottom}} = -0.752d - [-0.752(d+h)] = 0.752h$$

Hence, the fish appears to be approximately three-fourths its actual height.



**Figure 36.21** To locate the image formed by a lens, we use the virtual image at  $I_1$  formed by surface 1 as the object for the image formed by surface 2. The point  $C_1$  is the center of curvature of surface 1.

# **36.4** Images Formed by Thin Lenses

Lenses are commonly used to form images by refraction in optical instruments such as cameras, telescopes, and microscopes. Let's use what we just learned about images formed by refracting surfaces to help locate the image formed by a lens. Light passing through a lens experiences refraction at two surfaces. The development we shall follow is based on the notion that the image formed by one refracting surface serves as the object for the second surface. We shall analyze a thick lens first and then let the thickness of the lens be approximately zero.

Consider a lens having an index of refraction n and two spherical surfaces with radii of curvature  $R_1$  and  $R_2$  as in Figure 36.21. (Notice that  $R_1$  is the radius of curvature of the lens surface the light from the object reaches first and  $R_2$  is the radius of curvature of the other surface of the lens.) An object is placed at point O at a distance  $p_1$  in front of surface 1.

Let's begin with the image formed by surface 1. Using Equation 36.8 and assuming  $n_1 = 1$  because the lens is surrounded by air, we find that the image  $I_1$  formed by surface 1 satisfies the equation

$$\frac{1}{p_1} + \frac{n}{q_1} = \frac{n-1}{R_1}$$
(36.10)

where  $q_1$  is the position of the image formed by surface 1. If the image formed by surface 1 is virtual (Fig. 36.21a), then  $q_1$  is negative; it is positive if the image is real (Fig. 36.21b).

Now let's apply Equation 36.8 to surface 2, taking  $n_1 = n$  and  $n_2 = 1$ . (We make this switch in index because the light rays approaching surface 2 are *in the material of the lens*, and this material has index *n*.) Taking  $p_2$  as the object distance for surface 2 and  $q_2$  as the image distance gives

$$\frac{n}{p_2} + \frac{1}{q_2} = \frac{1-n}{R_2}$$
(36.11)

We now introduce mathematically that the image formed by the first surface acts as the object for the second surface. If the image from surface 1 is virtual as in Figure 36.21a, we see that  $p_2$ , measured from surface 2, is related to  $q_1$  as  $p_2 = -q_1 + t$ , where t is the thickness of the lens. Because  $q_1$  is negative,  $p_2$  is a positive number. Figure 36.21b shows the case of the image from surface 1 being real. In this situation,  $q_1$  is positive and  $p_2 = -q_1 + t$ , where the image from surface 1 acts as a **virtual object**, so  $p_2$  is negative. Regardless of the type of image from surface 1, the same equation describes the location of the object for surface 2 based on our sign

convention. For a *thin* lens (one whose thickness is small compared with the radii of curvature), we can neglect *t*. In this approximation,  $p_2 = -q_1$  for either type of image from surface 1. Hence, Equation 36.11 becomes

$$-\frac{n}{q_1} + \frac{1}{q_2} = \frac{1-n}{R_2}$$
(36.12)

Adding Equations 36.10 and 36.12 gives

$$\frac{1}{p_1} + \frac{1}{q_2} = (n-1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$$
(36.13)

For a thin lens, we can omit the subscripts on  $p_1$  and  $q_2$  in Equation 36.13 and call the object distance p and the image distance q as in Figure 36.22. Hence, we can write Equation 36.13 as

$$\frac{1}{p} + \frac{1}{q} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
(36.14)

This expression relates the image distance q of the image formed by a thin lens to the object distance p and to the lens properties (index of refraction and radii of curvature). It is valid only for paraxial rays and only when the lens thickness is much less than  $R_1$  and  $R_2$ .

The **focal length** f of a thin lens is the image distance that corresponds to an infinite object distance, just as with mirrors. Letting p approach  $\infty$  and q approach f in Equation 36.14, we see that the inverse of the focal length for a thin lens is

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
(36.15)

This relationship is called the **lens-makers' equation** because it can be used to determine the values of  $R_1$  and  $R_2$  needed for a given index of refraction and a desired focal length *f*. Conversely, if the index of refraction and the radii of curvature of a lens are given, this equation can be used to find the focal length. If the lens is immersed in something other than air, this same equation can be used, with *n* interpreted as the *ratio* of the index of refraction of the lens material to that of the surrounding fluid.

Using Equation 36.15, we can write Equation 36.14 in a form identical to Equation 36.6 for mirrors:

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$
 (36.16)

This equation, called the **thin lens equation**, can be used to relate the image distance and object distance for a thin lens.

Because light can travel in either direction through a lens, each lens has two focal points, one for light rays passing through in one direction and one for rays passing through in the other direction. These two focal points are illustrated in Figure 36.23 for a plano-convex lens (a converging lens) and a plano-concave lens (a diverging lens).





Figure 36.22 Simplified geometry for a thin lens.

Lens-makers' equation

#### Pitfall Prevention 36.5

A Lens Has Two Focal Points but Only One Focal Length A lens has a focal point on each side, front and back. There is only one focal length, however; each of the two focal points is located the same distance from the lens (Fig. 36.23). As a result, the lens forms an image of an object at the same point if it is turned around. In practice, that might not happen because real lenses are not infinitesimally thin.

**Figure 36.23** Parallel light rays pass through (a) a converging lens and (b) a diverging lens. The focal length is the same for light rays passing through a given lens in either direction. Both focal points  $F_1$  and  $F_2$  are the same distance from the lens.

#### 1106 Chapter 36 Image Formation

Front, or virtual, side	$\bigwedge$	Back, or real, side
<i>p</i> positive <i>q</i> negative		<i>p</i> negative <i>q</i> positive
Incident light		Refracted light
	V	<ul> <li>Converging or diverging lens</li> </ul>

**Figure 36.24** A diagram for obtaining the signs of p and q for a thin lens. (This diagram also applies to a refracting surface.)



Figure 36.25 Various lens shapes. (a) Converging lenses have a positive focal length and are thickest at the middle. (b) Diverging lenses have a negative focal length and are thickest at the edges.

Table 36.3         Sign Conventions for Thin Lenses			
Quantity	Positive When	Negative When	
Object location (	<ul><li>b) object is in front of lens (real object).</li></ul>	object is in back of lens (virtual object).	
Image location (q	y) image is in back of lens (real image).	image is in front of lens (virtual image).	
Image height $(h')$	image is upright.	image is inverted.	
$R_1$ and $R_2$	center of curvature is in back of lens.	center of curvature is in front of lens.	
Focal length (f)	a converging lens.	a diverging lens.	

Figure 36.24 is useful for obtaining the signs of p and q, and Table 36.3 gives the sign conventions for thin lenses. These sign conventions are the *same* as those for refracting surfaces (see Table 36.2).

Various lens shapes are shown in Figure 36.25. Notice that a converging lens is thicker at the center than at the edge, whereas a diverging lens is thinner at the center than at the edge.

# Magnification of Images

Consider a thin lens through which light rays from an object pass. As with mirrors (Eq. 36.2), a geometric construction shows that the lateral magnification of the image is

$$M = \frac{h'}{h} = -\frac{q}{p} \tag{36.17}$$

From this expression, it follows that when M is positive, the image is upright and on the same side of the lens as the object. When M is negative, the image is inverted and on the side of the lens opposite the object.

# **Ray Diagrams for Thin Lenses**

Ray diagrams are convenient for locating the images formed by thin lenses or systems of lenses. They also help clarify our sign conventions. Figure 36.26 shows such diagrams for three single-lens situations.

To locate the image of a *converging* lens (Figs. 36.26a and 36.26b), the following three rays are drawn from the top of the object:



Figure 36.26 Ray diagrams for locating the image formed by a thin lens.

- Ray 1 is drawn parallel to the principal axis. After being refracted by the lens, this ray passes through the focal point on the back side of the lens.
- Ray 2 is drawn through the focal point on the front side of the lens (or as if coming from the focal point if p < f) and emerges from the lens parallel to the principal axis.
- Ray 3 is drawn through the center of the lens and continues in a straight line.

To locate the image of a *diverging* lens (Fig. 36.26c), the following three rays are drawn from the top of the object:

- Ray 1 is drawn parallel to the principal axis. After being refracted by the lens, this ray emerges directed away from the focal point on the front side of the lens.
- Ray 2 is drawn in the direction toward the focal point on the back side of the lens and emerges from the lens parallel to the principal axis.
- Ray 3 is drawn through the center of the lens and continues in a straight line.

For the converging lens in Figure 36.26a, where the object is to the left of the focal point (p > f), the image is real and inverted. When the object is between the focal point and the lens (p < f) as in Figure 36.26b, the image is virtual and upright. In that case, the lens acts as a magnifying glass, which we study in more detail in Section 36.8. For a diverging lens (Fig. 36.26c), the image is always virtual and upright, regardless of where the object is placed. These geometric constructions are reasonably accurate only if the distance between the rays and the principal axis is much less than the radii of the lens surfaces.

Refraction occurs only at the surfaces of the lens. A certain lens design takes advantage of this behavior to produce the *Fresnel lens*, a powerful lens without great thickness. Because only the surface curvature is important in the refracting qualities of the lens, material in the middle of a Fresnel lens is removed as shown in the cross sections of lenses in Figure 36.27. Because the edges of the curved segments cause some distortion, Fresnel lenses are generally used only in situations in which image quality is less important than reduction of weight. A classroom overhead projector often uses a Fresnel lens; the circular edges between segments of the lens can be seen by looking closely at the light projected onto a screen.

uick Quiz 36.6 What is the focal length of a pane of window glass? (a) zero
(b) infinity (c) the thickness of the glass (d) impossible to determine



**Figure 36.27** A side view of the construction of a Fresnel lens. (a) The thick lens refracts a light ray as shown. (b) Lens material in the bulk of the lens is cut away, leaving only the material close to the curved surface. (c) The small pieces of remaining material are moved to the left to form a flat surface on the left of the Fresnel lens with ridges on the right surface. From a front view, these ridges would be circular in shape. This new lens refracts light in the same way as the lens in (a). (d) A Fresnel lens used in a lighthouse shows several segments with the ridges discussed in (c).

### Example 36.8

# Images Formed by a Converging Lens

A converging lens has a focal length of 10.0 cm.

(A) An object is placed 30.0 cm from the lens. Construct a ray diagram, find the image distance, and describe the image.

# SOLUTION

**Conceptualize** Because the lens is converging, the focal length is positive (see Table 36.3). We expect the possibilities of both real and virtual images.

Categorize Because the object distance is larger than the focal length, we expect the image to be real. The ray diagram for this situation is shown in Figure 36.28a.

Figure 36.28 (Example 36.8) An image is formed by a converging lens.

**Analyze** Find the image distance by using Equation 36.16:



Finalize The positive sign for the image distance tells us that the image is indeed real and on the back side of the lens. The magnification of the image tells us that the image is reduced in height by one half, and the negative sign for M tells us that the image is inverted.

(B) An object is placed 10.0 cm from the lens. Find the image distance and describe the image.

#### SOLUTION

**Categorize** Because the object is at the focal point, we expect the image to be infinitely far away.

<b>Analyze</b> Find the image distance by using Equation 36.16:	$\frac{1}{q} = \frac{1}{f} - \frac{1}{p}$
	$\frac{1}{q} = \frac{1}{10.0 \text{ cm}} - \frac{1}{10.0 \text{ cm}}$
	$q = \infty$

Finalize This result means that rays originating from an object positioned at the focal point of a lens are refracted so that the image is formed at an infinite distance from the lens; that is, the rays travel parallel to one another after refraction.

(C) An object is placed 5.00 cm from the lens. Construct a ray diagram, find the image distance, and describe the image.

#### SOLUTION

**Categorize** Because the object distance is smaller than the focal length, we expect the image to be virtual. The ray diagram for this situation is shown in Figure 36.28b.



#### 36.8 continued

**Analyze** Find the image distance by using Equation 36.16:

$$\frac{1}{q} = \frac{1}{f} - \frac{1}{p}$$

$$\frac{1}{q} = \frac{1}{10.0 \text{ cm}} - \frac{1}{5.00 \text{ cm}}$$

$$q = -10.0 \text{ cm}$$

$$M = -\frac{q}{p} = -\left(\frac{-10.0 \text{ cm}}{5.00 \text{ cm}}\right) = +2.00$$

Find the magnification of the image from Equation 36.17:

**Finalize** The negative image distance tells us that the image is virtual and formed on the side of the lens from which the light is incident, the front side. The image is enlarged, and the positive sign for *M* tells us that the image is upright.

WHAT IF? What if the object moves right up to the lens surface so that  $p \rightarrow 0$ ? Where is the image?

**Answer** In this case, because  $p \ll R$ , where *R* is either of the radii of the surfaces of the lens, the curvature of the lens can be ignored. The lens should appear to have the same effect as a flat piece of material, which suggests that the image is just on the front side of the lens, at q = 0. This conclusion can be verified mathematically by rearranging the thin lens equation:

$$\frac{1}{q} = \frac{1}{f} - \frac{1}{p}$$

If we let  $p \rightarrow 0$ , the second term on the right becomes very large compared with the first and we can neglect 1/f. The equation becomes

$$\frac{1}{q} = -\frac{1}{p} \rightarrow q = -p = 0$$

Therefore, q is on the front side of the lens (because it has the opposite sign as p) and right at the lens surface.

# Example 36.9 Images Formed by a Diverging Lens

A diverging lens has a focal length of 10.0 cm.

(A) An object is placed 30.0 cm from the lens. Construct a ray diagram, find the image distance, and describe the image.

#### SOLUTION

**Conceptualize** Because the lens is diverging, the focal length is negative (see Table 36.3). The ray diagram for this situation is shown in Figure 36.29a.



Figure 36.29 (Example 36.9) An image is formed by a diverging lens.

continued

# **36.9** continued

**Categorize** Because the lens is diverging, we expect it to form an upright, reduced, virtual image for any object position.

<b>Analyze</b> Find the image distance by using Equation 36.16:	$\frac{1}{q} = \frac{1}{f} - \frac{1}{p}$ $\frac{1}{q} = \frac{1}{-10.0 \text{ cm}} - \frac{1}{30.0 \text{ cm}}$ q = -7.50  cm
Find the magnification of the image from Equation 36.17:	$M = -\frac{q}{p} = -\left(\frac{-7.50 \text{ cm}}{30.0 \text{ cm}}\right) = +0.250$
<b>Finalize</b> This result confirms that the image is virtual, smalle ing lens in a door peephole to see this type of image.	r than the object, and upright. Look through the diverg-
(B) An object is placed 10.0 cm from the lens. Construct a ray of	diagram, find the image distance, and describe the image.
<b>SOLUTION</b> The ray diagram for this situation is shown in Figure 36.29b.	8013
<b>Analyze</b> Find the image distance by using Equation 36.16:	$\frac{1}{q} = \frac{1}{f} - \frac{1}{p}$ $\frac{1}{q} = \frac{1}{-10.0 \text{ cm}} - \frac{1}{10.0 \text{ cm}}$ $q = -5.00 \text{ cm}$
Find the magnification of the image from Equation 36.17:	$M = -\frac{q}{p} = -\left(\frac{-5.00 \text{ cm}}{10.0 \text{ cm}}\right) = +0.500$
<b>Finalize</b> Notice the difference between this situation and that for a converging lens. For a diverging lens, an object at the focal point does not produce an image infinitely far away.	
(C) An object is placed 5.00 cm from the lens. Construct a ray diagram, find the image distance, and describe the image.	
S O L U T I O N The ray diagram for this situation is shown in Figure 36.29c.	
<b>Analyze</b> Find the image distance by using Equation 36.16:	$\frac{1}{q} = \frac{1}{f} - \frac{1}{p}$ $\frac{1}{q} = \frac{1}{-10.0 \text{ cm}} - \frac{1}{5.0 \text{ cm}}$
Find the magnification of the image from Equation 36.17:	q = -3.33  cm $M = -\left(\frac{-3.33 \text{ cm}}{5.00}\right) = +0.667$
	( 5.00 cm /
<b>Finalize</b> For all three object positions, the image position i	is negative and the magnification is a positive number

**Finalize** For all three object positions, the image position is negative and the magnification is a positive number smaller than 1, which confirms that the image is virtual, smaller than the object, and upright.

# **Combinations of Thin Lenses**

If two thin lenses are used to form an image, the system can be treated in the following manner. First, the image formed by the first lens is located as if the second lens were not present. Then a ray diagram is drawn for the second lens, with the
image formed by the first lens now serving as the object for the second lens. The second image formed is the final image of the system. If the image formed by the first lens lies on the back side of the second lens, that image is treated as a virtual object for the second lens (that is, in the thin lens equation, p is negative). The same procedure can be extended to a system of three or more lenses. Because the magnification due to the second lens is performed on the magnified image due to the first lens, the overall magnification of the image due to the combination of lenses is the product of the individual magnifications:

$$M = M_1 M_2$$
 (36.18)

This equation can be used for combinations of any optical elements such as a lens and a mirror. For more than two optical elements, the magnifications due to all elements are multiplied together.

Let's consider the special case of a system of two lenses of focal lengths  $f_1$  and  $f_2$  in contact with each other. If  $p_1 = p$  is the object distance for the combination, application of the thin lens equation (Eq. 36.16) to the first lens gives

$$\frac{1}{p} + \frac{1}{q_1} = \frac{1}{f_1}$$

where  $q_1$  is the image distance for the first lens. Treating this image as the object for the second lens, we see that the object distance for the second lens must be  $p_2 = -q_1$ . (The distances are the same because the lenses are in contact and assumed to be infinitesimally thin. The object distance is negative because the object is virtual if the image from the first lens is real.) Therefore, for the second lens,

$$\frac{1}{p_2} + \frac{1}{q_2} = \frac{1}{f_2} \rightarrow -\frac{1}{q_1} + \frac{1}{q} = \frac{1}{f_2}$$

where  $q = q_2$  is the final image distance from the second lens, which is the image distance for the combination. Adding the equations for the two lenses eliminates  $q_1$  and gives

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f_1} + \frac{1}{f_2}$$

If the combination is replaced with a single lens that forms an image at the same location, its focal length must be related to the individual focal lengths by the expression

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$
(3)

6.19) Focal length for a combination of two thin

lenses in contact

Therefore, two thin lenses in contact with each other are equivalent to a single thin lens having a focal length given by Equation 36.19.

## Example 36.10

## Where Is the Final Image?

Two thin converging lenses of focal lengths  $f_1 = 10.0$  cm and  $f_2 = 20.0$  cm are separated by 20.0 cm as illustrated in Figure 36.30. An object is placed 30.0 cm to the left of lens 1. Find the position and the magnification of the final image.

#### SOLUTION

**Conceptualize** Imagine light rays passing through the first lens and forming a real image (because p > f) in the absence of a second lens. Figure 36.30 shows these light rays forming the inverted image  $I_1$ . Once the light rays converge to the image point, they do not stop. They continue through the image point and interact with the



**Figure 36.30** (Example 36.10) A combination of two converging lenses. The ray diagram shows the location of the final image  $(I_2)$  due to the combination of lenses. The black dots are the focal points of lens 1, and the red dots are the focal points of lens 2.

## 36.10 continued

second lens. The rays leaving the image point behave in the same way as the rays leaving an object. Therefore, the image of the first lens serves as the object of the second lens.

**Categorize** We categorize this problem as one in which the thin lens equation is applied in a stepwise fashion to the two lenses.

<b>Analyze</b> Find the location of the image formed by lens 1 from the thin lens equation:	$\frac{1}{q_1} = \frac{1}{f} - \frac{1}{p_1}$ $\frac{1}{q_1} = \frac{1}{10.0 \text{ cm}} - \frac{1}{30.0 \text{ cm}}$
	$q_1 = +15.0 \text{ cm}$
Find the magnification of the image from Equation 36.17:	$M_1 = -\frac{q_1}{p_1} = -\frac{15.0 \text{ cm}}{30.0 \text{ cm}} = -0.500$

The image formed by this lens acts as the object for the second lens. Therefore, the object distance for the second lens is 20.0 cm - 15.0 cm = 5.00 cm.

 $\frac{1}{q_2} = \frac{1}{20.0 \text{ cm}} - \frac{1}{5.00 \text{ cm}}$ 

 $M_2 = -\frac{q_2}{p_2} = -\frac{(-6.67 \text{ cm})}{5.00 \text{ cm}} = +1.33$ 

 $M = M_1 M_2 = (-0.500)(1.33) = -0.667$ 

 $q_2 = -6.67 \text{ cm}$ 

Find the location of the image formed by lens 2 from the thin lens equation:

Find the magnification of the image from Equation 36.17:

Find the overall magnification of the system from Equation 36.18:

**Finalize** The negative sign on the overall magnification indicates that the final image is inverted with respect to the initial object. Because the absolute value of the magnification is less than 1, the final image is smaller than the object.

Because  $q_2$  is negative, the final image is on the front, or left, side of lens 2. These conclusions are consistent with the ray diagram in Figure 36.30.

WHAT IF? Suppose you want to create an upright image with this system of two lenses. How must the second lens be moved?

**Answer** Because the object is farther from the first lens than the focal length of that lens, the first image is inverted. Consequently, the second lens must invert the image once again so that the final image is upright. An

inverted image is only formed by a converging lens if the object is outside the focal point. Therefore, the image formed by the first lens must be to the left of the focal point of the second lens in Figure 36.30. To make that happen, you must move the second lens at least as far away from the first lens as the sum  $q_1 + f_2 = 15.0$  cm + 20.0 cm = 35.0 cm.

# 36.5 Lens Aberrations

Our analysis of mirrors and lenses assumes rays make small angles with the principal axis and the lenses are thin. In this simple model, all rays leaving a point source focus at a single point, producing a sharp image. Clearly, that is not always true. When the approximations used in this analysis do not hold, imperfect images are formed.

A precise analysis of image formation requires tracing each ray, using Snell's law at each refracting surface and the law of reflection at each reflecting surface. This procedure shows that the rays from a point object do not focus at a single point, with the result that the image is blurred. The departures of actual images from the ideal predicted by our simplified model are called **aberrations**.

# **Spherical Aberration**

**Spherical aberration** occurs because the focal points of rays far from the principal axis of a spherical lens (or mirror) are different from the focal points of rays of the same wavelength passing near the axis. Figure 36.31 illustrates spherical aberration for parallel rays passing through a converging lens. Rays passing through points near the center of the lens are imaged farther from the lens than rays passing through points near the edges. Figure 36.8 earlier in the chapter shows spherical aberration for light rays leaving a point object and striking a spherical mirror.

Many cameras have an adjustable aperture to control light intensity and reduce spherical aberration. (An aperture is an opening that controls the amount of light passing through the lens.) Sharper images are produced as the aperture size is reduced; with a small aperture, only the central portion of the lens is exposed to the light and therefore a greater percentage of the rays are paraxial. At the same time, however, less light passes through the lens. To compensate for this lower light intensity, a longer exposure time is used.

In the case of mirrors, spherical aberration can be minimized through the use of a parabolic reflecting surface rather than a spherical surface. Parabolic surfaces are not used often, however, because those with high-quality optics are very expensive to make. Parallel light rays incident on a parabolic surface focus at a common point, regardless of their distance from the principal axis. Parabolic reflecting surfaces are used in many astronomical telescopes to enhance image quality.

## **Chromatic Aberration**

In Chapter 35, we described dispersion, whereby a material's index of refraction varies with wavelength. Because of this phenomenon, violet rays are refracted more than red rays when white light passes through a lens (Fig. 36.32). The figure shows that the focal length of a lens is greater for red light than for violet light. Other wavelengths (not shown in Fig. 36.32) have focal points intermediate between those of red and violet, which causes a blurred image and is called **chromatic aberration**.

Chromatic aberration for a diverging lens also results in a shorter focal length for violet light than for red light, but on the front side of the lens. Chromatic aberration can be greatly reduced by combining a converging lens made of one type of glass and a diverging lens made of another type of glass.

# The refracted rays intersect at different points on the principal axis.

Figure 36.31 Spherical aberration caused by a converging lens. Does a diverging lens cause spherical aberration?



Figure 36.32 Chromatic aberration caused by a converging lens.

# 36.6 The Camera

The photographic **camera** is a simple optical instrument whose essential features are shown in Figure 36.33. It consists of a light-tight chamber, a converging lens that produces a real image, and a light-sensitive component behind the lens on which the image is formed.

The image in a digital camera is formed on a *charge-coupled device* (CCD), which digitizes the image, turning it into binary code. (A CCD is described in Section 40.2.) The digital information is then stored on a memory chip for playback on the camera's display screen, or it can be downloaded to a computer. Film cameras are similar to digital cameras except that the light forms an image on light-sensitive film rather than on a CCD. The film must then be chemically processed to produce the image on paper. In the discussion that follows, we assume the camera is digital.

A camera is focused by varying the distance between the lens and the CCD. For proper focusing—which is necessary for the formation of sharp images—the lens-to-CCD distance depends on the object distance as well as the focal length of the lens.

The shutter, positioned behind the lens, is a mechanical device that is opened for selected time intervals, called *exposure times*. You can photograph moving objects by using short exposure times or photograph dark scenes (with low light levels) by using long exposure times. If this adjustment were not available, it would be impossible



**Figure 36.33** Cross-sectional view of a simple digital camera. The CCD is the light-sensitive component of the camera. In a nondigital camera, the light from the lens falls onto photographic film. In reality, p >> q.

to take stop-action photographs. For example, a rapidly moving vehicle could move enough in the time interval during which the shutter is open to produce a blurred image. Another major cause of blurred images is the movement of the camera while the shutter is open. To prevent such movement, either short exposure times or a tripod should be used, even for stationary objects. Typical shutter speeds (that is, exposure times) are  $\frac{1}{30}$  s,  $\frac{1}{60}$  s,  $\frac{1}{125}$  s, and  $\frac{1}{250}$  s. In practice, stationary objects are normally shot with an intermediate shutter speed of  $\frac{1}{60}$  s.

The intensity *I* of the light reaching the CCD is proportional to the area of the lens. Because this area is proportional to the square of the diameter *D*, it follows that *I* is also proportional to  $D^2$ . Light intensity is a measure of the rate at which energy is received by the CCD per unit area of the image. Because the area of the image is proportional to  $q^2$  and  $q \approx f$  (when p >> f, so p can be approximated as infinite), we conclude that the intensity is also proportional to  $1/f^2$  and therefore that  $I \propto D^2/f^2$ .

The ratio *f*/*D* is called the *f***-number** of a lens:

$$f$$
-number  $\equiv \frac{f}{D}$  (36.20)

Hence, the intensity of light incident on the CCD varies according to the following proportionality:

$$I \propto \frac{1}{(f/D)^2} \propto \frac{1}{(f\text{-number})^2}$$
 (36.21)

The *f*-number is often given as a description of the lens's "speed." The lower the *f*-number, the wider the aperture and the higher the rate at which energy from the light exposes the CCD; therefore, a lens with a low *f*-number is a "fast" lens. The conventional notation for an *f*-number is "*f*/" followed by the actual number. For example, "*f*/4" means an *f*-number of 4, it *does not* mean to divide *f* by 4! Extremely fast lenses, which have *f*-numbers as low as approximately *f*/1.2, are expensive because it is very difficult to keep aberrations acceptably small with light rays passing through a large area of the lens. Camera lens systems (that is, combinations of lenses with adjustable apertures) are often marked with multiple *f*-numbers, usually *f*/2.8, *f*/4, *f*/5.6, *f*/8, *f*/11, and *f*/16. Any one of these settings can be selected by adjusting the aperture, which changes the value of *D*. Increasing the setting from one *f*-number to the next higher value (for example, from *f*/2.8 to *f*/4) decreases the area of the aperture by a factor of 2. The lowest *f*-number setting on a camera lens corresponds to a wide-open aperture and the use of the maximum possible lens area.

Simple cameras usually have a fixed focal length and a fixed aperture size, with an *f*-number of about f/11. This high value for the *f*-number allows for a large **depth of field**, meaning that objects at a wide range of distances from the lens form reasonably sharp images on the CCD. In other words, the camera does not have to be focused.

uick Quiz 36.7 A camera can be modeled as a simple converging lens that focuses an image on the CCD, acting as the screen. A camera is initially focused on a distant object. To focus the image of an object close to the camera, must the lens be
(a) moved away from the CCD, (b) left where it is, or (c) moved toward the CCD?

# Example 36.11 Finding the Correct Exposure Time

The lens of a digital camera has a focal length of 55 mm and a speed (an *f*-number) of f/1.8. The correct exposure time for this speed under certain conditions is known to be  $\frac{1}{500}$  s.

(A) Determine the diameter of the lens.

#### SOLUTION

**Conceptualize** Remember that the *f*-number for a lens relates its focal length to its diameter.

## ▶ 36.11 continued

**Categorize** We determine results using equations developed in this section, so we categorize this example as a substitution problem.

Solve Equation 36.20 for D and substitute numerical values:

 $D = \frac{f}{f\text{-number}} = \frac{55 \text{ mm}}{1.8} = 31 \text{ mm}$ 

(B) Calculate the correct exposure time if the f-number is changed to f/4 under the same lighting conditions.

## SOLUTION

The total light energy hitting the CCD is proportional to the product of the intensity and the exposure time. If I is the light intensity reaching the CCD, the energy per unit area received by the CCD in a time interval  $\Delta t$  is proportional to  $I\Delta t$ . Comparing the two situations, we require that  $I_1 \Delta t_1 = I_2 \Delta t_2$ , where  $\Delta t_1$  is the correct exposure time for f/1.8and  $\Delta t_9$  is the correct exposure time for f/4.

 $I_1 \Delta$ 

Use this result and substitute for *I* from Equation 36.21:

$$I_1 \Delta t_1 = I_2 \Delta t_2 \rightarrow \frac{\Delta t_1}{(f_1 \text{-number})^2} = \frac{\Delta t_2}{(f_2 \text{-number})^2}$$
$$\Delta t_2 = \left(\frac{f_2 \text{-number}}{f_1 \text{-number}}\right)^2 \Delta t_1 = \left(\frac{4}{1.8}\right)^2 (\frac{1}{500} \text{ s}) \approx \frac{1}{100} \text{ s}$$

Solve for  $\Delta t_2$  and substitute numerical values:

As the aperture size is reduced, the exposure time must increase.

# 36.7 The Eye

Like a camera, a normal eye focuses light and produces a sharp image. The mechanisms by which the eye controls the amount of light admitted and adjusts to produce correctly focused images, however, are far more complex, intricate, and effective than those in even the most sophisticated camera. In all respects, the eye is a physiological wonder.

Figure 36.34 shows the basic parts of the human eye. Light entering the eye passes through a transparent structure called the *cornea* (Fig. 36.35), behind which are a clear liquid (the *aqueous humor*), a variable aperture (the *pupil*, which is an opening in the *iris*), and the *crystalline lens*. Most of the refraction occurs at the outer surface of the eye, where the cornea is covered with a film of tears. Relatively little refraction occurs in the crystalline lens because the aqueous humor in contact with the lens has an average index of refraction close to that of the lens. The iris, which is the colored portion of the eye, is a muscular diaphragm that controls pupil size. The iris regulates the amount of light entering the eye by dilating, or





Fiqure 36.35 Close-up photograph of the cornea of the human eye.

opening, the pupil in low-light conditions and contracting, or closing, the pupil in high-light conditions. The *f*-number range of the human eye is approximately f/2.8 to f/16.

The cornea-lens system focuses light onto the back surface of the eye, the *retina*, which consists of millions of sensitive receptors called *rods* and *cones*. When stimulated by light, these receptors send impulses via the optic nerve to the brain, where an image is perceived. By this process, a distinct image of an object is observed when the image falls on the retina.

The eye focuses on an object by varying the shape of the pliable crystalline lens through a process called **accommodation**. The lens adjustments take place so swiftly that we are not even aware of the change. Accommodation is limited in that objects very close to the eye produce blurred images. The **near point** is the closest distance for which the lens can accommodate to focus light on the retina. This distance usually increases with age and has an average value of 25 cm. At age 10, the near point of the eye is typically approximately 18 cm. It increases to approximately 25 cm at age 20, to 50 cm at age 40, and to 500 cm or greater at age 60. The **far point** of the eye represents the greatest distance for which the lens of the relaxed eye can focus light on the retina. A person with normal vision can see very distant objects and therefore has a far point that can be approximated as infinity.

The retina is covered with two types of light-sensitive cells, called **rods** and **cones**. The rods are not sensitive to color but are more light sensitive than the cones. The rods are responsible for *scotopic vision*, or dark-adapted vision. Rods are spread throughout the retina and allow good peripheral vision for all light levels and motion detection in the dark. The cones are concentrated in the fovea. These cells are sensitive to different wavelengths of light. The three categories of these cells are called red, green, and blue cones because of the peaks of the color ranges to which they respond (Fig. 36.36). If the red and green cones are stimulated simultaneously (as would be the case if yellow light were shining on them), the brain interprets what is seen as yellow. If all three types of cones are stimulated by the separate colors red, blue, and green, white light is seen. If all three types of cones are stimulated by light that contains *all* colors, such as sunlight, again white light is seen.

Televisions and computer monitors take advantage of this visual illusion by having only red, green, and blue dots on the screen. With specific combinations of brightness in these three primary colors, our eyes can be made to see any color in the rainbow. Therefore, the yellow lemon you see in a television commercial is not actually yellow, it is red and green! The paper on which this page is printed is made of tiny, matted, translucent fibers that scatter light in all directions, and the resultant mixture of colors appears white to the eye. Snow, clouds, and white hair are not actually white. In fact, there is no such thing as a white pigment. The appearance of these things is a consequence of the scattering of light containing all colors, which we interpret as white.

# Conditions of the Eye

When the eye suffers a mismatch between the focusing range of the lens–cornea system and the length of the eye, with the result that light rays from a near object reach the retina before they converge to form an image as shown in Figure 36.37a, the condition is known as **farsightedness** (or *hyperopia*). A farsighted person can usually see faraway objects clearly but not nearby objects. Although the near point of a normal eye is approximately 25 cm, the near point of a farsighted person is much farther away. The refracting power in the cornea and lens is insufficient to focus the light from all but distant objects satisfactorily. The condition can be corrected by placing a converging lens in front of the eye as shown in Figure 36.37b. The lens refracts the incoming rays more toward the principal axis before entering the eye, allowing them to converge and focus on the retina.



**Figure 36.36** Approximate color sensitivity of the three types of cones in the retina.





A person with **nearsightedness** (or *myopia*), another mismatch condition, can focus on nearby objects but not on faraway objects. The far point of the nearsighted eye is not infinity and may be less than 1 m. The maximum focal length of the nearsighted eye is insufficient to produce a sharp image on the retina, and rays from a distant object converge to a focus in front of the retina. They then continue past that point, diverging before they finally reach the retina and causing blurred vision (Fig. 36.38a). Nearsightedness can be corrected with a diverging lens as shown in Figure 36.38b. The lens refracts the rays away from the principal axis before they enter the eye, allowing them to focus on the retina.

Beginning in middle age, most people lose some of their accommodation ability as their visual muscles weaken and the lens hardens. Unlike farsightedness, which is a mismatch between focusing power and eye length, **presbyopia** (literally, "oldage vision") is due to a reduction in accommodation ability. The cornea and lens do not have sufficient focusing power to bring nearby objects into focus on the retina. The symptoms are the same as those of farsightedness, and the condition can be corrected with converging lenses.

In eyes having a defect known as **astigmatism**, light from a point source produces a line image on the retina. This condition arises when the cornea, the lens, or both are not perfectly symmetric. Astigmatism can be corrected with lenses that have different curvatures in two mutually perpendicular directions.

Optometrists and ophthalmologists usually prescribe lenses¹ measured in **diopters:** the **power** *P* of a lens in diopters equals the inverse of the focal length in meters: P = 1/f. For example, a converging lens of focal length +20 cm has a power of +5.0 diopters, and a diverging lens of focal length -40 cm has a power of -2.5 diopters.



Figure 36.38 (a) An uncorrected nearsighted eye. (b) A nearsighted eye corrected with a diverging lens.

¹The word *lens* comes from *lentil*, the name of an Italian legume. (You may have eaten lentil soup.) Early eyeglasses were called "glass lentils" because the biconvex shape of their lenses resembled the shape of a lentil. The first lenses for farsightedness and presbyopia appeared around 1280; concave eyeglasses for correcting nearsightedness did not appear until more than 100 years later.

**Q**uick Quiz 36.8 Two campers wish to start a fire during the day. One camper

is nearsighted, and one is farsighted. Whose glasses should be used to focus

the Sun's rays onto some paper to start the fire? (a) either camper (b) the near-

sighted camper (c) the farsighted camper

# **36.8** The Simple Magnifier

The simple magnifier, or magnifying glass, consists of a single converging lens. This device increases the apparent size of an object.

Suppose an object is viewed at some distance p from the eye as illustrated in Figure 36.39. The size of the image formed at the retina depends on the angle  $\theta$  subtended by the object at the eye. As the object moves closer to the eye,  $\theta$  increases and a larger image is observed. An average normal human eye, however, cannot focus on an object closer than about 25 cm, the near point (Fig. 36,40a). Therefore,  $\theta$  is maximum at the near point.

To further increase the apparent angular size of an object, a converging lens can be placed in front of the eye as in Figure 36.40b, with the object located at point O, immediately inside the focal point of the lens. At this location, the lens forms a virtual, upright, enlarged image. We define **angular magnification** m as the ratio of the angle subtended by an object with a lens in use (angle  $\theta$  in Fig. 36.40b) to the angle subtended by the object placed at the near point with no lens in use (angle  $\theta_0$ in Fig. 36.40a):

$$m \equiv \frac{\theta}{\theta_0} \tag{36.22}$$

The angular magnification is a maximum when the image is at the near point of the eye, that is, when q = -25 cm. The object distance corresponding to this image distance can be calculated from the thin lens equation:

$$\frac{1}{p} + \frac{1}{-25 \text{ cm}} = \frac{1}{f} \rightarrow p = \frac{25f}{25 + f}$$

where f is the focal length of the magnifier in centimeters. If we make the small-angle approximations

$$\tan \theta_0 \approx \theta_0 \approx \frac{h}{25}$$
 and  $\tan \theta \approx \theta \approx \frac{h}{p}$  (36.23)

Equation 36.22 becomes

$$m_{\max} = \frac{\theta}{\theta_0} = \frac{h/p}{h/25} = \frac{25}{p} = \frac{25}{25f/(25+f)}$$
$$m_{\max} = 1 + \frac{25 \text{ cm}}{f}$$
(36.24)

Although the eye can focus on an image formed anywhere between the near point and infinity, it is most relaxed when the image is at infinity. For the image formed by the magnifying lens to appear at infinity, the object has to be at the focal point of the lens. In this case, Equations 36.23 become

$$\theta_0 \approx \frac{h}{25}$$
 and  $\theta \approx \frac{h}{f}$ 

and the magnification is

$$m_{\min} = \frac{\theta}{\theta_0} = \frac{25 \text{ cm}}{f}$$
(36.25)

With a single lens, it is possible to obtain angular magnifications up to about 4 without serious aberrations. Magnifications up to about 20 can be achieved by using one or two additional lenses to correct for aberrations.





**Figure 36.39** An observer looks at an object at distance *p*.



**Figure 36.40** (a) An object placed at the near point of the eye (p = 25 cm) subtends an angle  $\theta_0 \approx h/25$  cm at the eye. (b) An object placed near the focal point of a converging lens produces a magnified image that subtends an angle  $\theta \approx h'/25$  cm at the eye.



A simple magnifier, also called a magnifying glass, is used to view an enlarged image of a portion of a map.

# Example 36.12 Magnification of a Lens

What is the maximum magnification that is possible with a lens having a focal length of 10 cm, and what is the magnification of this lens when the eye is relaxed?

## SOLUTION

**Conceptualize** Study Figure 36.40b for the situation in which a magnifying glass forms an enlarged image of an object placed inside the focal point. The maximum magnification occurs when the image is located at the near point of the eye. When the eye is relaxed, the image is at infinity.

**Categorize** We determine results using equations developed in this section, so we categorize this example as a substitution problem.

Evaluate the maximum magnification from Equation 36.24:

Evaluate the minimum magnification, when the eye is relaxed, from Equation 36.25:

$$m_{\text{max}} = 1 + \frac{25 \text{ cm}}{f} = 1 + \frac{25 \text{ cm}}{10 \text{ cm}} = 3.5$$
  
 $m_{\text{min}} = \frac{25 \text{ cm}}{f} = \frac{25 \text{ cm}}{10 \text{ cm}} = 2.5$ 

# 36.9 The Compound Microscope

A simple magnifier provides only limited assistance in inspecting minute details of an object. Greater magnification can be achieved by combining two lenses in a device called a **compound microscope** shown in Figure 36.41a. It consists of one lens, the *objective*, that has a very short focal length  $f_o < 1$  cm and a second lens, the *eyepiece*, that has a focal length  $f_e$  of a few centimeters. The two lenses are separated by a distance L that is much greater than either  $f_o$  or  $f_e$ . The object, which is placed just outside the focal point of the objective, forms a real, inverted image at  $I_1$ , and this image is located at or close to the focal point of the eyepiece. The eyepiece, which serves as a simple magnifier, produces at  $I_2$  a virtual, enlarged image of  $I_1$ . The lateral magnification  $M_1$  of the first image is  $-q_1/p_1$ . Notice from Figure 36.41a that  $q_1$  is approximately equal to L and that the object is very close



**Figure 36.41** (a) Diagram of a compound microscope, which consists of an objective lens and an eyepiece lens. (b) A compound microscope.

to the focal point of the objective:  $p_1 \approx f_0$ . Therefore, the lateral magnification by the objective is

$$M_o \approx -\frac{L}{f_o}$$

The angular magnification by the eyepiece for an object (corresponding to the image at  $I_1$ ) placed at the focal point of the eyepiece is, from Equation 36.25,

$$m_e = \frac{25 \text{ cm}}{f_e}$$

The overall magnification of the image formed by a compound microscope is defined as the product of the lateral and angular magnifications:

$$M = M_o m_e = -\frac{L}{f_o} \left(\frac{25 \text{ cm}}{f_e}\right)$$
 (36.26)

ony Freeman/Photo Edit

The negative sign indicates that the image is inverted.

The microscope has extended human vision to the point where we can view previously unknown details of incredibly small objects. The capabilities of this instrument have steadily increased with improved techniques for precision grinding of lenses. A question often asked about microscopes is, "If one were extremely patient and careful, would it be possible to construct a microscope that would enable the human eye to see an atom?" The answer is no, as long as light is used to illuminate the object. For an object under an optical microscope (one that uses visible light) to be seen, the object must be at least as large as a wavelength of light. Because the diameter of any atom is many times smaller than the wavelengths of visible light, the mysteries of the atom must be probed using other types of "microscopes."

# 36.10 The Telescope

Two fundamentally different types of **telescopes** exist; both are designed to aid in viewing distant objects such as the planets in our solar system. The first type, the **refracting telescope**, uses a combination of lenses to form an image.

Like the compound microscope, the refracting telescope shown in Figure 36.42a has an objective and an eyepiece. The two lenses are arranged so that the objective



**Figure 36.42** (a) Lens arrangement in a refracting telescope, with the object at infinity. (b) A refracting telescope.