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14.6	 Bernoulli’s Equation
You have probably experienced driving on a highway and having a large truck pass 
you at high speed. In this situation, you may have had the frightening feeling that your  
car was being pulled in toward the truck as it passed. We will investigate the origin 
of this effect in this section.
	 As a fluid moves through a region where its speed or elevation above the 
Earth’s surface changes, the pressure in the fluid varies with these changes. The 
relationship between fluid speed, pressure, and elevation was first derived in 1738 
by Swiss physicist Daniel Bernoulli. Consider the flow of a segment of an ideal 
fluid through a nonuniform pipe in a time interval Dt as illustrated in Figure 
14.18. This figure is very similar to Figure 14.16, which we used to develop the 
continuity equation. We have added two features: the forces on the outer ends of 
the blue portions of fluid and the heights of these portions above the reference 
position y 5 0.
	 The force exerted on the segment by the fluid to the left of the blue portion in 
Figure 14.18a has a magnitude P1A1. The work done by this force on the segment 
in a time interval Dt is W1 5 F1 Dx1 5 P1A1 Dx1 5 P1V, where V is the volume of the 
blue portion of fluid passing point 1 in Figure 14.18a. In a similar manner, the 
work done on the segment by the fluid to the right of the segment in the same time 
interval Dt is W2 5 2P2A2 Dx2 5 2P2V, where V is the volume of the blue portion of 
fluid passing point 2 in Figure 14.18b. (The volumes of the blue portions of fluid in 
Figures 14.18a and 14.18b are equal because the fluid is incompressible.) This work 
is negative because the force on the segment of fluid is to the left and the displace-
ment of the point of application of the force is to the right. Therefore, the net work 
done on the segment by these forces in the time interval Dt is

	 W 5 (P1 2 P2)V	

Finalize  ​The time interval for the element of water to fall to the ground is unchanged if the projection speed is 
changed because the projection is horizontal. Increasing the projection speed results in the water hitting the ground 
farther from the end of the hose, but requires the same time interval to strike the ground.
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Figure 14.18  ​A fluid in laminar 
flow through a pipe. (a) A segment 
of the fluid at time t 5 0. A small 
portion of the blue-colored fluid 
is at height y1 above a reference 
position. (b) After a time interval 
Dt, the entire segment has moved 
to the right. The blue-colored por-
tion of the fluid is that which has 
passed point 2 and is at height y2.

	

▸ 14.7 c o n t i n u e d

Daniel Bernoulli
Swiss physicist (1700–1782)
Bernoulli made important discoveries  
in fluid dynamics. Bernoulli’s most 
famous work, Hydrodynamica, was 
published in 1738; it is both a theoreti-
cal and a practical study of equilibrium, 
pressure, and speed in fluids. He showed 
that as the speed of a fluid increases, 
its pressure decreases. Referred to as 
“Bernoulli’s principle,” Bernoulli’s work 
is used to produce a partial vacuum in 
chemical laboratories by connecting a 
vessel to a tube through which water is 
running rapidly.

.
 iS

to
ck

ph
ot

o.
co

m
/Z

U_
09

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 14.6  Bernoulli’s Equation	 431

Part of this work goes into changing the kinetic energy of the segment of fluid, and 
part goes into changing the gravitational potential energy of the segment–Earth 
system. Because we are assuming streamline flow, the kinetic energy Kgray of the 
gray portion of the segment is the same in both parts of Figure 14.18. Therefore, 
the change in the kinetic energy of the segment of fluid is

DK 5 11
2mv2

2 1 K gray 2 2 11
2mv1

2 1 K gray 2 5 1
2mv2

2 2 1
2mv1

2

where m is the mass of the blue portions of fluid in both parts of Figure 14.18. 
(Because the volumes of both portions are the same, they also have the same mass.)
	 Considering the gravitational potential energy of the segment–Earth system, 
once again there is no change during the time interval for the gravitational poten-
tial energy Ugray associated with the gray portion of the fluid. Consequently, the 
change in gravitational potential energy of the system is

DU 5 1mgy2 1 Ugray 2 2 1mgy1 1 Ugray 2 5 mgy2 2 mgy1 

	 From Equation 8.2, the total work done on the system by the fluid outside the 
segment is equal to the change in mechanical energy of the system: W 5 DK 1 DU. 
Substituting for each of these terms gives

1P1 2 P2 2V 5 1
2mv2

2 2 1
2mv1

2 1 mgy2 2 mgy1

If we divide each term by the portion volume V and recall that r 5 m/V, this expres-
sion reduces to

P1 2 P2 5 1
2rv2

2 2 1
2rv1

2 1 rgy2 2 rgy1

Rearranging terms gives

	 P1 1 1
2rv1

2 1 rgy1 5 P2 1 1
2rv2

2 1 rgy2	 (14.8)

which is Bernoulli’s equation as applied to an ideal fluid. This equation is often 
expressed as

	 P 1 1
2rv2 1 rgy 5 constant	 (14.9)

Bernoulli’s equation shows that the pressure of a fluid decreases as the speed of 
the fluid increases. In addition, the pressure decreases as the elevation increases. 
This latter point explains why water pressure from faucets on the upper floors of a 
tall building is weak unless measures are taken to provide higher pressure for these 
upper floors.
	 When the fluid is at rest, v1 5 v2 5 0 and Equation 14.8 becomes

	 P1 2 P2 5 rg 1y2 2 y1 2 5 rgh	

This result is in agreement with Equation 14.4.
	 Although Equation 14.9 was derived for an incompressible fluid, the general 
behavior of pressure with speed is true even for gases: as the speed increases, the 
pressure decreases. This Bernoulli effect explains the experience with the truck on 
the highway at the opening of this section. As air passes between you and the truck, 
it must pass through a relatively narrow channel. According to the continuity equa-
tion, the speed of the air is higher. According to the Bernoulli effect, this higher-
speed air exerts less pressure on your car than the slower-moving air on the other 
side of your car. Therefore, there is a net force pushing you toward the truck!

Q	 uick Quiz 14.5 ​ You observe two helium balloons floating next to each other at 
the ends of strings secured to a table. The facing surfaces of the balloons are 
separated by 1–2 cm. You blow through the small space between the balloons. 
What happens to the balloons? (a) They move toward each other. (b) They move 
away from each other. (c) They are unaffected.

WW  Bernoulli’s equation
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432	C hapter 14  Fluid Mechanics

	

Example 14.8	     The Venturi Tube

The horizontal constricted pipe illustrated in Figure 14.19, 
known as a Venturi tube, can be used to measure the flow speed 
of an incompressible fluid. Determine the flow speed at point 
2 of Figure 14.19a if the pressure difference P1 2 P2 is known.

Conceptualize  ​Bernoulli’s equation shows how the pressure of 
an ideal fluid decreases as its speed increases. Therefore, we 
should be able to calibrate a device to give us the fluid speed if 
we can measure pressure.

Categorize  ​Because the problem states that the fluid is incom-
pressible, we can categorize it as one in which we can use the 
equation of continuity for fluids and Bernoulli’s equation.

S o l u t i o n

Analyze  ​Apply Equation 14.8 to points 1 and 2, noting 
that y1 5 y2 because the pipe is horizontal:

(1)   P1 1 1
2rv1

2 5 P2 1 1
2rv2

2

Solve the equation of continuity for v1: v1 5
A2

A1
 v2

a

P1 P2
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S v2
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Figure 14.19  ​(Example 14.8) (a) Pressure P1 is greater 
than pressure P2 because v1 , v2. This device can be used 
to measure the speed of fluid flow. (b) A Venturi tube, 
located at the top of the photograph. The higher level of 
fluid in the middle column shows that the pressure at the 
top of the column, which is in the constricted region of 
the Venturi tube, is lower.

Finalize  ​From the design of the tube (areas A1 and A2) and measurements of the pressure difference P1 2 P2, we can 
calculate the speed of the fluid with this equation. To see the relationship between fluid speed and pressure differ-
ence, place two empty soda cans on their sides about 2 cm apart on a table. Gently blow a stream of air horizontally 
between the cans and watch them roll together slowly due to a modest pressure difference between the stagnant air on 
their outside edges and the moving air between them. Now blow more strongly and watch the increased pressure dif-
ference move the cans together more rapidly.

Substitute this expression into Equation (1): P1 1 1
2raA2

A1

b
2

v2
2 5 P2 1 1

2rv2
2

Solve for v2: v2 5 A1Å
2 1P1 2 P2 2

r 1A1
2 2 A2

2 2

Example 14.9	     Torricelli’s Law 

An enclosed tank containing a liquid of density r has a hole in its side at a distance 
y1 from the tank’s bottom (Fig. 14.20). The hole is open to the atmosphere, and its 
diameter is much smaller than the diameter of the tank. The air above the liquid is 
maintained at a pressure P. Determine the speed of the liquid as it leaves the hole 
when the liquid’s level is a distance h above the hole.

Conceptualize  ​Imagine that the tank is a fire extinguisher. When the hole is 
opened, liquid leaves the hole with a certain speed. If the pressure P at the top 
of the liquid is increased, the liquid leaves with a higher speed. If the pressure 
P falls too low, the liquid leaves with a low speed and the extinguisher must be 
replaced.

AM

S o l u t i o n

A2

A1

P0

h

P

y2

y1

v1
S

Point 2 is the surface 
of the liquid.

Point 1 is 
the exit 
point of 
the hole.

Figure 14.20  ​(Example 14.9) 
A liquid leaves a hole in a tank at 
speed v1.
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	 14.7  Other Applications of Fluid Dynamics	 433

Apply Bernoulli’s equation between points 1 and 2: P0 1 1
2 rv1

2 1 rgy1 5 P 1 rgy2

Solve for v1, noting that y2 2 y1 5 h: v1 5 Å
2 1P 2 P0 2

r
1 2gh

Finalize  ​When P is much greater than P0 (so that the term 2gh can be neglected), the exit speed of the water is mainly 
a function of P. If the tank is open to the atmosphere, then P 5 P0 and v1 5 !2gh. In other words, for an open tank, 
the speed of the liquid leaving a hole a distance h below the surface is equal to that acquired by an object falling freely 
through a vertical distance h. This phenomenon is known as Torricelli’s law.

What if the position of the hole in Figure 14.20 could be adjusted vertically? If the tank is open to the 
atmosphere and sitting on a table, what position of the hole would cause the water to land on the table at the farthest 
distance from the tank?

What If ?

Categorize  ​Looking at Figure 14.20, we know the pressure at two points and the velocity at one of those points. We wish to 
find the velocity at the second point. Therefore, we can categorize this example as one in which we can apply Bernoulli’s 
equation.

Analyze  ​Because A2 .. A1, the liquid is approximately at rest at the top of the tank, where the pressure is P. At the 
hole, P1 is equal to atmospheric pressure P0.

Therefore, to maximize the horizontal distance, the hole should be halfway between the bottom of the tank and the 
upper surface of the water. Below this location, the water is projected at a higher speed but falls for a short time inter-
val, reducing the horizontal range. Above this point, the water is in the air for a longer time interval but is projected 
with a smaller horizontal speed.

Answer  ​Model a parcel of water exiting the hole as a 
projectile. From the particle under constant acceleration 
model, find the time at which the parcel strikes the table 
from a hole at an arbitrary position y1:

 yf 5 yi 1 vyit 2 1
2gt 2

 0 5 y1 1 0 2 1
2gt 2

 t 5 Å
2y1

g

From the particle under constant velocity model, find the 
horizontal position of the parcel at the time it strikes  
the table:

 xf 5 xi 1 vxit 5 0 1 "2g 1y2 2 y1 2  Å
2y1

g

 5 2"1y2y1 2 y1
2 2

Maximize the horizontal position by taking the deriva-
tive of xf with respect to y1 (because y1, the height of the 
hole, is the variable that can be adjusted) and setting it 
equal to zero:

dxf

dy1
5 1

2 12 2 1y2y1 2 y1
2 221/2 1y2 2 2y1 2 5 0

Solve for y1: y1 5 1
2 y2

	

▸ 14.9 c o n t i n u e d

14.7	 Other Applications of Fluid Dynamics
Consider the streamlines that flow around an airplane wing as shown in Figure 
14.21 on page 434. Let’s assume the airstream approaches the wing horizontally 
from the right with a velocity  vS1. The tilt of the wing causes the airstream to be 
deflected downward with a velocity  vS2. Because the airstream is deflected by the 
wing, the wing must exert a force on the airstream. According to Newton’s third 
law, the airstream exerts a force  F

S
 on the wing that is equal in magnitude and 
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434	C hapter 14  Fluid Mechanics

opposite in direction. This force has a vertical component called lift (or aerody-
namic lift) and a horizontal component called drag. The lift depends on several 
factors, such as the speed of the airplane, the area of the wing, the wing’s curva-
ture, and the angle between the wing and the horizontal. The curvature of the wing 
surfaces causes the pressure above the wing to be lower than that below the wing  
due to the Bernoulli effect. This pressure difference assists with the lift on the 
wing. As the angle between the wing and the horizontal increases, turbulent flow 
can set in above the wing to reduce the lift.
	 In general, an object moving through a fluid experiences lift as the result of any 
effect that causes the fluid to change its direction as it flows past the object. Some 
factors that influence lift are the shape of the object, its orientation with respect to 
the fluid flow, any spinning motion it might have, and the texture of its surface. For 
example, a golf ball struck with a club is given a rapid backspin due to the slant of 
the club. The dimples on the ball increase the friction force between the ball and 
the air so that air adheres to the ball’s surface. Figure 14.22 shows air adhering to the 
ball and being deflected downward as a result. Because the ball pushes the air down, 
the air must push up on the ball. Without the dimples, the friction force is lower and 
the golf ball does not travel as far. It may seem counterintuitive to increase the range 
by increasing the friction force, but the lift gained by spinning the ball more than 
compensates for the loss of range due to the effect of friction on the translational 
motion of the ball. For the same reason, a baseball’s cover helps the spinning ball 
“grab” the air rushing by and helps deflect it when a “curve ball” is thrown.
	 A number of devices operate by means of the pressure differentials that result 
from differences in a fluid’s speed. For example, a stream of air passing over one 
end of an open tube, the other end of which is immersed in a liquid, reduces the 
pressure above the tube as illustrated in Figure 14.23. This reduction in pressure 
causes the liquid to rise into the airstream. The liquid is then dispersed into a fine 
spray of droplets. You might recognize that this atomizer is used in perfume bottles 
and paint sprayers.

F
S

Drag

Lift

Figure 14.22  ​Because of the 
deflection of air, a spinning golf 
ball experiences a lifting force that 
allows it to travel much farther than 
it would if it were not spinning.

Drag

LiftF
S

The air approaching from 
the right is deflected 
downward by the wing.

Figure 14.21  ​Streamline flow 
around a moving airplane wing. 
By Newton’s third law, the air 
deflected by the wing results in 
an upward force on the wing from 
the air: lift. Because of air resis-
tance, there is also a force oppo-
site the velocity of the wing: drag.

Summary

Definitions

  The pressure P in a fluid is the force per unit area exerted by the fluid on a surface:

	 P ;
F

A
  	 (14.1)

In the SI system, pressure has units of newtons per square meter (N/m2), and 1 N/m2 5 1 pascal (Pa).

Figure 14.23  ​A stream of air pass-
ing over a tube dipped into a liquid 
causes the liquid to rise in the tube.www.as
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Concepts and Principles

  The pressure in a fluid at rest varies with depth h in the fluid 
according to the expression

	 P 5 P0 1 rgh	 (14.4)

where P0 is the pressure at h 5 0 and r is the density of the fluid, 
assumed uniform.
	 Pascal’s law states that when pressure is applied to an enclosed 
fluid, the pressure is transmitted undiminished to every point in 
the fluid and to every point on the walls of the container.

  When an object is partially or fully sub-
merged in a fluid, the fluid exerts on the 
object an upward force called the buoyant 
force. According to Archimedes’s prin-
ciple, the magnitude of the buoyant force is 
equal to the weight of the fluid displaced by 
the object:

	 B 5 rfluid gV disp	 (14.5)

  The flow rate (volume flux) through a pipe that var-
ies in cross-sectional area is constant; that is equivalent 
to stating that the product of the cross-sectional area A 
and the speed v at any point is a constant. This result is 
expressed in the equation of continuity for fluids:

	 A1v1 5 A2v2 5 constant	 (14.7)

  The sum of the pressure, kinetic energy per unit 
volume, and gravitational potential energy per unit vol-
ume has the same value at all points along a streamline 
for an ideal fluid. This result is summarized in Ber-
noulli’s equation:

	 P 1 1
2rv2 1 rgy 5 constant	 (14.9)

of the following statements are valid? (Choose all cor-
rect statements.) (a) The buoyant force on the steel 
object is equal to its weight. (b) The buoyant force on 
the block is equal to its weight. (c) The tension in the 
string is equal to the weight of the steel object. (d) The 
tension in the string is less than the weight of the steel 
object. (e) The buoyant force on the block is equal to 
the volume of water it displaces.

Figure OQ14.3

	 4.	 An apple is held completely submerged just below 
the surface of water in a container. The apple is then 
moved to a deeper point in the water. Compared with 
the force needed to hold the apple just below the sur-
face, what is the force needed to hold it at the deeper 
point? (a) larger (b)  the same (c) smaller (d) impos-
sible to determine

	 5.	 A beach ball is made of thin plastic. It has been 
inflated with air, but the plastic is not stretched. By 
swimming with fins on, you manage to take the ball 
from the surface of a pool to the bottom. Once the ball 
is completely submerged, what happens to the buoyant 
force exerted on the beach ball as you take it deeper?  
(a) It increases. (b) It remains constant. (c) It decreases. 
(d) It is impossible to determine.

	 1.	 Figure OQ14.1 shows aerial views from directly above 
two dams. Both dams are equally wide (the vertical 
dimension in the diagram) and equally high (into the 
page in the diagram). The dam on the left holds back 
a very large lake, and the dam on the right holds back a 
narrow river. Which dam has to be built more strongly? 
(a) the dam on the left (b) the dam on the right (c) both 
the same (d) cannot be predicted

Dam Dam

Figure OQ14.1

	 2.	 A beach ball filled with air is pushed about 1 m below 
the surface of a swimming pool and released from rest. 
Which of the following statements are valid, assum-
ing the size of the ball remains the same? (Choose all 
correct statements.) (a) As the ball rises in the pool, 
the buoyant force on it increases. (b) When the ball 
is released, the buoyant force exceeds the gravitational 
force, and the ball accelerates upward. (c) The buoyant 
force on the ball decreases as the ball approaches the 
surface of the pool. (d) The buoyant force on the ball 
equals its weight and remains constant as the ball rises. 
(e) The buoyant force on the ball while it is submerged 
is approximately equal to the weight of a volume of 
water that could fill the ball.

	 3.	 A wooden block floats in water, and a steel object is 
attached to the bottom of the block by a string as in 
Figure OQ14.3. If the block remains floating, which 

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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436	C hapter 14  Fluid Mechanics

the weight of the boat (d) equal to the weight of the dis-
placed water (e) equal to the buoyant force on the boat

	10.	 A small piece of steel is tied to a block of wood. When 
the wood is placed in a tub of water with the steel on top, 
half of the block is submerged. Now the block is inverted 
so that the steel is under water. (i) Does the amount 
of the block submerged (a) increase, (b) decrease, or  
(c) remain the same? (ii) What happens to the water 
level in the tub when the block is inverted? (a) It rises. 
(b) It falls. (c) It remains the same.

	11.	 A piece of unpainted porous wood barely floats in an 
open container partly filled with water. The container 
is then sealed and pressurized above atmospheric pres-
sure. What happens to the wood? (a) It rises in the 
water. (b) It sinks lower in the water. (c) It remains at 
the same level.

	12.	A person in a boat floating in a small pond throws an 
anchor overboard. What happens to the level of the 
pond? (a) It rises. (b) It falls. (c) It remains the same.

	13.	 Rank the buoyant forces exerted on the following five 
objects of equal volume from the largest to the smallest. 
Assume the objects have been dropped into a swimming 
pool and allowed to come to mechanical equilibrium. 
If any buoyant forces are equal, state that in your rank-
ing. (a) a block of solid oak (b) an aluminum block (c) a  
beach ball made of thin plastic and inflated with air  
(d) an iron block (e) a thin-walled, sealed bottle of water

	14.	 A water supply maintains a constant rate of flow for water 
in a hose. You want to change the opening of the nozzle 
so that water leaving the nozzle will reach a height that 
is four times the current maximum height the water 
reaches with the nozzle vertical. To do so, should you  
(a) decrease the area of the opening by a factor of 16, 
(b) decrease the area by a factor of 8, (c) decrease the 
area by a factor of 4, (d) decrease the area by a factor of 
2, or (e) give up because it cannot be done?

	15.	A glass of water contains floating ice cubes. When the ice 
melts, does the water level in the glass (a) go up, (b) go  
down, or (c) remain the same?

	16.	An ideal fluid flows through a horizontal pipe whose 
diameter varies along its length. Measurements would 
indicate that the sum of the kinetic energy per unit 
volume and pressure at different sections of the pipe 
would (a)  decrease as the pipe diameter increases,  
(b) increase as the pipe diameter increases, (c) increase 
as the pipe diameter decreases, (d) decrease as the 
pipe diameter decreases, or (e) remain the same as the 
pipe diameter changes.

	 6.	 A solid iron sphere and a solid lead sphere of the 
same size are each suspended by strings and are sub-
merged in a tank of water. (Note that the density of 
lead is greater than that of iron.) Which of the fol-
lowing statements are valid? (Choose all correct state-
ments.) (a) The buoyant force on each is the same.  
(b) The buoyant force on the lead sphere is greater 
than the buoyant force on the iron sphere because lead 
has the greater density. (c) The tension in the string 
supporting the lead sphere is greater than the tension 
in the string supporting the iron sphere. (d) The buoy-
ant force on the iron sphere is greater than the buoy-
ant force on the lead sphere because lead displaces 
more water. (e) None of those statements is true.

	 7.	 Three vessels of different shapes are filled to the same 
level with water as in Figure OQ14.7. The area of the 
base is the same for all three vessels. Which of the fol-
lowing statements are valid? (Choose all correct state-
ments.) (a) The pressure at the top surface of vessel 
A is greatest because it has the largest surface area. 
(b) The pressure at the bottom of vessel A is greatest 
because it contains the most water. (c) The pressure at 
the bottom of each vessel is the same. (d) The force on 
the bottom of each vessel is not the same. (e) At a given 
depth below the surface of each vessel, the pressure on 
the side of vessel A is greatest because of its slope.

A B C

Figure OQ14.7

	 8.	 One of the predicted problems due to global warm-
ing is that ice in the polar ice caps will melt and raise 
sea levels everywhere in the world. Is that more of a 
worry for ice (a) at the north pole, where most of the 
ice floats on water; (b) at the south pole, where most 
of the ice sits on land; (c) both at the north and south 
pole equally; or (d) at neither pole?

	 9.	 A boat develops a leak and, after its passengers are res-
cued, eventually sinks to the bottom of a lake. When 
the boat is at the bottom, what is the force of the lake 
bottom on the boat? (a) greater than the weight of the 
boat (b) equal to the weight of the boat (c) less than 

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 When an object is immersed in a liquid at rest, why is 
the net force on the object in the horizontal direction 
equal to zero?

	 2.	 Two thin-walled drinking glasses having equal base 
areas but different shapes, with very different cross- 
sectional areas above the base, are filled to the same 

level with water. According to the expression P 5 P0 1  
rgh, the pressure is the same at the bottom of both 
glasses. In view of this equality, why does one weigh 
more than the other?

	 3.	 Because atmospheric pressure is about 105 N/m2 and the 
area of a person’s chest is about 0.13 m2, the force of the 
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	 Conceptual Questions	 437

	14.	Does a ship float higher in the water of an inland lake 
or in the ocean? Why?

	15.	When ski jumpers are airborne (Fig. CQ14.15), they 
bend their bodies forward and keep their hands at 
their sides. Why?

Figure CQ14.15
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	16.	Why do airplane pilots prefer to take off with the air-
plane facing into the wind?

	17.	 Prairie dogs ventilate their burrows by building a mound 
around one entrance, which is open to a stream of air 
when wind blows from any direction. A second entrance 
at ground level is open to almost stagnant air. How does 
this construction create an airflow through the burrow?

	18.	In Figure CQ14.18, an airstream moves from right to 
left through a tube that is constricted at the middle. 
Three table-tennis balls are levitated in equilibrium 
above the vertical columns through which the air 
escapes. (a) Why is the ball at the right higher than the 
one in the middle? (b) Why is the ball at the left lower 
than the ball at the right even though the horizontal 
tube has the same dimensions at these two points?

Figure CQ14.18
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	19.	A typical silo on a farm has many metal bands wrapped 
around its perimeter for support as shown in Figure 
CQ14.19. Why is the spacing between successive bands 
smaller for the lower portions of the silo on the left, 
and why are double bands used at lower portions of the 
silo on the right?

atmosphere on one’s chest is around 13 000 N. In view of 
this enormous force, why don’t our bodies collapse?

	 4.	 A fish rests on the bottom of a bucket of water while 
the bucket is being weighed on a scale. When the fish 
begins to swim around, does the scale reading change? 
Explain your answer.

	 5.	 You are a passenger on a spacecraft. For your survival 
and comfort, the interior contains air just like that at 
the surface of the Earth. The craft is coasting through 
a very empty region of space. That is, a nearly perfect 
vacuum exists just outside the wall. Suddenly, a mete-
oroid pokes a hole, about the size of a large coin, right 
through the wall next to your seat. (a) What happens? 
(b) Is there anything you can or should do about it?

	 6.	 If the airstream from a hair dryer is directed over a 
table-tennis ball, the ball can be levitated. Explain.

	 7.	 A water tower is a common sight in many communities. 
Figure CQ14.7 shows a collection of colorful water tow-
ers in Kuwait City, Kuwait. Notice that the large weight 
of the water results in the center of mass of the system 
being high above the ground. Why is it desirable for a 
water tower to have this highly unstable shape rather 
than being shaped as a tall cylinder?

Figure CQ14.7
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	 8.	 If you release a ball while inside a freely falling eleva-
tor, the ball remains in front of you rather than falling 
to the floor because the ball, the elevator, and you all 
experience the same downward gravitational accelera-
tion. What happens if you repeat this experiment with 
a helium-filled balloon?

	 9.	 (a) Is the buoyant force a conservative force? (b) Is a 
potential energy associated with the buoyant force?  
(c) Explain your answers to parts (a) and (b).

	10.	An empty metal soap dish barely floats in water. A bar 
of Ivory soap floats in water. When the soap is stuck in 
the soap dish, the combination sinks. Explain why.

	11.	 How would you determine the density of an irregularly 
shaped rock?

	12.	Place two cans of soft drinks, one regular and one diet, 
in a container of water. You will find that the diet drink 
floats while the regular one sinks. Use Archimedes’s 
principle to devise an explanation.

	13.	The water supply for a city is often provided from res-
ervoirs built on high ground. Water flows from the 
reservoir, through pipes, and into your home when 
you turn the tap on your faucet. Why does water flow 
more rapidly out of a faucet on the first floor of a 
building than in an apartment on a higher floor? Figure CQ14.19
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438	C hapter 14  Fluid Mechanics

Note: In all problems, assume the density of air is the 
20°C value from Table 14.1, 1.20 kg/m3, unless noted 
otherwise.

Section 14.1 Pressure

	 1.	 A large man sits on a four-legged chair with his feet off 
the floor. The combined mass of the man and chair is 
95.0 kg. If the chair legs are circular and have a radius 
of 0.500 cm at the bottom, what pressure does each leg 
exert on the floor?

	 2.	 The nucleus of an atom can be modeled as several pro-
tons and neutrons closely packed together. Each par-
ticle has a mass of 1.67 3 10227 kg and radius on the 
order of 10215 m. (a) Use this model and the data pro-
vided to estimate the density of the nucleus of an atom. 
(b) Compare your result with the density of a material 
such as iron. What do your result and comparison sug-
gest concerning the structure of matter?

	 3.	 A 50.0-kg woman wearing high-heeled shoes is invited 
into a home in which the kitchen has vinyl floor cover-
ing. The heel on each shoe is circular and has a radius 
of 0.500  cm. (a) If the woman balances on one heel, 
what pressure does she exert on the floor? (b) Should 
the homeowner be concerned? Explain your answer.

	 4.	 Estimate the total mass of the Earth’s atmosphere. 
(The radius of the Earth is 6.37 3 106 m, and atmo-
spheric pressure at the surface is 1.013 3 105 Pa.)

	 5.	 Calculate the mass of a solid gold rectangular bar that 
has dimensions of 4.50 cm 3 11.0 cm 3 26.0 cm.

Section 14.2 Variation of Pressure with Depth

	 6.	 (a) A very powerful vacuum cleaner has a hose 2.86 cm 
in diameter. With the end of the hose placed perpen-
dicularly on the flat face of a brick, what is the weight 
of the heaviest brick that the cleaner can lift? (b) What 
If? An octopus uses one sucker of diameter 2.86 cm on 
each of the two shells of a clam in an attempt to pull 
the shells apart. Find the greatest force the octopus 
can exert on a clamshell in salt water 32.3 m deep.

	 7.	 The spring of the pressure gauge shown in Figure 
P14.7 has a force constant of 1 250 N/m, and the piston 
has a diameter of 1.20 cm. As the gauge is lowered into 
water in a lake, what change in depth causes the piston 
to move in by 0.750 cm?
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	 8.	 The small piston of a hydraulic lift (Fig. P14.8) has a 
cross-sectional area of 3.00 cm2, and its large piston 
has a cross-sectional area of 200 cm2. What downward 
force of magnitude F1 must be applied to the small 
piston for the lift to raise a load whose weight is Fg 5  
15.0 kN?

F1
S

Fg � 15.0 kN

Figure P14.8

	 9.	 What must be the contact area between a suction cup 
(completely evacuated) and a ceiling if the cup is to 
support the weight of an 80.0-kg student?

	10.	 A swimming pool has dimensions 30.0 m 3 10.0 m and a 
flat bottom. When the pool is filled to a depth of 2.00 m  
with fresh water, what is the force exerted by the water 
on (a) the bottom? (b) On each end? (c) On each side?

	11.	 (a) Calculate the absolute pressure at the bottom of 
a freshwater lake at a point whose depth is 27.5 m. 
Assume the density of the water is 1.00 3 103 kg/m3 
and that the air above is at a pressure of 101.3 kPa.  
(b) What force is exerted by the water on the window 
of an underwater vehicle at this depth if the window is 
circular and has a diameter of 35.0 cm?

	12.	Why is the following situation impossible? Figure P14.12 
shows Superman attempting to drink cold water 
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Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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	17.	 Review. Piston  in Figure P14.17 has a diameter of 
0.250 in. Piston  has a diameter of 1.50 in. Determine 
the magnitude F of the force necessary to support the 
500-lb load in the absence of friction.

500 lb

2.0 in.
10 in.





F
S

Figure P14.17

	18.	Review. A solid sphere of brass (bulk modulus of  
14.0 3 1010 N/m2) with a diameter of 3.00 m is thrown 
into the ocean. By how much does the diameter of the 
sphere decrease as it sinks to a depth of 1.00 km?

Section 14.3 Pressure Measurements

	19.	Normal atmospheric pressure is 1.013 3 105 Pa. The 
approach of a storm causes the height of a mercury 
barometer to drop by 20.0 mm from the normal height. 
What is the atmospheric pressure?

	20.	The human brain and spinal cord are immersed in the 
cerebrospinal fluid. The fluid is normally continuous 
between the cranial and spinal cavities and exerts a 
pressure of 100 to 200 mm of H2O above the prevail-
ing atmospheric pressure. In medical work, pressures 
are often measured in units of millimeters of H2O 
because body fluids, including the cerebrospinal fluid, 
typically have the same density as water. The pressure 
of the cerebrospinal fluid can be measured by means 
of a spinal tap as illustrated in Figure P14.20. A hollow 
tube is inserted into the spinal column, and the height 
to which the fluid rises is observed. If the fluid rises 
to a height of 160 mm, we write its gauge pressure as 
160 mm H2O. (a) Express this pressure in pascals, in 
atmospheres, and in millimeters of mercury. (b) Some 
conditions that block or inhibit the flow of cerebrospi-
nal fluid can be investigated by means of Queckenstedt’s 
test. In this procedure, the veins in the patient’s neck 
are compressed to make the blood pressure rise in the 
brain, which in turn should be transmitted to the cere-
brospinal fluid. Explain how the level of fluid in the 
spinal tap can be used as a diagnostic tool for the con-
dition of the patient’s spine.

BIO
Q/C

through a straw of length , 5 12.0 m. The walls of the 
tubular straw are very strong and do not collapse. With 
his great strength, he achieves maximum possible suc-
tion and enjoys drinking the cold water.

�

Figure P14.12

	13.	For the cellar of a new house, a hole is dug in the 
ground, with vertical sides going down 2.40 m. A con-
crete foundation wall is built all the way across the 
9.60-m width of the excavation. This foundation wall 
is 0.183 m away from the front of the cellar hole. Dur-
ing a rainstorm, drainage from the street fills up the 
space in front of the concrete wall, but not the cellar 
behind the wall. The water does not soak into the clay 
soil. Find the force the water causes on the founda-
tion wall. For comparison, the weight of the water is 
given by 2.40 m 3 9.60 m 3 0.183 m 3 1 000 kg/m3 3  
9.80 m/s2 5 41.3 kN.

	14.	A container is filled to a depth of 20.0 cm with water. 
On top of the water floats a 30.0-cm-thick layer of oil 
with specific gravity 0.700. What is the absolute pres-
sure at the bottom of the container?

	15.	Review. The tank in Figure P14.15 is filled with water 
of depth d 5 2.00 m. At the bottom of one sidewall is a 
rectangular hatch of height h 5 1.00 m and width w 5  
2.00 m that is hinged at the top of the hatch. (a) Deter-
mine the magnitude of the force the water exerts 
on the hatch. (b)  Find the magnitude of the torque 
exerted by the water about the hinges.

d

w

h

Figure P14.15   
Problems 15 and 16.

	16.	Review. The tank in Figure P14.15 is filled with water of 
depth d. At the bottom of one sidewall is a rectangular 
hatch of height h and width w that is hinged at the top 
of the hatch. (a) Determine the magnitude of the force 
the water exerts on the hatch. (b) Find the magnitude 
of the torque exerted by the water about the hinges.

S

Figure P14.20
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440	C hapter 14  Fluid Mechanics

scale and submerged in water, the scale reads 3.50 N 
(Fig. P14.26). Find the density of the object.

Scale

a b

Figure P14.26  Problems 26 and 27.

	27.	 A 10.0-kg block of metal measuring 12.0 cm by 10.0 cm 
by 10.0 cm is suspended from a scale and immersed in 
water as shown in Figure P14.26b. The 12.0-cm dimen-
sion is vertical, and the top of the block is 5.00 cm below 
the surface of the water. (a) What are the magnitudes of 
the forces acting on the top and on the bottom of the 
block due to the surrounding water? (b) What is the 
reading of the spring scale? (c) Show that the buoyant 
force equals the difference between the forces at the top 
and bottom of the block.

	28.	A light balloon is filled with 400 m3 of helium at atmo-
spheric pressure. (a) At 0°C, the balloon can lift a pay-
load of what mass? (b) What If? In Table 14.1, observe 
that the density of hydrogen is nearly half the density 
of helium. What load can the balloon lift if filled with 
hydrogen?

	29.	A cube of wood having an edge dimension of 20.0 cm 
and a density of 650 kg/m3 floats on water. (a) What 
is the distance from the horizontal top surface of the 
cube to the water level? (b) What mass of lead should 
be placed on the cube so that the top of the cube will 
be just level with the water surface?

	30.	The United States possesses the ten largest warships 
in the world, aircraft carriers of the Nimitz class. Sup-
pose one of the ships bobs up to float 11.0 cm higher 
in the ocean water when 50 fighters take off from it in 
a time interval of 25 min, at a location where the free-
fall acceleration is 9.78 m/s2. The planes have an aver-
age laden mass of 29 000 kg. Find the horizontal area 
enclosed by the waterline of the ship.

	31.	 A plastic sphere floats in water with 50.0% of its vol-
ume submerged. This same sphere floats in glycerin 
with 40.0% of its volume submerged. Determine the 
densities of (a) the glycerin and (b) the sphere.

	32.	A spherical vessel used for deep-sea exploration has a 
radius of 1.50 m and a mass of 1.20 3 104 kg. To dive, 
the vessel takes on mass in the form of seawater. Deter-
mine the mass the vessel must take on if it is to descend 
at a constant speed of 1.20 m/s, when the resistive force 
on it is 1 100 N in the upward direction. The density of 
seawater is equal to 1.03 3 103 kg/m3.

	33.	A wooden block of volume 5.24 3 1024 m3 floats in 
water, and a small steel object of mass m is placed on 
top of the block. When m 5 0.310 kg, the system is in 
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	21.	 Blaise Pascal duplicated Torricelli’s barometer using a 
red Bordeaux wine, of density 984 kg/m3, as the work-
ing liquid (Fig. P14.21). (a) What was the height h of 
the wine column for normal atmospheric pressure?  
(b) Would you expect the vacuum above the column to 
be as good as for mercury?

P0

h

Figure P14.21

	22.	Mercury is poured into a U-tube as shown in Figure 
P14.22a. The left arm of the tube has cross-sectional 
area A1 of 10.0  cm2, and the right arm has a cross- 
sectional area A2 of 5.00 cm2. One hundred grams of 
water are then poured into the right arm as shown in 
Figure P14.22b. (a) Determine the length of the water 
column in the right arm of the U-tube. (b) Given that 
the density of mercury is 13.6 g/cm3, what distance h 
does the mercury rise in the left arm?

h

Mercury

A1 A2 A1 A2
Water

a b

Figure P14.22

	23.	A backyard swimming pool with a circular base of 
diameter 6.00 m is filled to depth 1.50 m. (a) Find the 
absolute pressure at the bottom of the pool. (b) Two 
persons with combined mass 150 kg enter the pool and 
float quietly there. No water overflows. Find the pres-
sure increase at the bottom of the pool after they enter 
the pool and float.

	24.	A tank with a flat bottom of area A and vertical sides is 
filled to a depth h with water. The pressure is P0 at the 
top surface. (a) What is the absolute pressure at the bot-
tom of the tank? (b) Suppose an object of mass M and 
density less than the density of water is placed into the 
tank and floats. No water overflows. What is the result-
ing increase in pressure at the bottom of the tank?

Section 14.4 Buoyant Forces and Archimedes’s Principle

	25.	A table-tennis ball has a diameter of 3.80 cm and aver-
age density of 0.084 0 g/cm3. What force is required to 
hold it completely submerged under water?

	26.	The gravitational force exerted on a solid object is  
5.00 N. When the object is suspended from a spring 
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fiduciary marks are to be placed along the rod to indi-
cate densities of 0.98 g/cm3, 1.00 g/cm3, 1.02 g/cm3, 
1.04 g/cm3, . . . , 1.14 g/cm3. The row of marks is to start 
0.200 cm from the top end of the rod and end 1.80 cm 
from the top end. (a) What is the required length of the 
rod? (b) What must be its average density? (c) Should 
the marks be equally spaced? Explain your answer.

	38.	On October 21, 2001, Ian Ashpole of the United King-
dom achieved a record altitude of 3.35 km (11 000 ft) 
powered by 600 toy balloons filled with helium. Each 
filled balloon had a radius of about 0.50 m and an esti-
mated mass of 0.30 kg. (a) Estimate the total buoyant 
force on the 600 balloons. (b) Estimate the net upward 
force on all 600  balloons. (c) Ashpole parachuted to 
the Earth after the balloons began to burst at the high 
altitude and the buoyant force decreased. Why did the 
balloons burst?

	39.	How many cubic meters of helium are required to lift 
a light balloon with a 400-kg payload to a height of 
8 000 m? Take rHe 5 0.179 kg/m3. Assume the balloon 
maintains a constant volume and the density of air 
decreases with the altitude z according to the expres-
sion rair 5 r0e2z/8 000, where z is in meters and r0 5  
1.20 kg/m3 is the density of air at sea level.

Section 14.5 Fluid Dynamics
Section 14.6 Bernoulli’s Equation
	40.	Water flowing through a garden hose of diameter 

2.74 cm fills a 25-L bucket in 1.50 min. (a) What is the 
speed of the water leaving the end of the hose? (b) A 
nozzle is now attached to the end of the hose. If the 
nozzle diameter is one-third the diameter of the hose, 
what is the speed of the water leaving the nozzle?

	41.	A large storage tank, open at the top and filled with 
water, develops a small hole in its side at a point 16.0 m  
below the water level. The rate of flow from the leak 
is found to be 2.50 3 1023 m3/min. Determine (a) the 
speed at which the water leaves the hole and (b) the 
diameter of the hole.

	42.	Water moves through a constricted pipe in steady, ideal 
flow. At the lower point shown in Figure P14.42, the 
pressure is P1 5 1.75 3 104 Pa and the pipe diameter 
is 6.00 cm. At another point y 5 0.250 m higher, the 
pressure is P2 5 1.20 3 104 Pa and the pipe diameter is  
3.00 cm. Find the speed of flow (a) in the lower section 
and (b) in the upper section. (c) Find the volume flow 
rate through the pipe.

P1

P2

y

Figure P14.42

	43.	Figure P14.43 on page 442 shows a stream of water in 
steady flow from a kitchen faucet. At the faucet, the 
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equilibrium and the top of the wooden block is at the 
level of the water. (a) What is the density of the wood? 
(b) What happens to the block when the steel object is 
replaced by an object whose mass is less than 0.310 kg? 
(c) What happens to the block when the steel object 
is replaced by an object whose mass is greater than  
0.310 kg?

	34.	The weight of a rectangular block of low-density mate-
rial is 15.0 N. With a thin string, the center of the hori-
zontal bottom face of the block is tied to the bottom of 
a beaker partly filled with water. When 25.0% of the 
block’s volume is submerged, the tension in the string is 
10.0 N. (a) Find the buoyant force on the block. (b) Oil  
of density 800 kg/m3 is now steadily added to the bea-
ker, forming a layer above the water and surround-
ing the block. The oil exerts forces on each of the 
four sidewalls of the block that the oil touches. What 
are the directions of these forces? (c) What happens 
to the string tension as the oil is added? Explain how 
the oil has this effect on the string tension. (d) The 
string breaks when its tension reaches 60.0 N. At this 
moment, 25.0% of the block’s volume is still below the 
water line. What additional fraction of the block’s vol-
ume is below the top surface of the oil?

	35.	A large weather balloon whose mass is 226 kg is filled 
with helium gas until its volume is 325 m3. Assume the 
density of air is 1.20 kg/m3 and the density of helium is 
0.179 kg/m3. (a) Calculate the buoyant force acting on 
the balloon. (b) Find the net force on the balloon and 
determine whether the balloon will rise or fall after it 
is released. (c) What additional mass can the balloon 
support in equilibrium?

	36.	A hydrometer is an instrument used to determine liquid 
density. A simple one is sketched in Figure P14.36. The 
bulb of a syringe is squeezed and released to let the 
atmosphere lift a sample of the liquid of interest into a 
tube containing a calibrated rod of known density. The 
rod, of length L and average density r0, floats partially 
immersed in the liquid of density r. A length h of the 
rod protrudes above the surface of the liquid. Show 
that the density of the liquid is given by

r 5
r0L

L 2 h

96

98

102

104

100

L

h96

98
100
102
104

Figure P14.36  Problems 36 and 37.

	37.	 Refer to Problem 36 and Figure P14.36. A hydrometer is 
to be constructed with a cylindrical floating rod. Nine 
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442	C hapter 14  Fluid Mechanics

water must be pumped if it is to arrive at the village? 
(b) If 4 500 m3 of water is pumped per day, what is 
the speed of the water in the pipe? Note: Assume the 
free-fall acceleration and the density of air are con-
stant over this range of elevations. The pressures you 
calculate are too high for an ordinary pipe. The water 
is actually lifted in stages by several pumps through 
shorter pipes.

	48.	In ideal flow, a liquid of density 850 kg/m3 moves from 
a horizontal tube of radius 1.00 cm into a second hori-
zontal tube of radius 0.500 cm at the same elevation as 
the first tube. The pressure differs by DP between the 
liquid in one tube and the liquid in the second tube. 
(a) Find the volume flow rate as a function of DP. Eval-
uate the volume flow rate for (b) DP 5 6.00 kPa and  
(c) DP 5 12.0 kPa.

	49.	The Venturi tube discussed in Example 14.8 and shown 
in Figure P14.49 may be used as a fluid flowmeter. 
Suppose the device is used at a service station to mea-
sure the flow rate of gasoline (r 5 7.00 3 102 kg/m3) 
through a hose having an outlet radius of 1.20 cm. If 
the difference in pressure is measured to be P1 2 P2 5 
1.20 kPa and the radius of the inlet tube to the meter 
is 2.40 cm, find (a) the speed of the gasoline as it leaves 
the hose and (b) the fluid flow rate in cubic meters per 
second.

P1 P2

Figure P14.49

	50.	Review. Old Faithful Geyser in Yellowstone National 
Park erupts at approximately one-hour intervals, 
and the height of the water column reaches 40.0 m 
(Fig. P14.50). (a)  Model the rising stream as a series 
of separate droplets. Analyze the free-fall motion of 
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diameter of the stream is 0.960 cm. The stream fills a 
125-cm3 container in 16.3 s. Find the diameter of the 
stream 13.0 cm below the opening of the faucet.

Figure P14.43
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	44.	A village maintains a large tank with an open top, con-
taining water for emergencies. The water can drain 
from the tank through a hose of diameter 6.60 cm. The 
hose ends with a nozzle of diameter 2.20 cm. A rubber 
stopper is inserted into the nozzle. The water level in 
the tank is kept 7.50 m above the nozzle. (a) Calculate 
the friction force exerted on the stopper by the nozzle. 
(b) The stopper is removed. What mass of water flows 
from the nozzle in 2.00 h? (c) Calculate the gauge pres-
sure of the flowing water in the hose just behind the 
nozzle.

	45.	A legendary Dutch boy saved Holland by plugging a 
hole of diameter 1.20 cm in a dike with his finger. If 
the hole was 2.00 m below the surface of the North Sea 
(density 1 030 kg/m3), (a) what was the force on his fin-
ger? (b) If he pulled his finger out of the hole, during 
what time interval would the released water fill 1 acre 
of land to a depth of 1 ft? Assume the hole remained 
constant in size.

	46.	Water falls over a dam of height h with a mass flow rate 
of R, in units of kilograms per second. (a) Show that 
the power available from the water is

P 5 Rgh

		  where g is the free-fall acceleration. (b) Each hydro-
electric unit at the Grand Coulee Dam takes in water at 
a rate of 8.50 3 105 kg/s from a height of 87.0 m. The 
power developed by the falling water is converted to 
electric power with an efficiency of 85.0%. How much 
electric power does each hydroelectric unit produce?

	47.	Water is pumped up from the Colorado River to sup-
ply Grand Canyon Village, located on the rim of the 
canyon. The river is at an elevation of 564 m, and the 
village is at an elevation of 2 096 m. Imagine that  
the water is pumped through a single long pipe 15.0 cm  
in diameter, driven by a single pump at the bottom 
end. (a) What is the minimum pressure at which the Figure P14.50
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4.00 m 3 1.50 m. Assume the density of the air to be 
constant at 1.20 kg/m3. The air inside the building is at 
atmospheric pressure. What is the total force exerted 
by air on the windowpane? (b) What If? If a second 
skyscraper is built nearby, the airspeed can be espe-
cially high where wind passes through the narrow sepa-
ration between the buildings. Solve part (a) again with 
a wind speed of 22.4 m/s, twice as high.

	55.	A hypodermic syringe contains a medicine with the 
density of water (Fig. P14.55). The barrel of the syringe 
has a cross-sectional area A 5 2.50 3 1025 m2, and the 
needle has a cross-sectional area a 5 1.00 3 1028 m2. 
In the absence of a force on the plunger, the pressure 
everywhere is 1.00 atm. A force F

S
 of magnitude 2.00 N  

acts on the plunger, making medicine squirt hori-
zontally from the needle. Determine the speed of the 
medicine as it leaves the needle’s tip.

A

a

F
S vS

Figure P14.55

Additional Problems

	56.	Decades ago, it was thought that huge herbivorous 
dinosaurs such as Apatosaurus and Brachiosaurus habit-
ually walked on the bottom of lakes, extending their 
long necks up to the surface to breathe. Brachiosaurus 
had its nostrils on the top of its head. In 1977, Knut 
Schmidt-Nielsen pointed out that breathing would be 
too much work for such a creature. For a simple model, 
consider a sample consisting of 10.0 L of air at absolute 
pressure 2.00 atm, with density 2.40 kg/m3, located at 
the surface of a freshwater lake. Find the work required 
to transport it to a depth of 10.3 m, with its tempera-
ture, volume, and pressure remaining constant. This 
energy investment is greater than the energy that can 
be obtained by metabolism of food with the oxygen in 
that quantity of air.

	57.	 (a) Calculate the absolute pressure at an ocean depth of 
1 000 m. Assume the density of seawater is 1 030 kg/m3  
and the air above exerts a pressure of 101.3 kPa. (b) At  
this depth, what is the buoyant force on a spherical 
submarine having a diameter of 5.00 m?

	58.	In about 1657, Otto von Guericke, inventor of the air 
pump, evacuated a sphere made of two brass hemi-
spheres (Fig. P14.58). Two teams of eight horses each 
could pull the hemispheres apart only on some trials 
and then “with greatest difficulty,” with the resulting  
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one of the droplets to determine the speed at which 
the water leaves the ground. (b) What If? Model the 
rising stream as an ideal fluid in streamline flow. 
Use Bernoulli’s equation to determine the speed of 
the water as it leaves ground level. (c) How does the 
answer from part (a) compare with the answer from 
part (b)? (d) What is the pressure (above atmospheric) 
in the heated underground chamber if its depth is  
175 m? Assume the chamber is large compared with 
the geyser’s vent.

Section 14.7 Other Applications of Fluid Dynamics

	51.	 An airplane is cruising at altitude 10 km. The pressure 
outside the craft is 0.287 atm; within the passenger 
compartment, the pressure is 1.00 atm and the temper-
ature is 208C. A small leak occurs in one of the window 
seals in the passenger compartment. Model the air as 
an ideal fluid to estimate the speed of the airstream 
flowing through the leak.

	52.	An airplane has a mass of 1.60 3 104 kg, and each wing 
has an area of 40.0 m2. During level flight, the pressure 
on the lower wing surface is 7.00 3 104 Pa. (a) Suppose 
the lift on the airplane were due to a pressure differ-
ence alone. Determine the pressure on the upper wing 
surface. (b) More realistically, a significant part of the 
lift is due to deflection of air downward by the wing. 
Does the inclusion of this force mean that the pressure 
in part (a) is higher or lower? Explain.

	53.	A siphon is used to drain water from a tank as illus-
trated in Figure P14.53. Assume steady flow without 
friction. (a) If h 5 1.00 m, find the speed of outflow at 
the end of the siphon. (b) What If? What is the limita-
tion on the height of the top of the siphon above the 
end of the siphon? Note: For the flow of the liquid to be 
continuous, its pressure must not drop below its vapor 
pressure. Assume the water is at 20.08C, at which the 
vapor pressure is 2.3 kPa.

h

y

�

vS

Figure P14.53

	54.	The Bernoulli effect can have important consequences 
for the design of buildings. For example, wind can 
blow around a skyscraper at remarkably high speed, 
creating low pressure. The higher atmospheric pres-
sure in the still air inside the buildings can cause win-
dows to pop out. As originally constructed, the John 
Hancock Building in Boston popped windowpanes 
that fell many stories to the sidewalk below. (a) Sup-
pose a horizontal wind blows with a speed of 11.2 m/s 
outside a large pane of plate glass with dimensions 
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444	C hapter 14  Fluid Mechanics

balance with the use of counterweights of density r. 
Representing the density of air as rair and the balance 
reading as F 9g , show that the true weight Fg is

Fg 5 F rg 1 aV 2
F rg
rg

brairg

	63.	Water is forced out of a fire extinguisher by air pres-
sure as shown in Figure P14.63. How much gauge air 
pressure in the tank is required for the water jet to have 
a speed of 30.0  m/s when the water level is 0.500 m  
below the nozzle?

0.500 m

vS

Figure P14.63

	64.	Review. Assume a certain liquid, with density  
1 230  kg/m3, exerts no friction force on spherical 
objects. A ball of mass 2.10 kg and radius 9.00 cm is 
dropped from rest into a deep tank of this liquid from a 
height of 3.30 m above the surface. (a) Find the speed at 
which the ball enters the liquid. (b) Evaluate the magni-
tudes of the two forces that are exerted on the ball as it 
moves through the liquid. (c) Explain why the ball 
moves down only a limited distance into the liquid and 
calculate this distance. (d) With what speed will the ball 
pop up out of the liquid? (e) How does the time interval 
Dtdown, during which the ball moves from the surface 
down to its lowest point, compare with the time interval 
Dtup for the return trip between the same two points? 
(f) What If? Now modify the model to suppose the liq-
uid exerts a small friction force on the ball, opposite in 
direction to its motion. In this case, how do the time 
intervals Dtdown and Dtup compare? Explain your answer 
with a conceptual argument rather than a numerical 
calculation.

	65.	Review. A light spring of constant k 5 90.0 N/m is 
attached vertically to a table (Fig. P14.65a). A 2.00-g 
balloon is filled with helium (density 5 0.179 kg/m3) 

Q/C

AMT

sound likened to a cannon firing. Find the force F 
required to pull the thin-walled evacuated hemispheres  
apart in terms of R, the radius of the hemispheres; P, 
the pressure inside the hemispheres; and atmospheric 
pressure P0.

	59.	A spherical aluminum ball of mass 1.26 kg contains an 
empty spherical cavity that is concentric with the ball. 
The ball barely floats in water. Calculate (a) the outer 
radius of the ball and (b) the radius of the cavity.

	60.	A helium-filled balloon (whose envelope has a mass of 
mb 5 0.250 kg) is tied to a uniform string of length , 5 
2.00 m and mass m 5 0.050 0 kg. The balloon is spheri-
cal with a radius of r 5 0.400 m. When released in air 
of temperature 208C and density rair 5 1.20 kg/m3, it 
lifts a length h of string and then remains stationary as 
shown in Figure P14.60. We wish to find the length of 
string lifted by the balloon. (a)  When the balloon 
remains stationary, what is the appropriate analysis 
model to describe it? (b) Write a force equation for 
the balloon from this model in terms of the buoyant 
force B, the weight Fb of the balloon, the weight FHe of 
the helium, and the weight Fs of the segment of string 
of length h. (c) Make an appropriate substitution for 
each of these forces and solve symbolically for the 
mass ms of the segment of string of length h in terms 
of mb, r, rair, and the density of helium rHe. (d) Find 
the numerical value of the mass ms . (e) Find the length 
h numerically.

He

h

Figure P14.60

	61.	 Review. Figure P14.61 shows a valve separating a res-
ervoir from a water tank. If this valve is opened, what 
is the maximum height above point B attained by the 
water stream coming out of the right side of the tank? 
Assume h 5 10.0 m, L 5 2.00 m, and u 5 30.0°, and 
assume the cross-sectional area at A is very large com-
pared with that at B.

A

h

Valve L B

u

Figure P14.61

	62.	The true weight of an object can be measured in a 
vacuum, where buoyant forces are absent. A measure-
ment in air, however, is disturbed by buoyant forces. An 
object of volume V is weighed in air on an equal-arm 
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Figure P14.65
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	70.	Review. With reference to the dam studied in Example 
14.4 and shown in Figure 14.5, (a) show that the total 
torque exerted by the water behind the dam about a 
horizontal axis through O is 16 rgwH 3. (b) Show that the 
effective line of action of the total force exerted by the 
water is at a distance 13H  above O.

	71.	A 1.00-kg beaker containing 2.00 kg of oil (density 5 
916.0 kg/m3) rests on a scale. A 2.00-kg block of iron 
suspended from a spring scale is completely submerged 
in the oil as shown in Figure P14.71. Determine the 
equilibrium readings of both scales.

Figure P14.71  Problems 71 and 72.

	72.	A beaker of mass mb containing oil of mass mo and den-
sity ro rests on a scale. A block of iron of mass mFe sus-
pended from a spring scale is completely submerged in 
the oil as shown in Figure P14.71. Determine the equi-
librium readings of both scales.

	73.	In 1983, the United States began coining the one-cent 
piece out of copper-clad zinc rather than pure cop-
per. The mass of the old copper penny is 3.083 g and 
that of the new cent is 2.517 g. The density of copper  
is 8.920 g/cm3 and that of zinc is 7.133 g/cm3. The new 
and old coins have the same volume. Calculate the  
percent of zinc (by volume) in the new cent.

	74.	Review. A long, cylindrical rod of radius r is weighted 
on one end so that it floats upright in a fluid having a 
density r. It is pushed down a distance x from its equi-
librium position and released. Show that the rod will 
execute simple harmonic motion if the resistive effects 
of the fluid are negligible, and determine the period 
of the oscillations.

	75.	Review. Figure P14.75 shows the essential parts of 
a hydraulic brake system. The area of the piston in 
the master cylinder is 1.8 cm2 and that of the piston 

S

S

S

to a volume of 5.00 m3 and is then connected with a 
light cord to the spring, causing the spring to stretch 
as shown in Figure P14.65b. Determine the extension 
distance L when the balloon is in equilibrium.

	66.	To an order of magnitude, how many helium-filled toy 
balloons would be required to lift you? Because helium 
is an irreplaceable resource, develop a theoretical 
answer rather than an experimental answer. In your 
solution, state what physical quantities you take as data 
and the values you measure or estimate for them.

	67.	 A 42.0-kg boy uses a solid block of Styrofoam as a raft 
while fishing on a pond. The Styrofoam has an area 
of 1.00 m2 and is 0.050 0 m thick. While sitting on the 
surface of the raft, the boy finds that the raft just sup-
ports him so that the top of the raft is at the level of the 
pond. Determine the density of the Styrofoam.

	68.	A common parameter that can be used to predict tur-
bulence in fluid flow is called the Reynolds number. The 
Reynolds number for fluid flow in a pipe is a dimen-
sionless quantity defined as

Re 5
rvd
m

		  where r is the density of the fluid, v is its speed, d is the 
inner diameter of the pipe, and m is the viscosity of the 
fluid. Viscosity is a measure of the internal resistance 
of a liquid to flow and has units of Pa · s. The criteria 
for the type of flow are as follows:

		  •  If Re , 2 300, the flow is laminar.
		  •  �If 2 300 , Re , 4 000, the flow is in a transition 

region between laminar and turbulent.
		  •  If Re . 4 000, the flow is turbulent.

		  (a) Let’s model blood of density 1.06 3 103 kg/m3 
and viscosity 3.00 3 10–3 Pa · s as a pure liquid, that 
is, ignore the fact that it contains red blood cells. Sup-
pose it is flowing in a large artery of radius 1.50 cm 
with a speed of 0.067 0 m/s. Show that the flow is lami-
nar. (b) Imagine that the artery ends in a single capil-
lary so that the radius of the artery reduces to a much 
smaller value. What is the radius of the capillary that 
would cause the flow to become turbulent? (c) Actual 
capillaries have radii of about 5–10 micrometers, much 
smaller than the value in part (b). Why doesn’t the flow 
in actual capillaries become turbulent?

	69.	Evangelista Torricelli was the first person to realize 
that we live at the bottom of an ocean of air. He cor-
rectly surmised that the pressure of our atmosphere is 
attributable to the weight of the air. The density of air 
at 08C at the Earth’s surface is 1.29 kg/m3. The den-
sity decreases with increasing altitude (as the atmo-
sphere thins). On the other hand, if we assume the 
density is constant at 1.29 kg/m3 up to some altitude 
h and is zero above that altitude, then h would repre-
sent the depth of the ocean of air. (a) Use this model 
to determine the value of h that gives a pressure of 
1.00 atm at the surface of the Earth. (b) Would the 
peak of Mount Everest rise above the surface of such 
an atmosphere?

BIO
Q/C
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446	C hapter 14  Fluid Mechanics

travel from the nozzle to the ground. Neglect air resis-
tance and assume atmospheric pressure is 1.00 atm.  
(b) If the desired range of the stream is 8.00 m, with 
what speed v2 must the stream leave the nozzle? (c) At 
what speed v1 must the plunger be moved to achieve 
the desired range? (d) What is the pressure at the 
nozzle? (e) Find the pressure needed in the larger 
tube. (f) Calculate the force that must be exerted on 
the trigger to achieve the desired range. (The force 
that must be exerted is due to pressure over and above 
atmospheric pressure.)

F
S

v1
S

v2
S

A2

A1

Figure P14.78

	79.	An incompressible, nonviscous fluid is initially at rest 
in the vertical portion of the pipe shown in Figure 
P14.79a, where L 5 2.00 m. When the valve is opened, 
the fluid flows into the horizontal section of the pipe. 
What is the fluid’s speed when all the fluid is in the 
horizontal section as shown in Figure P14.79b? 
Assume the cross-sectional area of the entire pipe is 
constant.

Valve
closed

Valve
opened

L

L

vS

a b

Figure P14.79

	80.	The water supply of a building is fed through a main 
pipe 6.00 cm in diameter. A 2.00-cm-diameter faucet 
tap, located 2.00 m above the main pipe, is observed to 
fill a 25.0-L container in 30.0 s. (a) What is the speed at 
which the water leaves the faucet? (b) What is the 
gauge pressure in the 6-cm main pipe? Assume the 
faucet is the only “leak” in the building.

	81.	 A U-tube open at both ends is partially filled with 
water (Fig. P14.81a). Oil having a density 750 kg/m3 is 
then poured into the right arm and forms a column  
L 5 5.00 cm high (Fig. P14.81b). (a) Determine the 
difference h in the heights of the two liquid surfaces. 
(b) The right arm is then shielded from any air motion 
while air is blown across the top of the left arm until 
the surfaces of the two liquids are at the same height 
(Fig. P14.81c). Determine the speed of the air being 

in the brake cylinder is 6.4 cm2. The coefficient of fric-
tion between shoe and wheel drum is 0.50. If the wheel 
has a radius of 34 cm, determine the frictional torque 
about the axle when a force of 44 N is exerted on the 
brake pedal.

	76.	The spirit-in-glass thermometer, invented in Florence, 
Italy, around 1654, consists of a tube of liquid (the 
spirit) containing a number of submerged glass 
spheres with slightly different masses (Fig. P14.76). At 
sufficiently low temperatures, all the spheres float, but 
as the temperature rises, the spheres sink one after 
another. The device is a crude but interesting tool for 
measuring temperature. Suppose the tube is filled 
with ethyl alcohol, whose density is 0.789 45 g/cm3  
at 20.0°C and decreases to 0.780 97 g/cm3 at 30.0°C. 
(a) Assuming that one of the spheres has a radius  
of 1.000 cm and is in equilibrium halfway up the  
tube at 20.0°C, determine its mass. (b) When the 
temperature increases to 30.0°C, what mass must a 
second sphere of the same radius have to be in equi-
librium at the halfway point? (c) At 30.0°C, the first 
sphere has fallen to the bottom of the tube. What 
upward force does the bottom of the tube exert on 
this sphere?

Figure P14.76
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	77.	 Review. A uniform disk of mass 10.0 kg and radius 
0.250 m spins at 300 rev/min on a low-friction axle. It 
must be brought to a stop in 1.00 min by a brake pad 
that makes contact with the disk at an average distance 
0.220 m from the axis. The coefficient of friction 
between pad and disk is 0.500. A piston in a cylinder of 
diameter 5.00 cm presses the brake pad against the 
disk. Find the pressure required for the brake fluid  
in the cylinder.

	78.	Review. In a water pistol, a piston drives water through 
a large tube of area A1 into a smaller tube of area A2 as 
shown in Figure P14.78. The radius of the large tube 
is 1.00 cm and that of the small tube is 1.00 mm. The 
smaller tube is 3.00 cm above the larger tube. (a) If 
the pistol is fired horizontally at a height of 1.50 m, 
determine the time interval required for the water to 
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		  (b) The boat has mass M. Show that the liftoff speed is 
given by

v < Å
2Mg

1n2 2 1 2Ar

	84.	A jet of water squirts out horizontally from a hole near 
the bottom of the tank shown in Figure P14.84. If the 
hole has a diameter of 3.50 mm, what is the height h of 
the water level in the tank?

h

0.600 m

1.00 m

Figure P14.84

Challenge Problems

	85.	An ice cube whose edges measure 20.0 mm is float-
ing in a glass of ice-cold water, and one of the ice 
cube’s faces is parallel to the water’s surface. (a) How 
far below the water surface is the bottom face of the 
block? (b) Ice-cold ethyl alcohol is gently poured onto 
the water surface to form a layer 5.00 mm thick above 
the water. The alcohol does not mix with the water. 
When the ice cube again attains hydrostatic equilib-
rium, what is the distance from the top of the water 
to the bottom face of the block? (c) Additional cold 
ethyl alcohol is poured onto the water’s surface until 
the top surface of the alcohol coincides with the top 
surface of the ice cube (in hydrostatic equilibrium). 
How thick is the required layer of ethyl alcohol?

	86.	Why is the following situation impossible? A barge is car-
rying a load of small pieces of iron along a river. 
The iron pile is in the shape of a cone for which the 
radius r of the base of the cone is equal to the central 
height h of the cone. The barge is square in shape, 
with vertical sides of length 2r, so that the pile of iron 
comes just up to the edges of the barge. The barge 
approaches a low bridge, and the captain realizes 
that the top of the pile of iron is not going to make 
it under the bridge. The captain orders the crew to 
shovel iron pieces from the pile into the water to 
reduce the height of the pile. As iron is shoveled from 
the pile, the pile always has the shape of a cone whose 
diameter is equal to the side length of the barge. 
After a certain volume of iron is removed from the 
barge, it makes it under the bridge without the top of 
the pile striking the bridge.

	87.	 Show that the variation of atmospheric pressure with 
altitude is given by P 5 P0e2ay, where a 5 r0g/P0, P0 
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blown across the left arm. Take the density of air as 
constant at 1.20 kg/m3.

P0

Water

h
L

Oil

L

ShieldvS

a b c

Figure P14.81

	82.	A woman is draining her fish tank by siphoning the 
water into an outdoor drain as shown in Figure P14.82.  
The rectangular tank has footprint area A and depth 
h. The drain is located a distance d below the surface 
of the water in the tank, where d .. h. The cross- 
sectional area of the siphon tube is A9. Model the water 
as flowing without friction. Show that the time interval 
required to empty the tank is given by

Dt 5
Ah

A r"2gd

d

h

Figure P14.82

	83.	The hull of an experimental boat is to be lifted above 
the water by a hydrofoil mounted below its keel as 
shown in Figure P14.83. The hydrofoil has a shape like 
that of an airplane wing. Its area projected onto a  
horizontal surface is A. When the boat is towed at suf-
ficiently high speed, water of density r moves in stream-
line flow so that its average speed at the top of the 
hydrofoil is n times larger than its speed vb below the 
hydrofoil. (a) Ignoring the buoyant force, show that 
the upward lift force exerted by the water on the hydro-
foil has a magnitude

F <
1
2 1n2 2 1 2rvb

2A

S

S

M

Figure P14.83
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448	C hapter 14  Fluid Mechanics

expressed from Equation 14.4 as dP 5 2rg dy. Also 
assume the density of air is proportional to the pres-
sure, which, as we will see in Chapter 20, is equivalent 
to assuming the temperature of the air is the same at 
all altitudes.

is atmospheric pressure at some reference level y 5 0, 
and r0 is the atmospheric density at this level. Assume 
the decrease in atmospheric pressure over an infinites-
imal change in altitude (so that the density is approxi-
mately uniform over the infinitesimal change) can be 
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p a r t 

2

Falling drops of water cause 
a water surface to oscillate. 
These oscillations are 
associated with circular waves 
moving away from the point at 
which the drops fall. In Part 2 
of the text, we will explore the 
principles related to oscillations 
and waves. (Marga Buschbell 

Steeger/Photographer’s Choice/

Getty Images)

Oscillations and 
Mechanical Waves

We begin this new part of the text by studying a special type of motion called 
periodic motion, the repeating motion of an object in which it continues to return to a 
given position after a fixed time interval. The repetitive movements of such an object are called 
oscillations. We will focus our attention on a special case of periodic motion called simple harmonic 
motion. All periodic motions can be modeled as combinations of simple harmonic motions.
	 Simple harmonic motion also forms the basis for our understanding of mechanical waves. Sound 
waves, seismic waves, waves on stretched strings, and water waves are all produced by some source 
of oscillation. As a sound wave travels through the air, elements of the air oscillate back and forth; 
as a water wave travels across a pond, elements of the water oscillate up and down and backward 
and forward. The motion of the elements of the medium bears a strong resemblance to the periodic 
motion of an oscillating pendulum or an object attached to a spring.
	T o explain many other phenomena in nature, we must understand the concepts of oscillations 
and waves. For instance, although skyscrapers and bridges appear to be rigid, they actually oscil-
late, something the architects and engineers who design and build them must take into account. 
To understand how radio and television work, we must understand the origin and nature of elec-
tromagnetic waves and how they propagate through space. Finally, much of what scientists have 
learned about atomic structure has come from information carried by waves. Therefore, we must 
first study oscillations and waves if we are to understand the concepts and theories of atomic 
physics.  ■
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The London Millennium Bridge 
over the River Thames in London. 
On opening day of the bridge, 
pedestrians noticed a swinging 
motion of the bridge, leading to its 
being named the “Wobbly Bridge.” 
The bridge was closed after two 
days and remained closed for two 
years. Over 50 tuned mass dampers 
were added to the bridge: the pairs 
of spring-loaded structures on top 
of the cross members (arrow).   
We will study both oscillations 
and damping of oscillations in this 
chapter. (Monkey Business Images/

Shutterstock.com)

15.1	 Motion of an Object 
Attached to a Spring

15.2	 Analysis Model: Particle in 
Simple Harmonic Motion

15.3	 Energy of the Simple 
Harmonic Oscillator

15.4	 Comparing Simple 
Harmonic Motion with 
Uniform Circular Motion

15.5	 The Pendulum

15.6	 Damped Oscillations

15.7	 Forced Oscillations

Oscillatory Motion

450  	

Periodic motion is motion of an object that regularly returns to a given position after 
a fixed time interval. With a little thought, we can identify several types of periodic motion 
in everyday life. Your car returns to the driveway each afternoon. You return to the dinner 
table each night to eat. A bumped chandelier swings back and forth, returning to the same 
position at a regular rate. The Earth returns to the same position in its orbit around the Sun 
each year, resulting in the variation among the four seasons.
	A  special kind of periodic motion occurs in mechanical systems when the force acting on 
an object is proportional to the position of the object relative to some equilibrium position. 
If this force is always directed toward the equilibrium position, the motion is called simple 
harmonic motion, which is the primary focus of this chapter.

15.1	 Motion of an Object Attached to a Spring
As a model for simple harmonic motion, consider a block of mass m attached to the 
end of a spring, with the block free to move on a frictionless, horizontal surface 

c h a p t e r 
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	 15.1  Motion of an Object Attached to a Spring	 451

(Fig. 15.1). When the spring is neither stretched nor compressed, the block is at rest 
at the position called the equilibrium position of the system, which we identify as 
x 5 0 (Fig. 15.1b). We know from experience that such a system oscillates back and 
forth if disturbed from its equilibrium position.
	 We can understand the oscillating motion of the block in Figure 15.1 qualita-
tively by first recalling that when the block is displaced to a position x, the spring 
exerts on the block a force that is proportional to the position and given by Hooke’s 
law (see Section 7.4):

	 Fs 5 2kx	 (15.1)

We call Fs a restoring force because it is always directed toward the equilibrium 
position and therefore opposite the displacement of the block from equilibrium. 
That is, when the block is displaced to the right of x 5 0 in Figure 15.1a, the posi-
tion is positive and the restoring force is directed to the left. When the block is 
displaced to the left of x 5 0 as in Figure 15.1c, the position is negative and the 
restoring force is directed to the right.
	 When the block is displaced from the equilibrium point and released, it is a 
particle under a net force and consequently undergoes an acceleration. Applying 
the particle under a net force model to the motion of the block, with Equation 15.1 
providing the net force in the x direction, we obtain

o Fx 5 max   S   2kx 5 max

	 ax 5 2
k
m

 x	 (15.2)

That is, the acceleration of the block is proportional to its position, and the direc-
tion of the acceleration is opposite the direction of the displacement of the block 
from equilibrium. Systems that behave in this way are said to exhibit simple har-
monic motion. An object moves with simple harmonic motion whenever its accel-
eration is proportional to its position and is oppositely directed to the displacement 
from equilibrium.
	 If the block in Figure 15.1 is displaced to a position x 5 A and released from 
rest, its initial acceleration is 2kA/m. When the block passes through the equilib-
rium position x 5 0, its acceleration is zero. At this instant, its speed is a maxi-
mum because the acceleration changes sign. The block then continues to travel 
to the left of equilibrium with a positive acceleration and finally reaches x 5 2A, 
at which time its acceleration is 1kA/m and its speed is again zero as discussed in 
Sections 7.4 and 7.9. The block completes a full cycle of its motion by returning to 
the original position, again passing through x 5 0 with maximum speed. There-
fore, the block oscillates between the turning points x 5 6A. In the absence of 

WW Hooke’s law

Figure 15.1  A block attached  
to a spring moving on a friction-
less surface.
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When the block is displaced 
to the right of equilibrium, 
the force exerted by the 
spring acts to the left.

When the block is at its  
equilibrium position, the 
force exerted by the spring 
is zero.

When the block is displaced 
to the left of equilibrium, 
the force exerted by the 
spring acts to the right.

Pitfall Prevention 15.1
The Orientation of the Spring  Fig-
ure 15.1 shows a horizontal spring, 
with an attached block sliding on 
a frictionless surface. Another 
possibility is a block hanging from 
a vertical spring. All the results we 
discuss for the horizontal spring 
are the same for the vertical 
spring with one exception: when 
the block is placed on the vertical 
spring, its weight causes the spring 
to extend. If the resting position 
of the block is defined as x 5 0, 
the results of this chapter also 
apply to this vertical system.
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452	C hapter 15  Oscillatory Motion

friction, this idealized motion will continue forever because the force exerted by 
the spring is conservative. Real systems are generally subject to friction, so they do 
not oscillate forever. We shall explore the details of the situation with friction in 
Section 15.6.

Q	 uick Quiz 15.1 ​ A block on the end of a spring is pulled to position x 5 A and 
released from rest. In one full cycle of its motion, through what total distance 
does it travel? (a) A/2   (b) A   (c) 2A   (d) 4A

15.2	 �Analysis Model: Particle  
in Simple Harmonic Motion

The motion described in the preceding section occurs so often that we identify the 
particle in simple harmonic motion model to represent such situations. To develop 
a mathematical representation for this model, we will generally choose x as the axis 
along which the oscillation occurs; hence, we will drop the subscript-x notation in 
this discussion. Recall that, by definition, a 5 dv/dt 5 d 2x/dt 2, so we can express 
Equation 15.2 as

	
d 2x
dt 2 5 2 

k
m

 x 	 (15.3)

If we denote the ratio k/m with the symbol v2 (we choose v2 rather than v so as to 
make the solution we develop below simpler in form), then

	 v2 5
k
m

	 (15.4)

and Equation 15.3 can be written in the form

	
d 2x
dt 2 5 2v2x 	 (15.5)

	 Let’s now find a mathematical solution to Equation 15.5, that is, a function x(t) 
that satisfies this second-order differential equation and is a mathematical repre-
sentation of the position of the particle as a function of time. We seek a function 
whose second derivative is the same as the original function with a negative sign 
and multiplied by v2. The trigonometric functions sine and cosine exhibit this 
behavior, so we can build a solution around one or both of them. The following 
cosine function is a solution to the differential equation:

	 x 1t 2 5 A cos 1vt 1 f 2 	 (15.6)

where A, v, and f are constants. To show explicitly that this solution satisfies Equa-
tion 15.5, notice that

	
dx
dt

5 A 
d
dt

 cos 1vt 1 f 2 5 2vA sin 1vt 1 f 2 	 (15.7)

	
d 2x
dt 2 5 2vA 

d
dt

 sin 1vt 1 f 2 5 2v2A cos 1vt 1 f 2 	 (15.8)

Comparing Equations 15.6 and 15.8, we see that d 2x/dt 2 5 2v2x and Equation 15.5 
is satisfied.
	 The parameters A, v, and f are constants of the motion. To give physical signifi-
cance to these constants, it is convenient to form a graphical representation of the 
motion by plotting x as a function of t as in Figure 15.2a. First, A, called the ampli-
tude of the motion, is simply the maximum value of the position of the particle in 

Position versus time for  
a particle in simple  

harmonic motion

Pitfall Prevention 15.2
A Nonconstant Acceleration  The 
acceleration of a particle in simple 
harmonic motion is not constant. 
Equation 15.3 shows that its accel-
eration varies with position x.  
Therefore, we cannot apply the 
kinematic equations of Chapter 2 
in this situation.

Pitfall Prevention 15.3
Where’s the Triangle?  Equation 
15.6 includes a trigonometric 
function, a mathematical function 
that can be used whether it refers 
to a triangle or not. In this case, 
the cosine function happens to 
have the correct behavior for 
representing the position of a par-
ticle in simple harmonic motion.
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either the positive or negative x direction. The constant v is called the angular fre-
quency, and it has units1 of radians per second. It is a measure of how rapidly the 
oscillations are occurring; the more oscillations per unit time, the higher the value 
of v. From Equation 15.4, the angular frequency is

	 v 5 Å
k
m

	 (15.9)

	 The constant angle f is called the phase constant (or initial phase angle) and, 
along with the amplitude A, is determined uniquely by the position and velocity of 
the particle at t 5 0. If the particle is at its maximum position x 5 A at t 5 0, the 
phase constant is f 5 0 and the graphical representation of the motion is as shown 
in Figure 15.2b. The quantity (vt 1 f) is called the phase of the motion. Notice 
that the function x(t) is periodic and its value is the same each time vt increases by 
2p radians.
	 Equations 15.1, 15.5, and 15.6 form the basis of the mathematical representation 
of the particle in simple harmonic motion model. If you are analyzing a situation 
and find that the force on an object modeled as a particle is of the mathematical 
form of Equation 15.1, you know the motion is that of a simple harmonic oscillator 
and the position of the particle is described by Equation 15.6. If you analyze a sys-
tem and find that it is described by a differential equation of the form of Equation 
15.5, the motion is that of a simple harmonic oscillator. If you analyze a situation 
and find that the position of a particle is described by Equation 15.6, you know the 
particle undergoes simple harmonic motion.

Q	 uick Quiz 15.2  ​Consider a graphical representation (Fig. 15.3) of simple har-
monic motion as described mathematically in Equation 15.6. When the particle 
is at point A on the graph, what can you say about its position and velocity?  
(a) The position and velocity are both positive. (b) The position and velocity 
are both negative. (c) The position is positive, and the velocity is zero. (d) The 
position is negative, and the velocity is zero. (e) The position is positive, and the 
velocity is negative. (f) The position is negative, and the velocity is positive.

Q	 uick Quiz 15.3 ​ Figure 15.4 shows two curves representing particles under
going simple harmonic motion. The correct description of these two motions 
is that the simple harmonic motion of particle B is (a) of larger angular  
frequency and larger amplitude than that of particle A, (b) of larger angular  
frequency and smaller amplitude than that of particle A, (c) of smaller angu-
lar frequency and larger amplitude than that of particle A, or (d) of smaller 
angular frequency and smaller amplitude than that of particle A.

1We have seen many examples in earlier chapters in which we evaluate a trigonometric function of an angle. The 
argument of a trigonometric function, such as sine or cosine, must be a pure number. The radian is a pure number 
because it is a ratio of lengths. Angles in degrees are pure numbers because the degree is an artificial “unit”; it is not 
related to measurements of lengths. The argument of the trigonometric function in Equation 15.6 must be a pure 
number. Therefore, v must be expressed in radians per second (and not, for example, in revolutions per second) if t 
is expressed in seconds. Furthermore, other types of functions such as logarithms and exponential functions require 
arguments that are pure numbers.

Figure 15.2  (a) An x–t graph 
for a particle undergoing simple 
harmonic motion. The amplitude 
of the motion is A, and the period 
(defined in Eq. 15.10) is T. (b) The 
x–t graph for the special case in 
which x 5 A at t 5 0 and hence  
f 5 0.

x

A

–A

t

x

A

–A

t

T

a

b

t

x

A

Figure 15.3  ​(Quick Quiz 15.2) 
An x–t graph for a particle under-
going simple harmonic motion. 
At a particular time, the particle’s 
position is indicated by A in the 
graph.

t

x

t

x

Particle A

Particle B

Figure 15.4  ​(Quick Quiz 15.3) 
Two x–t graphs for particles under-
going simple harmonic motion. 
The amplitudes and frequencies 
are different for the two particles.

	 Let us investigate further the mathematical description of simple harmonic 
motion. The period T of the motion is the time interval required for the particle 
to go through one full cycle of its motion (Fig. 15.2a). That is, the values of x and v 
for the particle at time t equal the values of x and v at time t 1 T. Because the phase 
increases by 2p radians in a time interval of T,

	 [v(t 1 T) 1 f] 2 (vt 1 f) 5 2p	
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454	C hapter 15  Oscillatory Motion

Simplifying this expression gives vT 5 2p, or

	 T 5
2p

v
	 (15.10)

	 The inverse of the period is called the frequency f of the motion. Whereas the 
period is the time interval per oscillation, the frequency represents the number of 
oscillations the particle undergoes per unit time interval:

	 f 5
1
T

5
v

2p
	 (15.11)

The units of f are cycles per second, or hertz (Hz). Rearranging Equation 15.11 gives

	 v 5 2pf 5
2p

T
	 (15.12)

	 Equations 15.9 through 15.11 can be used to express the period and frequency 
of the motion for the particle in simple harmonic motion in terms of the character-
istics m and k of the system as

	 T 5
2p

v
5 2pÅ

m
k

	 (15.13)

	 f 5
1
T

5
1

2pÅ
k
m

	 (15.14)

That is, the period and frequency depend only on the mass of the particle and the 
force constant of the spring and not on the parameters of the motion, such as A or 
f. As we might expect, the frequency is larger for a stiffer spring (larger value of k) 
and decreases with increasing mass of the particle.
	 We can obtain the velocity and acceleration2 of a particle undergoing simple 
harmonic motion from Equations 15.7 and 15.8:

	 v 5
dx
dt

5 2vA sin 1vt 1 f 2 	 (15.15)

	 a 5
d 2x
dt 2 5 2v2A cos 1vt 1 f 2 	 (15.16)

	 From Equation 15.15, we see that because the sine and cosine functions oscillate 
between 61, the extreme values of the velocity v are 6vA. Likewise, Equation 15.16 
shows that the extreme values of the acceleration a are 6v2A. Therefore, the maxi-
mum values of the magnitudes of the velocity and acceleration are

	 vmax 5 vA 5 Å
k
m

 A	 (15.17)

	 amax 5 v2A 5
k
m

 A	 (15.18)

	 Figure 15.5a plots position versus time for an arbitrary value of the phase con-
stant. The associated velocity–time and acceleration–time curves are illustrated in 
Figures 15.5b and 15.5c, respectively. They show that the phase of the velocity dif-
fers from the phase of the position by p/2 rad, or 908. That is, when x is a maxi-
mum or a minimum, the velocity is zero. Likewise, when x is zero, the speed is a 
maximum. Furthermore, notice that the phase of the acceleration differs from the 
phase of the position by p radians, or 1808. For example, when x is a maximum, a 
has a maximum magnitude in the opposite direction.

Period 

Frequency 

Velocity of a particle in 
simple harmonic motion

Acceleration of a particle in 
 simple harmonic motion

Maximum magnitudes of 
 velocity and acceleration in 

simple harmonic motion

Pitfall Prevention 15.4
Two Kinds of Frequency  We iden-
tify two kinds of frequency for 
a simple harmonic oscillator: f, 
called simply the frequency, is mea-
sured in hertz, and v, the angular 
frequency, is measured in radians 
per second. Be sure you are clear 
about which frequency is being 
discussed or requested in a given 
problem. Equations 15.11 and 15.12 
show the relationship between the 
two frequencies.

2Because the motion of a simple harmonic oscillator takes place in one dimension, we denote velocity as v and accel-
eration as a, with the direction indicated by a positive or negative sign as in Chapter 2.
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Q	 uick Quiz 15.4 ​ An object of mass m is hung from a spring and set into oscilla-
tion. The period of the oscillation is measured and recorded as T. The object 
of mass m is removed and replaced with an object of mass 2m. When this object 
is set into oscillation, what is the period of the motion? (a) 2T   (b) !2 T    (c) T   
(d) T/!2   (e) T/2

	 Equation 15.6 describes simple harmonic motion of a particle in general. Let’s 
now see how to evaluate the constants of the motion. The angular frequency v is 
evaluated using Equation 15.9. The constants A and f are evaluated from the ini-
tial conditions, that is, the state of the oscillator at t 5 0.
	 Suppose a block is set into motion by pulling it from equilibrium by a distance A 
and releasing it from rest at t 5 0 as in Figure 15.6. We must then require our solu-
tions for x(t) and v(t) (Eqs. 15.6 and 15.15) to obey the initial conditions that x(0) 5 
A and v(0) 5 0:

x(0) 5 A cos f 5 A

	 v(0) 5 2vA sin f 5 0	

These conditions are met if f 5 0, giving x 5 A cos vt as our solution. To check this 
solution, notice that it satisfies the condition that x(0) 5 A because cos 0 5 1.
	 The position, velocity, and acceleration of the block versus time are plotted in 
Figure 15.7a for this special case. The acceleration reaches extreme values of 7v2A 
when the position has extreme values of 6A. Furthermore, the velocity has extreme 
values of 6vA, which both occur at x 5 0. Hence, the quantitative solution agrees 
with our qualitative description of this system.
	 Let’s consider another possibility. Suppose the system is oscillating and we define 
t 5 0 as the instant the block passes through the unstretched position of the spring 
while moving to the right (Fig. 15.8). In this case, our solutions for x(t) and v(t) 
must obey the initial conditions that x(0) 5 0 and v(0) 5 vi:

	 x(0) 5 A cos f 5 0	

	 v(0) 5 2vA sin f 5 vi	

	 The first of these conditions tells us that f 5 6p/2. With these choices for f, the 
second condition tells us that A 5 7vi/v. Because the initial velocity is positive and 
the amplitude must be positive, we must have f 5 2p/2. Hence, the solution is

	 x 5
vi

v
 cos avt 2

p

2
b 	

The graphs of position, velocity, and acceleration versus time for this choice of t 5 0 
are shown in Figure 15.7b. Notice that these curves are the same as those in Figure 

b

c

a

T

A

x

xi

t

t

t

v

vi

a

vmax

a max

Figure 15.5  ​Graphical repre-
sentation of simple harmonic 
motion. (a) Position versus time. 
(b) Velocity versus time. (c) Accel-
eration versus time. Notice that at 
any specified time the velocity is 
908 out of phase with the position 
and the acceleration is 1808 out of 
phase with the position.
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Figure 15.7  ​(a) Position, velocity, and acceleration versus time for the block in Figure 15.6 under 
the initial conditions that at t 5 0, x(0) 5 A, and v(0) 5 0. (b) Position, velocity, and acceleration ver-
sus time for the block in Figure 15.8 under the initial conditions that at t 5 0, x(0) 5 0, and v(0) 5 vi.

Figure 15.6  A block–spring 
system that begins its motion from 
rest with the block at x 5 A at t 5 0.

A

m

x � 0

t � 0
xi � A
vi � 0

Figure 15.8  The block–spring 
system is undergoing oscillation, 
and t 5 0 is defined at an instant 
when the block passes through the 
equilibrium position x 5 0 and is 
moving to the right with speed vi.

m

x � 0
t � 0

xi � 0
v � vi

vi
S
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456	C hapter 15  Oscillatory Motion

Example 15.1	     A Block–Spring System 

A 200-g block connected to a light spring for which the force constant is 5.00 N/m is free to oscillate on a frictionless, 
horizontal surface. The block is displaced 5.00 cm from equilibrium and released from rest as in Figure 15.6.

(A)  ​Find the period of its motion.

Conceptualize  ​Study Figure 15.6 and imagine the block moving back and forth in simple harmonic motion once it 
is released. Set up an experimental model in the vertical direction by hanging a heavy object such as a stapler from a 
strong rubber band.

Categorize  ​The block is modeled as a particle in simple harmonic motion. 

Analyze 

AM

S o l u t i on

Use Equation 15.9 to find the angular frequency of the 
block–spring system:

v 5 Å
k
m

5 Å
5.00 N/m

200 3 1023 kg
5 5.00 rad/s

Use Equation 15.13 to find the period of the system: T 5
2p

v
5

2p

5.00 rad/s
5 1.26 s

(B)  ​Determine the maximum speed of the block.

S o l u t i on

(C)  ​What is the maximum acceleration of the block?

Use Equation 15.17 to find vmax: vmax 5 vA 5 (5.00 rad/s)(5.00 3 1022 m) 5   0.250 m/s

15.7a, but shifted to the right by one-fourth of a cycle. This shift is described math-
ematically by the phase constant f 5 2p/2, which is one-fourth of a full cycle of 2p.

Analysis Model	    Particle in Simple Harmonic Motion

Imagine an object that is subject to a force that is proportional to the negative of 
the object’s position, F 5 2kx. Such a force equation is known as Hooke’s law, and it 
describes the force applied to an object attached to an ideal spring. The parameter 
k in Hooke’s law is called the spring constant or the force constant. The position of an 
object acted on by a force described by Hooke’s law is given by

	 x(t) 5 A cos (vt 1 f)	 (15.6)

where A is the amplitude of the motion, v is the angular frequency, and f is the phase constant. The values of A and 
f depend on the initial position and initial velocity of the particle.
	 The period of the oscillation of the particle is

	 T 5
2p

v
5 2pÅ

m
k

	 (15.13)

and the inverse of the period is the frequency.

Examples: 

•	 a bungee jumper hangs from a bungee cord and oscillates up and down
•	 a guitar string vibrates back and forth in a standing wave, with each element of the string moving in simple har-

monic motion (Chapter 18)
•	 a piston in a gasoline engine oscillates up and down within the cylinder of the engine (Chapter 22)
•	 an atom in a diatomic molecule vibrates back and forth as if it is connected by a spring to the other atom in the 

molecule (Chapter 43)

x

A

–A

t

T
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S o l u t i on

Use Equation 15.18 to find amax: amax 5 v2A 5 (5.00 rad/s)2(5.00 3 1022 m) 5   1.25 m/s2

(D)  ​Express the position, velocity, and acceleration as functions of time in SI units.

S o l u t i on

Find the phase constant from the initial condition that  
x 5 A at t 5 0:

x(0) 5 A cos f 5 A   S   f 5 0

Use Equation 15.6 to write an expression for x(t): x 5 A cos (vt 1 f) 5   0.050 0 cos 5.00t

Use Equation 15.15 to write an expression for v(t): v 5 2vA sin (vt 1 f) 5   20.250 sin 5.00t

Use Equation 15.16 to write an expression for a(t): a 5 2v2A cos (vt 1 f) 5   21.25 cos 5.00t

Finalize  Consider part (a) of Figure 15.7, which shows the graphical representations of the motion of the block in this 
problem. Make sure that the mathematical representations found above in part (D) are consistent with these graphi-
cal representations.

What if the block were released from the same initial position, xi 5 5.00 cm, but with an initial velocity of  
vi 5 20.100 m/s? Which parts of the solution change, and what are the new answers for those that do change?

Answers  ​Part (A) does not change because the period is independent of how the oscillator is set into motion. Parts 
(B), (C), and (D) will change.

What If ?

Write position and velocity expressions for the initial 
conditions:

(1)   ​x(0) 5 A cos f 5 xi

(2)   ​v(0) 5 2vA sin f 5 vi

Divide Equation (2) by Equation (1) to find the phase 
constant:

2vA sin f
A cos f

5
vi

xi

 tan f 5 2
vi

vxi
5 2

20.100 m/s
15.00 rad/s 2 10.050 0 m 2 5 0.400

f 5 tan21 (0.400) 5 0.121p

Use Equation (1) to find A: A 5
xi

cos f
5

0.050 0 m
cos 10.121p 2 5 0.053 9 m

Find the new maximum speed: vmax 5 vA 5 (5.00 rad/s)(5.39 3 1022 m) 5 0.269 m/s

Find the new magnitude of the maximum acceleration: amax 5 v2A 5 (5.00 rad/s)2(5.39 3 1022 m) 5 1.35 m/s2

Find new expressions for position, velocity, and accelera-
tion in SI units:

x 5 0.053 9 cos (5.00t 1 0.121p)

v 5 20.269 sin (5.00t 1 0.121p)

a 5 21.35 cos (5.00t 1 0.121p)

As we saw in Chapters 7 and 8, many problems are easier to solve using an energy approach rather than one based on 
variables of motion. This particular What If? is easier to solve from an energy approach. Therefore, we shall investigate 
the energy of the simple harmonic oscillator in the next section.

	

▸ 15.1 c o n t i n u e d

Example 15.2	     Watch Out for Potholes! 

A car with a mass of 1 300 kg is constructed so that its frame is supported by four springs. Each spring has a force con-
stant of 20 000 N/m. Two people riding in the car have a combined mass of 160 kg. Find the frequency of vibration of 
the car after it is driven over a pothole in the road.

AM

continued
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458	C hapter 15  Oscillatory Motion

Conceptualize  ​Think about your experiences with automobiles. When you sit in a car, it moves downward a small dis-
tance because your weight is compressing the springs further. If you push down on the front bumper and release it, 
the front of the car oscillates a few times.

Categorize  ​We imagine the car as being supported by a single spring and model the car as a particle in simple harmonic 
motion.

Analyze  ​First, let’s determine the effective spring constant of the four springs combined. For a given extension x of 
the springs, the combined force on the car is the sum of the forces from the individual springs.

S o l u t i on

Find an expression for the total force on the car: Ftotal 5 o (2kx) 5 2 ao k b x

Evaluate the effective spring constant: keff 5 o k 5 4 3 20 000 N/m 5 80 000 N/m

Use Equation 15.14 to find the frequency of vibration: f 5
1

2pÅ
k eff

m
5

1
2pÅ

80 000 N/m
1 460 kg

5  1.18 Hz

In this expression, x has been factored from the sum because it is the same for all four springs. The effective spring 
constant for the combined springs is the sum of the individual spring constants.

Finalize  ​The mass we used here is that of the car plus the people because that is the total mass that is oscillating. Also 
notice that we have explored only up-and-down motion of the car. If an oscillation is established in which the car rocks 
back and forth such that the front end goes up when the back end goes down, the frequency will be different.

​Suppose the car stops on the side of the road and the two people exit the car. One of them pushes down-
ward on the car and releases it so that it oscillates vertically. Is the frequency of the oscillation the same as the value 
we just calculated?

Answer  ​The suspension system of the car is the same, but the mass that is oscillating is smaller: it no longer includes 
the mass of the two people. Therefore, the frequency should be higher. Let’s calculate the new frequency, taking the 
mass to be 1 300 kg:

f 5
1

2p Å
k eff

m
5

1
2p Å

80 000 N/m
1 300 kg

5 1.25 Hz

As predicted, the new frequency is a bit higher.

What If ?

	

▸ 15.2 c o n t i n u e d

15.3	 Energy of the Simple Harmonic Oscillator
As we have done before, after studying the the motion of an object modeled as a 
particle in a new situation and investigating the forces involved in influencing that 
motion, we turn our attention to energy. Let us examine the mechanical energy 
of a system in which a particle undergoes simple harmonic motion, such as the 
block–spring system illustrated in Figure 15.1. Because the surface is frictionless, 
the system is isolated and we expect the total mechanical energy of the system to 
be constant. We assume a massless spring, so the kinetic energy of the system cor-
responds only to that of the block. We can use Equation 15.15 to express the kinetic 
energy of the block as

	 K 5 1
2mv2 5 1

2mv2A2 sin2 1vt 1 f 2 	 (15.19)

	 The elastic potential energy stored in the spring for any elongation x is given by 
1
2 kx2 (see Eq. 7.22). Using Equation 15.6 gives

	 U 5 1
2kx2 5 1

2kA2 cos2 1vt 1 f 2 	 (15.20)

Kinetic energy of a simple  
harmonic oscillator

Potential energy of a simple  
harmonic oscillator
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We see that K and U are always positive quantities or zero. Because v2 5 k/m, we can 
express the total mechanical energy of the simple harmonic oscillator as

E 5 K 1 U 5 1
2kA2 3sin2 1vt 1 f 2 1 cos2 1vt 1 f 2 4

From the identity sin2 u 1 cos2 u 5 1, we see that the quantity in square brackets is 
unity. Therefore, this equation reduces to

	 E 5 1
2kA2	 (15.21)

That is, the total mechanical energy of a simple harmonic oscillator is a constant of 
the motion and is proportional to the square of the amplitude. The total mechani-
cal energy is equal to the maximum potential energy stored in the spring when x 5 
6A because v 5 0 at these points and there is no kinetic energy. At the equilibrium 
position, where U 5 0 because x 5 0, the total energy, all in the form of kinetic 
energy, is again 12kA2.
	 Plots of the kinetic and potential energies versus time appear in Figure 15.9a, 
where we have taken f 5 0. At all times, the sum of the kinetic and potential ener-
gies is a constant equal to 12kA2, the total energy of the system.
	 The variations of K and U with the position x of the block are plotted in Figure 
15.9b. Energy is continuously being transformed between potential energy stored 
in the spring and kinetic energy of the block.
	 Figure 15.10 on page 460 illustrates the position, velocity, acceleration, kinetic 
energy, and potential energy of the block–spring system for one full period of the 
motion. Most of the ideas discussed so far are incorporated in this important fig-
ure. Study it carefully.
	 Finally, we can obtain the velocity of the block at an arbitrary position by express-
ing the total energy of the system at some arbitrary position x as

	 E 5 K 1 U 5 1
2mv 2 1 1

2kx 2 5 1
2kA2	

	 v 5 6Å
k
m

1A2 2 x2 2 5 6v"A2 2 x2	 (15.22)

When you check Equation 15.22 to see whether it agrees with known cases, you 
find that it verifies that the speed is a maximum at x 5 0 and is zero at the turning 
points x 5 6A.
	 You may wonder why we are spending so much time studying simple harmonic 
oscillators. We do so because they are good models of a wide variety of physical 
phenomena. For example, recall the Lennard–Jones potential discussed in Exam-
ple 7.9. This complicated function describes the forces holding atoms together. 
Figure 15.11a on page 460 shows that for small displacements from the equilibrium  

WW �Total energy of a simple  
harmonic oscillator

WW �Velocity as a function  
of position for a simple har-
monic oscillator

U �    kx2 K �   mv21
2

1
2

K , U

A
x

–A

O

K , U

1
2 kA2 1

2 kA2

U K

T
t

T
2

a b

In either plot, notice that 
K � U � constant.

Figure 15.9  (a) Kinetic energy 
and potential energy versus time 
for a simple harmonic oscillator 
with f 5 0. (b) Kinetic energy and 
potential energy versus position 
for a simple harmonic oscillator.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



460	C hapter 15  Oscillatory Motion

position, the potential energy curve for this function approximates a parabola, 
which represents the potential energy function for a simple harmonic oscillator. 
Therefore, we can model the complex atomic binding forces as being due to tiny 
springs as depicted in Figure 15.11b.
	 The ideas presented in this chapter apply not only to block–spring systems and 
atoms, but also to a wide range of situations that include bungee jumping, playing 
a musical instrument, and viewing the light emitted by a laser. You will see more 
examples of simple harmonic oscillators as you work through this book.

r

U

a b

Figure 15.11  ​(a) If the atoms in a molecule 
do not move too far from their equilibrium 
positions, a graph of potential energy versus 
separation distance between atoms is similar 
to the graph of potential energy versus posi-
tion for a simple harmonic oscillator (dashed 
black curve). (b) The forces between atoms 
in a solid can be modeled by imagining 
springs between neighboring atoms.
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Figure 15.10  (a) through (e) Several instants in the simple harmonic motion for a block–spring system. Energy bar graphs show the distri-
bution of the energy of the system at each instant. The parameters in the table at the right refer to the block–spring system, assuming at t 5 0, 
x 5 A; hence, x 5 A cos vt. For these five special instants, one of the types of energy is zero. (f) An arbitrary point in the motion of the oscilla-
tor. The system possesses both kinetic energy and potential energy at this instant as shown in the bar graph.

Example 15.3	     Oscillations on a Horizontal Surface 

A 0.500-kg cart connected to a light spring for which the force constant is 20.0 N/m oscillates on a frictionless, hori-
zontal air track.

(A)  ​Calculate the maximum speed of the cart if the amplitude of the motion is 3.00 cm.

Conceptualize  ​The system oscillates in exactly the same way as the block in Figure 15.10, so use that figure in your 
mental image of the motion.

AM

S o l u t i on
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	 15.3  Energy of the Simple Harmonic Oscillator	 461

Categorize  ​The cart is modeled as a particle in simple harmonic motion.

Analyze  ​Use Equation 15.21 to express the total energy 
of the oscillator system and equate it to the kinetic 
energy of the system when the cart is at x 5 0:

E 5 1
2kA2 5 1

2mvmax
2  

Evaluate the elastic potential energy at x 5 0.020 0 m: U 5 1
2kx 2 5 1

2 120.0 N/m 2 10.0200 m 22 5 4.00 3 1023 J

Solve for the maximum speed and substitute numerical 
values:

vmax 5 Å
k
m

 A 5 Å
20.0 N/m
0.500 kg

10.030 0 m 2 5 0.190 m/s

Use the result of part (B) to evaluate the kinetic energy 
at x 5 0.020 0 m:

K 5 1
2mv2 5 1

2 10.500 kg 2 10.141 m/s 22 5 5.00 3 1023 J

Use Equation 15.22 to evaluate the velocity:  v 5 6Å
k
m
1A2 2 x2 2

 5 6Å
20.0 N/m
0.500 kg

3 10.030 0 m 22 2 10.020 0 m 22 4

5   60.141 m/s

(B)  ​What is the velocity of the cart when the position is 2.00 cm?

S o l u t i on

Finalize  The sum of the kinetic and potential energies in part (C) is equal to the total energy, which can be found 
from Equation 15.21. That must be true for any position of the cart.

​The cart in this example could have been set into motion by releasing the cart from rest at x 5 3.00 cm. 
What if the cart were released from the same position, but with an initial velocity of v 5 20.100 m/s? What are the new 
amplitude and maximum speed of the cart?

Answer  ​This question is of the same type we asked at the end of Example 15.1, but here we apply an energy approach.

What If ?

The positive and negative signs indicate that the cart could be moving to either the right or the left at this instant.

(C)  ​Compute the kinetic and potential energies of the system when the position of the cart is 2.00 cm.

S o l u t i on

First calculate the total energy of the system at t 5 0: E 5 1
2mv 2 1 1

2kx 2 

 5 1
2 10.500 kg 2 120.100 m/s 22 1 1

2 120.0 N/m 2 10.030 0 m 22

5 1.15 3 1022 J

Equate this total energy to the potential energy of the 
system when the cart is at the endpoint of the motion:

E 5 1
2kA2

Solve for the amplitude A: A 5 Å
2E
k

5 Å
2 11.15 3 1022 J 2

20.0 N/m
5 0.033 9 m

Equate the total energy to the kinetic energy of the sys-
tem when the cart is at the equilibrium position:

E 5 1
2mv 2

max

Solve for the maximum speed: vmax 5 Å
2E
m

5 Å
2 11.15 3 1022 J 2

0.500 kg
5 0.214 m/s

The amplitude and maximum velocity are larger than the previous values because the cart was given an initial velocity 
at t 5 0.

▸ 15.3 c o n t i n u e d
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462	C hapter 15  Oscillatory Motion

Lamp

A

A
Screen

Turntable

The ball rotates like 
a particle in uniform 
circular motion.

The ball’s shadow moves 
like a particle in simple 
harmonic motion.

Figure 15.13  An experimen-
tal setup for demonstrating the 
connection between a particle in 
simple harmonic motion and a 
corresponding particle in uniform 
circular motion.

15.4	 �Comparing Simple Harmonic Motion  
with Uniform Circular Motion

Some common devices in everyday life exhibit a relationship between oscillatory 
motion and circular motion. For example, consider the drive mechanism for a non-
electric sewing machine in Figure 15.12. The operator of the machine places her 
feet on the treadle and rocks them back and forth. This oscillatory motion causes 
the large wheel at the right to undergo circular motion. The red drive belt seen in 
the photograph transfers this circular motion to the sewing machine mechanism 
(above the photo) and eventually results in the oscillatory motion of the sewing 
needle. In this section, we explore this interesting relationship between these two 
types of motion.
	 Figure 15.13 is a view of an experimental arrangement that shows this relation-
ship. A ball is attached to the rim of a turntable of radius A, which is illuminated 
from above by a lamp. The ball casts a shadow on a screen. As the turntable rotates 
with constant angular speed, the shadow of the ball moves back and forth in simple 
harmonic motion.
	 Consider a particle located at point P on the circumference of a circle of radius 
A as in Figure 15.14a, with the line OP making an angle f with the x axis at t 5 
0. We call this circle a reference circle for comparing simple harmonic motion with 
uniform circular motion, and we choose the position of P at t 5 0 as our reference 
position. If the particle moves along the circle with constant angular speed v until 
OP makes an angle u with the x axis as in Figure 15.14b, at some time t . 0 the angle 
between OP and the x axis is u 5 vt 1 f. As the particle moves along the circle, the 
projection of P on the x axis, labeled point Q , moves back and forth along the x axis 
between the limits x 5 6A.
	 Notice that points P and Q always have the same x coordinate. From the right 
triangle OPQ , we see that this x coordinate is

	 x 1t 2 5 A cos 1vt 1 f 2 	 (15.23)

This expression is the same as Equation 15.6 and shows that the point Q moves 
with simple harmonic motion along the x axis. Therefore, the motion of an object 
described by the analysis model of a particle in simple harmonic motion along a 
straight line can be represented by the projection of an object that can be modeled 
as a particle in uniform circular motion along a diameter of a reference circle.
	 This geometric interpretation shows that the time interval for one complete rev-
olution of the point P on the reference circle is equal to the period of motion T for 
simple harmonic motion between x 5 6A. Therefore, the angular speed v of P is 
the same as the angular frequency v of simple harmonic motion along the x axis 

Figure 15.12  The bottom of a treadle-style sewing machine from the early twentieth century. The 
treadle is the wide, flat foot pedal with the metal grillwork.

The oscillation of the treadle 
causes circular motion of the 
drive wheel, eventually 
resulting in additional up 
and down motion—of the 
sewing needle.

The back edge of 
the treadle goes up 
and down as one’s 
feet rock the treadle.
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	 15.4  Comparing Simple Harmonic Motion with Uniform Circular Motion	 463

(which is why we use the same symbol). The phase constant f for simple harmonic 
motion corresponds to the initial angle OP makes with the x axis. The radius A of 
the reference circle equals the amplitude of the simple harmonic motion.
	 Because the relationship between linear and angular speed for circular motion 
is v 5 rv (see Eq. 10.10), the particle moving on the reference circle of radius A has 
a velocity of magnitude vA. From the geometry in Figure 15.14c, we see that the x 
component of this velocity is 2vA sin(vt 1 f). By definition, point Q has a velocity 
given by dx/dt. Differentiating Equation 15.23 with respect to time, we find that the 
velocity of Q is the same as the x component of the velocity of P.
	 The acceleration of P on the reference circle is directed radially inward toward 
O and has a magnitude v2/A 5 v2A. From the geometry in Figure 15.14d, we see 
that the x component of this acceleration is 2v2A cos(vt 1 f). This value is also the 
acceleration of the projected point Q along the x axis, as you can verify by taking 
the second derivative of Equation 15.23.

Q	 uick Quiz 15.5 ​ Figure 15.15 shows the position of an object in uniform circular 
motion at t 5 0. A light shines from above and projects a shadow of the object 
on a screen below the circular motion. What are the correct values for the ampli-
tude and phase constant (relative to an x axis to the right) of the simple harmonic 
motion of the shadow? (a) 0.50 m and 0 (b) 1.00 m and 0 (c) 0.50 m and p  
(d) 1.00 m and p

v

P

P

x QO

Ay t � 0

 � �t

O

P
vx

vx QO

y

x

y

x

y

x

A

P

QO

y

x

ax

ax

f

fu

u

v v � Av a � 2Av

vS

aS 

A particle is at 
point P at t � 0.

At a later time t, the x 
coordinates of points P 
and Q are equal and are 
given by Equation 15.23.

The x component of 
the velocity of P equals 
the velocity of Q.

The x component of the 
acceleration of P equals 
the acceleration of Q.

a b c d

Figure 15.14  ​Relationship between the uniform circular motion of a point P and the simple harmonic motion of a point Q. A particle at P 
moves in a circle of radius A with constant angular speed v. 

Ball

Screen

Turntable

0.50 m

Lamp

Figure 15.15  ​(Quick Quiz 
15.5) An object moves in circular 
motion, casting a shadow on the 
screen below. Its position at an 
instant of time is shown.

Example 15.4	     Circular Motion with Constant Angular Speed 

The ball in Figure 15.13 rotates counterclockwise in a circle of radius 3.00 m with a constant angular speed of 
8.00 rad/s. At t 5 0, its shadow has an x coordinate of 2.00 m and is moving to the right.

(A)  ​Determine the x coordinate of the shadow as a function of time in SI units.

Conceptualize  ​Be sure you understand the relationship between circular motion of the ball and simple harmonic 
motion of its shadow as described in Figure 15.13. Notice that the shadow is not at is maximum position at t 5 0.

Categorize  ​The ball on the turntable is a particle in uniform circular motion. The shadow is modeled as a particle in simple 
harmonic motion.

AM

S o l u t i on

continued
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464	C hapter 15  Oscillatory Motion

15.5	 The Pendulum
The simple pendulum is another mechanical system that exhibits periodic motion. 
It consists of a particle-like bob of mass m suspended by a light string of length L 
that is fixed at the upper end as shown in Figure 15.16. The motion occurs in the 
vertical plane and is driven by the gravitational force. We shall show that, provided 
the angle u is small (less than about 108), the motion is very close to that of a simple 
harmonic oscillator.
	 The forces acting on the bob are the force T

S
 exerted by the string and the gravi-

tational force m gS. The tangential component mg sin u of the gravitational force 
always acts toward u 5 0, opposite the displacement of the bob from the lowest posi-
tion. Therefore, the tangential component is a restoring force, and we can apply 
Newton’s second law for motion in the tangential direction:

	 Ft 5 mat   S   2mg sin u 5 m 
d 2s
dt 2 	

where the negative sign indicates that the tangential force acts toward the equilib-
rium (vertical) position and s is the bob’s position measured along the arc. We have 
expressed the tangential acceleration as the second derivative of the position s.  
Because s 5 Lu (Eq. 10.1a with r 5 L) and L is constant, this equation reduces to

	
d 2u

dt 2 5 2
g

L
 sin u 	

Figure 15.16  A simple 
pendulum.

L

s
m g sin

m

m g cos

u

u

u
u

T
S

mgS 

When u is small, a simple 
pendulum's motion can be 
modeled as simple harmonic 
motion about the equilibrium 
position u � 0.

Analyze  Use Equation 15.23 to write an expression for 
the x coordinate of the rotating ball:

x 5 A cos 1vt 1 f 2

Solve for the phase constant: f 5 cos21 a x
A
b 2 vt

Substitute numerical values for the initial conditions: f 5 cos21 a2.00 m
3.00 m

b 2 0 5 648.28 5 60.841 rad

If we were to take f 5 10.841 rad as our answer, the shadow would be moving to the left at t 5 0. Because the shadow 
is moving to the right at t 5 0, we must choose f 5 20.841 rad.

Write the x coordinate as a function of time: x 5   3.00 cos (8.00t 2 0.841)

(B)  ​Find the x components of the shadow’s velocity and acceleration at any time t.

S o l u t i on

Differentiate the x coordinate with respect to time to 
find the velocity at any time in m/s:

vx 5
dx
dt

5 123.00 m 2 18.00 rad/s 2  sin 18.00t 2 0.841 2

5   224.0 sin (8.00t 2 0.841)

Differentiate the velocity with respect to time to find 
the acceleration at any time in m/s2:

ax 5
dvx

dt
5 1224.0 m/s 2 18.00 rad/s 2  cos 18.00t 2 0.841 2

5   2192 cos (8.00t 2 0.841)

Finalize  These results are equally valid for the ball moving in uniform circular motion and the shadow moving in 
simple harmonic motion. Notice that the value of the phase constant puts the ball in the fourth quadrant of the xy 
coordinate system of Figure 15.14, which is consistent with the shadow having a positive value for x and moving toward 
the right.

	

▸ 15.4 c o n t i n u e d
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Pitfall Prevention 15.5
Not True Simple Harmonic Motion  
The pendulum does not exhibit 
true simple harmonic motion for 
any angle. If the angle is less than 
about 108, the motion is close 
to and can be modeled as simple 
harmonic.

	 Considering u as the position, let us compare this equation with Equation 15.3. 
Does it have the same mathematical form? No! The right side is proportional to  
sin u rather than to u; hence, we would not expect simple harmonic motion because 
this expression is not of the same mathematical form as Equation 15.3. If we 
assume u is small (less than about 108 or 0.2 rad), however, we can use the small 
angle approximation, in which sin u < u, where u is measured in radians. Table 15.1 
shows angles in degrees and radians and the sines of these angles. As long as u is 
less than approximately 108, the angle in radians and its sine are the same to within 
an accuracy of less than 1.0%.
	 Therefore, for small angles, the equation of motion becomes

	
d 2u

dt 2 5 2
g

L
 u   (for small values of u)	 (15.24)

Equation 15.24 has the same mathematical form as Equation 15.3, so we conclude 
that the motion for small amplitudes of oscillation can be modeled as simple har-
monic motion. Therefore, the solution of Equation 15.24 is modeled after Equation 
15.6 and is given by u 5 umax cos(vt 1 f), where umax is the maximum angular position 
and the angular frequency v is

	 v 5 Å
g

L
	 (15.25)

The period of the motion is

	 T 5
2p

v
5 2pÅ

L
g

	 (15.26)

In other words, the period and frequency of a simple pendulum depend only on the 
length of the string and the acceleration due to gravity. Because the period is inde-
pendent of the mass, we conclude that all simple pendula that are of equal length 
and are at the same location (so that g is constant) oscillate with the same period.
	 The simple pendulum can be used as a timekeeper because its period depends 
only on its length and the local value of g. It is also a convenient device for making 
precise measurements of the free-fall acceleration. Such measurements are impor-
tant because variations in local values of g can provide information on the location 
of oil and other valuable underground resources.

Q	 uick Quiz 15.6 ​ A grandfather clock depends on the period of a pendulum to 
keep correct time. (i) Suppose a grandfather clock is calibrated correctly and 
then a mischievous child slides the bob of the pendulum downward on the oscil-
lating rod. Does the grandfather clock run (a) slow, (b) fast, or (c) correctly?  
(ii) Suppose a grandfather clock is calibrated correctly at sea level and is then 
taken to the top of a very tall mountain. Does the grandfather clock now run  
(a) slow, (b) fast, or (c) correctly?

WW �Angular frequency for a 
simple pendulum

WW Period of a simple pendulum

Table 15.1 Angles and Sines of Angles
	Angle in Degrees	 Angle in Radians	 Sine of Angle	 Percent Difference

	 08	 0.000 0	 0.000 0	 0.0%
	 18	 0.017 5	 0.017 5	 0.0%
	 28	 0.034 9	 0.034 9	 0.0%
	 38	 0.052 4	 0.052 3	 0.0%
	 58	 0.087 3	 0.087 2	 0.1%
	 108	 0.174 5	 0.173 6	 0.5%
	 158	 0.261 8	 0.258 8	 1.2%
	 208	 0.349 1	 0.342 0	 2.1%
	 308	 0.523 6	 0.500 0	 4.7%
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Pivot O

d

d sin
CM

m g

u

u

S

Figure 15.17  ​A physical pendu-
lum pivoted at O.

Example 15.5	     A Connection Between Length and Time

Christian Huygens (1629–1695), the greatest clockmaker in history, suggested that an international unit of length 
could be defined as the length of a simple pendulum having a period of exactly 1 s. How much shorter would our 
length unit be if his suggestion had been followed?

Conceptualize  ​Imagine a pendulum that swings back and forth in exactly 1 second. Based on your experience in 
observing swinging objects, can you make an estimate of the required length? Hang a small object from a string and 
simulate the 1-s pendulum.

Categorize  ​This example involves a simple pendulum, so we categorize it as a substitution problem that applies the 
concepts introduced in this section.

S o l u t i on

Solve Equation 15.26 for the length and substitute the 
known values:

L 5
T 2g

4p2 5
11.00 s 22 19.80 m/s2 2

4p2 5   0.248 m

The meter’s length would be slightly less than one-fourth of its current length. Also, the number of significant digits 
depends only on how precisely we know g because the time has been defined to be exactly 1 s.

What if Huygens had been born on another planet? What would the value for g have to be on that planet 
such that the meter based on Huygens’s pendulum would have the same value as our meter?

Answer  Solve Equation 15.26 for g:

	 g 5
4p2L
T 2 5

4p2 11.00 m 2
11.00 s 22 5 4p2 m/s2 5 39.5 m/s2

No planet in our solar system has an acceleration due to gravity that large.

What If ?

Physical Pendulum
Suppose you balance a wire coat hanger so that the hook is supported by your 
extended index finger. When you give the hanger a small angular displacement 
with your other hand and then release it, it oscillates. If a hanging object oscillates 
about a fixed axis that does not pass through its center of mass and the object can-
not be approximated as a point mass, we cannot treat the system as a simple pendu-
lum. In this case, the system is called a physical pendulum.
	 Consider a rigid object pivoted at a point O that is a distance d from the center of 
mass (Fig. 15.17). The gravitational force provides a torque about an axis through 
O, and the magnitude of that torque is mgd sin u, where u is as shown in Figure 
15.17. We apply the rigid object under a net torque analysis model to the object and 
use the rotational form of Newton’s second law, S text 5 Ia, where I is the moment 
of inertia of the object about the axis through O. The result is

	 2mgd sin u 5 I 
d 2u

dt 2 	

The negative sign indicates that the torque about O tends to decrease u. That is, the 
gravitational force produces a restoring torque. If we again assume u is small, the 
approximation sin u < u is valid and the equation of motion reduces to

	
d 2u

dt 2 5 2amgd

I
bu 5 2v2u 	 (15.27)

Because this equation is of the same mathematical form as Equation 15.3, its solu-
tion is modeled after that of the simple harmonic oscillator. That is, the solution 
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Torsional Pendulum
Figure 15.19 on page 468 shows a rigid object such as a disk suspended by a wire 
attached at the top to a fixed support. When the object is twisted through some 
angle u, the twisted wire exerts on the object a restoring torque that is proportional 
to the angular position. That is,

	 t 5 2ku	

where k (Greek letter kappa) is called the torsion constant of the support wire and 
is a rotational analog to the force constant k for a spring. The value of k can be 
obtained by applying a known torque to twist the wire through a measurable angle 
u. Applying Newton’s second law for rotational motion, we find that

of Equation 15.27 is given by u 5 umax cos(vt 1 f), where umax is the maximum 
angular position and

	 v 5 Å
mgd

I
	

The period is

	 T 5
2p

v
5 2pÅ

I
mgd

	 (15.28)

	 This result can be used to measure the moment of inertia of a flat, rigid object. 
If the location of the center of mass—and hence the value of d—is known, the 
moment of inertia can be obtained by measuring the period. Finally, notice that 
Equation 15.28 reduces to the period of a simple pendulum (Eq. 15.26) when I 5 
md 2, that is, when all the mass is concentrated at the center of mass.

WW �Period of a physical 
pendulum

Substitute these quantities into Equation 15.28: T 5 2pÅ
1
3ML2

Mg 1L/2 2 5 2pÅ
2L
3g

Finalize  ​In one of the Moon landings, an astronaut walking on the Moon’s surface had a belt hanging from his space 
suit, and the belt oscillated as a physical pendulum. A scientist on the Earth observed this motion on television and 
used it to estimate the free-fall acceleration on the Moon. How did the scientist make this calculation?

	

Example 15.6	     A Swinging Rod

A uniform rod of mass M and length L is pivoted about one end and oscillates in a verti-
cal plane (Fig. 15.18). Find the period of oscillation if the amplitude of the motion is 
small.

Conceptualize  ​Imagine a rod swinging back and forth when 
pivoted at one end. Try it with a meterstick or a scrap piece 
of wood.

Categorize  ​Because the rod is not a point particle, we catego-
rize it as a physical pendulum.

Analyze  ​In Chapter 10, we found that the moment of inertia of 
a uniform rod about an axis through one end is 13 ML2. The dis-
tance d from the pivot to the center of mass of the rod is L/2.

S o l u t i on

Pivot

O

L

d

CM

MgS 

Figure 15.18  ​(Example 
15.6) A rigid rod oscillating 
about a pivot through one 
end is a physical pendulum 
with d 5 L/2.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



468	C hapter 15  Oscillatory Motion

	 o t 5 Ia   S   2ku 5 I 
d2u

dt 2 	

	
d 2u

dt 2 5 2
k

I
 u 	 (15.29)

Again, this result is the equation of motion for a simple harmonic oscillator, with 
v 5 !k/I  and a period

	 T 5 2pÅ
I
k

	 (15.30)

	 This system is called a torsional pendulum. There is no small-angle restriction in 
this situation as long as the elastic limit of the wire is not exceeded.

15.6	 Damped Oscillations
The oscillatory motions we have considered so far have been for ideal systems, that is, 
systems that oscillate indefinitely under the action of only one force, a linear restoring 
force. In many real systems, nonconservative forces such as friction or air resistance 
also act and retard the motion of the system. Consequently, the mechanical energy of 
the system diminishes in time, and the motion is said to be damped. The mechanical 
energy of the system is transformed into internal energy in the object and the retard-
ing medium. Figure 15.20 depicts one such system: an object attached to a spring 
and submersed in a viscous liquid. Another example is a simple pendulum oscillating 
in air. After being set into motion, the pendulum eventually stops oscillating due to 
air resistance. The opening photograph for this chapter depicts damped oscillations 
in practice. The spring-loaded devices mounted below the bridge are dampers that 
transform mechanical energy of the oscillating bridge into internal energy.
	 One common type of retarding force is that discussed in Section 6.4, where 
the force is proportional to the speed of the moving object and acts in the direc-
tion opposite the velocity of the object with respect to the medium. This retarding 
force is often observed when an object moves through air, for instance. Because 
the retarding force can be expressed as R

S
5 2b vS (where b is a constant called the 

damping coefficient) and the restoring force of the system is 2kx, we can write New-
ton’s second law as

	 o Fx = 2kx 2 bvx = max	

	 2kx 2 b 
dx
dt

5 m 
d 2x
dt 2 	 (15.31)

The solution to this equation requires mathematics that may be unfamiliar to you; 
we simply state it here without proof. When the retarding force is small compared 
with the maximum restoring force—that is, when the damping coefficient b is 
small—the solution to Equation 15.31 is

	 x 5 Ae2(b/2m)t cos (vt 1 f)	 (15.32)

where the angular frequency of oscillation is

	 v 5 Å
k
m

2 a b
2m

b
2

	 (15.33)

	 This result can be verified by substituting Equation 15.32 into Equation 15.31. It 
is convenient to express the angular frequency of a damped oscillator in the form

	 v 5 Åv0
2 2 a b

2m
b

2

	

where v0 5 !k/m represents the angular frequency in the absence of a retarding 
force (the undamped oscillator) and is called the natural frequency of the system.

O

P
maxu

The object oscillates about the 
line OP with an amplitude umax.

Figure 15.19  ​A torsional 
pendulum.

m

Figure 15.20  ​One example of 
a damped oscillator is an object 
attached to a spring and sub-
mersed in a viscous liquid.
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	 Figure 15.21 shows the position as a function of time for an object oscillating in 
the presence of a retarding force. When the retarding force is small, the oscillatory 
character of the motion is preserved but the amplitude decreases exponentially in 
time, with the result that the motion ultimately becomes undetectable. Any system 
that behaves in this way is known as a damped oscillator. The dashed black lines in 
Figure 15.21, which define the envelope of the oscillatory curve, represent the expo-
nential factor in Equation 15.32. This envelope shows that the amplitude decays 
exponentially with time. For motion with a given spring constant and object mass, 
the oscillations dampen more rapidly for larger values of the retarding force.
	 When the magnitude of the retarding force is small such that b/2m , v0, the 
system is said to be underdamped. The resulting motion is represented by Figure 
15.21 and the the blue curve in Figure 15.22. As the value of b increases, the ampli-
tude of the oscillations decreases more and more rapidly. When b reaches a critical 
value bc such that bc/2m 5 v0, the system does not oscillate and is said to be criti-
cally damped. In this case, the system, once released from rest at some nonequilib-
rium position, approaches but does not pass through the equilibrium position. The 
graph of position versus time for this case is the red curve in Figure 15.22.
	 If the medium is so viscous that the retarding force is large compared with the 
restoring force—that is, if b/2m . v0—the system is overdamped. Again, the dis-
placed system, when free to move, does not oscillate but rather simply returns to its 
equilibrium position. As the damping increases, the time interval required for the 
system to approach equilibrium also increases as indicated by the black curve in 
Figure 15.22. For critically damped and overdamped systems, there is no angular 
frequency v and the solution in Equation 15.32 is not valid.

15.7	 Forced Oscillations
We have seen that the mechanical energy of a damped oscillator decreases in 
time as a result of the retarding force. It is possible to compensate for this energy 
decrease by applying a periodic external force that does positive work on the sys-
tem. At any instant, energy can be transferred into the system by an applied force 
that acts in the direction of motion of the oscillator. For example, a child on a 
swing can be kept in motion by appropriately timed “pushes.” The amplitude of 
motion remains constant if the energy input per cycle of motion exactly equals the 
decrease in mechanical energy in each cycle that results from retarding forces.
	 A common example of a forced oscillator is a damped oscillator driven by an 
external force that varies periodically, such as F(t) 5 F0 sin vt, where F0 is a constant 
and v is the angular frequency of the driving force. In general, the frequency v of 
the driving force is variable, whereas the natural frequency v0 of the oscillator is 
fixed by the values of k and m. Modeling an oscillator with both retarding and driv-
ing forces as a particle under a net force, Newton’s second law in this situation gives

	 a Fx 5 max   S   F0 sin vt 2 b 
dx
dt

2 kx 5 m 
d 2x
dt 2 	 (15.34)

Again, the solution of this equation is rather lengthy and will not be presented. 
After the driving force on an initially stationary object begins to act, the ampli-
tude of the oscillation will increase. The system of the oscillator and the surround-
ing medium is a nonisolated system: work is done by the driving force, such that 
the vibrational energy of the system (kinetic energy of the object, elastic potential 
energy in the spring) and internal energy of the object and the medium increase. 
After a sufficiently long period of time, when the energy input per cycle from the 
driving force equals the amount of mechanical energy transformed to internal 
energy for each cycle, a steady-state condition is reached in which the oscillations 
proceed with constant amplitude. In this situation, the solution of Equation 15.34 is

	 x 5 A cos (vt 1 f)	 (15.35)

x

t

Figure 15.22  ​Graphs of posi-
tion versus time for an under-
damped oscillator (blue curve), a 
critically damped oscillator (red 
curve), and an overdamped oscil-
lator (black curve).

A

x

0 t

The amplitude 
decreases as Ae�(b/2m)t.

Figure 15.21  Graph of posi-
tion versus time for a damped 
oscillator.
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where

	 A 5
F0/m

Å 1v2 2 v0
2 22 1 ab v

m
b

2
	 (15.36)

and where v0 5 !k/m is the natural frequency of the undamped oscillator (b 5 0).
	 Equations 15.35 and 15.36 show that the forced oscillator vibrates at the fre-
quency of the driving force and that the amplitude of the oscillator is constant for 
a given driving force because it is being driven in steady-state by an external force. 
For small damping, the amplitude is large when the frequency of the driving force 
is near the natural frequency of oscillation, or when v < v0. The dramatic increase 
in amplitude near the natural frequency is called resonance, and the natural fre-
quency v0 is also called the resonance frequency of the system.
	 The reason for large-amplitude oscillations at the resonance frequency is that 
energy is being transferred to the system under the most favorable conditions. We 
can better understand this concept by taking the first time derivative of x in Equa-
tion 15.35, which gives an expression for the velocity of the oscillator. We find that 
v is proportional to sin(vt 1 f), which is the same trigonometric function as that 
describing the driving force. Therefore, the applied force  F

S
 is in phase with the 

velocity. The rate at which work is done on the oscillator by  F
S

 equals the dot prod-
uct  F

S
? vS; this rate is the power delivered to the oscillator. Because the product 

F
S

? vS is a maximum when  F
S

 and  vS are in phase, we conclude that at resonance, 
the applied force is in phase with the velocity and the power transferred to the 
oscillator is a maximum.
	 Figure 15.23 is a graph of amplitude as a function of driving frequency for a 
forced oscillator with and without damping. Notice that the amplitude increases with 
decreasing damping (b S 0) and that the resonance curve broadens as the damping 
increases. In the absence of a damping force (b 5 0), we see from Equation 15.36 that 
the steady-state amplitude approaches infinity as v approaches v0. In other words, if 
there are no losses in the system and we continue to drive an initially motionless oscil-
lator with a periodic force that is in phase with the velocity, the amplitude of motion 
builds without limit (see the red-brown curve in Fig. 15.23). This limitless building 
does not occur in practice because some damping is always present in reality.
	 Later in this book we shall see that resonance appears in other areas of physics. 
For example, certain electric circuits have natural frequencies and can be set into 
strong resonance by a varying voltage applied at a given frequency. A bridge has 
natural frequencies that can be set into resonance by an appropriate driving force. 
A dramatic example of such resonance occurred in 1940 when the Tacoma Narrows 
Bridge in the state of Washington was destroyed by resonant vibrations. Although 
the winds were not particularly strong on that occasion, the “flapping” of the wind 
across the roadway (think of the “flapping” of a flag in a strong wind) provided a 
periodic driving force whose frequency matched that of the bridge. The resulting 
oscillations of the bridge caused it to ultimately collapse (Fig. 15.24) because the 
bridge design had inadequate built-in safety features.

� Amplitude of a 
driven oscillator

v
v

A
b � 0
Undamped

Small b

Large b

0

When the frequency v of 
the driving force equals the 
natural frequency v0 of the 
oscillator, resonance occurs.

Figure 15.23  ​Graph of ampli-
tude versus frequency for a 
damped oscillator when a peri-
odic driving force is present. 
Notice that the shape of the reso-
nance curve depends on the size 
of the damping coefficient b.

Figure 15.24  ​(a) In 1940, 
turbulent winds set up torsional 
vibrations in the Tacoma Nar-
rows Bridge, causing it to oscillate 
at a frequency near one of the 
natural frequencies of the bridge 
structure. (b) Once established, 
this resonance condition led to 
the bridge’s collapse. (Mathemati-
cians and physicists are currently 
challenging some aspects of this 
interpretation.) a b
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	 Many other examples of resonant vibrations can be cited. A resonant vibration 
you may have experienced is the “singing” of telephone wires in the wind. Machines 
often break if one vibrating part is in resonance with some other moving part. Sol-
diers marching in cadence across a bridge have been known to set up resonant 
vibrations in the structure and thereby cause it to collapse. Whenever any real phys-
ical system is driven near its resonance frequency, you can expect oscillations of 
very large amplitudes.

Summary

  The kinetic energy and potential 
energy for an object of mass m oscillating 
at the end of a spring of force constant k 
vary with time and are given by

	 K 5 1
2mv 2 5 1

2mv2A2 sin2 1vt 1 f 2 	 (15.19)

	 U 5 1
2kx 2 5 1

2kA2 cos2 1vt 1 f 2 	 (15.20)

The total energy of a simple harmonic 
oscillator is a constant of the motion and 
is given by

	 E 5 1
2kA2	 (15.21)

  A simple pendulum of length L can be modeled to move in 
simple harmonic motion for small angular displacements from the 
vertical. Its period is

	 T 5 2pÅ
L
g

	 (15.26)

A physical pendulum is an extended object that, for small angular 
displacements, can be modeled to move in simple harmonic motion 
about a pivot that does not go through the center of mass. The 
period of this motion is

	 T 5 2pÅ
I

mgd
	 (15.28)

where I is the moment of inertia of the object about an axis through 
the pivot and d is the distance from the pivot to the center of mass 
of the object.

  If an oscillator is subject to a sinu-
soidal driving force that is described 
by F(t) 5 F0 sin vt, it exhibits reso-
nance, in which the amplitude is 
largest when the driving frequency 
v matches the natural frequency 
v0 5 !k/m of the oscillator.

  If an oscillator experiences a damping force  R
S

5 2b vS, its position for 
small damping is described by

	 x 5 Ae2(b/2m)t cos (vt 1 f)	 (15.32)
where

	 v 5 Å
k
m

2 a b
2m

b
2

	 (15.33)

Concepts and Principles

Analysis Model for Problem Solving

  Particle in Simple Harmonic Motion ​ If a particle is subject to a force of the form 
of Hooke’s law F 5 2kx, the particle exhibits simple harmonic motion. Its position is 
described by

	 x(t) 5 A cos (vt 1 f)	 (15.6)

where A is the amplitude of the motion, v is the angular frequency, and f is the 
phase constant. The value of f depends on the initial position and initial velocity of the particle.
	 The period of the oscillation of the particle is

	 T 5
2p

v
5 2pÅ

m
k

	 (15.13)

and the inverse of the period is the frequency.

x

A

–A
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472	C hapter 15  Oscillatory Motion

	10.	A mass–spring system moves with simple harmonic 
motion along the x axis between turning points at x1 5  
20 cm and x2 5 60 cm. For parts (i) through (iii), 
choose from the same five possibilities. (i) At which 
position does the particle have the greatest magnitude 
of momentum? (a) 20 cm (b) 30 cm (c) 40 cm (d) some 
other position (e) The greatest value occurs at multiple 
points. (ii) At which position does the particle have 
greatest kinetic energy? (iii) At which position does the 
particle-spring system have the greatest total energy?

	11.	 A block with mass m 5 0.1 kg oscillates with amplitude 
A 5 0.1 m at the end of a spring with force constant 
k 5 10 N/m on a frictionless, horizontal surface. Rank 
the periods of the following situations from greatest to 
smallest. If any periods are equal, show their equality 
in your ranking. (a) The system is as described above. 
(b) The system is as described in situation (a) except 
the amplitude is 0.2 m. (c) The situation is as described 
in situation (a) except the mass is 0.2 kg. (d) The situ-
ation is as described in situation (a) except the spring 
has force constant 20 N/m. (e) A small resistive force 
makes the motion underdamped.

	12.	For a simple harmonic oscillator, answer yes or no to the 
following questions. (a) Can the quantities position and 
velocity have the same sign? (b) Can velocity and  
acceleration have the same sign? (c) Can position and 
acceleration have the same sign?

	13.	 The top end of a spring 
is held fixed. A block 
is hung on the bot-
tom end as in Figure 
OQ15.13a, and the fre-
quency f of the oscil-
lation of the system is 
measured. The block, a 
second identical block, 
and the spring are car-
ried up in a space shuttle  
to Earth orbit. The two blocks are attached to the ends 
of the spring. The spring is compressed without making 
adjacent coils touch (Fig. OQ15.13b), and the system is 
released to oscillate while floating within the shuttle 
cabin (Fig. OQ15.13c). What is the frequency of oscil-
lation for this system in terms of f ? (a) f/2  (b) f/!2    
(c) f   (d)!2f    (e) 2f

	14.	Which of the following statements is not true regarding 
a mass–spring system that moves with simple harmonic 
motion in the absence of friction? (a) The total energy 
of the system remains constant. (b) The energy of the 
system is continually transformed between kinetic and 
potential energy. (c) The total energy of the system is 
proportional to the square of the amplitude. (d) The 
potential energy stored in the system is greatest when 
the mass passes through the equilibrium position.  
(e) The velocity of the oscillating mass has its maxi-
mum value when the mass passes through the equilib-
rium position.

a b c

Figure OQ15.13

	 1.	 If a simple pendulum oscillates with small amplitude 
and its length is doubled, what happens to the fre-
quency of its motion? (a) It doubles. (b) It becomes 
!2 times as large. (c) It becomes half as large. (d) It 
becomes 1/!2 times as large. (e) It remains the same.

	 2.	 You attach a block to the bottom end of a spring hang-
ing vertically. You slowly let the block move down and 
find that it hangs at rest with the spring stretched by 
15.0 cm. Next, you lift the block back up to the ini-
tial position and release it from rest with the spring 
unstretched. What maximum distance does it move 
down? (a) 7.5 cm (b) 15.0 cm (c) 30.0 cm (d) 60.0 cm 
(e) The distance cannot be determined without know-
ing the mass and spring constant.

	 3.	 A block–spring system vibrating on a frictionless, 
horizontal surface with an amplitude of 6.0 cm has an 
energy of 12 J. If the block is replaced by one whose 
mass is twice the mass of the original block and the 
amplitude of the motion is again 6.0 cm, what is the 
energy of the system? (a) 12 J (b) 24 J (c) 6 J (d) 48 J  
(e) none of those answers

	 4.	 An object–spring system moving with simple harmonic 
motion has an amplitude A. When the kinetic energy 
of the object equals twice the potential energy stored 
in the spring, what is the position x of the object? (a) A 
(b) 13A (c) A/!3 (d) 0 (e) none of those answers

	 5.	 An object of mass 0.40 kg, hanging from a spring with 
a spring constant of 8.0 N/m, is set into an up-and-
down simple harmonic motion. What is the magnitude 
of the acceleration of the object when it is at its maxi-
mum displacement of 0.10 m? (a) zero (b) 0.45 m/s2  
(c) 1.0 m/s2 (d) 2.0 m/s2 (e) 2.4 m/s2

	 6.	 A runaway railroad car, with mass 3.0 3 105 kg, coasts 
across a level track at 2.0 m/s when it collides elastically 
with a spring-loaded bumper at the end of the track. 
If the spring constant of the bumper is 2.0 3 106 N/m,  
what is the maximum compression of the spring dur-
ing the collision? (a) 0.77 m (b) 0.58 m (c) 0.34 m  
(d) 1.07 m (e) 1.24 m

	 7.	 The position of an object moving with simple harmonic 
motion is given by x 5 4 cos (6pt), where x is in meters 
and t is in seconds. What is the period of the oscillat-
ing system? (a) 4 s (b) 1

6 s (c) 1
3 s (d) 6p s (e) impossible  

to determine from the information given

	 8.	 If an object of mass m attached to a light spring is 
replaced by one of mass 9m, the frequency of the vibrat-
ing system changes by what factor? (a) 1

9 (b) 1
3 (c) 3.0  

(d) 9.0 (e) 6.0

	 9.	 You stand on the end of a diving board and bounce to 
set it into oscillation. You find a maximum response in 
terms of the amplitude of oscillation of the end of the 
board when you bounce at frequency f. You now move 
to the middle of the board and repeat the experiment. 
Is the resonance frequency for forced oscillations at 
this point (a) higher, (b) lower, or (c) the same as f ?

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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the period of the pendulum (a) greater, (b) smaller, or  
(c) unchanged?

	17.	 A particle on a spring moves in simple harmonic 
motion along the x axis between turning points at x1 5 
100 cm and x2 5 140 cm. (i) At which of the following 
positions does the particle have maximum speed?  
(a) 100 cm (b) 110 cm (c) 120 cm (d) at none of those 
positions (ii) At which position does it have maximum 
acceleration? Choose from the same possibilities as in 
part (i). (iii) At which position is the greatest net force 
exerted on the particle? Choose from the same possi-
bilities as in part (i).

	15.	A simple pendulum has a period of 2.5 s. (i) What 
is its period if its length is made four times larger?  
(a) 1.25 s (b) 1.77 s (c) 2.5 s (d) 3.54 s (e) 5 s (ii) What 
is its period if the length is held constant at its initial 
value and the mass of the suspended bob is made four 
times larger? Choose from the same possibilities.

	16.	A simple pendulum is suspended from the ceiling of 
a stationary elevator, and the period is determined.  
(i) When the elevator accelerates upward, is the period 
(a) greater, (b) smaller, or (c) unchanged? (ii) When 
the elevator has a downward acceleration, is the period 
(a) greater, (b) smaller, or (c) unchanged? (iii) When 
the elevator moves with constant upward velocity, is 

A

Piston

x � �A x(t )

v

x � 0

Figure CQ15.13

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 You are looking at a small, leafy tree. You do not notice 
any breeze, and most of the leaves on the tree are 
motionless. One leaf, however, is fluttering back and 
forth wildly. After a while, that leaf stops moving and 
you notice a different leaf moving much more than all 
the others. Explain what could cause the large motion 
of one particular leaf.

	 2.	 The equations listed together on page 38 give position 
as a function of time, velocity as a function of time, and 
velocity as a function of position for an object moving 
in a straight line with constant acceleration. The quan-
tity vxi appears in every equation. (a) Do any of these 
equations apply to an object moving in a straight line 
with simple harmonic motion? (b) Using a similar for-
mat, make a table of equations describing simple har-
monic motion. Include equations giving acceleration 
as a function of time and acceleration as a function of 
position. State the equations in such a form that they 
apply equally to a block–spring system, to a pendu-
lum, and to other vibrating systems. (c) What quantity 
appears in every equation?

	 3.	 (a) If the coordinate of a particle varies as x 5 2A cos vt,  
what is the phase constant in Equation 15.6? (b) At 
what position is the particle at t 5 0?

	 4.	 A pendulum bob is made from a sphere filled with 
water. What would happen to the frequency of vibra-
tion of this pendulum if there were a hole in the sphere 
that allowed the water to leak out slowly?

	 5.	 Figure CQ15.5 shows graphs of the potential energy of 
four different systems versus the position of a particle 

in each system. Each particle is set into motion with a 
push at an arbitrarily chosen location. Describe its sub-
sequent motion in each case (a), (b), (c), and (d).

	 6.	 A student thinks that any real vibration must be damped. 
Is the student correct? If so, give convincing reasoning. 
If not, give an example of a real vibration that keeps con-
stant amplitude forever if the system is isolated.

	 7.	 The mechanical energy of an undamped block–spring 
system is constant as kinetic energy transforms to elastic 
potential energy and vice versa. For comparison, explain 
what happens to the energy of a damped oscillator in 
terms of the mechanical, potential, and kinetic energies.

	 8.	 Is it possible to have damped oscillations when a sys-
tem is at resonance? Explain.

	 9.	 Will damped oscillations occur for any values of b and 
k? Explain.

	10.	 If a pendulum clock keeps perfect time at the base of 
a mountain, will it also keep perfect time when it is 
moved to the top of the mountain? Explain.

	11.	 Is a bouncing ball an example of simple harmonic 
motion? Is the daily movement of a student from home 
to school and back simple harmonic motion? Why or 
why not?

	12.	A simple pendulum can be modeled as exhibiting 
simple harmonic motion when u is small. Is the motion 
periodic when u is large?

	13.	Consider the simplified single-piston engine in Figure 
CQ15.13. Assuming the wheel rotates with constant 
angular speed, explain why the piston rod oscillates in 
simple harmonic motion.U U

U U

x

x

x

x

b

c d

a

Figure CQ15.5
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474	C hapter 15  Oscillatory Motion

is released from rest there. It proceeds to move without 
friction. The next time the speed of the object is zero is 
0.500 s later. What is the maximum speed of the object?

	 8.	 A simple harmonic oscillator takes 12.0 s to undergo 
five complete vibrations. Find (a) the period of its 
motion, (b) the frequency in hertz, and (c) the angular 
frequency in radians per second.

	 9.	 A 7.00-kg object is hung from the bottom end of a verti-
cal spring fastened to an overhead beam. The object is 
set into vertical oscillations having a period of 2.60 s. 
Find the force constant of the spring.

	10.	At an outdoor market, a bunch of bananas attached 
to the bottom of a vertical spring of force constant  
16.0 N/m is set into oscillatory motion with an ampli-
tude of 20.0 cm. It is observed that the maximum 
speed of the bunch of bananas is 40.0 cm/s. What is 
the weight of the bananas in newtons?

	11.	 A vibration sensor, used in testing a washing machine, 
consists of a cube of aluminum 1.50 cm on edge 
mounted on one end of a strip of spring steel (like 
a hacksaw blade) that lies in a vertical plane. The 
strip’s mass is small compared with that of the cube, 
but the strip’s length is large compared with the size 
of the cube. The other end of the strip is clamped to 
the frame of the washing machine that is not operat-
ing. A horizontal force of 1.43 N applied to the cube 
is required to hold it 2.75 cm away from its equilib-
rium position. If it is released, what is its frequency of 
vibration?

	12.	(a) A hanging spring stretches by 35.0 cm when an 
object of mass 450 g is hung on it at rest. In this sit-
uation, we define its position as x 5 0. The object is 
pulled down an additional 18.0 cm and released from 
rest to oscillate without friction. What is its position x 
at a moment 84.4 s later? (b) Find the distance traveled 
by the vibrating object in part (a). (c) What If? Another 
hanging spring stretches by 35.5 cm when an object of 
mass 440 g is hung on it at rest. We define this new 
position as x 5 0. This object is also pulled down an 
additional 18.0 cm and released from rest to oscillate 
without friction. Find its position 84.4 s later. (d) Find 
the distance traveled by the object in part (c). (e) Why 
are the answers to parts (a) and (c) so different when 
the initial data in parts (a) and (c) are so similar and 
the answers to parts (b) and (d) are relatively close? 
Does this circumstance reveal a fundamental difficulty 
in calculating the future?

W

W
AMT

M

Q/C

Note: Ignore the mass of every spring, except in Prob-
lems 76 and 87.

Section 15.1 ​ Motion of an Object Attached to a Spring

Problems 17, 18, 19, 22, and 59 in Chapter 7 can also be 
assigned with this section.

	 1.	 A 0.60-kg block attached to a spring with force con-
stant 130 N/m is free to move on a frictionless, hori-
zontal surface as in Figure 15.1. The block is released 
from rest when the spring is stretched 0.13 m. At the 
instant the block is released, find (a) the force on the 
block and (b) its acceleration.

	 2.	 When a 4.25-kg object is placed on top of a vertical 
spring, the spring compresses a distance of 2.62 cm. 
What is the force constant of the spring?

Section 15.2 ​ Analysis Model: Particle  
in Simple Harmonic Motion

	 3.	 A vertical spring stretches 3.9 cm when a 10-g object 
is hung from it. The object is replaced with a block of 
mass 25 g that oscillates up and down in simple har-
monic motion. Calculate the period of motion.

	 4.	 In an engine, a piston oscillates with simple harmonic 
motion so that its position varies according to the 
expression

x 5 5.00 cos a2t 1
p

6
b

		  where x is in centimeters and t is in seconds. At t 5 0,  
find (a) the position of the particle, (b) its velocity, and 
(c) its acceleration. Find (d) the period and (e) the 
amplitude of the motion.

	 5.	 The position of a particle is given by the expression  
x 5 4.00 cos (3.00pt 1 p), where x is in meters and t is  
in seconds. Determine (a) the frequency and (b) period 
of the motion, (c) the amplitude of the motion, (d) the 
phase constant, and (e) the position of the particle at  
t 5 0.250 s.

	 6.	 A piston in a gasoline engine is in simple har-
monic motion. The engine is running at the rate of  
3 600 rev/min. Taking the extremes of its position rela-
tive to its center point as 65.00 cm, find the magni-
tudes of the (a) maximum velocity and (b) maximum 
acceleration of the piston.

	 7.	 A 1.00-kg object is attached to a horizontal spring. The 
spring is initially stretched by 0.100 m, and the object 
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Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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value of its (a) speed and (b) acceleration, (c) the speed 
and (d) the acceleration when the object is 6.00 cm 
from the equilibrium position, and (e) the time inter-
val required for the object to move from x 5 0 to x 5 
8.00 cm.

	20.	You attach an object to the bottom end of a hang-
ing vertical spring. It hangs at rest after extending 
the spring 18.3 cm. You then set the object vibrating.  
(a) Do you have enough information to find its period? 
(b) Explain your answer and state whatever you can 
about its period.

Section 15.3 Energy of the Simple Harmonic Oscillator

	21.	 To test the resiliency of its bumper during low-speed 
collisions, a 1 000-kg automobile is driven into a brick 
wall. The car’s bumper behaves like a spring with a 
force constant 5.00 3 106 N/m and compresses 3.16 cm 
as the car is brought to rest. What was the speed of the 
car before impact, assuming no mechanical energy is 
transformed or transferred away during impact with 
the wall?

	22.	A 200-g block is attached to a horizontal spring and 
executes simple harmonic motion with a period of 
0.250 s. The total energy of the system is 2.00 J. Find 
(a) the force constant of the spring and (b) the ampli-
tude of the motion.

	23.	A block of unknown mass is attached to a spring with a 
spring constant of 6.50 N/m and undergoes simple har-
monic motion with an amplitude of 10.0 cm. When the 
block is halfway between its equilibrium position and 
the end point, its speed is measured to be 30.0 cm/s. 
Calculate (a) the mass of the block, (b) the period of 
the motion, and (c) the maximum acceleration of the 
block.

	24.	A block–spring system oscillates with an amplitude of 
3.50 cm. The spring constant is 250 N/m and the mass 
of the block is 0.500 kg. Determine (a) the mechanical 
energy of the system, (b) the maximum speed of the 
block, and (c) the maximum acceleration.

	25.	A particle executes simple harmonic motion with an 
amplitude of 3.00 cm. At what position does its speed 
equal half of its maximum speed?

	26.	The amplitude of a system moving in simple harmonic 
motion is doubled. Determine the change in (a) the 
total energy, (b) the maximum speed, (c) the maxi-
mum acceleration, and (d) the period.

	27.	A 50.0-g object connected to a spring with a force 
constant of 35.0 N/m oscillates with an amplitude of  
4.00 cm on a frictionless, horizontal surface. Find  
(a) the total energy of the system and (b) the speed 
of the object when its position is 1.00 cm. Find (c) the 
kinetic energy and (d) the potential energy when its 
position is 3.00 cm.

	28.	A 2.00-kg object is attached to a spring and placed on 
a frictionless, horizontal surface. A horizontal force 
of 20.0 N is required to hold the object at rest when 
it is pulled 0.200  m from its equilibrium position 
(the origin of the x axis). The object is now released 
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	13.	Review. A particle moves along the x axis. It is initially 
at the position 0.270 m, moving with velocity 0.140 m/s 
and acceleration 20.320 m/s2. Suppose it moves as a 
particle under constant acceleration for 4.50 s. Find  
(a) its position and (b) its velocity at the end of this 
time interval. Next, assume it moves as a particle in 
simple harmonic motion for 4.50 s and x 5 0 is its equi-
librium position. Find (c) its position and (d) its veloc-
ity at the end of this time interval.

	14.	A ball dropped from a height of 4.00 m makes an elas-
tic collision with the ground. Assuming no mechani-
cal energy is lost due to air resistance, (a) show that 
the ensuing motion is periodic and (b) determine the 
period of the motion. (c) Is the motion simple har-
monic? Explain.

	15.	A particle moving along the x axis in simple harmonic 
motion starts from its equilibrium position, the ori-
gin, at t  5 0 and moves to the right. The amplitude 
of its motion is 2.00 cm, and the frequency is 1.50 Hz.  
(a) Find an expression for the position of the particle 
as a function of time. Determine (b) the maximum 
speed of the particle and (c) the earliest time (t . 0) 
at which the particle has this speed. Find (d) the maxi-
mum positive acceleration of the particle and (e) the 
earliest time (t . 0) at which the particle has this accel-
eration. (f) Find the total distance traveled by the par-
ticle between t 5 0 and t 5 1.00 s.

	16.	The initial position, velocity, and acceleration of 
an object moving in simple harmonic motion are xi , 
vi , and ai ; the angular frequency of oscillation is v.  
(a) Show that the position and velocity of the object for 
all time can be written as 

x(t) 5 xi cos vt 1 avi

v
b  sin vt

v(t) 5 2xiv sin vt 1 vi cos vt

		  (b) Using A to represent the amplitude of the motion, 
show that 

v2 2 ax 5 vi
2 2 aixi  5 v2A2

	17.	 A particle moves in simple harmonic motion with a 
frequency of 3.00 Hz and an amplitude of 5.00 cm.  
(a) Through what total distance does the particle move 
during one cycle of its motion? (b) What is its maxi-
mum speed? Where does this maximum speed occur? 
(c) Find the maximum acceleration of the particle. 
Where in the motion does the maximum acceleration 
occur?

	18.	A 1.00-kg glider attached to a spring with a force con-
stant of 25.0 N/m oscillates on a frictionless, horizon-
tal air track. At t 5 0, the glider is released from rest 
at x 5 23.00 cm (that is, the spring is compressed by  
3.00 cm). Find (a) the period of the glider’s motion, 
(b) the maximum values of its speed and acceleration, 
and (c) the position, velocity, and acceleration as func-
tions of time.

	19.	 A 0.500-kg object attached to a spring with a force con-
stant of 8.00 N/m vibrates in simple harmonic motion 
with an amplitude of 10.0 cm. Calculate the maximum 
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476	C hapter 15  Oscillatory Motion

friction that would allow the block to reach the equi-
librium position?

	32.	A 326-g object is attached to a spring and executes sim-
ple harmonic motion with a period of 0.250 s. If the 
total energy of the system is 5.83 J, find (a) the maxi-
mum speed of the object, (b) the force constant of the 
spring, and (c) the amplitude of the motion.

Section 15.4 ​ Comparing Simple Harmonic Motion  
with Uniform Circular Motion
	33.	While driving behind a car travel-

ing at 3.00 m/s, you notice that one 
of the car’s tires has a small hemi-
spherical bump on its rim as shown 
in Figure P15.33. (a) Explain why the 
bump, from your viewpoint behind 
the car, executes simple harmonic 
motion. (b) If the radii of the car’s 
tires are 0.300 m, what is the bump’s 
period of oscillation?

Section 15.5 ​ The Pendulum

Problem 68 in Chapter 1 can also be assigned with this 
section.

	34.	A “seconds pendulum” is one that moves through its 
equilibrium position once each second. (The period of 
the pendulum is precisely 2 s.) The length of a seconds 
pendulum is 0.992 7 m at Tokyo, Japan, and 0.994 2 m 
at Cambridge, England. What is the ratio of the free-
fall accelerations at these two locations?

	35.	A simple pendulum makes 120 complete oscillations in 
3.00 min at a location where g 5 9.80 m/s2. Find (a) the 
period of the pendulum and (b) its length.

	36.	A particle of mass m slides without friction inside a 
hemispherical bowl of radius R. Show that if the par-
ticle starts from rest with a small displacement from 
equilibrium, it moves in simple harmonic motion with 
an angular frequency equal to that of a simple pendu-
lum of length R. That is, v 5 !g/R.

	37.	 A physical pendulum in the form of a planar object 
moves in simple harmonic motion with a frequency of 
0.450 Hz. The pendulum has a mass of 2.20 kg, and the 
pivot is located 0.350 m from the center of mass. Deter-
mine the moment of inertia of the pendulum about 
the pivot point.

	38.	A physical pendulum in the form of a planar object 
moves in simple harmonic motion with a frequency f. 
The pendulum has a mass m, and the pivot is located 
a distance d from the center of mass. Determine the 
moment of inertia of the pendulum about the pivot 
point.

	39.	The angular position of a pendulum is represented by 
the equation u = 0.032 0 cos vt, where u is in radians 
and v = 4.43 rad/s. Determine the period and length 
of the pendulum.

	40.	Consider the physical pendulum of Figure 15.17. (a) Rep-
resent its moment of inertia about an axis passing 
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from rest from this stretched position, and it subse-
quently undergoes simple harmonic oscillations. Find  
(a) the force constant of the spring, (b) the frequency 
of the oscillations, and (c) the maximum speed of the 
object. (d) Where does this maximum speed occur? 
(e) Find the maximum acceleration of the object.  
(f) Where does the maximum acceleration occur?  
(g) Find the total energy of the oscillating system. 
Find (h) the speed and (i)  the acceleration of the 
object when its position is equal to one-third the max-
imum value.

	29.	A simple harmonic oscillator of amplitude A has a 
total energy E. Determine (a) the kinetic energy and 
(b) the potential energy when the position is one-third 
the amplitude. (c) For what values of the position does 
the kinetic energy equal one-half the potential energy?  
(d) Are there any values of the position where the 
kinetic energy is greater than the maximum potential 
energy? Explain.

	30.	Review. A 65.0-kg bungee jumper steps off a bridge 
with a light bungee cord tied to her body and to the 
bridge. The unstretched length of the cord is 11.0 m. 
The jumper reaches the bottom of her motion 36.0 m 
below the bridge before bouncing back. We wish to 
find the time interval between her leaving the bridge 
and her arriving at the bottom of her motion.  
Her overall motion can be separated into an 11.0-m 
free fall and a 25.0-m section of simple harmonic 
oscillation. (a) For the free-fall part, what is the 
appropriate analysis model to describe her motion? 
(b) For what time interval is she in free fall? (c) For 
the simple harmonic oscillation part of the plunge, is 
the system of the bungee jumper, the spring, and the 
Earth isolated or non- isolated? (d) From your 
response in part (c) find the spring constant of the 
bungee cord. (e) What is the location of the equilib-
rium point where the spring force balances the gravi-
tational force exerted on the jumper? (f) What is the 
angular frequency of the oscillation? (g) What time 
interval is required for the cord to stretch by 25.0 m?  
(h) What is the total time interval for the entire 
36.0-m drop?

	31.	Review. A 0.250-kg block resting on a frictionless, 
horizontal surface is attached to a spring whose force 
constant is 83.8 N/m as in Figure P15.31. A horizon-
tal force F

S
 causes the spring to stretch a distance of  

5.46 cm from its equilibrium position. (a) Find the 
magnitude of F

S
. (b) What is the total energy stored in 

the system when the spring is stretched? (c) Find the 
magnitude of the acceleration of the block just after 
the applied force is removed. (d) Find the speed of the 
block when it first reaches the equilibrium position. 
(e) If the surface is not frictionless but the block still 
reaches the equilibrium position, would your answer 
to part (d) be larger or smaller? (f) What other infor-
mation would you need 
to know to find the actual 
answer to part (d) in this 
case? (g) What is the largest 
value of the coefficient of 
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Section 15.6 Damped Oscillations

	46.	A pendulum with a length of 1.00 m is released from 
an initial angle of 15.08. After 1 000 s, its amplitude has 
been reduced by friction to 5.508. What is the value of 
b/2m?

	47.	 A 10.6-kg object oscillates at the end of a vertical 
spring that has a spring constant of 2.05 3 104 N/m. 
The effect of air resistance is represented by the damp-
ing coefficient b  5 3.00 N ? s/m. (a) Calculate the  
frequency of the damped oscillation. (b) By what per-
centage does the amplitude of the oscillation decrease 
in each cycle? (c) Find the time interval that elapses 
while the energy of the system drops to 5.00% of its 
initial value.

	48.	Show that the time rate of change of mechanical 
energy for a damped, undriven oscillator is given by  
dE/dt 5 2bv2 and hence is always negative. To do so, 
differentiate the expression for the mechanical energy 
of an oscillator, E 5 1

2mv2 1 1
2kx2, and use Equation 

15.31.

	49.	Show that Equation 15.32 is a solution of Equation 
15.31 provided that b 2 , 4mk.

Section 15.7 ​ Forced Oscillations

	50.	A baby bounces up and down in her crib. Her mass is 
12.5 kg, and the crib mattress can be modeled as a light 
spring with force constant 700 N/m. (a) The baby soon 
learns to bounce with maximum amplitude and mini-
mum effort by bending her knees at what frequency? 
(b) If she were to use the mattress as a trampoline—
losing contact with it for part of each cycle—what mini-
mum amplitude of oscillation does she require?

	51.	 As you enter a fine restaurant, you realize that you 
have accidentally brought a small electronic timer from 
home instead of your cell phone. In frustration, you 
drop the timer into a side pocket of your suit coat, not 
realizing that the timer is operating. The arm of your 
chair presses the light cloth of your coat against your 
body at one spot. Fabric with a length L hangs freely 
below that spot, with the timer at the bottom. At one 
point during your dinner, the timer goes off and a 
buzzer and a vibrator turn on and off with a frequency 
of 1.50 Hz. It makes the hanging part of your coat swing 
back and forth with remarkably large amplitude, draw-
ing everyone’s attention. Find the value of L.

	52.	A block weighing 40.0 N is suspended from a spring 
that has a force constant of 200 N/m. The system is 
undamped (b 5 0) and is subjected to a harmonic driv-
ing force of frequency 10.0 Hz, resulting in a forced-
motion amplitude of 2.00 cm. Determine the maximum 
value of the driving force.

	53.	A 2.00-kg object attached to a spring moves without 
friction (b 5 0) and is driven by an external force 
given by the expression F 5 3.00 sin (2pt), where F is in 
newtons and t is in seconds. The force constant of the 
spring is 20.0 N/m. Find (a) the resonance angular fre-
quency of the system, (b) the angular frequency of the 
driven system, and (c) the amplitude of the motion.
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through its center of mass and parallel to the axis pass-
ing through its pivot point as ICM. Show that its period is

T 5 2pÅ
ICM 1 md 2

mgd

		  where d is the distance between the pivot point and the 
center of mass. (b) Show that the period has a mini-
mum value when d satisfies md 2 5 ICM.

	41.	 A simple pendulum has a mass of 0.250 kg and a length 
of 1.00 m. It is displaced through an angle of 15.08 and 
then released. Using the analysis model of a particle in 
simple harmonic motion, what are (a) the maximum 
speed of the bob, (b) its maximum angular accelera-
tion, and (c) the maximum restoring force on the bob? 
(d) What If? Solve parts (a) through (c) again by using 
analysis models introduced in earlier chapters. (e) Com-
pare the answers.

	42.	A very light rigid rod of length 0.500 m 
extends straight out from one end of 
a meterstick. The combination is sus-
pended from a pivot at the upper end 
of the rod as shown in Figure P15.42. 
The combination is then pulled out by 
a small angle and released. (a) Deter-
mine the period of oscillation of the 
system. (b) By what percentage does 
the period differ from the period of a 
simple pendulum 1.00 m long?

	43.	Review. A simple pendulum is 5.00 m long. What is 
the period of small oscillations for this pendulum if 
it is located in an elevator (a) accelerating upward at 
5.00 m/s2? (b)  Accelerating downward at 5.00 m/s2?  
(c) What is the period of this pendulum if it is placed 
in a truck that is accelerating horizontally at 5.00 m/s2?

	44.	A small object is attached to the end of a string to form 
a simple pendulum. The period of its harmonic motion 
is measured for small angular displacements and three 
lengths. For lengths of 1.000 m, 0.750 m, and 0.500 m, 
total time intervals for 50 oscillations of 99.8 s, 86.6 s, 
and 71.1 s are measured with a stopwatch. (a) Deter-
mine the period of motion for each length. (b) Deter-
mine the mean value of g obtained from these three 
independent measurements and compare it with the 
accepted value. (c) Plot T 2 versus L and obtain a value 
for g from the slope of your best-fit straight-line graph. 
(d) Compare the value 
found in part (c) with 
that obtained in part (b).

	45.	A watch balance wheel 
(Fig. P15.45) has a period 
of oscillation of 0.250 s. 
The wheel is constructed 
so that its mass of 20.0 g 
is concentrated around a 
rim of radius 0.500 cm. 
What are (a) the wheel’s 
moment of inertia and 
(b) the torsion constant 
of the attached spring?
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478	C hapter 15  Oscillatory Motion

the rock begins to lose contact with the sidewalk? 
Another rock is sitting on the concrete bottom of a 
swimming pool full of water. The earthquake produces 
only vertical motion, so the water does not slosh from 
side to side. (b) Present a convincing argument that 
when the ground vibrates with the amplitude found in 
part (a), the submerged rock also barely loses contact 
with the floor of the swimming pool.

	61.	Four people, each with a mass of 72.4 kg, are in a car 
with a mass of 1 130 kg. An earthquake strikes. The 
vertical oscillations of the ground surface make the 
car bounce up and down on its suspension springs, 
but the driver manages to pull off the road and stop. 
When the frequency of the shaking is 1.80 Hz, the 
car exhibits a maximum amplitude of vibration. The 
earthquake ends, and the four people leave the car 
as fast as they can. By what distance does the car’s 
undamaged suspension lift the car’s body as the peo-
ple get out?

	62.	To account for the walking speed of a bipedal or qua-
drupedal animal, model a leg that is not contacting 
the ground as a uniform rod of length ,, swinging as a 
physical pendulum through one half of a cycle, in reso-
nance. Let umax represent its amplitude. (a) Show that 
the animal’s speed is given by the expression 

v 5
"6g , sin umax

p

		  if umax is sufficiently small that the motion is nearly sim-
ple harmonic. An empirical relationship that is based 
on the same model and applies over a wider range of 
angles is

v 5
"6g , cos 1umax/2 2 sin umax

p
		  (b) Evaluate the walking speed of a human with leg 

length 0.850 m and leg-swing amplitude 28.0°. (c) What 
leg length would give twice the speed for the same 
angular amplitude?

	63.	The free-fall acceleration on Mars is 3.7 m/s2. (a) What 
length of pendulum has a period of 1.0 s on Earth?  
(b) What length of pendulum would have a 1.0-s 
period on Mars? An object is suspended from a spring 
with force constant 10 N/m. Find the mass suspended 
from this spring that would result in a period of 1.0 s 
(c) on Earth and (d) on Mars.

	64.	An object attached to a spring vibrates with simple har-
monic motion as described by Figure P15.64. For this 
motion, find (a) the amplitude, (b) the period, (c) the 
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	54.	Considering an undamped, forced oscillator (b 5 0), 
show that Equation 15.35 is a solution of Equation 
15.34, with an amplitude given by Equation 15.36.

	55.	Damping is negligible for a 0.150-kg object hanging 
from a light, 6.30-N/m spring. A sinusoidal force with 
an amplitude of 1.70 N drives the system. At what fre-
quency will the force make the object vibrate with an 
amplitude of 0.440 m?

Additional Problems

	56.	The mass of the deuterium molecule (D2) is twice that 
of the hydrogen molecule (H2). If the vibrational fre-
quency of H2 is 1.30 3 1014 Hz, what is the vibrational 
frequency of D2? Assume the “spring constant” of 
attracting forces is the same for the two molecules.

	57.	 An object of mass m moves in simple harmonic motion 
with amplitude 12.0 cm on a light spring. Its maxi-
mum acceleration is 108 cm/s2. Regard m as a vari-
able. (a) Find the period T of the object. (b) Find its 
frequency f. (c) Find the maximum speed vmax of the 
object. (d) Find the total energy E of the object–spring 
system. (e) Find the force constant k of the spring.  
(f) Describe the pattern of dependence of each of the 
quantities T, f, vmax, E, and k on m.

	58.	Review. This problem extends the reasoning of Prob-
lem 75 in Chapter 9. Two gliders are set in motion on 
an air track. Glider 1 has mass m1 5 0.240 kg and 
moves to the right with speed 0.740 m/s. It will have a 
rear-end collision with glider 2, of mass m2 5 0.360 kg, 
which initially moves to the right with speed 0.120 m/s. 
A light spring of force constant 45.0 N/m is attached to 
the back end of glider 2 as shown in Figure P9.75. 
When glider 1 touches the spring, superglue instantly 
and permanently makes it stick to its end of the spring. 
(a) Find the common speed the two gliders have when 
the spring is at maximum compression. (b) Find the 
maximum spring compression distance. The motion 
after the gliders become attached consists of a combi-
nation of (1) the constant-velocity motion of the center 
of mass of the two-glider system found in part (a) and 
(2) simple harmonic motion of the gliders relative to 
the center of mass. (c) Find the energy of the center-of-
mass motion. (d) Find the energy of the oscillation.

	59.	A small ball of mass M is attached 
to the end of a uniform rod of 
equal mass M and length L that 
is pivoted at the top (Fig. P15.59). 
Determine the tensions in the rod 
(a) at the pivot and (b) at the point 
P  when the system is stationary.  
(c) Calculate the period of oscilla-
tion for small displacements from 
equilibrium and (d) determine this 
period for L 5 2.00 m.

	60.	Review. A rock rests on a concrete sidewalk. An earth-
quake strikes, making the ground move vertically in 
simple harmonic motion with a constant frequency 
of 2.40 Hz and with gradually increasing amplitude.  
(a) With what amplitude does the ground vibrate when 
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angular frequency 
with which the plank 
moves with simple 
harmonic motion.

	70.	A horizontal plank of 
mass m and length L 
is pivoted at one end. 
The plank’s other 
end is supported by 
a spring of force con-
stant k (Fig. P15.69). 
The plank is displaced by a small angle u from its hori-
zontal equilibrium position and released. Find the 
angular frequency with which the plank moves with 
simple harmonic motion.

	71.	Review. A particle of mass 4.00 kg is attached to a 
spring with a force constant of 100 N/m. It is oscillating 
on a frictionless, horizontal surface with an amplitude 
of 2.00 m. A 6.00-kg object is dropped vertically on top 
of the 4.00-kg object as it passes through its equilib-
rium point. The two objects stick together. (a) What 
is the new amplitude of the vibrating system after the 
collision? (b) By what factor has the period of the sys-
tem changed? (c) By how much does the energy of the 
system change as a result of the collision? (d) Account 
for the change in energy.

	72.	A ball of mass m is connected to two rubber bands of 
length L, each under tension T as shown in Figure 
P15.72. The ball is displaced by a small distance y per-
pendicular to the length of the rubber bands. Assum-
ing the tension does not change, show that (a) the 
restoring force is 2(2T/L)y and (b) the system exhibits 
simple harmonic motion with an angular frequency 
v 5 !2T/mL.

y

L L

Figure P15.72

	73.	Review. One end of a light spring with force constant 
k 5 100 N/m is attached to a vertical wall. A light string 
is tied to the other end of the horizontal spring. As 
shown in Figure P15.73, the string changes from hori-
zontal to vertical as it passes over a pulley of mass M 
in the shape of a solid disk of radius R 5 2.00 cm. The 
pulley is free to turn on a fixed, smooth axle. The ver-
tical section of the string supports an object of mass 
m 5 200 g. The string does not slip at its contact with 
the pulley. The object is 
pulled downward a small 
distance and released.  
(a) What is the angular 
frequency v of oscillation 
of the object in terms of 
the mass M? (b)  What 
is the highest possible 
value of the angular fre-
quency of oscillation of 
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angular frequency, (d)  the maximum speed, (e) the 
maximum acceleration, and (f) an equation for its posi-
tion x as a function of time.

	65.	Review. A large block P attached to a light spring 
executes horizontal, simple harmonic motion as it 
slides across a frictionless surface with a frequency f 5  
1.50 Hz. Block B rests 
on it as shown in Figure 
P15.65, and the coef-
ficient of static friction 
between the two is ms 5 
0.600. What maximum 
amplitude of oscillation 
can the system have if 
block B is not to slip?

	66.	Review. A large block P attached to a light spring exe-
cutes horizontal, simple harmonic motion as it slides 
across a frictionless surface with a frequency f. Block B 
rests on it as shown in Figure P15.65, and the coeffi-
cient of static friction between the two is ms. What max-
imum amplitude of oscillation can the system have if 
block B is not to slip?

	67.	 A pendulum of length L and mass 
M has a spring of force constant 
k connected to it at a distance h 
below its point of suspension (Fig. 
P15.67). Find the frequency of 
vibration of the system for small 
values of the amplitude (small u).  
Assume the vertical suspension  
rod of length L is rigid, but 
ignore its mass.

	68.	A block of mass m is connected 
to two springs of force constants 
k1 and k2 in two ways as shown in 
Figure P15.68. In both cases, the block moves on a fric-
tionless table after it is displaced from equilibrium and 
released. Show that in the two cases the block exhibits 
simple harmonic motion with periods

(a) T 5 2pÅ
m 1k1 1 k 2 2

k1k 2
 ​ ​  and ​ ​  (b) T 5 2pÅ

m
k 1 1 k 2

m

k1 k2

k1 k2

m

a

b

Figure P15.68

	69.	A horizontal plank of mass 5.00 kg and length 2.00 m  
is pivoted at one end. The plank’s other end is supported 
by a spring of force constant 100 N/m (Fig. P15.69). 
The plank is displaced by a small angle u from its  
horizontal equilibrium position and released. Find the  

m

B

P

s

Figure P15.65   
Problems 65 and 66.

S

h
L

k

u

M

Figure P15.67

S

S

m

M

k R

Figure P15.73

Pivot

k

u

L

Figure P15.69   
Problems 69 and 70.
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480	C hapter 15  Oscillatory Motion

the motion. Take the density of air to be 1.20 kg/m3.  
Hint: Use an analogy with the simple pendulum and 
see Chapter 14. Assume the air applies a buoyant 
force on the balloon but does not otherwise affect its 
motion.

Air Air
He

He

L L
θ

gS gS

a b

Figure P15.77

	78.	Consider the damped oscillator illustrated in Fig-
ure 15.20. The mass of the object is 375 g, the spring 
constant is 100 N/m, and b 5 0.100 N ? s/m. (a) Over 
what time interval does the amplitude drop to half its 
initial value? (b) What If? Over what time interval does 
the mechanical energy drop to half its initial value?  
(c) Show that, in general, the fractional rate at which 
the amplitude decreases in a damped harmonic 
oscillator is one-half the fractional rate at which the 
mechanical energy decreases.

	79.	A particle with a mass of 0.500 kg is attached to a hori-
zontal spring with a force constant of 50.0 N/m. At the 
moment t 5 0, the particle has its maximum speed 
of 20.0  m/s and is moving to the left. (a) Determine 
the particle’s equation of motion, specifying its posi-
tion as a function of time. (b)  Where in the motion 
is the potential energy three times the kinetic energy? 
(c) Find the minimum time interval required for the 
particle to move from x 5 0 to x 5 1.00 m. (d) Find the 
length of a simple pendulum with the same period.

	80.	Your thumb squeaks on a plate you have just washed. 
Your sneakers squeak on the gym floor. Car tires 
squeal when you start or stop abruptly. You can make 
a goblet sing by wiping your moistened finger around 
its rim. When chalk squeaks on a blackboard, you can 
see that it makes a row of regularly spaced dashes. As 
these examples suggest, vibration commonly results 
when friction acts on a moving elastic object. The 
oscillation is not simple harmonic motion, but is 
called stick-and-slip. This problem models stick-and-
slip motion.

		  	 A block of mass m is attached to a fixed support by a 
horizontal spring with force constant k and negligible 
mass (Fig. P15.80). Hooke’s law describes the spring 

S

the object? (c)  What is the highest possible value of 
the angular frequency of oscillation of the object if the 
pulley radius is doubled to R 5 4.00 cm?

	74.	People who ride motorcycles and bicycles learn to look 
out for bumps in the road and especially for wash-
boarding, a condition in which many equally spaced 
ridges are worn into the road. What is so bad about 
washboarding? A motorcycle has several springs and 
shock absorbers in its suspension, but you can model 
it as a single spring supporting a block. You can esti-
mate the force constant by thinking about how far the 
spring compresses when a heavy rider sits on the seat. 
A motorcyclist traveling at highway speed must be par-
ticularly careful of washboard bumps that are a certain 
distance apart. What is the order of magnitude of their 
separation distance?

	75.	A simple pendulum with a length of 2.23 m and a mass 
of 6.74 kg is given an initial speed of 2.06 m/s at its 
equilibrium position. Assume it undergoes simple har-
monic motion. Determine (a) its period, (b) its total 
energy, and (c) its maximum angular displacement.

	76.	When a block of mass M, connected to the end of a 
spring of mass ms 5 7.40 g and force constant k, is set 
into simple harmonic motion, the period of its motion is

T 5 2pÅ
M 1 1ms /3 2

k

		  A two-part experiment is conducted 
with the use of blocks of various 
masses suspended vertically from the 
spring as shown in Figure P15.76. 
(a) Static extensions of 17.0, 29.3, 
35.3, 41.3, 47.1, and 49.3 cm are  
measured for M values of 20.0, 40.0,  
50.0, 60.0, 70.0, and 80.0 g, respec-
tively. Construct a graph of Mg versus 
x and perform a linear least-squares fit to the data.  
(b) From the slope of your graph, determine a value 
for k for this spring. (c) The system is now set into sim-
ple harmonic motion, and periods are measured with 
a stopwatch. With M 5 80.0 g, the total time interval 
required for ten oscillations is measured to be 13.41 s.  
The experiment is repeated with M values of 70.0, 
60.0, 50.0, 40.0, and 20.0 g, with corresponding time 
intervals for ten oscillations of 12.52, 11.67, 10.67, 9.62, 
and 7.03  s. Make a table of these masses and times.  
(d) Compute the experimental value for T from each 
of these measurements. (e) Plot a graph of T 2 versus 
M and (f) determine a value for k from the slope of 
the linear least-squares fit through the data points.  
(g) Compare this value of k with that obtained in part 
(b). (h) Obtain a value for ms from your graph and 
compare it with the given value of 7.40 g.

	77.	Review. A light balloon filled with helium of density  
0.179  kg/m3 is tied to a light string of length L 5 
3.00 m. The string is tied to the ground forming an 
“inverted” simple pendulum (Fig. 15.77a). If the bal-
loon is displaced slightly from equilibrium as in Fig-
ure P15.77b and released, (a) show that the motion 
is simple harmonic and (b) determine the period of 

Q/C

W
AMT

M

Figure P15.76

vS
k

Figure P15.80
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Challenge Problems
	84.	A smaller disk of radius r and 

mass m is attached rigidly to 
the face of a second larger 
disk of radius R and mass M 
as shown in Figure P15.84. 
The center of the small disk 
is located at the edge of the 
large disk. The large disk is 
mounted at its center on a 
frictionless axle. The assem-
bly is rotated through a 
small angle u from its equi-
librium position and released. (a) Show that the speed 
of the center of the small disk as it passes through the 
equilibrium position is

v 5 2 c Rg 11 2 cos u 2
1M/m 2 1 1r/R 22 1 2

d
1/2

		  (b) Show that the period of the motion is

T 5 2p c 1M 1 2m 2R 2 1 mr 2

2mgR
d

1/2

	85.	An object of mass m1 5 9.00 kg is in equilibrium when 
connected to a light spring of constant k 5 100 N/m 
that is fastened to a wall as shown in Figure P15.85a.  
A second object, m2  5 7.00 kg, is slowly pushed up 
against m1, compressing the spring by the amount A 5 
0.200 m (see Fig. P15.85b). The system is then released, 
and both objects start moving to the right on the fric-
tionless surface. (a) When m1 reaches the equilibrium 
point, m2 loses contact with m1 (see Fig. P15.85c) and 
moves to the right with speed v. Determine the value of 
v. (b) How far apart are the objects when the spring is 
fully stretched for the first time (the distance D in Fig. 
P15.85d)?

A

m1 m2

m1 m2

m1 m2

m1k

k

k

k

D

vS

vS

b

c

d

a

Figure P15.85

	86.	Review. Why is the following situation impossible? You are 
in the high-speed package delivery business. Your com-
petitor in the next building gains the right-of-way to 

R

M

u u

vS
m

r

Figure P15.84

S

S

both in extension and in compression. The block sits 
on a long horizontal board, with which it has coeffi-
cient of static friction ms and a smaller coefficient of 
kinetic friction mk. The board moves to the right at 
constant speed v. Assume the block spends most of its 
time sticking to the board and moving to the right with 
it, so the speed v is small in comparison to the aver-
age speed the block has as it slips back toward the left. 
(a) Show that the maximum extension of the spring 
from its unstressed position is very nearly given by 
msmg/k. (b) Show that the block oscillates around an 
equilibrium position at which the spring is stretched 
by mkmg/k. (c) Graph the block’s position versus time. 
(d) Show that the amplitude of the block’s motion is

A 5
1 ms 2 mk 2mg

k

		  (e) Show that the period of the block’s motion is

T 5
2 1ms 2 mk 2mg

vk
1 pÅ

m
k

		  It is the excess of static over kinetic friction that is 
important for the vibration. “The squeaky wheel gets 
the grease” because even a viscous fluid cannot exert a 
force of static friction.

	81.	 Review. A lobsterman’s buoy is a solid wooden cylinder 
of radius r and mass M. It is weighted at one end so that 
it floats upright in calm seawater, having density r. A 
passing shark tugs on the slack rope mooring the buoy 
to a lobster trap, pulling the buoy down a distance x 
from its equilibrium position and releasing it. (a) Show 
that the buoy will execute simple harmonic motion if 
the resistive effects of the water are ignored. (b) Deter-
mine the period of the oscillations.

	82.	Why is the following situation impossible? Your job involves 
building very small damped oscillators. One of your 
designs involves a spring–object oscillator with a spring 
of force constant k 5 10.0 N/m and an object of mass 
m 5 1.00 g. Your design objective is that the oscilla-
tor undergo many oscillations as its amplitude falls 
to 25.0% of its initial value in a certain time interval. 
Measurements on your latest design show that the 
amplitude falls to the 25.0% value in 23.1 ms. This time 
interval is too long for what is needed in your project. 
To shorten the time interval, you double the damping 
constant b for the oscillator. This doubling allows you 
to reach your design objective.

	83.	Two identical steel balls, each of mass 67.4 g, are mov-
ing in opposite directions at 5.00 m/s. They collide 
head-on and bounce apart elastically. By squeezing 
one of the balls in a vise while precise measurements 
are made of the resulting amount of compression, you 
find that Hooke’s law is a good model of the ball’s elas-
tic behavior. A force of 16.0 kN exerted by each jaw of 
the vise reduces the diameter by 0.200 mm. Model the 
motion of each ball, while the balls are in contact, as 
one-half of a cycle of simple harmonic motion. Com-
pute the time interval for which the balls are in con-
tact. (If you solved Problem 57 in Chapter 7, compare 
your results from this problem with your results from 
that one.)
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482	C hapter 15  Oscillatory Motion

is proportional to the distance x from the fixed end; 
that is, vx 5 (x/,)v. Also, notice that the mass of a seg-
ment of the spring is dm 5 (m/,)dx. Find (a) the kinetic 
energy of the system when the block has a speed v and 
(b) the period of oscillation.

	88.	Review. A system consists of a spring with force con-
stant k 5 1 250 N/m, length L 5 1.50 m, and an object 
of mass m 5 5.00 kg attached to the end (Fig. P15.88). 
The object is placed at the level of the point of attach-
ment with the spring unstretched, at position yi 5 L, 
and then it is released so that it swings like a pendu-
lum. (a) Find the y position of the object at the lowest 
point. (b) Will the pendulum’s period be greater or 
less than the period of a simple pendulum with the 
same mass m and length L? Explain.

vS

y

yi � L

x

L � yf

L
m

Figure P15.88

	89.	A light, cubical container of volume a3 is initially filled 
with a liquid of mass density r as shown in Figure 
P15.89a. The cube is initially supported by a light string 
to form a simple pendulum of length Li, measured 
from the center of mass of the filled container, where 
Li .. a. The liquid is allowed to flow from the bottom 
of the container at a constant rate (dM/dt). At any time 
t, the level of the liquid in the container is h and the 
length of the pendulum 
is L (measured relative 
to the instantaneous cen-
ter of mass) as shown in 
Figure P15.89b. (a) Find 
the period of the pendu-
lum as a function of time.  
(b) What is the period of 
the pendulum after the 
liquid completely runs 
out of the container?

a

a
h

LLi

a b

Figure P15.89

S

build an evacuated tunnel just above the ground all 
the way around the Earth. By firing packages into this 
tunnel at just the right speed, your competitor is able 
to send the packages into orbit around the Earth in 
this tunnel so that they arrive on the exact opposite 
side of the Earth in a very short time interval. You 
come up with a competing idea. Figuring that the dis-
tance through the Earth is shorter than the distance 
around the Earth, you obtain permits to build an evac-
uated tunnel through the center of the Earth (Fig. 
P15.86). By simply dropping packages into this tunnel, 
they fall downward and arrive at the other end of your 
tunnel, which is in a building right next to the other 
end of your competitor’s tunnel. Because your pack-
ages arrive on the other side of the Earth in a shorter 
time interval, you win the competition and your busi-
ness flourishes. Note: An object at a distance r from the 
center of the Earth is pulled toward the center of the 
Earth only by the mass within the sphere of radius r 
(the reddish region in Fig. P15.86). Assume the Earth 
has uniform density.

Earth

Tunnel

m
r

Figure P15.86

	87.	 A block of mass M is connected to a spring of mass m 
and oscillates in simple harmonic motion on a fric-
tionless, horizontal track (Fig. P15.87). The force con-
stant of the spring is k, and the equilibrium length is 
,. Assume all portions of the spring oscillate in phase 
and the velocity of a segment of the spring of length dx 

S

x

dx

M
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Lifeguards in New South Wales, 
Australia, practice taking their boat 
over large water waves breaking 
near the shore. A wave moving over 
the surface of water is one example 
of a mechanical wave. (Travel Ink/Gallo 

Images/Getty Images)
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16Wave Motion

		  483

Many of us experienced waves as children when we dropped a pebble into a pond. At 
the point the pebble hits the water’s surface, circular waves are created. These waves move 
outward from the creation point in expanding circles until they reach the shore. If you were 
to examine carefully the motion of a small object floating on the disturbed water, you would 
see that the object moves vertically and horizontally about its original position but does not 
undergo any net displacement away from or toward the point at which the pebble hit the 
water. The small elements of water in contact with the object, as well as all the other water 
elements on the pond’s surface, behave in the same way. That is, the water wave moves 
from the point of origin to the shore, but the water is not carried with it.
	 The world is full of waves, the two main types being mechanical waves and electromag-
netic waves. In the case of mechanical waves, some physical medium is being disturbed; in 
our pebble example, elements of water are disturbed. Electromagnetic waves do not require a 
medium to propagate; some examples of electromagnetic waves are visible light, radio waves, 
television signals, and x-rays. Here, in this part of the book, we study only mechanical waves.
	 Consider again the small object floating on the water. We have caused the object to 
move at one point in the water by dropping a pebble at another location. The object has 
gained kinetic energy from our action, so energy must have transferred from the point at 
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484	C hapter 16  Wave Motion

which the pebble is dropped to the position of the object. This feature is central to wave 
motion: energy is transferred over a distance, but matter is not.

16.1	 Propagation of a Disturbance
The introduction to this chapter alluded to the essence of wave motion: the trans-
fer of energy through space without the accompanying transfer of matter. In the list 
of energy transfer mechanisms in Chapter 8, two mechanisms—mechanical waves 
and electromagnetic radiation—depend on waves. By contrast, in another mecha-
nism, matter transfer, the energy transfer is accompanied by a movement of matter 
through space with no wave character in the process.
	 All mechanical waves require (1) some source of disturbance, (2) a medium con-
taining elements that can be disturbed, and (3) some physical mechanism through 
which elements of the medium can influence each other. One way to demonstrate 
wave motion is to flick one end of a long string that is under tension and has its 
opposite end fixed as shown in Figure 16.1. In this manner, a single bump (called 
a pulse) is formed and travels along the string with a definite speed. Figure 16.1 
represents four consecutive “snapshots” of the creation and propagation of the trav-
eling pulse. The hand is the source of the disturbance. The string is the medium 
through which the pulse travels—individual elements of the string are disturbed 
from their equilibrium position. Furthermore, the elements of the string are con-
nected together so they influence each other. The pulse has a definite height and a 
definite speed of propagation along the medium. The shape of the pulse changes 
very little as it travels along the string.1

	 We shall first focus on a pulse traveling through a medium. Once we have explored 
the behavior of a pulse, we will then turn our attention to a wave, which is a periodic 
disturbance traveling through a medium. We create a pulse on our string by flicking 
the end of the string once as in Figure 16.1. If we were to move the end of the string 
up and down repeatedly, we would create a traveling wave, which has characteristics 
a pulse does not have. We shall explore these characteristics in Section 16.2.
	 As the pulse in Figure 16.1 travels, each disturbed element of the string moves in 
a direction perpendicular to the direction of propagation. Figure 16.2 illustrates this 
point for one particular element, labeled P. Notice that no part of the string ever 
moves in the direction of the propagation. A traveling wave or pulse that causes 
the elements of the disturbed medium to move perpendicular to the direction of 
propagation is called a transverse wave.
	 Compare this wave with another type of pulse, one moving down a long, stretched 
spring as shown in Figure 16.3. The left end of the spring is pushed briefly to the 
right and then pulled briefly to the left. This movement creates a sudden compres-
sion of a region of the coils. The compressed region travels along the spring (to 
the right in Fig. 16.3). Notice that the direction of the displacement of the coils is 
parallel to the direction of propagation of the compressed region. A traveling wave 
or pulse that causes the elements of the medium to move parallel to the direction 
of propagation is called a longitudinal wave.

As the pulse moves along the 
string, new elements of the 
string are displaced from their 
equilibrium positions.

Figure 16.1  ​A hand moves the 
end of a stretched string up and 
down once (red arrow), causing a 
pulse to travel along the string.

1In reality, the pulse changes shape and gradually spreads out during the motion. This effect, called dispersion, is com-
mon to many mechanical waves as well as to electromagnetic waves. We do not consider dispersion in this chapter.

The direction of the displacement 
of any element at a point P on the 
string is perpendicular to the 
direction of propagation (red 
arrow).

P

P

P

Figure 16.2  ​The displacement 
of a particular string element for 
a transverse pulse traveling on a 
stretched string.

As the pulse passes by, the 
displacement of the coils is parallel to 
the direction of the propagation.

The hand moves forward 
and back once to create 
a longitudinal pulse.

Figure 16.3  ​A longitudinal 
pulse along a stretched spring.
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	 16.1  Propagation of a Disturbance	 485

	 Sound waves, which we shall discuss in Chapter 17, are another example of lon-
gitudinal waves. The disturbance in a sound wave is a series of high-pressure and 
low-pressure regions that travel through air.
	 Some waves in nature exhibit a combination of transverse and longitudinal 
displacements. Surface-water waves are a good example. When a water wave trav-
els on the surface of deep water, elements of water at the surface move in nearly 
circular paths as shown in Figure 16.4. The disturbance has both transverse and 
longitudinal components. The transverse displacements seen in Figure 16.4 rep-
resent the variations in vertical position of the water elements. The longitudinal 
displacements represent elements of water moving back and forth in a horizontal 
direction.
	 The three-dimensional waves that travel out from a point under the Earth’s sur-
face at which an earthquake occurs are of both types, transverse and longitudinal. 
The longitudinal waves are the faster of the two, traveling at speeds in the range of 
7 to 8 km/s near the surface. They are called P waves, with “P” standing for primary, 
because they travel faster than the transverse waves and arrive first at a seismo-
graph (a device used to detect waves due to earthquakes). The slower transverse 
waves, called S waves, with “S” standing for secondary, travel through the Earth at 
4 to 5 km/s near the surface. By recording the time interval between the arrivals 
of these two types of waves at a seismograph, the distance from the seismograph to 
the point of origin of the waves can be determined. This distance is the radius of an 
imaginary sphere centered on the seismograph. The origin of the waves is located 
somewhere on that sphere. The imaginary spheres from three or more monitoring 
stations located far apart from one another intersect at one region of the Earth, 
and this region is where the earthquake occurred.
	 Consider a pulse traveling to the right on a long string as shown in Figure 16.5. 
Figure 16.5a represents the shape and position of the pulse at time t 5 0. At this 
time, the shape of the pulse, whatever it may be, can be represented by some math-
ematical function that we will write as y(x, 0) 5 f(x). This function describes the 
transverse position y of the element of the string located at each value of x at time 
t 5 0. Because the speed of the pulse is v, the pulse has traveled to the right a 
distance vt at the time t (Fig. 16.5b). We assume the shape of the pulse does not 
change with time. Therefore, at time t, the shape of the pulse is the same as it was 
at time t 5 0 as in Figure 16.5a. Consequently, an element of the string at x at this 
time has the same y position as an element located at x 2 vt had at time t 5 0:

	 y(x, t) 5 y(x 2 vt, 0)

	 In general, then, we can represent the transverse position y for all positions and 
times, measured in a stationary frame with the origin at O, as

	 y(x, t) 5 f(x 2 vt)	 (16.1)

Similarly, if the pulse travels to the left, the transverse positions of elements of the 
string are described by

	 y(x, t) 5 f(x 1 vt)	 (16.2)

	 The function y, sometimes called the wave function, depends on the two vari-
ables x and t. For this reason, it is often written y(x, t), which is read “y as a function 
of x and t.”
	 It is important to understand the meaning of y. Consider an element of the 
string at point P in Figure 16.5, identified by a particular value of its x coordinate. 
As the pulse passes through P, the y coordinate of this element increases, reaches 
a maximum, and then decreases to zero. The wave function y(x, t) represents the 
y coordinate—the transverse position—of any element located at position x at any 
time t. Furthermore, if t is fixed (as, for example, in the case of taking a snapshot of 
the pulse), the wave function y(x), sometimes called the waveform, defines a curve 
representing the geometric shape of the pulse at that time.

Figure 16.4  The motion of 
water elements on the surface 
of deep water in which a wave 
is propagating is a combination 
of transverse and longitudinal 
displacements. 

The elements at the surface move 
in nearly circular paths. Each 
element is displaced both 
horizontally and vertically from its 
equilibrium position.

Trough

Velocity of
propagation

Crest

y

O

vt

x
O

y

x

P

P

vS

vS

At t � 0,  the shape of the 
pulse is given by y � f(x).

At some later time t, the shape 
of the pulse remains unchanged 
and the vertical position of an 
element of the medium at any 
point P is given by y � f(x � vt).

b

a

Figure 16.5  ​A one-dimensional 
pulse traveling to the right on a 
string with a speed v.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



486	C hapter 16  Wave Motion

Example 16.1	     A Pulse Moving to the Right

A pulse moving to the right along the x axis is represented by the wave 
function

y 1x, t 2 5
2

1x 2 3.0t 2 2 1 1

where x and y are measured in centimeters and t is measured in sec-
onds. Find expressions for the wave function at t 5 0, t 5 1.0 s, and  
t 5 2.0 s.

Conceptualize  ​Figure 16.6a shows the pulse represented by this wave 
function at t 5 0. Imagine this pulse moving to the right at a speed 
of 3.0 cm/s and maintaining its shape as suggested by Figures 16.6b 
and 16.6c.

Categorize  ​We categorize this example as a relatively simple analysis 
problem in which we interpret the mathematical representation of a 
pulse.

Analyze  ​The wave function is of the form y 5  
f(x 2 v t). Inspection of the expression for  
y(x, t) and comparison to Equation 16.1 reveal 
that the wave speed is v 5 3.0 cm/s. Further-
more, by letting x 2 3.0t 5 0, we find that the 
maximum value of y is given by A 5 2.0 cm.

S o l u t i o n

Finalize  ​These snapshots show that the pulse moves to the right without changing its shape and that it has a constant 
speed of 3.0 cm/s.

Q	 uick Quiz 16.1 ​ (i) In a long line of people waiting to buy tickets, the first person 
leaves and a pulse of motion occurs as people step forward to fill the gap.  
As each person steps forward, the gap moves through the line. Is the propaga-
tion of this gap (a) transverse or (b) longitudinal? (ii) Consider “the wave” at a 
baseball game: people stand up and raise their arms as the wave arrives at  
their location, and the resultant pulse moves around the stadium. Is this wave 
(a) transverse or (b) longitudinal?

t � 2.0 s

t � 1.0 s

t � 0

y (x, 2.0)

y (x, 1.0)

y (x, 0)

3.0 cm/s

3.0 cm/s

3.0 cm/s

y (cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6
x (cm)

7 8

y (cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6
x (cm)

7 8

y (cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6
x (cm)

7 8

a

b

c

Figure 16.6  ​ 
(Example 16.1) Graphs 
of the function y(x, t) 5 
2/[(x 23.0t)2 1 1] at  
(a) t 5 0, (b) t 5 1.0 s, 
and (c) t 5 2.0 s.

Write the wave function expression at t 5 0: y(x, 0) 5 
2

x 2 1 1

Write the wave function expression at t 5 1.0 s: y(x, 1.0) 5 
2

1x 2 3.0 22 1 1

Write the wave function expression at t 5 2.0 s: y(x, 2.0) 5 
2

1x 2 6.0 22 1 1

For each of these expressions, we can substitute various values of x and plot the wave function. This procedure yields 
the wave functions shown in the three parts of Figure 16.6.

What if the wave function were

y 1x, t 2 5
4

1x 1 3.0t 22 1 1
How would that change the situation?

Answer  ​One new feature in this expression is the plus sign in the denominator rather than the minus sign. The  
new expression represents a pulse with a similar shape as that in Figure 16.6, but moving to the left as time progresses.

What If ?
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16.2	 Analysis Model: Traveling Wave 
In this section, we introduce an important wave function whose shape is shown in 
Figure 16.7. The wave represented by this curve is called a sinusoidal wave because 
the curve is the same as that of the function sin u plotted against u. A sinusoidal 
wave could be established on the rope in Figure 16.1 by shaking the end of the rope 
up and down in simple harmonic motion.
	 The sinusoidal wave is the simplest example of a periodic continuous wave and 
can be used to build more complex waves (see Section 18.8). The brown curve in 
Figure 16.7 represents a snapshot of a traveling sinusoidal wave at t 5 0, and the 
blue curve represents a snapshot of the wave at some later time t. Imagine two types 
of motion that can occur. First, the entire waveform in Figure 16.7 moves to the 
right so that the brown curve moves toward the right and eventually reaches the 
position of the blue curve. This movement is the motion of the wave. If we focus on 
one element of the medium, such as the element at x 5 0, we see that each element 
moves up and down along the y axis in simple harmonic motion. This movement is 
the motion of the elements of the medium. It is important to differentiate between the 
motion of the wave and the motion of the elements of the medium.
	 In the early chapters of this book, we developed several analysis models based on 
three simplification models: the particle, the system, and the rigid object. With our 
introduction to waves, we can develop a new simplification model, the wave, that 
will allow us to explore more analysis models for solving problems. An ideal particle 
has zero size. We can build physical objects with nonzero size as combinations of 
particles. Therefore, the particle can be considered a basic building block. An ideal 
wave has a single frequency and is infinitely long; that is, the wave exists throughout 
the Universe. (A wave of finite length must necessarily have a mixture of frequen-
cies.) When this concept is explored in Section 18.8, we will find that ideal waves 
can be combined to build complex waves, just as we combined particles.
	 In what follows, we will develop the principal features and mathematical represen-
tations of the analysis model of a traveling wave. This model is used in situations in 
which a wave moves through space without interacting with other waves or particles.
	 Figure 16.8a shows a snapshot of a traveling wave moving through a medium. 
Figure 16.8b shows a graph of the position of one element of the medium as a func-
tion of time. A point in Figure 16.8a at which the displacement of the element from 
its normal position is highest is called the crest of the wave. The lowest point is 
called the trough. The distance from one crest to the next is called the wavelength 
l (Greek letter lambda). More generally, the wavelength is the minimum distance 
between any two identical points on adjacent waves as shown in Figure 16.8a.
	 If you count the number of seconds between the arrivals of two adjacent crests 
at a given point in space, you measure the period T of the waves. In general, the 
period is the time interval required for two identical points of adjacent waves to 
pass by a point as shown in Figure 16.8b. The period of the wave is the same as the 
period of the simple harmonic oscillation of one element of the medium.
	 The same information is more often given by the inverse of the period, which is 
called the frequency f. In general, the frequency of a periodic wave is the number 
of crests (or troughs, or any other point on the wave) that pass a given point in a 
unit time interval. The frequency of a sinusoidal wave is related to the period by the 
expression

	 f 5
1
T

	 (16.3)

t � 0 t

y

x

vt
vS

Figure 16.7  A one-dimensional 
sinusoidal wave traveling to the 
right with a speed v. The brown 
curve represents a snapshot of the 
wave at t 5 0, and the blue curve 
represents a snapshot at some 
later time t.

	

▸ 16.1 c o n t i n u e d

Another new feature here is the numerator of 4 rather than 2. Therefore, the new expression represents a pulse with 
twice the height of that in Figure 16.6.

y

x

T

y

t

A

A

T

l

l

The wavelength l of a wave is 
the distance between adjacent 
crests or adjacent troughs.

The period T of a wave is the 
time interval required for the 
element to complete one cycle 
of its oscillation and for the 
wave to travel one wavelength.

a

b

Figure 16.8  (a) A snapshot of a 
sinusoidal wave. (b) The position 
of one element of the medium as a 
function of time.
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488	C hapter 16  Wave Motion

The frequency of the wave is the same as the frequency of the simple harmonic 
oscillation of one element of the medium. The most common unit for frequency, 
as we learned in Chapter 15, is s21, or hertz (Hz). The corresponding unit for T is 
seconds.
	 The maximum position of an element of the medium relative to its equilibrium 
position is called the amplitude A of the wave as indicated in Figure 16.8.
	 Waves travel with a specific speed, and this speed depends on the properties 
of the medium being disturbed. For instance, sound waves travel through room-
temperature air with a speed of about 343 m/s (781 mi/h), whereas they travel 
through most solids with a speed greater than 343 m/s.
	 Consider the sinusoidal wave in Figure 16.8a, which shows the position of the 
wave at t 5 0. Because the wave is sinusoidal, we expect the wave function at this 
instant to be expressed as y(x, 0) 5 A sin ax, where A is the amplitude and a is a 
constant to be determined. At x 5 0, we see that y(0, 0) 5 A sin a(0) 5 0, consistent 
with Figure 16.8a. The next value of x for which y is zero is x 5 l/2. Therefore,

y al

2
, 0b 5 A sin aa 

l

2
b 5 0

For this equation to be true, we must have al/2 5 p, or a 5 2p/l. Therefore, the 
function describing the positions of the elements of the medium through which 
the sinusoidal wave is traveling can be written

	 y 1x, 0 2 5 A sin a2p

l
 xb	 (16.4)

where the constant A represents the wave amplitude and the constant l is the wave-
length. Notice that the vertical position of an element of the medium is the same 
whenever x is increased by an integral multiple of l. Based on our discussion of 
Equation 16.1, if the wave moves to the right with a speed v, the wave function at 
some later time t is

	 y 1x, t 2 5 A sin c2p

l
1x 2 vt 2 d 	 (16.5)

If the wave were traveling to the left, the quantity x 2 vt would be replaced by x 1 vt 
as we learned when we developed Equations 16.1 and 16.2.
	 By definition, the wave travels through a displacement Dx equal to one wave-
length l in a time interval Dt of one period T. Therefore, the wave speed, wave-
length, and period are related by the expression

	 v 5
Dx
Dt

5
l

T
	 (16.6)

Substituting this expression for v into Equation 16.5 gives

	 y 5 A sin c2pa x
l

2
t
T
b d 	 (16.7)

This form of the wave function shows the periodic nature of y. Note that we will 
often use y rather than y(x, t) as a shorthand notation. At any given time t, y has the 
same value at the positions x, x 1 l, x 1 2l, and so on. Furthermore, at any given 
position x, the value of y is the same at times t, t 1 T, t 1 2T, and so on.
	 We can express the wave function in a convenient form by defining two other 
quantities, the angular wave number k (usually called simply the wave number) 
and the angular frequency v:

	 k ;
2p

l
	 (16.8)

	 v ;
2p

T
5 2pf 	 (16.9)

Angular wave number 

Angular frequency 

Pitfall Prevention 16.1
What’s the Difference Between 
Figures 16.8a and 16.8b?  Notice 
the visual similarity between Fig-
ures 16.8a and 16.8b. The shapes 
are the same, but (a) is a graph of 
vertical position versus horizontal 
position, whereas (b) is vertical 
position versus time. Figure 16.8a 
is a pictorial representation of the 
wave for a series of elements of the 
medium; it is what you would see at 
an instant of time. Figure 16.8b is 
a graphical representation of the 
position of one element of the medium 
as a function of time. That both 
figures have the identical shape 
represents Equation 16.1: a wave is 
the same function of both x and t.
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Using these definitions, Equation 16.7 can be written in the more compact form

	 y 5 A sin (kx 2 vt)	 (16.10)

	 Using Equations 16.3, 16.8, and 16.9, the wave speed v originally given in Equa-
tion 16.6 can be expressed in the following alternative forms:

	 v 5
v

k
	 (16.11)

	 v 5 lf	 (16.12)

	 The wave function given by Equation 16.10 assumes the vertical position y of an 
element of the medium is zero at x 5 0 and t 5 0. That need not be the case. If it is 
not, we generally express the wave function in the form

	 y 5 A sin (kx 2 vt 1 f)	 (16.13)

where f is the phase constant, just as we learned in our study of periodic motion in 
Chapter 15. This constant can be determined from the initial conditions. The pri-
mary equations in the mathematical representation of the traveling wave analysis 
model are Equations 16.3, 16.10, and 16.12.

Q	 uick Quiz 16.2 ​ A sinusoidal wave of frequency f is traveling along a stretched 
string. The string is brought to rest, and a second traveling wave of frequency  
2f is established on the string. (i) What is the wave speed of the second wave?  
(a) twice that of the first wave (b) half that of the first wave (c) the same as 
that of the first wave (d) impossible to determine (ii) From the same choices, 
describe the wavelength of the second wave. (iii) From the same choices, 
describe the amplitude of the second wave.

WW �Wave function for a  
sinusoidal wave

WW Speed of a sinusoidal wave

WW �General expression for a 
sinusoidal wave

Example 16.2	     A Traveling Sinusoidal Wave 

A sinusoidal wave traveling in the positive x direction has an amplitude of 15.0 cm, a wavelength of 40.0 cm, and a 
frequency of 8.00 Hz. The vertical position of an element of the medium at t 5 0 and x 5 0 is also 15.0 cm as shown in 
Figure 16.9.

(A)  ​Find the wave number k, period T, angular frequency v, and speed v of the wave.

Conceptualize  ​Figure 16.9 shows the wave at t 5 0. 
Imagine this wave moving to the right and maintain-
ing its shape.

Categorize  ​From the description in the problem state-
ment, we see that we are analyzing a mechanical wave 
moving through a medium, so we categorize the prob-
lem with the traveling wave model.

Analyze

AM

S o l u t i o n

y (cm)

40.0 cm

15.0 cm
x (cm)Figure 16.9  ​(Example 16.2) A 

sinusoidal wave of wavelength  
l 5 40.0 cm and amplitude  
A 5 15.0 cm.

continued

Evaluate the wave number from Equation 16.8: k 5
2p

l
5

2p rad
40.0 cm

5   15.7 rad/m

Evaluate the period of the wave from Equation 16.3: T 5
1
f

5
1

8.00 s21 5   0.125 s

Evaluate the angular frequency of the wave from Equa-
tion 16.9:

v 5 2pf  5 2p(8.00 s21) 5   50.3 rad/s

Evaluate the wave speed from Equation 16.12: v 5 lf 5 (40.0 cm)(8.00 s21) 5   3.20 m/s
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490	C hapter 16  Wave Motion

Substitute A 5 15.0 cm, y 5 15.0 cm, x 5 0, and t 5 0 
into Equation 16.13:

15.0 5 115.0 2  sin f   S   sin f 5 1   S   f 5
p

2
 rad

Write the wave function: y 5 A sin akx 2 vt 1
p

2
b 5 A cos 1kx 2 vt 2

(B)  ​Determine the phase constant f and write a general expression for the wave function.

S o l u t i o n

Substitute the values for A, k, and v in SI units into this 
expression:

y 5   0.150 cos (15.7x 2 50.3t)

Sinusoidal Waves on Strings
In Figure 16.1, we demonstrated how to create a pulse by jerking a taut string up 
and down once. To create a series of such pulses—a wave—let’s replace the hand 
with an oscillating blade vibrating in simple harmonic motion. Figure 16.10 repre-
sents snapshots of the wave created in this way at intervals of T/4. Because the end 
of the blade oscillates in simple harmonic motion, each element of the string, such 
as that at P, also oscillates vertically with simple harmonic motion. Therefore, every 
element of the string can be treated as a simple harmonic oscillator vibrating with a 
frequency equal to the frequency of oscillation of the blade.2 Notice that while each 
element oscillates in the y direction, the wave travels to the right in the 1x direction 
with a speed v. Of course, that is the definition of a transverse wave.
	 If we define t 5 0 as the time for which the configuration of the string is as 
shown in Figure 16.10a, the wave function can be written as

y 5 A sin (kx 2 vt)

We can use this expression to describe the motion of any element of the string. An ele-
ment at point P (or any other element of the string) moves only vertically, and so its x 
coordinate remains constant. Therefore, the transverse speed vy (not to be confused 
with the wave speed v) and the transverse acceleration ay of elements of the string are

	 vy 5
dy

dt
d

x5constant
5

'y

't
5 2vA cos 1kx 2 vt 2 	 (16.14)

	 ay 5
dvy

dt
d

x5constant
5

'vy

't
5 2v2 A sin 1kx 2 vt 2 	 (16.15)

These expressions incorporate partial derivatives because y depends on both x and 
t. In the operation 'y/'t, for example, we take a derivative with respect to t while 
holding x constant. The maximum magnitudes of the transverse speed and trans-
verse acceleration are simply the absolute values of the coefficients of the cosine 
and sine functions:

	 vy , max 5 vA	 (16.16)

	 ay , max 5 v2A	 (16.17)

The transverse speed and transverse acceleration of elements of the string do not 
reach their maximum values simultaneously. The transverse speed reaches its max-
imum value (vA) when y 5 0, whereas the magnitude of the transverse acceleration 

2In this arrangement, we are assuming that a string element always oscillates in a vertical line. The tension in the 
string would vary if an element were allowed to move sideways. Such motion would make the analysis very complex.

P

t = 0

t =     T

A

P

P

P

l

4
1

t =     T
2
1

t =     T
4
3

a

b

c

d

x

y

Figure 16.10  One method for 
producing a sinusoidal wave on a 
string. The left end of the string 
is connected to a blade that is set 
into oscillation. Every element of 
the string, such as that at point P, 
oscillates with simple harmonic 
motion in the vertical direction.

	

▸ 16.2 c o n t i n u e d

Finalize  Review the results carefully and make sure you understand them. How would the graph in Figure 16.9 change 
if the phase angle were zero? How would the graph change if the amplitude were 30.0 cm? How would the graph 
change if the wavelength were 10.0 cm?

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 16.3  The Speed of Waves on Strings	 491

Pitfall Prevention 16.2
Two Kinds of Speed/Velocity   
Do not confuse v, the speed of 
the wave as it propagates along 
the string, with vy, the transverse 
velocity of a point on the string. 
The speed v is constant for a uni-
form medium, whereas vy varies 
sinusoidally.

reaches its maximum value (v2A) when y 5 6A. Finally, Equations 16.16 and 16.17 
are identical in mathematical form to the corresponding equations for simple har-
monic motion, Equations 15.17 and 15.18.

Q	 uick Quiz 16.3 ​ The amplitude of a wave is doubled, with no other changes 
made to the wave. As a result of this doubling, which of the following state-
ments is correct? (a) The speed of the wave changes. (b) The frequency of the 
wave changes. (c) The maximum transverse speed of an element of the medium 
changes. (d) Statements (a) through (c) are all true. (e) None of statements (a) 
through (c) is true.

Imagine a source vibrating such that 
it influences the medium that is in 
contact with the source. Such a source 
creates a disturbance that propagates 
through the medium. If the source 
vibrates in simple harmonic motion 
with period T, sinusoidal waves propa-
gate through the medium at a speed 
given by

	 v 5
l

T
5 lf 	 (16.6, 16.12)

where l is the wavelength of the wave and f is its frequency. A sinu-
soidal wave can be expressed as

	 y 5 A sin 1kx 2 vt 2 	 (16.10)

Analysis Model	    Traveling Wave

where A is the amplitude of the wave, k is its 
wave number, and v is its angular frequency.

Examples: 

•	 a vibrating blade sends a sinusoidal wave 
down a string attached to the blade

•	 a loudspeaker vibrates back and forth, 
emitting sound waves into the air (Chap-
ter 17)

•	 a guitar body vibrates, emitting sound 
waves into the air (Chapter 18)

•	 a vibrating electric charge creates an elec-
tromagnetic wave that propagates into 
space at the speed of light (Chapter 34)

16.3	 The Speed of Waves on Strings
One aspect of the behavior of linear mechanical waves is that the wave speed 
depends only on the properties of the medium through which the wave travels. 
Waves for which the amplitude A is small relative to the wavelength l can be repre-
sented as linear waves. (See Section 16.6.) In this section, we determine the speed 
of a transverse wave traveling on a stretched string.
	 Let us use a mechanical analysis to derive the expression for the speed of a pulse 
traveling on a stretched string under tension T. Consider a pulse moving to the 
right with a uniform speed v, measured relative to a stationary (with respect to the 
Earth) inertial reference frame as shown in Figure 16.11a. Newton’s laws are valid 
in any inertial reference frame. Therefore, let us view this pulse from a different 
inertial reference frame, one that moves along with the pulse at the same speed so 
that the pulse appears to be at rest in the frame as in Figure 16.11b. In this refer-
ence frame, the pulse remains fixed and each element of the string moves to the 
left through the pulse shape.
	 A short element of the string, of length Ds, forms an approximate arc of a cir-
cle of radius R as shown in the magnified view in Figure 16.11b. In our moving 
frame of reference, the element of the string moves to the left with speed v. As 
it travels through the arc, we can model the element as a particle in uniform cir-
cular motion. This element has a centripetal acceleration of v2/R, which is sup-
plied by components of the force T

S
 whose magnitude is the tension in the string.  

The force T
S

 acts on each side of the element, tangent to the arc, as in Figure 16.11b. 
The horizontal components of T

S
 cancel, and each vertical component T sin u acts 

downward. Hence, the magnitude of the total radial force on the element is 2T sin u.  

y

 

 
x

A

l

vS

Figure 16.11  (a) In the refer-
ence frame of the Earth, a pulse 
moves to the right on a string with 
speed v. (b) In a frame of refer-
ence moving to the right with the 
pulse, the small element of length 
Ds moves to the left with speed v.

s�

O

s

R

�

u

u

u
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T
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T
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492	C hapter 16  Wave Motion

Because the element is small, u is small and we can use the small-angle approxima-
tion sin u < u. Therefore, the magnitude of the total radial force is

Fr 5 2T sin u < 2Tu

The element has mass m 5 m Ds, where m is the mass per unit length of the string. 
Because the element forms part of a circle and subtends an angle of 2u at the center, 
Ds 5 R(2u), and

m 5 mDs 5 2mR u

The element of the string is modeled as a particle under a net force. Therefore, 
applying Newton’s second law to this element in the radial direction gives

Fr 5
mv2

R
   S   2Tu 5

2mR uv2

R
   S   T 5 mv2

Solving for v gives

	 v 5 Å
T
m

	 (16.18)

Notice that this derivation is based on the assumption that the pulse height is small 
relative to the length of the pulse. Using this assumption, we were able to use the 
approximation sin u < u. Furthermore, the model assumes that the tension T is not 
affected by the presence of the pulse, so T is the same at all points on the pulse. 
Finally, this proof does not assume any particular shape for the pulse. We therefore 
conclude that a pulse of any shape will travel on the string with speed v 5 "T/m, 
without any change in pulse shape.

Q	 uick Quiz 16.4 ​ Suppose you create a pulse by moving the free end of a taut string 
up and down once with your hand beginning at t 5 0. The string is attached at its 
other end to a distant wall. The pulse reaches the wall at time t. Which of the fol-
lowing actions, taken by itself, decreases the time interval required for the pulse 
to reach the wall? More than one choice may be correct. (a) moving your hand 
more quickly, but still only up and down once by the same amount (b) moving 
your hand more slowly, but still only up and down once by the same amount  
(c) moving your hand a greater distance up and down in the same amount of 
time (d) moving your hand a lesser distance up and down in the same amount of 
time (e) using a heavier string of the same length and under the same tension  
(f) using a lighter string of the same length and under the same tension (g) using 
a string of the same linear mass density but under decreased tension (h) using a 
string of the same linear mass density but under increased tension

Speed of a wave on 
a stretched string

Example 16.3	     The Speed of a Pulse on a Cord 

A uniform string has a mass of 0.300 kg and a length of 6.00 m (Fig. 16.12). The string passes over a pulley and sup-
ports a 2.00-kg object. Find the speed of a pulse traveling along this string.

Conceptualize  ​In Figure 16.12, the hanging block establishes 
a tension in the horizontal string. This tension determines the 
speed with which waves move on the string.

Categorize  ​To find the tension in the string, we model the hang-
ing block as a particle in equilibrium. Then we use the tension to 
evaluate the wave speed on the string using Equation 16.18.

AM

S o l u t i o n

2.00 kg

T

Figure 16.12  ​(Example 
16.3) The tension T in the 
cord is maintained by the 
suspended object. The 
speed of any wave traveling 
along the cord is given by 
v 5 !T/m.

Analyze  ​Apply the particle in equilibrium model to the block: o Fy 5 T 2 m blockg 5 0

Solve for the tension in the string: T 5 m blockg

Pitfall Prevention 16.3
Multiple T 's  Do not confuse the 
T in Equation 16.18 for the ten-
sion with the symbol T used in 
this chapter for the period of a 
wave. The context of the equation 
should help you identify which 
quantity is meant. There simply 
aren’t enough letters in the alpha-
bet to assign a unique letter to 
each variable!

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 16.3  The Speed of Waves on Strings	 493

Use Equation 16.18 to find the wave speed, using m 5 
mstring/, for the linear mass density of the string:

v 5 Å
T
m

5 Å
m blockg ,

m string

Evaluate the wave speed: v 5 Å
12.00 kg 2 19.80 m/s2 2 16.00 m 2

0.300 kg 5   19.8 m/s

Finalize  ​The calculation of the tension neglects the small mass of the string. Strictly speaking, the string can never be 
exactly straight; therefore, the tension is not uniform.

​What if the block were swinging back and forth with respect to the vertical like a pendulum? How would 
that affect the wave speed on the string?

Answer  ​The swinging block is categorized as a particle under a net force. The magnitude of one of the forces on the 
block is the tension in the string, which determines the wave speed. As the block swings, the tension changes, so the 
wave speed changes.
	 When the block is at the bottom of the swing, the string is vertical and the tension is larger than the weight of the 
block because the net force must be upward to provide the centripetal acceleration of the block. Therefore, the wave 
speed must be greater than 19.8 m/s.
	 When the block is at its highest point at the end of a swing, it is momentarily at rest, so there is no centripetal 
acceleration at that instant. The block is a particle in equilibrium in the radial direction. The tension is balanced by 
a component of the gravitational force on the block. Therefore, the tension is smaller than the weight and the wave 
speed is less than 19.8 m/s. With what frequency does the speed of the wave vary? Is it the same frequency as the 
pendulum? 

What If ?

Example 16.4	     Rescuing the Hiker 

An 80.0-kg hiker is trapped on a mountain ledge following a storm. A helicopter rescues the hiker by hovering above 
him and lowering a cable to him. The mass of the cable is 8.00 kg, and its length is 15.0 m. A sling of mass 70.0 kg is 
attached to the end of the cable. The hiker attaches himself to the sling, and the helicopter then accelerates upward. 
Terrified by hanging from the cable in midair, the hiker tries to signal the pilot by sending transverse pulses up the 
cable. A pulse takes 0.250 s to travel the length of the cable. What is the acceleration of the helicopter? Assume the 
tension in the cable is uniform.

Conceptualize  ​Imagine the effect of the acceleration of the helicopter on the cable. The greater the upward accelera-
tion, the larger the tension in the cable. In turn, the larger the tension, the higher the speed of pulses on the cable.

Categorize  ​This problem is a combination of one involving the speed of pulses on a string and one in which the hiker 
and sling are modeled as a particle under a net force.

AM

S o l u t i o n

continued

Analyze  ​Use the time interval for the pulse to travel 
from the hiker to the helicopter to find the speed of the 
pulses on the cable:

v 5
Dx
Dt

5
15.0 m
0.250 s

5 60.0 m/s

Solve Equation 16.18 for the tension in the cable: (1)   v 5 Å
T
m

   S   T 5 mv2

	

▸ 16.3 c o n t i n u e d

Model the hiker and sling as a particle under a net force, 
noting that the acceleration of this particle of mass m is 
the same as the acceleration of the helicopter:

o F 5 ma  S  T 2 mg 5 ma

Solve for the acceleration and substitute the tension 
from Equation (1):

a 5
T
m

2 g 5
mv 2

m
2 g 5

m cable v 2

,cablem
2g
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494	C hapter 16  Wave Motion

16.4	 Reflection and Transmission
The traveling wave model describes waves traveling through a uniform medium 
without interacting with anything along the way. We now consider how a traveling 
wave is affected when it encounters a change in the medium. For example, consider 
a pulse traveling on a string that is rigidly attached to a support at one end as in 
Figure 16.13. When the pulse reaches the support, a severe change in the medium 
occurs: the string ends. As a result, the pulse undergoes reflection; that is, the 
pulse moves back along the string in the opposite direction.
	 Notice that the reflected pulse is inverted. This inversion can be explained as 
follows. When the pulse reaches the fixed end of the string, the string produces 
an upward force on the support. By Newton’s third law, the support must exert an 
equal-magnitude and oppositely directed (downward) reaction force on the string. 
This downward force causes the pulse to invert upon reflection.
	 Now consider another case. This time, the pulse arrives at the end of a string 
that is free to move vertically as in Figure 16.14. The tension at the free end is 
maintained because the string is tied to a ring of negligible mass that is free to slide 
vertically on a smooth post without friction. Again, the pulse is reflected, but this 
time it is not inverted. When it reaches the post, the pulse exerts a force on the free 
end of the string, causing the ring to accelerate upward. The ring rises as high as 
the incoming pulse, and then the downward component of the tension force pulls 
the ring back down. This movement of the ring produces a reflected pulse that is 
not inverted and that has the same amplitude as the incoming pulse.
	 Finally, consider a situation in which the boundary is intermediate between these 
two extremes. In this case, part of the energy in the incident pulse is reflected and 
part undergoes transmission; that is, some of the energy passes through the bound-
ary. For instance, suppose a light string is attached to a heavier string as in Figure 
16.15. When a pulse traveling on the light string reaches the boundary between the 
two strings, part of the pulse is reflected and inverted and part is transmitted to 
the heavier string. The reflected pulse is inverted for the same reasons described 
earlier in the case of the string rigidly attached to a support.
	 The reflected pulse has a smaller amplitude than the incident pulse. In Section 
16.5, we show that the energy carried by a wave is related to its amplitude. Accord-
ing to the principle of conservation of energy, when the pulse breaks up into a 
reflected pulse and a transmitted pulse at the boundary, the sum of the energies of 
these two pulses must equal the energy of the incident pulse. Because the reflected 
pulse contains only part of the energy of the incident pulse, its amplitude must be 
smaller.
	 When a pulse traveling on a heavy string strikes the boundary between the heavy 
string and a lighter one as in Figure 16.16, again part is reflected and part is trans-
mitted. In this case, the reflected pulse is not inverted.
	 In either case, the relative heights of the reflected and transmitted pulses 
depend on the relative densities of the two strings. If the strings are identical, there 
is no discontinuity at the boundary and no reflection takes place.

Reflected
pulse

Incident
pulse

b

c

a

Figure 16.13  The reflection 
of a traveling pulse at the fixed 
end of a stretched string. The 
reflected pulse is inverted, but its 
shape is otherwise unchanged.

Incident
pulse

Reflected
pulse

b

c

a

Figure 16.14  The reflection of 
a traveling pulse at the free end of 
a stretched string. The reflected 
pulse is not inverted.

Substitute numerical values: a 5
18.00 kg 2 160.0 m/s 22

115.0 m 2 1150.0 kg 2 2 9.80 m/s2 5   3.00 m/s2

Finalize  ​A real cable has stiffness in addition to tension. Stiffness tends to return a wire to its original straight-line 
shape even when it is not under tension. For example, a piano wire straightens if released from a curved shape; 
package-wrapping string does not.
	 Stiffness represents a restoring force in addition to tension and increases the wave speed. Consequently, for a real 
cable, the speed of 60.0 m/s that we determined is most likely associated with a smaller acceleration of the helicopter.

	

▸ 16.4 c o n t i n u e d

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 16.5  Rate of Energy Transfer by Sinusoidal Waves on Strings	 495

	 According to Equation 16.18, the speed of a wave on a string increases as the 
mass per unit length of the string decreases. In other words, a wave travels more 
rapidly on a light string than on a heavy string if both are under the same tension. 
The following general rules apply to reflected waves: When a wave or pulse travels 
from medium A to medium B and vA . vB (that is, when B is denser than A), it is 
inverted upon reflection. When a wave or pulse travels from medium A to medium 
B and vA , vB (that is, when A is denser than B), it is not inverted upon reflection.

16.5	 �Rate of Energy Transfer by Sinusoidal Waves 
on Strings

Waves transport energy through a medium as they propagate. For example, sup-
pose an object is hanging on a stretched string and a pulse is sent down the string as 
in Figure 16.17a. When the pulse meets the suspended object, the object is momen-
tarily displaced upward as in Figure 16.17b. In the process, energy is transferred to 
the object and appears as an increase in the gravitational potential energy of the 
object–Earth system. This section examines the rate at which energy is transported 
along a string. We shall assume a one-dimensional sinusoidal wave in the calcula-
tion of the energy transferred.
	 Consider a sinusoidal wave traveling on a string (Fig. 16.18). The source of the 
energy is some external agent at the left end of the string. We can consider the 
string to be a nonisolated system. As the external agent performs work on the end 
of the string, moving it up and down, energy enters the system of the string and 
propagates along its length. Let’s focus our attention on an infinitesimal element 
of the string of length dx and mass dm. Each such element oscillates vertically with 
its position described by Equation 15.6. Therefore, we can model each element 
of the string as a particle in simple harmonic motion, with the oscillation in the 
y direction. All elements have the same angular frequency v and the same ampli-
tude A. The kinetic energy K associated with a moving particle is K 5 1

2mv 2. If we 
apply this equation to the infinitesimal element, the kinetic energy dK associated 
with the up and down motion of this element is

	 dK 5 1
2 1dm 2vy

2	

where vy is the transverse speed of the element. If m is the mass per unit length of 
the string, the mass dm of the element of length dx is equal to m dx. Hence, we can 
express the kinetic energy of an element of the string as

	 dK 5 1
2 1m dx 2vy

2	 (16.19)

Incident
pulse

The reflected pulse is 
inverted and a non-inverted 
transmitted pulse moves on 
the heavier string.

b

a

Figure 16.15  (a) A pulse traveling to the right on a 
light string approaches the junction with a heavier string. 
(b) The situation after the pulse reaches the junction.

Figure 16.16  (a) A pulse traveling to the right on a 
heavy string approaches the junction with a lighter string. 
(b) The situation after the pulse reaches the junction.

Incident
pulse

The reflected pulse is not 
inverted and a transmitted pulse 
moves on the lighter string.

a

b

The pulse lifts the block, 
increasing the gravitational 
potential energy of the 
block–Earth system.

m

m

a

b

Figure 16.17  ​(a) A pulse travels 
to the right on a stretched string, 
carrying energy with it. (b) The 
energy of the pulse arrives at the 
hanging block.

dm

Each element of the string is a 
simple harmonic oscillator and 
therefore has kinetic energy and 
potential energy associated with it.

Figure 16.18  ​A sinusoidal 
wave traveling along the x axis 
on a stretched string. 
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496	C hapter 16  Wave Motion

Substituting for the general transverse speed of an element of the medium using 
Equation 16.14 gives

dK 5 1
2m 32vA cos 1kx 2 vt 2 42 dx 5 1

2mv2A2 cos2 1kx 2 vt 2  dx

If we take a snapshot of the wave at time t 5 0, the kinetic energy of a given ele-
ment is

dK 5 1
2mv2 A2 cos2 kx dx

Integrating this expression over all the string elements in a wavelength of the wave 
gives the total kinetic energy Kl in one wavelength:

 Kl 5 3dK 5 3
l

0
 
1
2 mv2A2 cos2 kx dx 5 1

2 mv2A2 3
l

0
 cos2 kx dx

 5 1
2mv2A2 c1

2x 1
1
4k

 sin 2kx d
l

0
5 1

2 mv2A2 312l 4 5 1
4 mv2A2l

In addition to kinetic energy, there is potential energy associated with each ele-
ment of the string due to its displacement from the equilibrium position and the 
restoring forces from neighboring elements. A similar analysis to that above for the 
total potential energy Ul in one wavelength gives exactly the same result:

	 Ul 5 1
4 mv2A2l	

The total energy in one wavelength of the wave is the sum of the potential and 
kinetic energies:

	 El 5 Ul 1 Kl 5 1
2 mv2A2l	 (16.20)

As the wave moves along the string, this amount of energy passes by a given point 
on the string during a time interval of one period of the oscillation. Therefore, the 
power P, or rate of energy transfer TMW associated with the mechanical wave, is

P 5
TMW

Dt
5

El

T
5

1
2mv2A2l

T
5 1

2 mv2A2 al

T
b

	 P 5 1
2mv2A2v	 (16.21)

Equation 16.21 shows that the rate of energy transfer by a sinusoidal wave on a string is 
proportional to (a) the square of the frequency, (b) the square of the amplitude, and 
(c) the wave speed. In fact, the rate of energy transfer in any sinusoidal wave is pro-
portional to the square of the angular frequency and to the square of the amplitude.

Q	 uick Quiz 16.5 ​ Which of the following, taken by itself, would be most effective 
in increasing the rate at which energy is transferred by a wave traveling along 
a string? (a) reducing the linear mass density of the string by one half (b) dou-
bling the wavelength of the wave (c) doubling the tension in the string (d) dou-
bling the amplitude of the wave

Power of a wave 

Example 16.5	     Power Supplied to a Vibrating String

A taut string for which m 5 5.00 3 1022 kg/m is under a tension of 80.0 N. How much power must be supplied to the 
string to generate sinusoidal waves at a frequency of 60.0 Hz and an amplitude of 6.00 cm?

Conceptualize  ​Consider Figure 16.10 again and notice that the vibrating blade supplies energy to the string at a cer-
tain rate. This energy then propagates to the right along the string.

S o l u t i o n
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	 16.6  The Linear Wave Equation	 497

Categorize  ​We evaluate quantities from equations developed in the chapter, so we categorize this example as a substi-
tution problem.

Use Equation 16.21 to evaluate the power: P 5 1
2 mv2A2v

Use Equations 16.9 and 16.18 to substitute 
for v and v :

P 5 1
2m 12pf 22A2aÅ

T
m
b 5 2p2f 2A2"mT

Substitute numerical values: P 5 2p 2 160.0 Hz 22 10.060 0 m 22"10.050 0 kg/m 2 180.0 N 2 5   512 W

What if the string is to transfer energy at a rate of 1 000 W? What must be the required amplitude if all 
other parameters remain the same?

Answer  ​Let us set up a ratio of the new and old power, reflecting only a change in the amplitude:

Pnew

Pold
5

1
2 mv2A 2

new v
1
2 mv2A 2

old v
5

A 2
new

A 2
old

Solving for the new amplitude gives

A new 5 A oldÅ
Pnew

Pold
5 16.00 cm 2Å

1 000 W
512 W

5 8.39 cm

What If ?

16.6	 The Linear Wave Equation
In Section 16.1, we introduced the concept of the wave function to represent waves 
traveling on a string. All wave functions y(x, t) represent solutions of an equation 
called the linear wave equation. This equation gives a complete description of the 
wave motion, and from it one can derive an expression for the wave speed. Further-
more, the linear wave equation is basic to many forms of wave motion. In this sec-
tion, we derive this equation as applied to waves on strings.
	 Suppose a traveling wave is propagating along a string that is under a tension T. 
Let’s consider one small string element of length Dx (Fig. 16.19). The ends of the 
element make small angles uA and uB with the x axis. Forces act on the string at its 
ends where it connects to neighboring elements. Therefore, the element is modeled 
as a particle under a net force. The net force acting on the element in the vertical 
direction is

	 o Fy 5 T sin uB 2 T sin uA 5 T(sin uB 2 sin uA)	

Because the angles are small, we can use the approximation sin u < tan u to express 
the net force as

	 o Fy < T(tan uB 2 tan uA)	 (16.22)

Imagine undergoing an infinitesimal displacement outward from the right end of 
the rope element in Figure 16.19 along the blue line representing the force T

S
. This 

displacement has infinitesimal x and y components and can be represented by the 
vector dx î 1 dy ĵ. The tangent of the angle with respect to the x axis for this dis-
placement is dy/dx. Because we evaluate this tangent at a particular instant of time, 
we must express it in partial form as 'y/'x. Substituting for the tangents in Equa-
tion 16.22 gives

	 a Fy < T c a'y

'x
b

B
2 a'y

'x
b

A
d 	 (16.23)

B

A

x

A

B�
u

u

T
S

T
S

Figure 16.19  ​An element of a 
string under tension T.

	

▸ 16.5 c o n t i n u e d
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498	C hapter 16  Wave Motion

Now, from the particle under a net force model, let’s apply Newton’s second law to 
the element, with the mass of the element given by m 5 m Dx :

	 a Fy 5 may 5 m Dx a'
2y

't 2b	 (16.24)

Combining Equation 16.23 with Equation 16.24 gives

	 m Dx a'
2y

't 2b 5 T c a'y

'x
b

B
2 a'y

'x
b

A
d  	

	
m

T
  
'2y

't 2 5
1'y/'x 2B 2 1'y/dx 2A

Dx
 	 (16.25)

The right side of Equation 16.25 can be expressed in a different form if we note 
that the partial derivative of any function is defined as

	
'f

'x
; lim

Dx S 0

f 1x 1 Dx 2 2 f 1x 2
Dx

	

Associating f(x 1 Dx) with ('y/'x)B and f(x) with ('y/'x)A, we see that, in the limit 
Dx S 0, Equation 16.25 becomes

	
m

T
 
'2y

't 2 5
'2y

'x 2	 (16.26)

This expression is the linear wave equation as it applies to waves on a string.
	 The linear wave equation (Eq. 16.26) is often written in the form

	
'2y

'x 2 5
1
v 2 

'2y

't 2 	 (16.27)

Equation 16.27 applies in general to various types of traveling waves. For waves on 
strings, y represents the vertical position of elements of the string. For sound waves 
propagating through a gas, y corresponds to longitudinal position of elements of 
the gas from equilibrium or variations in either the pressure or the density of the 
gas. In the case of electromagnetic waves, y corresponds to electric or magnetic 
field components.
	 We have shown that the sinusoidal wave function (Eq. 16.10) is one solution of 
the linear wave equation (Eq. 16.27). Although we do not prove it here, the linear 
wave equation is satisfied by any wave function having the form y 5 f(x 6 vt). Fur-
thermore, we have seen that the linear wave equation is a direct consequence of  
the particle under a net force model applied to any element of a string carrying a 
traveling wave.

Linear wave equation  
for a string

Linear wave equation  
in general

Summary

  A one-dimensional sinusoidal wave is one for which 
the positions of the elements of the medium vary sinu-
soidally. A sinusoidal wave traveling to the right can be 
expressed with a wave function

	 y 1x, t 2 5 A sin c2p

l
1x 2 vt 2 d 	 (16.5)

where A is the amplitude, l is the wavelength, and v is 
the wave speed.

  The angular wave number k and angular frequency 
v of a wave are defined as follows:

	 k ;
2p

l
	 (16.8)

	 v ;
2p

T
5 2pf 	 (16.9)

where T is the period of the wave and f is its frequency.
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	 Objective Questions	 499

pens to the speed if you fill the hose with water? Choose 
from the same possibilities.

	 3.	 Rank the waves represented by the following functions 
from the largest to the smallest according to (i) their 
amplitudes, (ii) their wavelengths, (iii) their frequen-
cies, (iv) their periods, and (v) their speeds. If the val-
ues of a quantity are equal for two waves, show them 
as having equal rank. For all functions, x and y are in 
meters and t is in seconds. (a) y 5 4 sin (3x 2 15t) (b) y 5  
6 cos (3x 1 15t 2 2) (c) y 5 8 sin (2x 1 15t) (d) y 5  
8 cos (4x 1 20t) (e) y 5 7 sin (6x 2 24t)

	 4.	 By what factor would you have to multiply the tension 
in a stretched string so as to double the wave speed? 

	 1.	 If one end of a heavy rope is attached to one end of a 
lightweight rope, a wave can move from the heavy rope 
into the lighter one. (i) What happens to the speed of 
the wave? (a) It increases. (b) It decreases. (c) It is con-
stant. (d) It changes unpredictably. (ii) What happens 
to the frequency? Choose from the same possibilities. 
(iii) What happens to the wavelength? Choose from 
the same possibilities.

	 2.	 If you stretch a rubber hose and pluck it, you can 
observe a pulse traveling up and down the hose. (i) What  
happens to the speed of the pulse if you stretch the hose 
more tightly? (a) It increases. (b) It decreases. (c) It is 
constant. (d) It changes unpredictably. (ii) What hap-

  A transverse wave is one in which the elements of 
the medium move in a direction perpendicular to the 
direction of propagation. 

  A longitudinal wave is one in which the elements of 
the medium move in a direction parallel to the direc-
tion of propagation.

  The speed of a wave traveling on 
a taut string of mass per unit length 
m and tension T is

	 v 5 Å
T
m

 	 (16.18)

  A wave is totally or partially 
reflected when it reaches the end 
of the medium in which it propa-
gates or when it reaches a boundary 
where its speed changes discon-
tinuously. If a wave traveling on a 
string meets a fixed end, the wave is 
reflected and inverted. If the wave 
reaches a free end, it is reflected but 
not inverted.

  Any one-dimensional wave traveling with a speed v in the x direction 
can be represented by a wave function of the form

	 y (x, t) 5 f(x 6 vt)	 (16.1, 16.2)

where the positive sign applies to a wave traveling in the negative x direc-
tion and the negative sign applies to a wave traveling in the positive x 
direction. The shape of the wave at any instant in time (a snapshot of the 
wave) is obtained by holding t constant.

  The power transmitted by a sinusoidal wave on a stretched string is

	 P 5 1
2 mv2A2v 	 (16.21)

  Wave functions are solutions to a differential equation called the linear 
wave equation:

	
'2y

'x 2 5
1
v 2 

'2y

't 2	 (16.27)

Concepts and Principles

Analysis Model for Problem Solving

  Traveling Wave. ​ The wave speed of a sinusoidal wave is

	 v 5
l

T
5 lf 	 (16.6, 16.12)

A sinusoidal wave can be expressed as

	 y 5 A sin 1kx 2 vt 2 	 (16.10)

y

 

 
x

A

l

vS

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guidewww.as
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500	C hapter 16  Wave Motion

by some source of disturbance. (b) They are sinusoi-
dal in nature. (c) They carry energy. (d) They require 
a medium through which to propagate. (e) The wave 
speed depends on the properties of the medium in 
which they travel.

	 7.	 (a) Can a wave on a string move with a wave speed that 
is greater than the maximum transverse speed vy,max 
of an element of the string? (b) Can the wave speed 
be much greater than the maximum element speed?  
(c) Can the wave speed be equal to the maximum ele-
ment speed? (d) Can the wave speed be less than vy,max?

	 8.	 A source vibrating at constant frequency generates a 
sinusoidal wave on a string under constant tension. If 
the power delivered to the string is doubled, by what fac-
tor does the amplitude change? (a) a factor of 4 (b) a 
factor of 2 (c) a factor of !2 (d) a factor of 0.707 (e) 
cannot be predicted

	 9.	 The distance between two successive peaks of a sinu-
soidal wave traveling along a string is 2 m. If the fre-
quency of this wave is 4 Hz, what is the speed of the 
wave? (a) 4 m/s (b) 1 m/s (c) 8 m/s (d) 2 m/s (e) impos-
sible to answer from the information given

Assume the string does not stretch. (a) a factor of 8  
(b) a factor of 4 (c) a factor of 2 (d) a factor of 0.5  
(e) You could not change the speed by a predictable 
factor by changing the tension.

	 5.	 When all the strings on a guitar (Fig. OQ16.5) are 
stretched to the same tension, will the speed of a 
wave along the most massive bass string be (a) faster, 
(b) slower, or (c) the same as the speed of a wave on the 
lighter strings? Alternatively, (d) is the speed on the 
bass string not necessarily any of these answers?

Figure OQ16.5

Jo
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	 6.	 Which of the following statements is not necessarily 
true regarding mechanical waves? (a) They are formed 

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Why is a solid substance able to transport both longitu-
dinal waves and transverse waves, but a homogeneous 
fluid is able to transport only longitudinal waves?

	 2.	 (a) How would you create a longitudinal wave in a 
stretched spring? (b) Would it be possible to create a 
transverse wave in a spring?

	 3.	 When a pulse travels on a taut string, does it always 
invert upon reflection? Explain.

	 4.	 In mechanics, massless strings are often assumed. Why 
is that not a good assumption when discussing waves 
on strings?

	 5.	 If you steadily shake one end of a taut rope three times 
each second, what would be the period of the sinusoi-
dal wave set up in the rope?

	 6.	 (a) If a long rope is hung from a ceiling and waves 
are sent up the rope from its lower end, why does the 
speed of the waves change as they ascend? (b) Does 
the speed of the ascending waves increase or decrease? 
Explain.

	 7.	 Why is a pulse on a string considered to be transverse?

	 8.	 Does the vertical speed of an element of a horizontal, 
taut string, through which a wave is traveling, depend 
on the wave speed? Explain.

	 9.	 In an earthquake, both S 
(transverse) and P (longitu-
dinal) waves propagate from 
the focus of the earthquake. 
The focus is in the ground 
radially below the epicenter 
on the surface (Fig. CQ16.9). 
Assume the waves move in 
straight lines through uni-
form material. The S waves 
travel through the Earth more 
slowly than the P waves (at about 5 km/s versus 8 km/s). 
By detecting the time of arrival of the waves at a seismo-
graph, (a) how can one determine the distance to the 
focus of the earthquake? (b) How many detection sta-
tions are necessary to locate the focus unambiguously?

Epicenter

Seismograph

Path of
seismic
waves

Focus

Figure CQ16.9

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO
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	 7.	 A sinusoidal wave is traveling along a rope. The oscil-
lator that generates the wave completes 40.0 vibrations 
in 30.0 s. A given crest of the wave travels 425 cm along 
the rope in 10.0 s. What is the wavelength of the wave?

	 8.	 For a certain transverse wave, the distance between two 
successive crests is 1.20 m, and eight crests pass a given 
point along the direction of travel every 12.0 s. Calcu-
late the wave speed.

	 9.	 The wave function for a traveling wave on a taut string 
is (in SI units)

y 1x, t 2 5 0.350 sin a10pt 2 3px 1
p

4
b

		  (a) What are the speed and direction of travel of the 
wave? (b) What is the vertical position of an element of 
the string at t 5 0, x 5 0.100 m? What are (c) the wave-
length and (d) the frequency of the wave? (e) What is 
the maximum transverse speed of an element of the 
string?

	10.	When a particular wire is vibrating with a frequency 
of 4.00  Hz, a transverse wave of wavelength 60.0 cm 
is produced. Determine the speed of waves along the 
wire.

	11.	 The string shown in Figure P16.11 is driven at a fre-
quency of 5.00 Hz. The amplitude of the motion is A 5 
12.0 cm, and the wave speed is v 5 20.0 m/s. Further-
more, the wave is such that y 5 0 at x 5 0 and t 5 0. 
Determine (a) the angular frequency and (b) the wave 
number for this wave. (c) Write an expression for the 
wave function. Calculate (d) the maximum transverse 
speed and (e) the maximum transverse acceleration of 
an element of the string.

vS

A

Figure P16.11
	12.	Consider the sinusoidal wave of Example 16.2 with the 

wave function

y 5 0.150 cos (15.7x 2 50.3t)

		  where x and y are in meters and t is in seconds. At a 
certain instant, let point A be at the origin and point 
B be the closest point to A along the x axis where the 
wave is 60.0° out of phase with A. What is the coordi-
nate of B?

	13.	A sinusoidal wave of wavelength 2.00 m and amplitude 
0.100 m travels on a string with a speed of 1.00 m/s to 
the right. At t 5 0, the left end of the string is at the 
origin. For this wave, find (a) the frequency, (b) the 
angular frequency, (c) the angular wave number, and 
(d) the wave function in SI units. Determine the equa-
tion of motion in SI units for (e) the left end of the 
string and (f) the point on the string at x 5 1.50 m 
to the right of the left end. (g) What is the maximum 
speed of any element of the string?

	14.	(a) Plot y versus t at x 5 0 for a sinusoidal wave of the 
form y 5 0.150 cos (15.7x 2 50.3t), where x and y are in 
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Section 16.1 ​ Propagation of a Disturbance

	 1.	 A seismographic station receives S and P waves from 
an earthquake, separated in time by 17.3 s. Assume the 
waves have traveled over the same path at speeds of 
4.50 km/s and 7.80 km/s. Find the distance from the 
seismograph to the focus of the quake.

	 2.	 Ocean waves with a crest-to-crest distance of 10.0 m 
can be described by the wave function

y(x, t) 5 0.800 sin [0.628(x 2 vt)]

		  where x and y are in meters, t is in seconds, and v 5 
1.20 m/s. (a) Sketch y(x, t) at t 5 0. (b) Sketch y(x, t) at 
t 5 2.00 s. (c) Compare the graph in part (b) with that 
for part (a) and explain similarities and differences. 
(d) How has the wave moved between graph (a) and 
graph (b)?

	 3.	 At t 5 0, a transverse pulse in a wire is described by the 
function

y 5
6.00

x 2 1 3.00

		  where x and y are in meters. If the pulse is traveling in 
the positive x direction with a speed of 4.50 m/s, write 
the function y(x, t) that describes this pulse.

	 4.	 Two points A and B on 
the surface of the Earth 
are at the same longitude 
and 60.08 apart in latitude 
as shown in Figure P16.4. 
Suppose an earthquake at 
point A creates a P wave 
that reaches point B by 
traveling straight through 
the body of the Earth at a 
constant speed of 7.80 km/s. The earthquake also radi-
ates a Rayleigh wave that travels at 4.50 km/s. In addition 
to P and S waves, Rayleigh waves are a third type of seis-
mic wave that travels along the surface of the Earth rather 
than through the bulk of the Earth. (a) Which of these 
two seismic waves arrives at B first? (b) What is the time 
difference between the arrivals of these two waves at B?

Section 16.2 ​ Analysis Model: Traveling Wave

	 5.	 A wave is described by y 5 0.020 0 sin (kx 2 vt), where 
k 5 2.11 rad/m, v 5 3.62 rad/s, x and y are in meters, 
and t is in seconds. Determine (a) the amplitude,  
(b) the wavelength, (c) the frequency, and (d) the speed 
of the wave.

	 6.	 A certain uniform string is held under constant ten-
sion. (a) Draw a side-view snapshot of a sinusoidal wave 
on a string as shown in diagrams in the text. (b) Imme-
diately below diagram (a), draw the same wave at a 
moment later by one-quarter of the period of the wave. 
(c) Then, draw a wave with an amplitude 1.5 times 
larger than the wave in diagram (a). (d) Next, draw a 
wave differing from the one in your diagram (a) just by 
having a wavelength 1.5 times larger. (e) Finally, draw a 
wave differing from that in diagram (a) just by having 
a frequency 1.5 times larger.
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502	C hapter 16  Wave Motion

pulses can propagate along this wire without exceeding 
this stress? (The density of steel is 7.86 3 103 kg/m3.)

	22.	A piano string having a mass per unit length equal to  
5.00 3 1023 kg/m is under a tension of 1 350 N. Find 
the speed with which a wave travels on this string.

	23.	Transverse waves travel with a speed of 20.0 m/s on a 
string under a tension of 6.00 N. What tension is required 
for a wave speed of 30.0 m/s on the same string?

	24.	A student taking a quiz finds on a reference sheet the 
two equations

f 5
1
T

 ​ ​  and ​ ​  v 5 Å
T
m

		  She has forgotten what T represents in each equation. 
(a)  Use dimensional analysis to determine the units 
required for T in each equation. (b) Explain how you 
can identify the physical quantity each T represents 
from the units.

	25.	An Ethernet cable is 4.00 m long. The cable has a mass 
of 0.200 kg. A transverse pulse is produced by plucking 
one end of the taut cable. The pulse makes four trips 
down and back along the cable in 0.800 s. What is the 
tension in the cable?

	26.	A transverse traveling wave on a taut wire has an ampli-
tude of 0.200 mm and a frequency of 500 Hz. It trav-
els with a speed of 196 m/s. (a) Write an equation in  
SI units of the form y 5 A sin (kx 2 vt) for this wave. 
(b) The mass per unit length of this wire is 4.10 g/m. 
Find the tension in the wire.

	27.	A steel wire of length 30.0 m and a copper wire of 
length 20.0 m, both with 1.00-mm diameters, are con-
nected end to end and stretched to a tension of 150 N. 
During what time interval will a transverse wave travel 
the entire length of the two wires?

	28.	Why is the following situation impossible? An astronaut on 
the Moon is studying wave motion using the apparatus 
discussed in Example 16.3 and shown in Figure 16.12. 
He measures the time interval for pulses to travel along 
the horizontal wire. Assume the horizontal wire has a 
mass of 4.00 g and a length of 1.60 m and assume a 
3.00-kg object is suspended from its extension around 
the pulley. The astronaut finds that a pulse requires 
26.1 ms to traverse the length of the wire.

	29.	Tension is maintained in a 
string as in Figure P16.29. The 
observed wave speed is v 5 
24.0  m/s when the suspended 
mass is m 5 3.00 kg. (a) What is 
the mass per unit length of the 
string? (b)  What is the wave 
speed when the suspended 
mass is m 5 2.00 kg?

	30.	Review. A light string with a mass per unit length of 
8.00 g/m has its ends tied to two walls separated by a 
distance equal to three-fourths the length of the string 
(Fig. P16.30, p. 503). An object of mass m is suspended 
from the center of the string, putting a tension in the 
string. (a) Find an expression for the transverse wave 
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Figure P16.29   
Problems 29 and 47.
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meters and t is in seconds. (b) Determine the period of 
vibration. (c) State how your result compares with the 
value found in Example 16.2.

	15.	A transverse wave on a string is described by the wave 
function

y 5 0.120 sin ap

8
 x 1 4ptb

		  where x and y are in meters and t is in seconds. Deter-
mine (a) the transverse speed and (b) the transverse 
acceleration at t 5 0.200 s for an element of the string 
located at x  5 1.60 m. What are (c) the wavelength,  
(d) the period, and (e) the speed of propagation of 
this wave?

	16.	A wave on a string is described by the wave function  
y 5 0.100 sin (0.50x 2 20t), where x and y are in 
meters and t is in seconds. (a) Show that an element 
of the string at x 5 2.00 m executes harmonic motion.  
(b) Determine the frequency of oscillation of this par-
ticular element.

	17.	 A sinusoidal wave is described by the wave function y 5 
0.25 sin (0.30x 2 40t) where x and y are in meters and 
t is in seconds. Determine for this wave (a) the ampli-
tude, (b) the angular frequency, (c) the angular wave 
number, (d) the wavelength, (e) the wave speed, and 
(f) the direction of motion.

	18.	A sinusoidal wave traveling in the negative x direction 
(to the left) has an amplitude of 20.0 cm, a wavelength 
of 35.0 cm, and a frequency of 12.0 Hz. The transverse 
position of an element of the medium at t 5 0, x 5 0 is 
y 5 23.00 cm, and the element has a positive velocity 
here. We wish to find an expression for the wave func-
tion describing this wave. (a) Sketch the wave at t 5 0.  
(b) Find the angular wave number k from the wave-
length. (c) Find the period T from the frequency. Find 
(d) the angular frequency v and (e) the wave speed v. 
(f) From the information about t 5 0, find the phase 
constant f. (g) Write an expression for the wave func-
tion y(x, t).

	19.	(a) Write the expression for y as a function of x and t 
in SI units for a sinusoidal wave traveling along a rope 
in the negative x direction with the following charac-
teristics: A 5 8.00 cm, l 5 80.0 cm, f 5 3.00 Hz, and  
y(0, t) 5 0 at t 5 0. (b) What If? Write the expression 
for y as a function of x and t for the wave in part (a) 
assuming y(x, 0) 5 0 at the point x 5 10.0 cm.

	20.	A transverse sinusoidal wave on a string has a period  
T 5 25.0 ms and travels in the negative x direction with 
a speed of 30.0 m/s. At t 5 0, an element of the string 
at x 5 0 has a transverse position of 2.00 cm and is trav-
eling downward with a speed of 2.00 m/s. (a) What is 
the amplitude of the wave? (b) What is the initial phase 
angle? (c) What is the maximum transverse speed of 
an element of the string? (d) Write the wave function 
for the wave.

Section 16.3 ​ The Speed of Waves on Strings

	21.	 Review. The elastic limit of a steel wire is 2.70 3 108 Pa. 
What is the maximum speed at which transverse wave 
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mass of 180 g. The string vibrates sinusoidally with a 
frequency of 50.0 Hz and a peak-to-valley displacement 
of 15.0 cm. (The “peak-to-valley” distance is the verti-
cal distance from the farthest positive position to the 
farthest negative position.) (a) Write the function that 
describes this wave traveling in the positive x direction. 
(b) Determine the power being supplied to the string.

	38.	A horizontal string can transmit a maximum power 
P0 (without breaking) if a wave with amplitude A and 
angular frequency v is traveling along it. To increase 
this maximum power, a student folds the string and uses 
this “double string” as a medium. Assuming the tension 
in the two strands together is the same as the original 
tension in the single string and the angular frequency 
of the wave remains the same, determine the maximum 
power that can be transmitted along the “double string.”

	39.	The wave function for a wave on a taut string is

y 1x , t 2 5 0.350 sin a10pt 2 3px 1
p

4
b

		  where x and y are in meters and t is in seconds. If the 
linear mass density of the string is 75.0 g/m, (a) what 
is the average rate at which energy is transmitted along 
the string? (b) What is the energy contained in each 
cycle of the wave?

	40.	A two-dimensional water wave spreads in circular rip-
ples. Show that the amplitude A at a distance r from 
the initial disturbance is proportional to 1/!r. Sug-
gestion: Consider the energy carried by one outward- 
moving ripple.

Section 16.6 ​ The Linear Wave Equation

	41.	Show that the wave function y 5 ln [b(x 2 vt)] is a solu-
tion to Equation 16.27, where b is a constant.

	42.	(a) Evaluate A in the scalar equality 4 (7 1 3)  5 A.  
(b)  Evaluate A, B, and C in the vector equality 
700 î 1 3.00 k̂ 5 A î 1 B  ĵ 1 C  k̂. (c) Explain how you 
arrive at the answers to convince a student who thinks 
that you cannot solve a single equation for three differ-
ent unknowns. (d) What If? The functional equality or 
identity

A 1 B cos (Cx 1 Dt 1 E) 5 7.00 cos (3x 1 4t 1 2)

		  is true for all values of the variables x and t, measured 
in meters and in seconds, respectively. Evaluate the 
constants A, B, C, D, and E. (e) Explain how you arrive 
at your answers to part (d).

	43.	Show that the wave function y 5 e b(x2vt) is a solution of the 
linear wave equation (Eq. 16.27), where b is a constant.

	44.	(a) Show that the function y(x, t) 5 x2 1 v2t2 is a solu-
tion to the wave equation. (b) Show that the function 
in part (a) can be written as f(x 1 vt) 1 g(x 2 vt) and 
determine the functional forms for f and g. (c) What 
If? Repeat parts (a) and (b) for the function y(x, t) 5 
sin (x) cos (vt).

Additional Problems

	45.	Motion-picture film is projected at a frequency of 24.0 
frames per second. Each photograph on the film is the 
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speed in the string as 
a function of the mass 
of the hanging object. 
(b) What should be the 
mass of the object sus-
pended from the string 
if the wave speed is to be 
60.0 m/s?

	31.	 Transverse pulses travel 
with a speed of 200 m/s 
along a taut copper wire whose diameter is 1.50 mm. 
What is the tension in the wire? (The density of copper 
is 8.92 g/cm3.)

Section 16.5 ​ Rate of Energy Transfer by Sinusoidal Waves 
on Strings

	32.	In a region far from the epicenter of an earthquake, a 
seismic wave can be modeled as transporting energy in 
a single direction without absorption, just as a string 
wave does. Suppose the seismic wave moves from gran-
ite into mudfill with similar density but with a much 
smaller bulk modulus. Assume the speed of the wave 
gradually drops by a factor of 25.0, with negligible 
reflection of the wave. (a) Explain whether the ampli-
tude of the ground shaking will increase or decrease. 
(b) Does it change by a predictable factor? (This phe-
nomenon led to the collapse of part of the Nimitz Free-
way in Oakland, California, during the Loma Prieta 
earthquake of 1989.)

	33.	Transverse waves are being generated on a rope under 
constant tension. By what factor is the required power 
increased or decreased if (a) the length of the rope 
is doubled and the angular frequency remains con-
stant, (b) the amplitude is doubled and the angular 
frequency is halved, (c) both the wavelength and the 
amplitude are doubled, and (d) both the length of the 
rope and the wavelength are halved?

	34.	Sinusoidal waves 5.00 cm in amplitude are to be trans-
mitted along a string that has a linear mass density of  
4.00 3 1022 kg/m. The source can deliver a maximum 
power of 300 W, and the string is under a tension of 
100  N. What is the highest frequency f at which the 
source can operate?

	35.	A sinusoidal wave on a string is described by the wave 
function

y 5 0.15 sin (0.80x 2 50t)

		  where x and y are in meters and t is in seconds. The 
mass per unit length of this string is 12.0 g/m. Deter-
mine (a) the speed of the wave, (b) the wavelength,  
(c) the frequency, and (d) the power transmitted by 
the wave.

	36.	A taut rope has a mass of 0.180 kg and a length of 
3.60 m. What power must be supplied to the rope so 
as to generate sinusoidal waves having an amplitude of  
0.100 m and a wavelength of 0.500 m and traveling 
with a speed of 30.0 m/s?

	37.	 A long string carries a wave; a 6.00-m segment of the 
string contains four complete wavelengths and has a 
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504	C hapter 16  Wave Motion

is held in this lowest position, find the speed of a trans-
verse wave in the cord.

	50.	Review. A block of mass M hangs from a rubber cord. 
The block is supported so that the cord is not stretched. 
The unstretched length of the cord is L0, and its mass 
is m, much less than M. The “spring constant” for the 
cord is k. The block is released and stops momentarily 
at the lowest point. (a) Determine the tension in the 
string when the block is at this lowest point. (b) What 
is the length of the cord in this “stretched” position? 
(c) If the block is held in this lowest position, find the 
speed of a transverse wave in the cord.

	51.	 A transverse wave on a string is described by the wave 
function

y(x, t) 5 0.350 sin (1.25x 1 99.6t)

		  where x and y are in meters and t is in seconds. Con-
sider the element of the string at x 5 0. (a) What is 
the time interval between the first two instants when 
this element has a position of y 5 0.175 m? (b) What 
distance does the wave travel during the time interval 
found in part (a)?

	52.	A sinusoidal wave in a string is described by the wave 
function

y 5 0.150 sin (0.800x 2 50.0t)

		  where x and y are in meters and t is in seconds. The 
mass per length of the string is 12.0 g/m. (a) Find the 
maximum transverse acceleration of an element of this 
string. (b)  Determine the maximum transverse force 
on a 1.00-cm segment of the string. (c) State how the 
force found in part (b) compares with the tension in 
the string.

	53.	Review. A block of mass M, supported by a string, rests 
on a frictionless incline making an angle u with the 
horizontal (Fig. P16.53). The length of the string is L, 
and its mass is m ,, M. Derive an expression for the 
time interval required for a transverse wave to travel 
from one end of the string to the other.

m L

u

M

Figure P16.53

	54.	An undersea earthquake or a landslide can produce 
an ocean wave of short duration carrying great energy, 
called a tsunami. When its wavelength is large com-
pared to the ocean depth d, the speed of a water wave is  
given approximately by v 5 !gd. Assume an earthquake  
occurs all along a tectonic plate boundary running 
north to south and produces a straight tsunami wave 
crest moving everywhere to the west. (a) What physical 
quantity can you consider to be constant in the motion 
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same height of 19.0 mm, just like each oscillation in a 
wave is the same length. Model the height of a frame as 
the wavelength of a wave. At what constant speed does 
the film pass into the projector?

	46.	“The wave” is a particular type of pulse that can propa-
gate through a large crowd gathered at a sports arena 
(Fig. P16.46). The elements of the medium are the 
spectators, with zero position corresponding to their 
being seated and maximum position correspond-
ing to their standing and raising their arms. When a 
large fraction of the spectators participates in the wave 
motion, a somewhat stable pulse shape can develop. 
The wave speed depends on people’s reaction time, 
which is typically on the order of 0.1 s. Estimate the 
order of magnitude, in minutes, of the time interval 
required for such a pulse to make one circuit around a 
large sports stadium. State the quantities you measure 
or estimate and their values.

Figure P16.46
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	47.	 A sinusoidal wave in a rope is described by the wave 
function

y 5 0.20 sin (0.75px 1 18pt)

		  where x and y are in meters and t is in seconds. The 
rope has a linear mass density of 0.250 kg/m. The ten-
sion in the rope is provided by an arrangement like the 
one illustrated in Figure P16.29. What is the mass of 
the suspended object?

	48.	The ocean floor is underlain by a layer of basalt 
that constitutes the crust, or uppermost layer, of the 
Earth in that region. Below this crust is found denser 
periodotite rock that forms the Earth’s mantle. The 
boundary between these two layers is called the 
Mohorovicic discontinuity (“Moho” for short). If an 
explosive charge is set off at the surface of the basalt, 
it generates a seismic wave that is reflected back out 
at the Moho. If the speed of this wave in basalt is  
6.50 km/s and the two-way travel time is 1.85 s, what 
is the thickness of this oceanic crust?

	49.	Review. A 2.00-kg block hangs from a rubber cord, 
being supported so that the cord is not stretched. The 
unstretched length of the cord is 0.500 m, and its mass 
is 5.00 g. The “spring constant” for the cord is 100 N/m.  
The block is released and stops momentarily at the low-
est point. (a) Determine the tension in the cord when 
the block is at this lowest point. (b) What is the length 
of the cord in this “stretched” position? (c) If the block 
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of any one wave crest? (b) Explain why the amplitude 
of the wave increases as the wave approaches shore.  
(c) If the wave has amplitude 1.80 m when its speed 
is 200 m/s, what will be its amplitude where the water 
is 9.00 m deep? (d) Explain why the amplitude at the 
shore should be expected to be still greater, but cannot 
be meaningfully predicted by your model.

	55.	Review. A block of mass M 5 0.450 kg is attached to 
one end of a cord of mass 0.003 20 kg; the other end of 
the cord is attached to a fixed point. The block rotates 
with constant angular speed in a circle on a friction-
less, horizontal table as shown in Figure P16.55. 
Through what angle does the block rotate in the time 
interval during which a transverse wave travels along 
the string from the center of the circle to the block?

M

Figure P16.55  Problems 55, 56, and 57.

	56.	Review. A block of mass M 5 0.450 kg is attached to 
one end of a cord of mass m 5 0.003 20 kg; the other 
end of the cord is attached to a fixed point. The block 
rotates with constant angular speed v 5 10.0 rad/s 
in a circle on a frictionless, horizontal table as shown 
in Figure P16.55. What time interval is required for a 
transverse wave to travel along the string from the cen-
ter of the circle to the block?

	57.	 Review. A block of mass M is attached to one end of a 
cord of mass m; the other end of the cord is attached to 
a fixed point. The block rotates with constant angular 
speed v in a circle on a frictionless, horizontal table as 
shown in Figure P16.55. What time interval is required 
for a transverse wave to travel along the string from the 
center of the circle to the block?

	58.	A string with linear density 0.500 g/m is held under ten-
sion 20.0 N. As a transverse sinusoidal wave propagates 
on the string, elements of the string move with maxi-
mum speed vy,max. (a) Determine the power transmitted 
by the wave as a function of vy,max. (b) State in words the 
proportionality between power and vy,max. (c) Find the 
energy contained in a section of string 3.00 m long as a 
function of vy,max. (d) Express the answer to part (c) in 
terms of the mass m of this section. (e) Find the energy 
that the wave carries past a point in 6.00 s.

	59.	A wire of density r is tapered so that its cross-sectional 
area varies with x according to

A 5 1.00 3 1025 x 1 1.00 3 1026

		  where A is in meters squared and x is in meters. The 
tension in the wire is T. (a) Derive a relationship for 
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the speed of a wave as a function of position. (b) What 
If? Assume the wire is aluminum and is under a ten-
sion T 5 24.0 N. Determine the wave speed at the ori-
gin and at x 5 10.0 m.

	60.	A rope of total mass m and length L is suspended ver-
tically. Analysis shows that for short transverse pulses, 
the waves above a short distance from the free end of 
the rope can be represented to a good approximation 
by the linear wave equation discussed in Section 16.6. 
Show that a transverse pulse travels the length of the 
rope in a time interval that is given approximately by 
Dt < 2!L /g . Suggestion: First find an expression for 
the wave speed at any point a distance x from the lower 
end by considering the rope’s tension as resulting from 
the weight of the segment below that point.

	61.	 A pulse traveling along a string of linear mass density m 
is described by the wave function

y 5 [A0e2bx] sin (kx 2 vt)

		  where the factor in brackets is said to be the ampli-
tude. (a) What is the power P(x) carried by this wave 
at a point x? (b) What is the power P(0) carried by this 
wave at the origin? (c) Compute the ratio P(x)/P(0).

	62.	Why is the following situation impossible? Tsunamis are 
ocean surface waves that have enormous wavelengths 
(100 to 200 km), and the propagation speed for these 
waves is v < !gd avg, where davg is the average depth of 
the water. An earthquake on the ocean floor in the 
Gulf of Alaska produces a tsunami that reaches Hilo, 
Hawaii, 4 450  km away, in a time interval of 5.88 h. 
(This method was used in 1856 to estimate the average 
depth of the Pacific Ocean long before soundings were 
made to give a direct determination.)

	63.	Review. An aluminum wire is held between two clamps 
under zero tension at room temperature. Reducing 
the temperature, which results in a decrease in the 
wire’s equilibrium length, increases the tension in the 
wire. Taking the cross-sectional area of the wire to be 
5.00 3 1026 m2, the density to be 2.70 3 103 kg/m3,  
and Young’s modulus to be 7.00 3 1010 N/m2, what 
strain (DL/L) results in a transverse wave speed of  
100 m/s?

Challenge Problems

	64.	Assume an object of mass M is suspended from the bot-
tom of the rope of mass m and length L in Problem 60. 
(a) Show that the time interval for a transverse pulse to 
travel the length of the rope is

Dt 5 2 Å
L

mg
1"M 1 m 2 "M 2

		  (b) What If? Show that the expression in part (a) 
reduces to the result of Problem 60 when M 5 0.  
(c) Show that for m ,, M, the expression in part (a) 
reduces to

Dt 5 Å
mL
Mg

S

S

M
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506	C hapter 16  Wave Motion

	67.	 If a loop of chain is spun at high speed, it can roll 
along the ground like a circular hoop without collaps-
ing. Consider a chain of uniform linear mass density m 
whose center of mass travels to the right at a high speed 
v0 as shown in Figure P16.67. (a) Determine the tension 
in the chain in terms of m and v0. Assume the weight of 
an individual link is negligible compared to the tension. 
(b) If the loop rolls over a small bump, the resulting 
deformation of the chain causes two transverse pulses 
to propagate along the chain, one moving clockwise 
and one moving counterclockwise. What is the speed of 
the pulses traveling along the chain? (c) Through what 
angle does each pulse travel during the time interval 
over which the loop makes one revolution?

Bump

v0
S

Figure P16.67

S
	65.	A rope of total mass m and length L is suspended verti-

cally. As shown in Problem 60, a pulse travels from the 
bottom to the top of the rope in an approximate time 
interval Dt 5 2!L/g  with a speed that varies with 
position x measured from the bottom of the rope as  
v 5 !gx . Assume the linear wave equation in Sec-
tion 16.6 describes waves at all locations on the rope.  
(a) Over what time interval does a pulse travel half-
way up the rope? Give your answer as a fraction of 
the quantity 2!L/g . (b)  A pulse starts traveling up 
the rope. How far has it traveled after a time interval 
!L/g ?

	66.	A string on a musical instrument is held under ten-
sion T and extends from the point x 5 0 to the point  
x 5 L. The string is overwound with wire in such a 
way that its mass per unit length m(x) increases uni-
formly from m0 at x 5 0 to mL at x 5 L. (a) Find an 
expression for m(x) as a function of x over the range  
0 # x # L. (b) Find an expression for the time inter-
val required for a transverse pulse to travel the length 
of the string.

S

S
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Three musicians play the alpenhorn 
in Valais, Switzerland. In this chapter, 
we explore the behavior of sound 
waves such as those coming from 
these large musical instruments. 
(Stefano Cellai/AGE fotostock)

17.1	 Pressure Variations in 
Sound Waves

17.2	 Speed of Sound Waves

17.3	 Intensity of Periodic  
Sound Waves

17.4	 The Doppler Effect
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Most of the waves we studied in Chapter 16 are constrained to move along a one-
dimensional medium. For example, the wave in Figure 16.7 is a purely mathematical construct 
moving along the x axis. The wave in Figure 16.10 is constrained to move along the length of 
the string. We have also seen waves moving through a two-dimensional medium, such as the 
ripples on the water surface in the introduction to Part 2 on page 449 and the waves moving 
over the surface of the ocean in Figure 16.4. In this chapter, we investigate mechanical waves 
that move through three-dimensional bulk media. For example, seismic waves leaving the 
focus of an earthquake travel through the three-dimensional interior of the Earth.
	 We will focus our attention on sound waves, which travel through any material, but are 
most commonly experienced as the mechanical waves traveling through air that result in the 
human perception of hearing. As sound waves travel through air, elements of air are disturbed 
from their equilibrium positions. Accompanying these movements are changes in density 
and pressure of the air along the direction of wave motion. If the source of the sound waves 
vibrates sinusoidally, the density and pressure variations are also sinusoidal. The mathematical 
description of sinusoidal sound waves is very similar to that of sinusoidal waves on strings, as 
discussed in Chapter 16.
	 Sound waves are divided into three categories that cover different frequency ranges. 
(1) Audible waves lie within the range of sensitivity of the human ear. They can be gener-
ated in a variety of ways, such as by musical instruments, human voices, or loudspeakers. 
(2) Infrasonic waves have frequencies below the audible range. Elephants can use infrasonic 
waves to communicate with one another, even when separated by many kilometers.  
(3) Ultrasonic waves have frequencies above the audible range. You may have used a “silent” 
whistle to retrieve your dog. Dogs easily hear the ultrasonic sound this whistle emits, 
although humans cannot detect it at all. Ultrasonic waves are also used in medical imaging.
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508	C hapter 17  Sound Waves

	 This chapter begins with a discussion of the pressure variations in a sound wave, the speed 
of sound waves, and wave intensity, which is a function of wave amplitude. We then provide 
an alternative description of the intensity of sound waves that compresses the wide range of 
intensities to which the ear is sensitive into a smaller range for convenience. The effects of 
the motion of sources and listeners on the frequency of a sound are also investigated. 

17.1	 Pressure Variations in Sound Waves
In Chapter 16, we began our investigation of waves by imagining the creation of 
a single pulse that traveled down a string (Figure 16.1) or a spring (Figure 16.3). 
Let’s do something similar for sound. We describe pictorially the motion of a one-
dimensional longitudinal sound pulse moving through a long tube containing a 
compressible gas as shown in Figure 17.1. A piston at the left end can be quickly 
moved to the right to compress the gas and create the pulse. Before the piston 
is moved, the gas is undisturbed and of uniform density as represented by the 
uniformly shaded region in Figure 17.1a. When the piston is pushed to the right 
(Fig. 17.1b), the gas just in front of it is compressed (as represented by the more 
heavily shaded region); the pressure and density in this region are now higher than 
they were before the piston moved. When the piston comes to rest (Fig. 17.1c), the 
compressed region of the gas continues to move to the right, corresponding to a 
longitudinal pulse traveling through the tube with speed v.
	 One can produce a one-dimensional periodic sound wave in the tube of gas in 
Figure 17.1 by causing the piston to move in simple harmonic motion. The results 
are shown in Figure 17.2. The darker parts of the colored areas in this figure rep-
resent regions in which the gas is compressed and the density and pressure are 
above their equilibrium values. A compressed region is formed whenever the pis-

vS

a

b

c

Before the piston moves, 
the gas is undisturbed.

The gas is compressed by 
the motion of the piston.

When the piston stops, the 
compressed pulse continues 
through the gas.

Figure 17.1  Motion of a longitudi-
nal pulse through a compressible gas. 
The compression (darker region) is 
produced by the moving piston.

Figure 17.2  A longitudinal wave 
propagating through a gas-filled 
tube. The source of the wave is an 
oscillating piston at the left.

l
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	 17.1  Pressure Variations in Sound Waves	 509

ton is pushed into the tube. This compressed region, called a compression, moves 
through the tube, continuously compressing the region just in front of itself. When 
the piston is pulled back, the gas in front of it expands and the pressure and density 
in this region fall below their equilibrium values (represented by the lighter parts 
of the colored areas in Fig. 17.2). These low-pressure regions, called rarefactions, 
also propagate along the tube, following the compressions. Both regions move at 
the speed of sound in the medium.
	 As the piston oscillates sinusoidally, regions of compression and rarefaction are 
continuously set up. The distance between two successive compressions (or two suc-
cessive rarefactions) equals the wavelength l of the sound wave. Because the sound 
wave is longitudinal, as the compressions and rarefactions travel through the tube, 
any small element of the gas moves with simple harmonic motion parallel to the 
direction of the wave. If s(x, t) is the position of a small element relative to its equi-
librium position,1 we can express this harmonic position function as

	 s(x, t) 5 smax cos (kx 2 vt)	 (17.1)

where smax is the maximum position of the element relative to equilibrium. This 
parameter is often called the displacement amplitude of the wave. The parame-
ter k is the wave number, and v is the angular frequency of the wave. Notice that 
the displacement of the element is along x, in the direction of propagation of the 
sound wave.
	 The variation in the gas pressure DP measured from the equilibrium value is 
also periodic with the same wave number and angular frequency as for the dis-
placement in Equation 17.1. Therefore, we can write

	 DP 5 DPmax sin (kx 2 vt)	 (17.2)

where the pressure amplitude DPmax is the maximum change in pressure from the 
equilibrium value.
	 Notice that we have expressed the displacement by means of a cosine function 
and the pressure by means of a sine function. We will justify this choice in the 
procedure that follows and relate the pressure amplitude Pmax to the displacement 
amplitude smax. Consider the piston–tube arrangement of Figure 17.1 once again. 
In Figure 17.3a, we focus our attention on a small cylindrical element of undis-
turbed gas of length Dx and area A. The volume of this element is Vi 5 A Dx.
	 Figure 17.3b shows this element of gas after a sound wave has moved it to a new 
position. The cylinder’s two flat faces move through different distances s1 and s2.  
The change in volume DV of the element in the new position is equal to A Ds, 
where Ds 5 s1 2 s2.
	 From the definition of bulk modulus (see Eq. 12.8), we express the pressure vari-
ation in the element of gas as a function of its change in volume:

DP 5 2B 
DV
Vi

Let’s substitute for the initial volume and the change in volume of the element:

DP 5 2B 
A Ds
A Dx

Let the length Dx of the cylinder approach zero so that the ratio Ds/Dx becomes a 
partial derivative:

	 DP 5 2B 
's
'x

	 (17.3)

Area A

Undisturbed gas

�x

s1

s2b

a

Figure 17.3  ​(a) An undisturbed 
element of gas of length Dx in a 
tube of cross-sectional area A.  
(b) When a sound wave propagates 
through the gas, the element is 
moved to a new position and has a 
different length. The parameters 
s1 and s2 describe the displace-
ments of the ends of the element 
from their equilibrium positions.

1We use s(x, t) here instead of y(x, t) because the displacement of elements of the medium is not perpendicular to 
the x direction.
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510	C hapter 17  Sound Waves

Substitute the position function given by Equation 17.1:

DP 5 2B 
'

'x
3smax cos 1kx 2 vt 2 4 5 Bsmaxk  sin 1kx 2 vt 2

From this result, we see that a displacement described by a cosine function leads to 
a pressure described by a sine function. We also see that the displacement and pres-
sure amplitudes are related by

	 DPmax 5 Bsmaxk	 (17.4)

This relationship depends on the bulk modulus of the gas, which is not as readily 
available as is the density of the gas. Once we determine the speed of sound in a gas 
in Section 17.2, we will be able to provide an expression that relates DPmax and smax 
in terms of the density of the gas.
	 This discussion shows that a sound wave may be described equally well in terms 
of either pressure or displacement. A comparison of Equations 17.1 and 17.2 shows 
that the pressure wave is 908 out of phase with the displacement wave. Graphs of 
these functions are shown in Figure 17.4. The pressure variation is a maximum 
when the displacement from equilibrium is zero, and the displacement from equi-
librium is a maximum when the pressure variation is zero.

Q	 uick Quiz 17.1 ​ If you blow across the top of an empty soft-drink bottle, a pulse 
of sound travels down through the air in the bottle. At the moment the pulse 
reaches the bottom of the bottle, what is the correct description of the displace-
ment of elements of air from their equilibrium positions and the pressure of the 
air at this point? (a) The displacement and pressure are both at a maximum.  
(b) The displacement and pressure are both at a minimum. (c) The displace-
ment is zero, and the pressure is a maximum. (d) The displacement is zero, and 
the pressure is a minimum.

17.2	 Speed of Sound Waves
We now extend the discussion begun in Section 17.1 to evaluate the speed of sound 
in a gas. In Figure 17.5a, consider the cylindrical element of gas between the piston 
and the dashed line. This element of gas is in equilibrium under the influence of 
forces of equal magnitude, from the piston on the left and from the rest of the gas 
on the right. The magnitude of these forces is PA, where P is the pressure in the gas 
and A is the cross-sectional area of the tube.
	 Figure 17.5b shows the situation after a time interval Dt during which the piston 
moves to the right at a constant speed vx due to a force from the left on the piston 
that has increased in magnitude to (P 1 DP)A. By the end of the time interval Dt, 

Undisturbed gas

Undisturbed gas

Compressed gas

v �t

vx �tb

a

(P � �P)A î

PA î
�PA î

vx î
�PA î

Figure 17.5  ​(a) An undisturbed 
element of gas of length v  Dt in a 
tube of cross-sectional area A. The 
element is in equilibrium between 
forces on either end. (b) When the 
piston moves inward at constant 
velocity vx due to an increased 
force on the left, the element also 
moves with the same velocity.

s

x

x

�P

�Pmax

smax

b

a

Figure 17.4  (a) Displacement 
amplitude and (b) pressure ampli-
tude versus position for a sinusoi-
dal longitudinal wave.
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	 17.2  Speed of Sound Waves	 511

every bit of gas in the element is moving with speed vx . That will not be true in 
general for a macroscopic element of gas, but it will become true if we shrink the 
length of the element to an infinitesimal value.
	 The length of the undisturbed element of gas is chosen to be v Dt, where v is the 
speed of sound in the gas and Dt is the time interval between the configurations 
in Figures 17.5a and 17.5b. Therefore, at the end of the time interval Dt, the sound 
wave will just reach the right end of the cylindrical element of gas. The gas to the 
right of the element is undisturbed because the sound wave has not reached it yet.
	 The element of gas is modeled as a nonisolated system in terms of momentum. 
The force from the piston has provided an impulse to the element, which in turn 
exhibits a change in momentum. Therefore, we evaluate both sides of the impulse–
momentum theorem:

	 DpS 5 I
S

	 (17.5)

On the right, the impulse is provided by the constant force due to the increased 
pressure on the piston:

I
S

5 a  F
S

 Dt 5 1A DP Dt 2  î

The pressure change DP can be related to the volume change and then to the 
speeds v and vx through the bulk modulus:

DP 5 2B 
DV
Vi

5 2B 
12vx A Dt 2

vA Dt
5 B 

vx

v

Therefore, the impulse becomes

	 I
S

5 aAB 
vx

v
 Dtb  î 	 (17.6)

On the left-hand side of the impulse–momentum theorem, Equation 17.5, the 
change in momentum of the element of gas of mass m is as follows:

	 DpS 5 m DvS 5 1rVi 2 1vx î 2 0 2 5 1rvvx A Dt 2  î 	 (17.7)

Substituting Equations 17.6 and 17.7 into Equation 17.5, we find

rvvx A Dt 5 AB 
vx

v
 Dt

which reduces to an expression for the speed of sound in a gas:

	 v 5 Å
B
r

	 (17.8)

	 It is interesting to compare this expression with Equation 16.18 for the speed of 
transverse waves on a string, v 5 !T/m. In both cases, the wave speed depends on 
an elastic property of the medium (bulk modulus B or string tension T ) and on an 
inertial property of the medium (volume density r or linear density m). In fact, the 
speed of all mechanical waves follows an expression of the general form

v 5 Å
elastic property

inertial property

For longitudinal sound waves in a solid rod of material, for example, the speed of 
sound depends on Young’s modulus Y and the density r. Table 17.1 (page 512) pro-
vides the speed of sound in several different materials.
	 The speed of sound also depends on the temperature of the medium. For sound 
traveling through air, the relationship between wave speed and air temperature is

	 v 5 331Å1 1
TC

273
	 (17.9)
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512	C hapter 17  Sound Waves

where v is in meters/second, 331 m/s is the speed of sound in air at 08C, and TC is 
the air temperature in degrees Celsius. Using this equation, one finds that at 208C, 
the speed of sound in air is approximately 343 m/s.
	 This information provides a convenient way to estimate the distance to a thun-
derstorm. First count the number of seconds between seeing the flash of lightning 
and hearing the thunder. Dividing this time interval by 3 gives the approximate 
distance to the lightning in kilometers because 343 m/s is approximately 1

3 km/s. 
Dividing the time interval in seconds by 5 gives the approximate distance to the 
lightning in miles because the speed of sound is approximately 15 mi/s.
	 Having an expression (Eq. 17.8) for the speed of sound, we can now express the 
relationship between pressure amplitude and displacement amplitude for a sound 
wave (Eq. 17.4) as

	 DPmax 5 Bsmaxk 5 1rv2 2smaxav

v b 5 rvvsmax	 (17.10)

This expression is a bit more useful than Equation 17.4 because the density of a gas 
is more readily available than is the bulk modulus.

17.3	 Intensity of Periodic Sound Waves
In Chapter 16, we showed that a wave traveling on a taut string transports energy, 
consistent with the notion of energy transfer by mechanical waves in Equation 
8.2. Naturally, we would expect sound waves to also represent a transfer of energy.  
Consider the element of gas acted on by the piston in Figure 17.5. Imagine that the 
piston is moving back and forth in simple harmonic motion at angular frequency v. 
Imagine also that the length of the element becomes very small so that the entire 
element moves with the same velocity as the piston. Then we can model the ele-
ment as a particle on which the piston is doing work. The rate at which the piston is 
doing work on the element at any instant of time is given by Equation 8.19:

Power 5 F
S

? vSx

where we have used Power rather than P so that we don’t confuse power P with 
pressure P ! The force F

S
 on the element of gas is related to the pressure and the 

velocity vSx of the element is the derivative of the displacement function, so we find

Power 5 3DP 1x, t 2A 4  î ?
'

't
3s 1x, t 2  î 4

5 3rvvAsmax sin 1kx 2 vt 2 4 e '

't
3smax cos 1kx 2 vt 2 4 f

Table 17.1 Speed of Sound in Various Media
Medium	 v (m/s)	 Medium	 v (m/s)	 Medium	 v (m/s)

Gases		  Liquids at 258C		  Solidsa

Hydrogen (08C)	 1 286	 Glycerol	 1 904	 Pyrex glass	 5 640
Helium (08C)	 972	 Seawater	 1 533	 Iron	 5 950
Air (208C)	 343	 Water	 1 493	 Aluminum	 6 420
Air (08C)	 331	 Mercury	 1 450	 Brass	 4 700
Oxygen (08C)	 317	 Kerosene	 1 324	 Copper	 5 010
		  Methyl alcohol	 1 143	 Gold	 3 240
		  Carbon tetrachloride	 926	 Lucite	 2 680
				    Lead	 1 960
				    Rubber	 1 600
aValues given are for propagation of longitudinal waves in bulk media. Speeds for longitudinal waves in thin rods are 
smaller, and speeds of transverse waves in bulk are smaller yet.
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5 rvvAsmax sin 1kx 2 vt 2 4 3vsmax sin 1kx 2 vt 2 4

5 rvv2As 2
max sin2 1kx 2 vt 2

We now find the time average power over one period of the oscillation. For any 
given value of x, which we can choose to be x 5 0, the average value of sin2 (kx 2 vt) 
over one period T is

1
T

 3
T

0
 sin2 10 2 vt 2  dt 5

1
T

 3
T

0
 sin2 vt dt 5

1
T
a t

2
1

sin 2vt
2v

b `
T

0
5 1

2

Therefore,

1Power 2 avg 5 1
2 rvv2As2

max

	 We define the intensity I of a wave, or the power per unit area, as the rate at 
which the energy transported by the wave transfers through a unit area A perpen-
dicular to the direction of travel of the wave:

	 I ;
1Power 2 avg

A
	 (17.11)

In this case, the intensity is therefore

I 5 1
2 rv 1vsmax 22

	 Hence, the intensity of a periodic sound wave is proportional to the square of the 
displacement amplitude and to the square of the angular frequency. This expres-
sion can also be written in terms of the pressure amplitude DPmax; in this case, we 
use Equation 17.10 to obtain

	 I 5
1DPmax 22

2rv
	 (17.12)

	 The string waves we studied in Chapter 16 are constrained to move along the 
one-dimensional string, as discussed in the introduction to this chapter. The sound 
waves we have studied with regard to Figures 17.1 through 17.3 and 17.5 are con-
strained to move in one dimension along the length of the tube. As we mentioned 
in the introduction, however, sound waves can move through three-dimensional 
bulk media, so let’s place a sound source in the open air and study the results. 
	 Consider the special case of a point source emitting sound waves equally in all 
directions. If the air around the source is perfectly uniform, the sound power radi-
ated in all directions is the same, and the speed of sound in all directions is the 
same. The result in this situation is called a spherical wave. Figure 17.6 shows these 
spherical waves as a series of circular arcs concentric with the source. Each arc rep-
resents a surface over which the phase of the wave is constant. We call such a sur-
face of constant phase a wave front. The radial distance between adjacent wave 
fronts that have the same phase is the wavelength l of the wave. The radial lines 
pointing outward from the source, representing the direction of propagation of 
the waves, are called rays.
	 The average power emitted by the source must be distributed uniformly over 
each spherical wave front of area 4pr 2. Hence, the wave intensity at a distance r 
from the source is

	 I 5
1Power 2 avg

A
5

1Power 2 avg

4pr 2 	 (17.13)

The intensity decreases as the square of the distance from the source. This inverse-
square law is reminiscent of the behavior of gravity in Chapter 13.

WW Intensity of a sound wave

Ray

Source

l

Wave front

The rays are radial lines pointing 
outward from the source, 
perpendicular to the wave fronts.

Figure 17.6  ​Spherical waves 
emitted by a point source. The 
circular arcs represent the spheri-
cal wave fronts that are concentric 
with the source.
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514	C hapter 17  Sound Waves

Example 17.2	     Intensity Variations of a Point Source

A point source emits sound waves with an average power output of 80.0 W.

(A)  ​Find the intensity 3.00 m from the source.

Conceptualize  ​Imagine a small loudspeaker sending sound out at an average rate of 80.0 W uniformly in all direc-
tions. You are standing 3.00 m away from the speakers. As the sound propagates, the energy of the sound waves is 
spread out over an ever-expanding sphere, so the intensity of the sound falls off with distance.

Categorize  ​We evaluate the intensity from an equation generated in this section, so we categorize this example as a 
substitution problem.

S o l u t i o n

	

Example 17.1	     Hearing Limits

The faintest sounds the human ear can detect at a frequency of 1 000 Hz correspond to an intensity of about 1.00 3 
10212 W/m2, which is called threshold of hearing. The loudest sounds the ear can tolerate at this frequency correspond to 
an intensity of about 1.00 W/m2, the threshold of pain. Determine the pressure amplitude and displacement amplitude 
associated with these two limits.

Conceptualize  ​Think about the quietest environment you have ever experienced. It is likely that the intensity of sound 
in even this quietest environment is higher than the threshold of hearing.

Categorize  ​Because we are given intensities and asked to calculate pressure and displacement amplitudes, this prob-
lem is an analysis problem requiring the concepts discussed in this section.

Analyze  ​To find the amplitude of the pressure varia-
tion at the threshold of hearing, use Equation 17.12, 
taking the speed of sound waves in air to be v 5 
343 m/s and the density of air to be r 5 1.20 kg/m3:

 DPmax 5 "2rvI

 5 "2 11.20 kg/m3 2 1343 m/s 2 11.00 3 10212 W/m2 2
5   2.87 3 1025 N/m2

Calculate the corresponding displacement amplitude 
using Equation 17.10, recalling that v 5 2pf (Eq. 16.9):

 smax 5
DPmax

rvv
5

2.87 3 1025 N/m2

11.20 kg/m3 2 1343 m/s 2 12p 3 1 000 Hz 2
5   1.11 3 10211 m

	 In a similar manner, one finds that the loudest sounds the human ear can tolerate (the threshold of pain) corre-
spond to a pressure amplitude of   28.7 N/m2   and a displacement amplitude equal to   1.11 3 1025 m  .

Finalize  ​Because atmospheric pressure is about 105 N/m2, the result for the pressure amplitude tells us that the ear 
is sensitive to pressure fluctuations as small as 3 parts in 1010! The displacement amplitude is also a remarkably small 
number! If we compare this result for smax to the size of an atom (about 10210 m), we see that the ear is an extremely 
sensitive detector of sound waves.

S o l u t i o n

Q	 uick Quiz 17.2 ​ A vibrating guitar string makes very little sound if it is not 
mounted on the guitar body. Why does the sound have greater intensity if the 
string is attached to the guitar body? (a) The string vibrates with more energy. 
(b) The energy leaves the guitar at a greater rate. (c) The sound power is spread 
over a larger area at the listener’s position. (d) The sound power is concentrated 
over a smaller area at the listener’s position. (e) The speed of sound is higher in 
the material of the guitar body. (f) None of these answers is correct.
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Because a point source emits energy in the form of 
spherical waves, use Equation 17.13 to find the intensity:

I 5
1Power 2 avg

4pr 2 5
80.0 W

4p 13.00 m 22 5  0.707 W/m2

Solve for r in Equation 17.13 and use the given value for I:  r 5 Å
1Power 2 avg

4pI
5 Å

80.0 W
4p 11.00 3 1028 W/m2 2

5   2.52 3 104 m

This intensity is close to the threshold of pain.

(B)  ​Find the distance at which the intensity of the sound is 1.00 3 1028 W/m2.

S o l u t i o n

Sound Level in Decibels
Example 17.1 illustrates the wide range of intensities the human ear can detect. 
Because this range is so wide, it is convenient to use a logarithmic scale, where the 
sound level b (Greek letter beta) is defined by the equation

	 b ; 10 log  a I
I0
b 	 (17.14)

The constant I0 is the reference intensity, taken to be at the threshold of hearing  
(I0 5 1.00 3 10212 W/m2), and I is the intensity in watts per square meter to which 
the sound level b corresponds, where b is measured2 in decibels (dB). On this 
scale, the threshold of pain (I 5 1.00 W/m2) corresponds to a sound level of b 5  
10 log [(1 W/m2)/(10212 W/m2)] 5 10 log (1012) 5 120 dB, and the threshold of 
hearing corresponds to b 5 10 log [(10212 W/m2)/(10212 W/m2)] 5 0 dB.
	 Prolonged exposure to high sound levels may seriously damage the human ear. 
Ear plugs are recommended whenever sound levels exceed 90 dB. Recent evidence 
suggests that “noise pollution” may be a contributing factor to high blood pressure, 
anxiety, and nervousness. Table 17.2 gives some typical sound levels.

Q	 uick Quiz 17.3 ​ Increasing the intensity of a sound by a factor of 100 causes the 
sound level to increase by what amount? (a) 100 dB (b) 20 dB (c) 10 dB (d) 2 dB

2The unit bel is named after the inventor of the telephone, Alexander Graham Bell (1847–1922). The prefix deci - is 
the SI prefix that stands for 1021.

Example 17.3	     Sound Levels

Two identical machines are positioned the same distance from a worker. The intensity of sound delivered by each oper-
ating machine at the worker’s location is 2.0 3 1027 W/m2.

(A)  ​Find the sound level heard by the worker when one machine is operating.

Conceptualize  ​Imagine a situation in which one source of sound is active and is then joined by a second identical 
source, such as one person speaking and then a second person speaking at the same time or one musical instrument 
playing and then being joined by a second instrument.

Categorize  ​This example is a relatively simple analysis problem requiring Equation 17.14.

S o l u t i o n

Table 17.2  
   Sound Levels
Source of Sound	 b (dB)

Nearby jet airplane	 150
Jackhammer;  
  machine gun	 130
Siren; rock concert	 120
Subway; power  
  lawn mower	 100
Busy traffic	 80
Vacuum cleaner	 70
Normal conversation	 60
Mosquito buzzing	 40
Whisper	 30
Rustling leaves	 10
Threshold of hearing	 0

▸ 17.2 c o n t i n u e d

continued
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516	C hapter 17  Sound Waves

Analyze  ​Use Equation 17.14 to calculate the 
sound level at the worker’s location with one 
machine operating:

b1 5 10 log a 2.0 3 1027 W/m2

1.00 3 10212 W/m2b 5 10 log 12.0 3 105 2 5  53 dB

Use Equation 17.14 to calculate the sound 
level at the worker’s location with double  
the intensity:

b2 5 10 log a 4.0 3 1027 W/m2

1.00 3 10212 W/m2b 5 10 log 14.0 3 105 2 5  56 dB

(B)  ​Find the sound level heard by the worker when two machines are operating.

S o l u t i o n

Finalize  ​These results show that when the intensity is doubled, the sound level increases by only 3 dB. This 3-dB 
increase is independent of the original sound level. (Prove this to yourself!)

​Loudness is a psychological response to a sound. It depends on both the intensity and the frequency of the 
sound. As a rule of thumb, a doubling in loudness is approximately associated with an increase in sound level of 10 dB. 
(This rule of thumb is relatively inaccurate at very low or very high frequencies.) If the loudness of the machines in this 
example is to be doubled, how many machines at the same distance from the worker must be running?

Answer  ​Using the rule of thumb, a doubling of loudness corresponds to a sound level increase of 10 dB. Therefore,

b2 2 b1 5 10 dB 5 10 log aI2

I0
b 2 10 log aI1

I0
b 5 10 log aI2

I1
b

 log aI2

I1
b 5 1 S I2 5 10I1

Therefore, ten machines must be operating to double the loudness.

What If ?

Loudness and Frequency
The discussion of sound level in decibels relates to a physical measurement of the 
strength of a sound. Let us now extend our discussion from the What If? section 
of Example 17.3 concerning the psychological “measurement” of the strength of a 
sound.
	 Of course, we don’t have instruments in our bodies that can display numerical 
values of our reactions to stimuli. We have to “calibrate” our reactions somehow 
by comparing different sounds to a reference sound, but that is not easy to accom-
plish. For example, earlier we mentioned that the threshold intensity is 10212 W/m2,  
corresponding to an intensity level of 0 dB. In reality, this value is the threshold 
only for a sound of frequency 1 000 Hz, which is a standard reference frequency in 
acoustics. If we perform an experiment to measure the threshold intensity at other 
frequencies, we find a distinct variation of this threshold as a function of frequency. 
For example, at 100 Hz, a barely audible sound must have an intensity level of about  
30 dB! Unfortunately, there is no simple relationship between physical measurements 
and psychological “measurements.” The 100-Hz, 30-dB sound is psychologically  
“equal” in loudness to the 1 000-Hz, 0-dB sound (both are just barely audible), but 
they are not physically equal in sound level (30 dB 2 0 dB).
	 By using test subjects, the human response to sound has been studied, and the 
results are shown in the white area of Figure 17.7 along with the approximate fre-
quency and sound-level ranges of other sound sources. The lower curve of the white 
area corresponds to the threshold of hearing. Its variation with frequency is clear 
from this diagram. Notice that humans are sensitive to frequencies ranging from 
about 20 Hz to about 20 000 Hz. The upper bound of the white area is the thresh-

	

▸ 17.3 c o n t i n u e d
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old of pain. Here the boundary of the white area appears straight because the psy-
chological response is relatively independent of frequency at this high sound level.
	 The most dramatic change with frequency is in the lower left region of the white 
area, for low frequencies and low intensity levels. Our ears are particularly insen-
sitive in this region. If you are listening to your home entertainment system and 
the bass (low frequencies) and treble (high frequencies) sound balanced at a high 
volume, try turning the volume down and listening again. You will probably notice 
that the bass seems weak, which is due to the insensitivity of the ear to low frequen-
cies at low sound levels as shown in Figure 17.7.

17.4	 The Doppler Effect
Perhaps you have noticed how the sound of a vehicle’s horn changes as the vehicle 
moves past you. The frequency of the sound you hear as the vehicle approaches you 
is higher than the frequency you hear as it moves away from you. This experience is 
one example of the Doppler effect.3

	 To see what causes this apparent frequency change, imagine you are in a boat 
that is lying at anchor on a gentle sea where the waves have a period of T 5 3.0 s.  
Hence, every 3.0 s a crest hits your boat. Figure 17.8a shows this situation, with 
the water waves moving toward the left. If you set your watch to t 5 0 just as one 
crest hits, the watch reads 3.0 s when the next crest hits, 6.0 s when the third crest 

Infrasonic
frequencies

Sonic
frequencies

Ultrasonic
frequencies

Large rocket engine

Jet engine (10 m away) Rifle

Thunder
overhead

Rock concert

Underwater communication

(Sonar)

Car horn
Motorcycle School cafeteria

Urban traffic Shout

Conversation
Birds

Bats
Whispered speechThreshold of

hearing

Sound level
  (dB)

1 10 100 1 000 10 000 100 000
Frequency f (Hz)

220

200

180

160

140

120

100

80

60

40

20

0

Threshold of
pain

b
Figure 17.7  ​Approximate 
ranges of frequency and sound 
level of various sources and that of 
normal human hearing, shown by 
the white area. (From R. L. Reese, 
University Physics, Pacific Grove, 
Brooks/Cole, 2000.)

3Named after Austrian physicist Christian Johann Doppler (1803–1853), who in 1842 predicted the effect for both 
sound waves and light waves.

In all frames, the waves 
travel to the left, and their 
source is far to the right 
of the boat, out of the 
frame of the figure.
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In all frames, the waves 
travel to the left, and their 
source is far to the right 
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In all frames, the waves 
travel to the left, and their 
source is far to the right 
of the boat, out of the 
frame of the figure.
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Figure 17.8  ​(a) Waves moving 
toward a stationary boat. (b) The 
boat moving toward the wave 
source. (c) The boat moving away 
from the wave source.
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518	C hapter 17  Sound Waves

hits, and so on. From these observations, you conclude that the wave frequency is  
f 5 1/T 5 1/(3.0 s) 5 0.33 Hz. Now suppose you start your motor and head directly 
into the oncoming waves as in Figure 17.8b. Again you set your watch to t 5 0 as a 
crest hits the front (the bow) of your boat. Now, however, because you are moving 
toward the next wave crest as it moves toward you, it hits you less than 3.0 s after 
the first hit. In other words, the period you observe is shorter than the 3.0-s period 
you observed when you were stationary. Because f 5 1/T, you observe a higher wave 
frequency than when you were at rest.
	 If you turn around and move in the same direction as the waves (Fig. 17.8c), you 
observe the opposite effect. You set your watch to t 5 0 as a crest hits the back (the 
stern) of the boat. Because you are now moving away from the next crest, more 
than 3.0 s has elapsed on your watch by the time that crest catches you. Therefore, 
you observe a lower frequency than when you were at rest.
	 These effects occur because the relative speed between your boat and the waves 
depends on the direction of travel and on the speed of your boat. (See Section 4.6.) 
When you are moving toward the right in Figure 17.8b, this relative speed is higher 
than that of the wave speed, which leads to the observation of an increased fre-
quency. When you turn around and move to the left, the relative speed is lower, as is 
the observed frequency of the water waves.
	 Let’s now examine an analogous situation with sound waves in which the water 
waves become sound waves, the water becomes the air, and the person on the boat 
becomes an observer listening to the sound. In this case, an observer O is moving 
and a sound source S is stationary. For simplicity, we assume the air is also station-
ary and the observer moves directly toward the source (Fig. 17.9). The observer 
moves with a speed vO toward a stationary point source (vS 5 0), where stationary 
means at rest with respect to the medium, air.
	 If a point source emits sound waves and the medium is uniform, the waves move 
at the same speed in all directions radially away from the source; the result is a 
spherical wave as mentioned in Section 17.3. The distance between adjacent wave 
fronts equals the wavelength l. In Figure 17.9, the circles are the intersections of 
these three-dimensional wave fronts with the two-dimensional paper.
	 We take the frequency of the source in Figure 17.9 to be f, the wavelength to be l, 
and the speed of sound to be v. If the observer were also stationary, he would detect 
wave fronts at a frequency f. (That is, when vO 5 0 and vS 5 0, the observed frequency 
equals the source frequency.) When the observer moves toward the source, the 
speed of the waves relative to the observer is v9 5 v 1 vO , as in the case of the boat in 
Figure 17.8, but the wavelength l is unchanged. Hence, using Equation 16.12, v 5 lf,  
we can say that the frequency f 9 heard by the observer is increased and is given by

f r 5
v r
l

5
v 1 vO

l

Because l 5 v/f , we can express f 9 as

	 f r 5 av 1 vO

v b f 1observer moving toward source 2 	 (17.15)

If the observer is moving away from the source, the speed of the wave relative to the 
observer is v9 5 v 2 vO . The frequency heard by the observer in this case is decreased 
and is given by

	 f r 5 av 2 vO

v b f  ​   (​observer moving away from source)	 (17.16)

	 These last two equations can be reduced to a single equation by adopting a sign 
convention. Whenever an observer moves with a speed vO relative to a stationary 
source, the frequency heard by the observer is given by Equation 17.15, with vO 
interpreted as follows: a positive value is substituted for vO when the observer moves 

Figure 17.9  An observer O  
(the cyclist) moves with a speed  
vO toward a stationary point 
source S, the horn of a parked 
truck. The observer hears a fre-
quency f 9 that is greater than the 
source frequency.

O

O

S

vS
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toward the source, and a negative value is substituted when the observer moves 
away from the source.
	 Now suppose the source is in motion and the observer is at rest. If the source 
moves directly toward observer A in Figure 17.10a, each new wave is emitted from a 
position to the right of the origin of the previous wave. As a result, the wave fronts 
heard by the observer are closer together than they would be if the source were not 
moving. (Fig. 17.10b shows this effect for waves moving on the surface of water.) 
As a result, the wavelength l9 measured by observer A is shorter than the wave-
length l of the source. During each vibration, which lasts for a time interval T (the 
period), the source moves a distance vST 5 vS /f and the wavelength is shortened by 
this amount. Therefore, the observed wavelength l9 is

l r 5 l 2 Dl 5 l 2
vS

f

Because l 5 v/f, the frequency f 9 heard by observer A is

f r 5
v
l r

5
v

l 2 1vS /f 2 5
v

1v/f 2 2 1vS /f 2

	 f r 5 a v
v 2 vS

b f  ​ ​  (source moving toward observer)	 (17.17)

That is, the observed frequency is increased whenever the source is moving toward 
the observer.
	 When the source moves away from a stationary observer, as is the case for 
observer B in Figure 17.10a, the observer measures a wavelength l9 that is greater 
than l and hears a decreased frequency:

	 f r 5 a v
v 1 vS

b f  ​ ​  (source moving away from observer)	 (17.18)

	 We can express the general relationship for the observed frequency when a 
source is moving and an observer is at rest as Equation 17.17, with the same sign 
convention applied to vS as was applied to vO : a positive value is substituted for vS 
when the source moves toward the observer, and a negative value is substituted 
when the source moves away from the observer.
	 Finally, combining Equations 17.15 and 17.17 gives the following general rela-
tionship for the observed frequency that includes all four conditions described by 
Equations 17.15 through 17.18:

	 f r 5 av 1 vO

v 2 vS
b f 	 (17.19) WW �General Doppler-shift 

expression

Figure 17.10  (a) A source S mov-
ing with a speed vS toward a sta-
tionary observer A and away from 
a stationary observer B. Observer 
A hears an increased frequency, 
and observer B hears a decreased 
frequency. (b) The Doppler effect 
in water, observed in a ripple tank. 
Letters shown in the photo refer 
to Quick Quiz 17.4.S
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Pitfall Prevention 17.1
Doppler Effect Does Not Depend  
on Distance  Some people think 
that the Doppler effect depends 
on the distance between the 
source and the observer. Although 
the intensity of a sound varies 
as the distance changes, the 
apparent frequency depends only 
on the relative speed of source 
and observer. As you listen to 
an approaching source, you will 
detect increasing intensity but 
constant frequency. As the source 
passes, you will hear the frequency 
suddenly drop to a new constant 
value and the intensity begin to 
decrease.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



520	C hapter 17  Sound Waves

In this expression, the signs for the values substituted for vO and vS depend on the 
direction of the velocity. A positive value is used for motion of the observer or the 
source toward the other (associated with an increase in observed frequency), and 
a negative value is used for motion of one away from the other (associated with a 
decrease in observed frequency).
	 Although the Doppler effect is most typically experienced with sound waves, it 
is a phenomenon common to all waves. For example, the relative motion of source 
and observer produces a frequency shift in light waves. The Doppler effect is used 
in police radar systems to measure the speeds of motor vehicles. Likewise, astrono-
mers use the effect to determine the speeds of stars, galaxies, and other celestial 
objects relative to the Earth.

Q	 uick Quiz 17.4  ​Consider detectors of water waves at three locations A, B, and C 
in Figure 17.10b. Which of the following statements is true? (a) The wave speed 
is highest at location A. (b) The wave speed is highest at location C. (c) The 
detected wavelength is largest at location B. (d) The detected wavelength is larg-
est at location C. (e) The detected frequency is highest at location C. (f) The 
detected frequency is highest at location A.

Q	 uick Quiz 17.5 ​ You stand on a platform at a train station and listen to a train 
approaching the station at a constant velocity. While the train approaches, but 
before it arrives, what do you hear? (a) the intensity and the frequency of the 
sound both increasing (b) the intensity and the frequency of the sound both 
decreasing (c) the intensity increasing and the frequency decreasing (d) the 
intensity decreasing and the frequency increasing (e) the intensity increasing 
and the frequency remaining the same (f) the intensity decreasing and the fre-
quency remaining the same

Example 17.4	     The Broken Clock Radio 

Your clock radio awakens you with a steady and irritating sound of frequency 600 Hz. One morning, it malfunctions 
and cannot be turned off. In frustration, you drop the clock radio out of your fourth-story dorm window, 15.0 m from 
the ground. Assume the speed of sound is 343 m/s. As you listen to the falling clock radio, what frequency do you hear 
just before you hear it striking the ground?

Conceptualize  ​The speed of the clock radio increases as it falls. Therefore, it is a source of sound moving away from 
you with an increasing speed so the frequency you hear should be less than 600 Hz.

Categorize  ​We categorize this problem as one in which we combine the particle under constant acceleration model for the 
falling radio with our understanding of the frequency shift of sound due to the Doppler effect.

AM

S o l u t i o n

Analyze  ​Because the clock radio is modeled as a parti-
cle under constant acceleration due to gravity, use Equa-
tion 2.13 to express the speed of the source of sound:

(1)   vS 5 vyi 1 ayt 5 0 2 gt 5 2gt

From Equation 2.16, find the time at which the clock 
radio strikes the ground:

yf 5 yi 1 vyit 2 1
2gt 2 5 0 1 0 2 1

2gt 2 S t 5 Å2
2yf

g

Substitute into Equation (1): vS 5 12g 2 Å2
2yf

g
5 2"22g yf

Use Equation 17.19 to determine the Doppler-shifted 
frequency heard from the falling clock radio:

f r 5 c v 1 0

v 2 12"22gyf 2
d f 5 a v

v 1 "22gyf

b f
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Example 17.5	     Doppler Submarines

A submarine (sub A) travels through water at a speed of 8.00 m/s, emitting a sonar wave at a frequency of 1 400 Hz. 
The speed of sound in the water is 1 533 m/s. A second submarine (sub B) is located such that both submarines are 
traveling directly toward each other. The second submarine is moving at 9.00 m/s.

(A)  ​What frequency is detected by an observer riding on sub B as the subs approach each other?

Conceptualize  ​Even though the problem involves subs moving in water, there is a Doppler effect just like there is when 
you are in a moving car and listening to a sound moving through the air from another car.

Categorize  ​Because both subs are moving, we categorize this problem as one involving the Doppler effect for both a 
moving source and a moving observer.

S o l u t i o n

Analyze  ​Use Equation 17.19 to find the Doppler-
shifted frequency heard by the observer in sub B, 
being careful with the signs assigned to the source 
and observer speeds:

 f r 5 av 1 vO

v 2 vS
b f

 f r 5 c1 533 m/s 1 119.00 m/s 2
1 533 m/s 2 118.00 m/s 2 d 11 400 Hz 2 5  1 416 Hz

Use Equation 17.19 to find the Doppler-shifted fre-
quency heard by the observer in sub B, again being 
careful with the signs assigned to the source and 
observer speeds:

 f r 5 av 1 vO

v 2 vS
b f

 f r 5 c1 533 m/s 1 129.00 m/s 2
1 533 m/s 2 128.00 m/s 2  d 11 400 Hz 2 5  1 385 Hz

The sound of apparent frequency 1 416 Hz found 
in part (A) is reflected from a moving source (sub 
B) and then detected by a moving observer (sub A). 
Find the frequency detected by sub A:

  f s 5 av 1 vO

v 2 vS
b f r

5 c1 533 m/s 1 118.00 m/s 2
1 533 m/s 2 119.00 m/s 2 d 11 416 Hz 2 5 1 432 Hz

(B)  ​The subs barely miss each other and pass. What frequency is detected by an observer riding on sub B as the subs 
recede from each other?

S o l u t i o n

Notice that the frequency drops from 1 416 Hz to 1 385 Hz as the subs pass. This effect is similar to the drop in fre-
quency you hear when a car passes by you while blowing its horn.

(C)  While the subs are approaching each other, some of the sound from sub A reflects from sub B and returns to sub 
A. If this sound were to be detected by an observer on sub A, what is its frequency?

S o l u t i o n

Substitute numerical values: f r 5 c 343 m/s

343 m/s 1 "22 19.80 m/s2 2 1215.0 m 2 d
1600 Hz 2

5 571 Hz

Finalize  ​The frequency is lower than the actual frequency of 600 Hz because the clock radio is moving away from you. 
If it were to fall from a higher floor so that it passes below y 5 215.0 m, the clock radio would continue to accelerate 
and the frequency would continue to drop.

	

▸ 17.4 c o n t i n u e d

continued
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522	C hapter 17  Sound Waves

	

▸ 17.5 c o n t i n u e d

Finalize  This technique is used by police officers to measure the speed of a moving car. Microwaves are emitted from 
the police car and reflected by the moving car. By detecting the Doppler-shifted frequency of the reflected micro-
waves, the police officer can determine the speed of the moving car.

Shock Waves
Now consider what happens when the speed vS of a source exceeds the wave speed v. 
This situation is depicted graphically in Figure 17.11a. The circles represent spheri-
cal wave fronts emitted by the source at various times during its motion. At t 5 0, 
the source is at S0 and moving toward the right. At later times, the source is at S1, 
and then S2, and so on. At the time t, the wave front centered at S0 reaches a radius 
of vt. In this same time interval, the source travels a distance vSt. Notice in Figure 
17.11a that a straight line can be drawn tangent to all the wave fronts generated at 
various times. Therefore, the envelope of these wave fronts is a cone whose apex 
half-angle u (the “Mach angle”) is given by

sin u 5
vt
vS t

5
v
vS

The ratio vS/v is referred to as the Mach number, and the conical wave front pro-
duced when vS . v (supersonic speeds) is known as a shock wave. An interesting anal-
ogy to shock waves is the V-shaped wave fronts produced by a boat (the bow wave) 
when the boat’s speed exceeds the speed of the surface-water waves (Fig. 17.12).
	 Jet airplanes traveling at supersonic speeds produce shock waves, which are 
responsible for the loud “sonic boom” one hears. The shock wave carries a great 
deal of energy concentrated on the surface of the cone, with correspondingly great 
pressure variations. Such shock waves are unpleasant to hear and can cause dam-
age to buildings when aircraft fly supersonically at low altitudes. In fact, an air-
plane flying at supersonic speeds produces a double boom because two shock waves 
are formed, one from the nose of the plane and one from the tail. People near the 
path of a space shuttle as it glides toward its landing point have reported hearing 
what sounds like two very closely spaced cracks of thunder.

Q	 uick Quiz 17.6 ​ An airplane flying with a constant velocity moves from a cold air 
mass into a warm air mass. Does the Mach number (a) increase, (b) decrease, or 
(c) stay the same?

Figure 17.11  ​(a) A representa-
tion of a shock wave produced 
when a source moves from S0 to 
the right with a speed vS that is 
greater than the wave speed v in 
the medium. (b) A stroboscopic 
photograph of a bullet moving at 
supersonic speed through the hot 
air above a candle.
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vS
S

S1 S2S0

The envelope of the wave 
fronts forms a cone whose 
apex half-angle is given by
sin u � v/vS.
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Notice the shock wave in 
the vicinity of the bullet.
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Figure 17.12  ​The V-shaped bow 
wave of a boat is formed because 
the boat speed is greater than the 
speed of the water waves it gener-
ates. A bow wave is analogous to a 
shock wave formed by an airplane 
traveling faster than sound.
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(Fig. OQ17.3) sounding its siren at a frequency of  
500 Hz. Which statement is correct? (a)   You hear a 
frequency less than 500 Hz. (b) You hear a frequency 
equal to 500 Hz. (c) You hear a frequency greater 

	 1.	 Table 17.1 shows the speed of sound is typically an 
order of magnitude larger in solids than in gases. To 
what can this higher value be most directly attributed? 
(a) the difference in density between solids and gases 
(b) the difference in compressibility between solids 
and gases (c) the limited size of a solid object com-
pared to a free gas (d) the impossibility of holding a 
gas under significant tension

	 2.	 Two sirens A and B are sounding so that the frequency 
from A is twice the frequency from B. Compared with 
the speed of sound from A, is the speed of sound from 
B (a) twice as fast, (b) half as fast, (c) four times as fast, 
(d) one-fourth as fast, or (e) the same?

	 3.	 As you travel down the highway in your car, an ambu-
lance approaches you from the rear at a high speed 

Concepts and Principles

  Sound waves are longitudinal 
and travel through a compressible 
medium with a speed that depends 
on the elastic and inertial proper-
ties of that medium. The speed 
of sound in a gas having a bulk 
modulus B and density r is

	 v 5 Å
B
r

	 (17.8)

  For sinusoidal sound waves, the variation in the position of an element of 
the medium is

	 s(x, t) 5 smax cos (kx 2 vt)	 (17.1)

and the variation in pressure from the equilibrium value is

	 DP 5 DPmax sin (kx 2 vt)	 (17.2)

where DPmax is the pressure amplitude. The pressure wave is 908 out of phase 
with the displacement wave. The relationship between smax and DPmax is

	 DPmax 5 rvvsmax	 (17.10)

  The change in frequency heard by an observer whenever there is relative motion between a source of sound waves 
and the observer is called the Doppler effect. The observed frequency is

	 f r 5 av 1 vO

v 2 vS
b f 	 (17.19)

In this expression, the signs for the values substituted for vO and vS depend on the direction of the velocity. A positive 
value for the speed of the observer or source is substituted if the velocity of one is toward the other, whereas a nega-
tive value represents a velocity of one away from the other.

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

Figure OQ17.3
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Summary

  The intensity of a periodic sound 
wave, which is the power per unit  
area, is

	I ;
1Power 2 avg

A
5

1DPmax 22

2rv
	 (17.11, 17.12)

  The sound level of a sound wave in decibels is

	 b ; 10 log a I
I0
b 	 (17.14)

The constant I0 is a reference intensity, usually taken to be at the 
threshold of hearing (1.00 3 10212 W/m2), and I is the intensity of the 
sound wave in watts per square meter.

Definitions
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524	C hapter 17  Sound Waves

how does the intensity change? (a) It becomes one-
ninth as large. (b) It becomes one-third as large. (c) It 
is unchanged. (d) It becomes three times larger. (e) It 
becomes nine times larger.

	10.	Suppose an observer and a source of sound are both at 
rest relative to the ground and a strong wind is blow-
ing away from the source toward the observer. (i) What 
effect does the wind have on the observed frequency? 
(a) It causes an increase. (b) It causes a decrease. (c) It 
causes no change. (ii) What effect does the wind have 
on the observed wavelength? Choose from the same 
possibilities as in part (i). (iii) What effect does the 
wind have on the observed speed of the wave? Choose 
from the same possibilities as in part (i).

	11.	 A source of sound vibrates with constant frequency. 
Rank the frequency of sound observed in the follow-
ing cases from highest to the lowest. If two frequencies 
are equal, show their equality in your ranking. All the 
motions mentioned have the same speed, 25 m/s. (a) The  
source and observer are stationary. (b) The source is 
moving toward a stationary observer. (c) The source 
is moving away from a stationary observer. (d) The 
observer is moving toward a stationary source. (e) The 
observer is moving away from a stationary source.

	12.	With a sensitive sound-level meter, you measure the 
sound of a running spider as 210 dB. What does the 
negative sign imply? (a) The spider is moving away 
from you. (b) The frequency of the sound is too low to 
be audible to humans. (c) The intensity of the sound is 
too faint to be audible to humans. (d) You have made a 
mistake; negative signs do not fit with logarithms.

	13.	Doubling the power output from a sound source emit-
ting a single frequency will result in what increase 
in decibel level? (a) 0.50  dB (b)  2.0 dB (c) 3.0 dB 
(d) 4.0 dB (e) above 20 dB

	14.	Of the following sounds, which one is most likely to 
have a sound level of 60 dB? (a) a rock concert (b) the 
turning of a page in this textbook (c) dinner-table con-
versation (d) a cheering crowd at a football game

than 500  Hz. (d) You hear a frequency greater than  
500 Hz, whereas the ambulance driver hears a fre-
quency lower than 500 Hz. (e)  You hear a frequency 
less than 500 Hz, whereas the ambulance driver hears 
a frequency of 500 Hz.

	 4.	 What happens to a sound wave as it travels from air 
into water? (a) Its intensity increases. (b) Its wavelength 
decreases. (c) Its frequency increases. (d) Its frequency 
remains the same. (e) Its velocity decreases.

	 5.	 A church bell in a steeple rings once. At 300 m in front of 
the church, the maximum sound intensity is 2 mW/m2.  
At 950 m behind the church, the maximum intensity is 
0.2 mW/m2. What is the main reason for the difference 
in the intensity? (a) Most of the sound is absorbed by the 
air before it gets far away from the source. (b) Most of the 
sound is absorbed by the ground as it travels away from  
the source. (c) The bell broadcasts the sound mostly 
toward the front. (d) At a larger distance, the power is 
spread over a larger area.

	 6.	 If a 1.00-kHz sound source moves at a speed of 50.0 m/s  
toward a listener who moves at a speed of 30.0 m/s in 
a direction away from the source, what is the apparent 
frequency heard by the listener? (a) 796 Hz (b) 949 Hz 
(c) 1 000 Hz (d) 1 068 Hz (e) 1 273 Hz

	 7.	 A sound wave can be characterized as (a) a transverse 
wave, (b) a longitudinal wave, (c) a transverse wave or a 
longitudinal wave, depending on the nature of its source, 
(d) one that carries no energy, or (e) a wave that does not 
require a medium to be transmitted from one place to 
the other.

	 8.	 Assume a change at the source of sound reduces the 
wavelength of a sound wave in air by a factor of 2. (i) What 
happens to its frequency? (a) It increases by a factor of 4. 
(b) It increases by a factor of 2. (c) It is unchanged. (d) It 
decreases by a factor of 2. (e) It changes by an unpredict-
able factor. (ii) What happens to its speed? Choose from 
the same possibilities as in part (i).

	 9.	 A point source broadcasts sound into a uniform 
medium. If the distance from the source is tripled, 

	 1.	 How can an object move with respect to an observer so 
that the sound from it is not shifted in frequency?

	 2.	 Older auto-focus cameras sent out a pulse of sound 
and measured the time interval required for the pulse 
to reach an object, reflect off of it, and return to be 
detected. Can air temperature affect the camera’s 
focus? New cameras use a more reliable infrared system.

	 3.	 A friend sitting in her car far down the road waves to 
you and beeps her horn at the same moment. How 
far away must she be for you to calculate the speed of 
sound to two significant figures by measuring the time 
interval required for the sound to reach you?

	 4.	 How can you determine that the speed of sound is 
the same for all frequencies by listening to a band or 
orchestra?

	 5.	 Explain how the distance 
to a lightning bolt (Fig. 
CQ17.5) can be deter-
mined by counting the 
seconds between the flash 
and the sound of thunder.

	 6.	 You are driving toward a 
cliff and honk your horn. 
Is there a Doppler shift of 
the sound when you hear 
the echo? If so, is it like a 
moving source or a mov-
ing observer? What if the 
reflection occurs not from 
a cliff, but from the forward edge of a huge alien space-
craft moving toward you as you drive?

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

Figure CQ17.5
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	 Problems	 525

	 4.	 An experimenter wishes to generate in air a sound wave 
that has a displacement amplitude of 5.50 3 1026 m. The 
pressure amplitude is to be limited to 0.840 Pa. What is 
the minimum wavelength the sound wave can have?

	 5.	 Calculate the pressure amplitude of a 2.00-kHz sound 
wave in air, assuming that the displacement amplitude 
is equal to 2.00 3 10–8 m.

	 6.	 Earthquakes at fault lines in the Earth’s crust create 
seismic waves, which are longitudinal (P waves) or 
transverse (S waves). The P waves have a speed of about 
7 km/s. Estimate the average bulk modulus of the 
Earth’s crust given that the density of rock is about  
2 500 kg/m3.

	 7.	 A dolphin (Fig. P17.7) in sea-
water at a temperature of 258C 
emits a sound wave directed 
toward the ocean floor 150 m 
below. How much time passes 
before it hears an echo?

	 8.	 A sound wave propagates in 
air at 278C with frequency 
4.00 kHz. It passes through a 
region where the temperature 
gradually changes and then 
moves through air at 08C. Give 
numerical answers to the fol-
lowing questions to the extent possible and state your 
reasoning about what happens to the wave physically. 
(a) What happens to the speed of the wave? (b) What 
happens to its frequency? (c)  What happens to its 
wavelength?

	 9.	 Ultrasound is used in medicine both for diagnostic 
imaging (Fig. P17.9, page 526) and for therapy. For  

M
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Note: Throughout this chapter, pressure variations DP are 
measured relative to atmospheric pressure, 1.013 3 105 Pa.

Section 17.1 ​ Pressure Variations in Sound Waves

	 1.	 A sinusoidal sound wave moves through a medium and 
is described by the displacement wave function

s(x, t) 5 2.00 cos (15.7x 2 858t)

		  where s is in micrometers, x is in meters, and t is in sec-
onds. Find (a) the amplitude, (b) the wavelength, and 
(c) the speed of this wave. (d) Determine the instanta-
neous displacement from equilibrium of the elements 
of the medium at the position x 5 0.050 0 m at t 5 
3.00 ms. (e) Determine the maximum speed of the ele-
ment’s oscillatory motion.

	 2.	 As a certain sound wave travels through the air, it 
produces pressure variations (above and below atmo-
spheric pressure) given by DP 5 1.27 sin (px 2 340pt) 
in SI units. Find (a) the amplitude of the pressure vari-
ations, (b) the frequency, (c) the wavelength in air, and 
(d) the speed of the sound wave.

	 3.	 Write an expression that describes the pressure varia-
tion as a function of position and time for a sinusoi-
dal sound wave in air. Assume the speed of sound is  
343 m/s, l 5 0.100 m, and DPmax 5 0.200 Pa.

Section 17.2 ​ Speed of Sound Waves

Problem 85 in Chapter 2 can also be assigned with this 
section.

Note: In the rest of this chapter, unless otherwise speci-
fied, the equilibrium density of air is r 5 1.20 kg/m3 
and the speed of sound in air is v 5 343 m/s. Use Table 
17.1 to find speeds of sound in other media.

W

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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	 7.	 The radar systems used by police to detect speeders are 
sensitive to the Doppler shift of a pulse of microwaves. 
Discuss how this sensitivity can be used to measure the 
speed of a car.

	 8.	 The Tunguska event. On June 30, 1908, a meteor 
burned up and exploded in the atmosphere above 
the Tunguska River valley in Siberia. It knocked down 
trees over thousands of square kilometers and started 
a forest fire, but produced no crater and apparently 
caused no human casualties. A witness sitting on his 
doorstep outside the zone of falling trees recalled 
events in the following sequence. He saw a moving 
light in the sky, brighter than the Sun and descending 

at a low angle to the horizon. He felt his face become 
warm. He felt the ground shake. An invisible agent 
picked him up and immediately dropped him about 
a meter from where he had been seated. He heard a 
very loud protracted rumbling. Suggest an explana-
tion for these observations and for the order in which 
they happened.

	 9.	 A sonic ranger is a device that determines the distance 
to an object by sending out an ultrasonic sound pulse 
and measuring the time interval required for the wave 
to return by reflection from the object. Typically, these 
devices cannot reliably detect an object that is less than 
half a meter from the sensor. Why is that?
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526	C hapter 17  Sound Waves

	14.	 A flowerpot is knocked off a balcony from a height d 
above the sidewalk as shown in Figure P17.13. It falls 
toward an unsuspecting man of height h who is stand-
ing below. Assume the man requires a time interval of 
Dt to respond to the warning. How close to the sidewalk 
can the flowerpot fall before it is too late for a warning 
shouted from the balcony to reach the man in time? Use 
the symbol v for the speed of sound.

	15.	The speed of sound in air (in meters per second) 
depends on temperature according to the approxi-
mate expression

v 5 331.5 1 0.607TC

		  where TC is the Celsius temperature. In dry air, the 
temperature decreases about 18C for every 150-m rise 
in altitude. (a) Assume this change is constant up to an 
altitude of 9 000 m. What time interval is required for 
the sound from an airplane flying at 9 000 m to reach 
the ground on a day when the ground temperature is 
308C? (b) What If? Compare your answer with the time 
interval required if the air were uniformly at 308C. 
Which time interval is longer?

	16.	A sound wave moves down a cylinder as in Figure 
17.2. Show that the pressure variation of the wave is 
described by DP 5 6 rvv!s 2

max 2 s 2, where s 5 s(x, t)  
is given by Equation 17.1.

	17.	 A hammer strikes one end of a thick iron rail of length 
8.50 m. A microphone located at the opposite end of 
the rail detects two pulses of sound, one that travels 
through the air and a longitudinal wave that travels 
through the rail. (a) Which pulse reaches the micro-
phone first? (b) Find the separation in time between 
the arrivals of the two pulses.

	18.	A cowboy stands on horizontal ground between two 
parallel, vertical cliffs. He is not midway between the 
cliffs. He fires a shot and hears its echoes. The second 
echo arrives 1.92 s after the first and 1.47 s before the 
third. Consider only the sound traveling parallel to  
the ground and reflecting from the cliffs. (a) What is 
the distance between the cliffs? (b) What If? If he can 
hear a fourth echo, how long after the third echo does 
it arrive?

Section 17.3 ​ Intensity of Periodic Sound Waves
	19.	Calculate the sound level (in decibels) of a sound wave 

that has an intensity of 4.00 mW/m2.

	20.	The area of a typical eardrum is about 5.00 3 1025 m2. 
(a) Calculate the average sound power incident on an 
eardrum at the threshold of pain, which corresponds 
to an intensity of 1.00 W/m2. (b) How much energy is 
transferred to the eardrum exposed to this sound for 
1.00 min?

	21.	 The intensity of a sound wave at a fixed distance 
from a speaker vibrating at 1.00 kHz is 0.600 W/m2.  
(a) Determine the intensity that results if the frequency 
is increased to 2.50 kHz while a constant displacement 
amplitude is maintained. (b) Calculate the intensity 
if the frequency is reduced to 0.500 kHz and the dis-
placement amplitude is doubled.

S

S

Q/C

diagnosis, short pulses of ultrasound are passed 
through the patient’s body. An echo reflected from a 
structure of interest is recorded, and the distance to 
the structure can be determined from the time delay 
for the echo’s return. To reveal detail, the wavelength 
of the reflected ultrasound must be small compared to 
the size of the object reflecting the wave. The speed of 
ultrasound in human tissue is about 1 500 m/s (nearly 
the same as the speed of sound in water). (a) What 
is the wavelength of ultrasound with a frequency of  
2.40 MHz? (b) In the whole set of imaging techniques, 
frequencies in the range 1.00 MHz to 20.0 MHz are 
used. What is the range of wavelengths corresponding 
to this range of frequencies?

Figure P17.9  A view of a fetus 
in the uterus made with ultra-
sound imaging.
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	10.	A sound wave in air has a pressure amplitude equal to  
4.00 3 1023 Pa. Calculate the displacement amplitude 
of the wave at a frequency of 10.0 kHz.

	11.	 Suppose you hear a clap of thunder 16.2 s after see-
ing the associated lightning strike. The speed of light 
in air is 3.00 3 108 m/s. (a) How far are you from the 
lightning strike? (b) Do you need to know the value of 
the speed of light to answer? Explain.

	12.	A rescue plane flies horizontally at a constant speed 
searching for a disabled boat. When the plane is 
directly above the boat, the boat’s crew blows a loud 
horn. By the time the plane’s sound detector receives 
the horn’s sound, the plane has traveled a distance 
equal to half its altitude above the ocean. Assuming it 
takes the sound 2.00 s to reach the plane, determine 
(a) the speed of the plane and (b) its altitude.

	13.	A flowerpot is knocked off a 
window ledge from a height d 5 
20.0  m above the sidewalk as 
shown in Figure P17.13. It falls 
toward an unsuspecting man of 
height h 5 1.75 m who is stand-
ing below. Assume the man 
requires a time interval of Dt 5 
0.300 s to respond to the warn-
ing. How close to the sidewalk 
can the flowerpot fall before it 
is too late for a warning shouted 
from the balcony to reach the 
man in time?
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Figure P17.13   
Problems 13 and 14.

AMT
W

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 Problems	 527

	31.	 A family ice show is held at an enclosed arena. The 
skaters perform to music with level 80.0 dB. This level 
is too loud for your baby, who yells at 75.0 dB. (a) What 
total sound intensity engulfs you? (b) What is the com-
bined sound level?

	32.	Two small speakers emit sound waves of different fre-
quencies equally in all directions. Speaker A has an 
output of 1.00 mW, and speaker B has an output of  
1.50 mW. Determine the sound level (in decibels) at 
point C in Figure P17.32 assuming (a) only speaker 
A emits sound, (b) only speaker B emits sound, and  
(c) both speakers emit sound.

C

A B

3.00 m 2.00 m

4.00 m

Figure P17.32

	33.	A firework charge is detonated many meters above the 
ground. At a distance of d1 5 500 m from the explo-
sion, the acoustic pressure reaches a maximum of 
DPmax  5 10.0  Pa (Fig. P17.33). Assume the speed of 
sound is constant at 343  m/s throughout the atmo-
sphere over the region considered, the ground absorbs 
all the sound falling on it, and the air absorbs sound 
energy as described by the rate 7.00  dB/km. What 
is the sound level (in decibels) at a distance of d2 5  
4.00 3 103 m from the explosion?

d1 d2

Figure P17.33

	34.	A fireworks rocket explodes at a height of 100 m above 
the ground. An observer on the ground directly under 
the explosion experiences an average sound intensity 
of 7.00 3 1022 W/m2 for 0.200 s. (a) What is the total 
amount of energy transferred away from the explosion 
by sound? (b) What is the sound level (in decibels) 
heard by the observer?

	35.	The sound level at a distance of 3.00 m from a source is 
120 dB. At what distance is the sound level (a) 100 dB 
and (b) 10.0 dB?

	36.	Why is the following situation impossible? It is early on a 
Saturday morning, and much to your displeasure your 
next-door neighbor starts mowing his lawn. As you try 
to get back to sleep, your next-door neighbor on the 
other side of your house also begins to mow the lawn 

M
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	22.	The intensity of a sound wave at a fixed distance from a 
speaker vibrating at a frequency f is I. (a) Determine the 
intensity that results if the frequency is increased to f 9 
while a constant displacement amplitude is maintained. 
(b) Calculate the intensity if the frequency is reduced 
to f/2 and the displacement amplitude is doubled.

	23.	A person wears a hearing aid that uniformly increases 
the sound level of all audible frequencies of sound by 
30.0 dB. The hearing aid picks up sound having a fre-
quency of 250 Hz at an intensity of 3.0 3 10211 W/m2. 
What is the intensity delivered to the eardrum?

	24.	The sound intensity at a distance of 16 m from a noisy 
generator is measured to be 0.25 W/m2. What is the 
sound intensity at a distance of 28 m from the generator?

	25.	The power output of a certain public-address speaker 
is 6.00 W. Suppose it broadcasts equally in all direc-
tions. (a) Within what distance from the speaker would 
the sound be painful to the ear? (b) At what distance 
from the speaker would the sound be barely audible?

	26.	A sound wave from a police siren has an intensity of 
100.0  W/m2 at a certain point; a second sound wave 
from a nearby ambulance has an intensity level that is 
10 dB greater than the police siren’s sound wave at the 
same point. What is the sound level of the sound wave 
due to the ambulance?

	27.	 A train sounds its horn as it approaches an intersection. 
The horn can just be heard at a level of 50 dB by an 
observer 10 km away. (a) What is the average power gen-
erated by the horn? (b) What intensity level of the horn’s 
sound is observed by someone waiting at an intersection 
50 m from the train? Treat the horn as a point source 
and neglect any absorption of sound by the air.

	28.	As the people sing in church, the sound level every-
where inside is 101 dB. No sound is transmitted through 
the massive walls, but all the windows and doors 
are open on a summer morning. Their total area is  
22.0 m2. (a) How much sound energy is radiated 
through the windows and doors in 20.0 min? (b) Sup-
pose the ground is a good reflector and sound radi-
ates from the church uniformly in all horizontal and 
upward directions. Find the sound level 1.00 km away.

	29.	The most soaring vocal melody is in Johann Sebastian 
Bach’s Mass in B Minor. In one section, the basses, ten-
ors, altos, and sopranos carry the melody from a low 
D to a high A. In concert pitch, these notes are now 
assigned frequencies of 146.8 Hz and 880.0 Hz. Find 
the wavelengths of (a) the initial note and (b) the final 
note. Assume the chorus sings the melody with a uni-
form sound level of 75.0 dB. Find the pressure ampli-
tudes of (c) the initial note and (d) the final note. Find 
the displacement amplitudes of (e) the initial note and 
(f) the final note.

	30.	Show that the difference between decibel levels b1 and 
b2 of a sound is related to the ratio of the distances r1 
and r2 from the sound source by

b2 2 b1 5 20 log ar1

r2
b
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528	C hapter 17  Sound Waves

amplitude of this unit’s motion is 0.500 m. The 
speaker emits sound waves of frequency 440 Hz. Deter-
mine (a) the highest and (b) the lowest frequencies 
heard by the person to the right of the speaker. (c)If  
the maximum sound level heard by the person is 
60.0 dB when the speaker is at its closest distance d 5  
1.00  m from him, what is the minimum sound level 
heard by the observer?

m

d

k

Figure P17.41  Problems 41 and 42.

	42.	Review. A block with a speaker bolted to it is connected 
to a spring having spring constant k and oscillates as 
shown in Figure P17.41. The total mass of the block and 
speaker is m, and the amplitude of this unit’s motion 
is A. The speaker emits sound waves of frequency f. 
Determine (a) the highest and (b) the lowest frequen-
cies heard by the person to the right of the speaker.  
(c) If the maximum sound level heard by the person 
is b when the speaker is at its closest distance d from 
him, what is the minimum sound level heard by the 
observer?

	43.	Expectant parents are thrilled to hear their unborn 
baby’s heartbeat, revealed by an ultrasonic detector 
that produces beeps of audible sound in synchroniza-
tion with the fetal heartbeat. Suppose the fetus’s ven-
tricular wall moves in simple harmonic motion with an 
amplitude of 1.80 mm and a frequency of 115 beats per 
minute. (a) Find the maximum linear speed of the heart 
wall. Suppose a source mounted on the detector in 
contact with the mother’s abdomen produces sound at  
2 000 000.0 Hz, which travels through tissue at 1.50 km/s.  
(b) Find the maximum change in frequency between 
the sound that arrives at the wall of the baby’s heart 
and the sound emitted by the source. (c) Find the 
maximum change in frequency between the reflected 
sound received by the detector and that emitted by the 
source.

	44.	Why is the following situation impossible? At the Summer 
Olympics, an athlete runs at a constant speed down a 
straight track while a spectator near the edge of the 
track blows a note on a horn with a fixed frequency. 
When the athlete passes the horn, she hears the fre-
quency of the horn fall by the musical interval called a 
minor third. That is, the frequency she hears drops to 
five-sixths its original value.

	45.	Standing at a crosswalk, you hear a frequency of 
560 Hz from the siren of an approaching ambulance. 
After the ambulance passes, the observed frequency of 

S
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with an identical mower the same distance away. This 
situation annoys you greatly because the total sound 
now has twice the loudness it had when only one neigh-
bor was mowing.

Section 17.4 ​ The Doppler Effect
	37.	 An ambulance moving at 42 m/s sounds its siren whose 

frequency is 450 Hz. A car is moving in the same direc-
tion as the ambulance at 25 m/s. What frequency does a 
person in the car hear (a) as the ambulance approaches 
the car? (b) After the ambulance passes the car?

	38.	When high-energy charged particles move through 
a transparent medium with a speed greater than the 
speed of light in that medium, a shock wave, or bow 
wave, of light is produced. This phenomenon is called 
the Cerenkov effect. When a nuclear reactor is shielded 
by a large pool of water, 
Cerenkov radiation can 
be seen as a blue glow in 
the vicinity of the reactor 
core due to high-speed 
electrons moving through 
the water (Fig. 17.38). 
In a particular case, the 
Cerenkov radiation pro-
duces a wave front with an 
apex half-angle of 53.08. 
Calculate the speed of 
the electrons in the water. 
The speed of light in 
water is 2.25 3 108 m/s.

	39.	A driver travels northbound on a highway at a speed 
of 25.0  m/s. A police car, traveling southbound at a 
speed of 40.0 m/s, approaches with its siren producing 
sound at a frequency of 2 500 Hz. (a) What frequency 
does the driver observe as the police car approaches? 
(b) What frequency does the driver detect after the 
police car passes him? (c) Repeat parts (a) and (b) for 
the case when the police car is behind the driver and 
travels northbound.

	40.	Submarine A travels horizontally at 11.0 m/s through 
ocean water. It emits a sonar signal of frequency f 5  
5.27 3 103 Hz in the forward direction. Submarine B is 
in front of submarine A and traveling at 3.00 m/s rela-
tive to the water in the same direction as submarine 
A. A crewman in submarine B uses his equipment to 
detect the sound waves (“pings”) from submarine A. 
We wish to determine what is heard by the crewman 
in submarine B. (a) An observer on which submarine 
detects a frequency f 9 as described by Equation 17.19? 
(b) In Equation 17.19, should the sign of vS be positive 
or negative? (c) In Equation 17.19, should the sign of 
vO be positive or negative? (d) In Equation 17.19, what 
speed of sound should be used? (e) Find the frequency 
of the sound detected by the crewman on submarine B.

	41.	Review. A block with a speaker bolted to it is con-
nected to a spring having spring constant k 5 20.0 N/m  
and oscillates as shown in Figure P17.41. The total 
mass of the block and speaker is 5.00 kg, and the 

Figure P17.38
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to complaints, Strauss later transposed the note down 
to F above high C, 1.397 kHz. By what increment did 
the wavelength change?

	51.	 Trucks carrying garbage to the town dump form a 
nearly steady procession on a country road, all travel-
ing at 19.7 m/s in the same direction. Two trucks arrive 
at the dump every 3 min. A bicyclist is also traveling 
toward the dump, at 4.47 m/s. (a) With what frequency 
do the trucks pass the cyclist? (b) What If? A hill does 
not slow down the trucks, but makes the out-of-shape 
cyclist’s speed drop to 1.56 m/s. How often do the 
trucks whiz past the cyclist now?

	52.	If a salesman claims a loudspeaker is rated at 150 W, 
he is referring to the maximum electrical power input 
to the speaker. Assume a loudspeaker with an input 
power of 150 W broadcasts sound equally in all direc-
tions and produces sound with a level of 103 dB at a 
distance of 1.60 m from its center. (a) Find its sound 
power output. (b) Find the efficiency of the speaker, 
that is, the fraction of input power that is converted 
into useful output power.

	53.	An interstate highway has been built through a neigh-
borhood in a city. In the afternoon, the sound level 
in an apartment in the neighborhood is 80.0 dB as 
100 cars pass outside the window every minute. Late 
at night, the traffic flow is only five cars per minute. 
What is the average late-night sound level?

	54.	 A train whistle ( f 5 400 Hz) sounds higher or lower 
in frequency depending on whether it approaches or 
recedes. (a) Prove that the difference in frequency 
between the approaching and receding train whistle is 

Df 5
2u/v

1 2 u2/v 2 f

		  where u is the speed of the train and v is the speed of 
sound. (b) Calculate this difference for a train moving 
at a speed of 130 km/h. Take the speed of sound in air 
to be 340 m/s.

	55.	An ultrasonic tape measure uses frequencies above  
20 MHz to determine dimensions of structures such as 
buildings. It does so by emitting a pulse of ultrasound 
into air and then measuring the time interval for an 
echo to return from a reflecting surface whose dis-
tance away is to be measured. The distance is displayed 
as a digital readout. For a tape measure that emits a 
pulse of ultrasound with a frequency of 22.0 MHz,  
(a) what is the distance to an object from which the echo 
pulse returns after 24.0 ms when the air temperature is 
26°C? (b) What should be the duration of the emitted 
pulse if it is to include ten cycles of the ultrasonic wave? 
(c) What is the spatial length of such a pulse?

	56.	The tensile stress in a thick copper bar is 99.5% of its 
elastic breaking point of 13.0 3 1010 N/m2. If a 500-Hz  
sound wave is transmitted through the material, (a) what 
displacement amplitude will cause the bar to break?  
(b) What is the maximum speed of the elements of 
copper at this moment? (c) What is the sound intensity 
in the bar?

the siren is 480 Hz. Determine the ambulance’s speed 
from these observations.

	46.	Review. A tuning fork vibrating at 512 Hz falls from 
rest and accelerates at 9.80 m/s2. How far below the 
point of release is the tuning fork when waves of fre-
quency 485 Hz reach the release point?

	47.	 A supersonic jet traveling at Mach 3.00 at an altitude 
of h 5 20 000 m is directly over a person at time t 5 0 
as shown in Figure P17.47. Assume the average speed 
of sound in air is 335 m/s over the path of the sound.  
(a) At what time will the person encounter the shock 
wave due to the sound emitted at t 5 0? (b) Where will 
the plane be when this shock wave is heard?

h

t � 0 t � ?

Observer
Observer hears
the “boom”

h

x

uu

a b

Figure P17.47

Additional Problems

	48.	A bat (Fig. P17.48) can 
detect very small objects, 
such as an insect whose 
length is approximately 
equal to one wavelength 
of the sound the bat 
makes. If a bat emits 
chirps at a frequency of 
60.0 kHz and the speed 
of sound in air is 340 m/s,  
what is the smallest insect 
the bat can detect?

	49.	Some studies suggest 
that the upper frequency 
limit of hearing is deter-
mined by the diameter of 
the eardrum. The diam-
eter of the eardrum is approximately equal to half the 
wavelength of the sound wave at this upper limit. If  
the relationship holds exactly, what is the diameter of 
the eardrum of a person capable of hearing 20 000 Hz?  
(Assume a body temperature of 37.0°C.)

	50.	The highest note written for a singer in a published 
score was F-sharp above high C, 1.480 kHz, for Zerbi-
netta in the original version of Richard Strauss’s opera 
Ariadne auf Naxos. (a) Find the wavelength of this sound 
in air. (b) Suppose people in the fourth row of seats 
hear this note with level 81.0 dB. Find the displace-
ment amplitude of the sound. (c) What If? In response 

M
AMT

Figure P17.48  Problems 
48 and 63.
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530	C hapter 17  Sound Waves

together once. The sound pulse you produce has no 
definite frequency and no wavelength. The sound you 
hear reflected from the bleachers has an identifiable 
frequency and may remind you of a short toot on a 
trumpet, buzzer, or kazoo. (a) Explain what accounts 
for this sound. Compute order-of-magnitude esti-
mates for (b) the frequency, (c) the wavelength, and 
(d) the duration of the sound on the basis of data you 
specify.

	61.	 To measure her speed, a skydiver carries a buzzer emit-
ting a steady tone at 1 800 Hz. A friend on the ground 
at the landing site directly below listens to the ampli-
fied sound he receives. Assume the air is calm and 
the speed of sound is independent of altitude. While 
the skydiver is falling at terminal speed, her friend 
on the ground receives waves of frequency 2 150 Hz.  
(a) What is the skydiver’s speed of descent? (b) What 
If? Suppose the skydiver can hear the sound of the 
buzzer reflected from the ground. What frequency 
does she receive?

	62.	Spherical waves of wavelength 45.0 cm propagate out-
ward from a point source. (a) Explain how the intensity 
at a distance of 240 cm compares with the intensity at a 
distance of 60.0 cm. (b) Explain how the amplitude at 
a distance of 240 cm compares with the amplitude at a 
distance of 60.0 cm. (c) Explain how the phase of the 
wave at a distance of 240 cm compares with the phase 
at 60.0 cm at the same moment.

	63.	A bat (Fig. P17.48), moving at 5.00 m/s, is chasing a 
flying insect. If the bat emits a 40.0-kHz chirp and 
receives back an echo at 40.4 kHz, (a) what is the speed 
of the insect? (b) Will the bat be able to catch the 
insect? Explain.

	64.	Two ships are moving along a line due east (Fig. P17.64). 
The trailing vessel has a speed relative to a land-based 
observation point of v1 5 64.0 km/h, and the lead-
ing ship has a speed of v2 5 45.0 km/h relative to that 
point. The two ships are in a region of the ocean where 
the current is moving uniformly due west at vcurrent 5 
10.0 km/h. The trailing ship transmits a sonar signal 
at a frequency of 1 200.0 Hz through the water. What 
frequency is monitored by the leading ship?

v1

vcurrent

v2

Figure P17.64

	65.	A police car is traveling east at 40.0 m/s along a straight 
road, overtaking a car ahead of it moving east at  
30.0 m/s. The police car has a malfunctioning siren 
that is stuck at 1 000 Hz. (a) What would be the wave-
length in air of the siren sound if the police car were at 
rest? (b) What is the wavelength in front of the police 
car? (c) What is it behind the police car? (d) What is 
the frequency heard by the driver being chased?

M

Q/C

Q/C

	57.	 Review. A 150-g glider moves at v1 5 2.30 m/s on an 
air track toward an originally stationary 200-g glider 
as shown in Figure P17.57. The gliders undergo a com-
pletely inelastic collision and latch together over a time 
interval of 7.00 ms. A student suggests roughly half 
the decrease in mechanical energy of the two-glider 
system is transferred to the environment by sound. Is 
this suggestion reasonable? To evaluate the idea, find 
the implied sound level at a position 0.800 m from the 
gliders. If the student’s idea is unreasonable, suggest a 
better idea.

v�0

200 g150 g

1v
Before the collision

Latches

Figure P17.57

	58.	Consider the following wave function in SI units:

DP 1r, t 2 5 a25.0
r

b sin 11.36r 2 2 030t 2

		  Explain how this wave function can apply to a wave 
radiating from a small source, with r being the radial 
distance from the center of the source to any point out-
side the source. Give the most detailed description of 
the wave that you can. Include answers to such ques-
tions as the following and give representative values for 
any quantities that can be evaluated. (a) Does the wave 
move more toward the right or the left? (b) As it moves 
away from the source, what happens to its amplitude? 
(c) Its speed? (d) Its frequency? (e) Its wavelength?  
(f) Its power? (g) Its intensity?

	59.	Review. For a certain type of steel, stress is always  
proportional to strain with Young’s modulus 20 3  
1010 N/m2. The steel has density 7.86 3 103 kg/m3. It 
will fail by bending permanently if subjected to com-
pressive stress greater than its yield strength sy 5  
400 MPa. A rod 80.0 cm long, made of this steel, is 
fired at 12.0 m/s straight at a very hard wall. (a) The 
speed of a one-dimensional compressional wave mov-
ing along the rod is given by v 5 !Y/r, where Y 
is Young’s modulus for the rod and r is the density. 
Calculate this speed. (b) After the front end of the 
rod hits the wall and stops, the back end of the rod 
keeps moving as described by Newton’s first law until 
it is stopped by excess pressure in a sound wave mov-
ing back through the rod. What time interval elapses 
before the back end of the rod receives the message 
that it should stop? (c) How far has the back end of the 
rod moved in this time interval? Find (d) the strain 
and (e) the stress in the rod. (f) If it is not to fail, what 
is the maximum impact speed a rod can have in terms 
of sy, Y, and r?

	60.	A large set of unoccupied football bleachers has solid 
seats and risers. You stand on the field in front of 
the bleachers and sharply clap two wooden boards 
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from an upwind position so that she is moving in the 
direction in which the wind is blowing and (d) if she 
is approaching from a downwind position and moving 
against the wind?

Challenge Problems

	71.	The Doppler equation presented in the text is valid 
when the motion between the observer and the 
source occurs on a straight line so that the source and 
observer are moving either directly toward or directly 
away from each other. If this restriction is relaxed, one 
must use the more general Doppler equation

f r 5 av 1 vO cos uO

v 2 vS cos uS
b f

		  where uO and uS are defined in Figure P17.71a. Use 
the preceding equation to solve the following prob-
lem. A train moves at a constant speed of v 5 25.0 m/s 
toward the intersection shown in Figure P17.71b. A car 
is stopped near the crossing, 30.0 m from the tracks. 
The train’s horn emits a frequency of 500 Hz when the 
train is 40.0 m from the intersection. (a) What is the 
frequency heard by the passengers in the car? (b) If 
the train emits this sound continuously and the car is 
stationary at this position long before the train arrives 
until long after it leaves, what range of frequencies do 
passengers in the car hear? (c) Suppose the car is fool-
ishly trying to beat the train to the intersection and is 
traveling at 40.0 m/s toward the tracks. When the car is 
30.0 m from the tracks and the train is 40.0 m from the 
intersection, what is the frequency heard by the pas-
sengers in the car now?

vS
S

vO
S

uS

uO

a b

O

S
vS

Figure P17.71

	72.	In Section 17.2, we derived the speed of sound in a gas 
using the impulse–momentum theorem applied to the 
cylinder of gas in Figure 17.5. Let us find the speed 
of sound in a gas using a different approach based on 
the element of gas in Figure 17.3. Proceed as follows. 
(a) Draw a force diagram for this element showing the 
forces exerted on the left and right surfaces due to 
the pressure of the gas on either side of the element.  
(b) By applying Newton’s second law to the element, 
show that

2
' 1DP 2
'x

A Dx 5 rA Dx 
'2s
't 2

S

	66.	The speed of a one-dimensional compressional wave 
traveling along a thin copper rod is 3.56 km/s. The rod 
is given a sharp hammer blow at one end. A listener 
at the far end of the rod hears the sound twice, trans-
mitted through the metal and through air, with a time 
interval Dt between the two pulses. (a) Which sound 
arrives first? (b) Find the length of the rod as a func-
tion of Dt. (c) Find the length of the rod if Dt 5 127 ms. 
(d) Imagine that the copper rod is replaced by another 
material through which the speed of sound is vr .  
What is the length of the rod in terms of t and vr ? 
(e) Would the answer to part (d) go to a well-defined 
limit as the speed of sound in the rod goes to infinity? 
Explain your answer.

	67.	 A large meteoroid enters the Earth’s atmosphere at a 
speed of 20.0 km/s and is not significantly slowed 
before entering the ocean. (a) What is the Mach angle 
of the shock wave from the meteoroid in the lower 
atmosphere? (b) If we assume the meteoroid survives 
the impact with the ocean surface, what is the (initial) 
Mach angle of the shock wave the meteoroid produces 
in the water?

	68.	Three metal rods are 
located relative to each 
other as shown in Fig-
ure P17.68, where L3 5 
L1 1 L2. The speed of 
sound in a rod is given 
by v 5 !Y/r, where Y 
is Young’s modulus for the rod and r is the density. Val-
ues of density and Young’s modulus for the three mate-
rials are r1 5 2.70 3 103 kg/m3, Y1 5 7.00 3 1010 N/m2,  
r2 5 11.3 3 103 kg/m3, Y2 5 1.60 3 1010 N/m2, r3 5  
8.80 3 103 kg/m3, Y3 5 11.0 3 1010 N/m2. If L3 5 1.50 m,  
what must the ratio L1/L2 be if a sound wave is to travel 
the length of rods 1 and 2 in the same time interval 
required for the wave to travel the length of rod 3?

	69.	With particular experimental methods, it is possible to 
produce and observe in a long, thin rod both a trans-
verse wave whose speed depends primarily on ten-
sion in the rod and a longitudinal wave whose speed 
is determined by Young’s modulus and the density of 
the material according to the expression v 5 !Y/r. 
The transverse wave can be modeled as a wave in a 
stretched string. A particular metal rod is 150 cm long 
and has a radius of 0.200 cm and a mass of 50.9  g. 
Young’s modulus for the material is 6.80 3 1010 N/m2.  
What must the tension in the rod be if the ratio of the 
speed of longitudinal waves to the speed of transverse 
waves is 8.00?

	70.	A siren mounted on the roof of a firehouse emits 
sound at a frequency of 900 Hz. A steady wind is blow-
ing with a speed of 15.0 m/s. Taking the speed of 
sound in calm air to be 343 m/s, find the wavelength 
of the sound (a) upwind of the siren and (b) down-
wind of the siren. Firefighters are approaching the 
siren from various directions at 15.0 m/s. What fre-
quency does a firefighter hear (c) if she is approaching 

Q/C

3
1 2

L3

L2L1

Figure P17.68
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532	C hapter 17  Sound Waves

	73.	Equation 17.13 states that at distance r away from a 
point source with power (Power)avg, the wave intensity is

I 5
1Power 2 avg

4pr 2

		  Study Figure 17.10 and prove that at distance r straight 
in front of a point source with power (Power)avg moving 
with constant speed vS the wave intensity is

I 5
1Power 2 avg

4pr 2 av 2 vS

v
b

S
		  (c) By substituting DP 5 2(B 's/'x) (Eq. 17.3), derive 

the following wave equation for sound:

B
r

  
'2s
'x 2 5

'2s
't 2

		  (d) To a mathematical physicist, this equation demon-
strates the existence of sound waves and determines their 
speed. As a physics student, you must take another step 
or two. Substitute into the wave equation the trial solu-
tion s(x, t) 5 smax cos (kx 2 vt). Show that this function 
satisfies the wave equation, provided v/k 5 v 5 !B/r.
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Blues master B. B. King takes 
advantage of standing waves on 
strings. He changes to higher notes 
on the guitar by pushing the strings 
against the frets on the fingerboard, 
shortening the lengths of the 
portions of the strings that vibrate. 
(AP Photo/Danny Moloshok)
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		  533

The wave model was introduced in the previous two chapters. We have seen that 
waves are very different from particles. A particle is of zero size, whereas a wave has a 
characteristic size, its wavelength. Another important difference between waves and par-
ticles is that we can explore the possibility of two or more waves combining at one point 
in the same medium. Particles can be combined to form extended objects, but the particles 
must be at different locations. In contrast, two waves can both be present at the same loca-
tion. The ramifications of this possibility are explored in this chapter.
	 When waves are combined in systems with boundary conditions, only certain allowed 
frequencies can exist and we say the frequencies are quantized. Quantization is a notion 
that is at the heart of quantum mechanics, a subject introduced formally in Chapter 40. 
There we show that analysis of waves under boundary conditions explains many of the 
quantum phenomena. In this chapter, we use quantization to understand the behavior of the 
wide array of musical instruments that are based on strings and air columns.
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534	C hapter 18  Superposition and Standing Waves

	 We also consider the combination of waves having different frequencies. When two 
sound waves having nearly the same frequency interfere, we hear variations in the loudness 
called beats. Finally, we discuss how any nonsinusoidal periodic wave can be described as a 
sum of sine and cosine functions.

18.1	 Analysis Model: Waves in Interference
Many interesting wave phenomena in nature cannot be described by a single travel-
ing wave. Instead, one must analyze these phenomena in terms of a combination of 
traveling waves. As noted in the introduction, waves have a remarkable difference 
from particles in that waves can be combined at the same location in space. To ana-
lyze such wave combinations, we make use of the superposition principle:

If two or more traveling waves are moving through a medium, the resultant 
value of the wave function at any point is the algebraic sum of the values of 
the wave functions of the individual waves.

Waves that obey this principle are called linear waves. (See Section 16.6.) In the case 
of mechanical waves, linear waves are generally characterized by having amplitudes 
much smaller than their wavelengths. Waves that violate the superposition prin-
ciple are called nonlinear waves and are often characterized by large amplitudes. In 
this book, we deal only with linear waves.
	 One consequence of the superposition principle is that two traveling waves can 
pass through each other without being destroyed or even altered. For instance, 
when two pebbles are thrown into a pond and hit the surface at different locations, 
the expanding circular surface waves from the two locations simply pass through 
each other with no permanent effect. The resulting complex pattern can be viewed 
as two independent sets of expanding circles.
	 Figure 18.1 is a pictorial representation of the superposition of two pulses. The 
wave function for the pulse moving to the right is y1, and the wave function for the 
pulse moving to the left is y2. The pulses have the same speed but different shapes, 
and the displacement of the elements of the medium is in the positive y direction 
for both pulses. When the waves overlap (Fig. 18.1b), the wave function for the 
resulting complex wave is given by y1 1 y2. When the crests of the pulses coincide 
(Fig. 18.1c), the resulting wave given by y1 1 y2 has a larger amplitude than that of 
the individual pulses. The two pulses finally separate and continue moving in their 
original directions (Fig. 18.1d). Notice that the pulse shapes remain unchanged 
after the interaction, as if the two pulses had never met!
	 The combination of separate waves in the same region of space to produce a 
resultant wave is called interference. For the two pulses shown in Figure 18.1, the 
displacement of the elements of the medium is in the positive y direction for both 
pulses, and the resultant pulse (created when the individual pulses overlap) exhib-
its an amplitude greater than that of either individual pulse. Because the displace-
ments caused by the two pulses are in the same direction, we refer to their superpo-
sition as constructive interference.
	 Now consider two pulses traveling in opposite directions on a taut string where 
one pulse is inverted relative to the other as illustrated in Figure 18.2. When these 
pulses begin to overlap, the resultant pulse is given by y1 1 y2, but the values of the 
function y2 are negative. Again, the two pulses pass through each other; because 
the displacements caused by the two pulses are in opposite directions, however, we 
refer to their superposition as destructive interference.
	 The superposition principle is the centerpiece of the analysis model called 
waves in interference. In many situations, both in acoustics and optics, waves com-
bine according to this principle and exhibit interesting phenomena with practical 
applications.

Superposition principle 

Constructive interference 

Destructive interference 

Pitfall Prevention 18.1
Do Waves Actually Interfere?  In 
popular usage, the term interfere 
implies that an agent affects a 
situation in some way so as to pre-
clude something from happening. 
For example, in American foot-
ball, pass interference means that 
a defending player has affected 
the receiver so that the receiver 
is unable to catch the ball. This 
usage is very different from its 
use in physics, where waves pass 
through each other and interfere, 
but do not affect each other in 
any way. In physics, interference 
is similar to the notion of combina-
tion as described in this chapter.www.as
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	 18.1  Analysis Model: Waves in Interference	 535

Q	 uick Quiz 18.1 ​ Two pulses move in opposite directions on a string and are iden-
tical in shape except that one has positive displacements of the elements of the 
string and the other has negative displacements. At the moment the two pulses 
completely overlap on the string, what happens? (a) The energy associated with 
the pulses has disappeared. (b) The string is not moving. (c) The string forms a 
straight line. (d) The pulses have vanished and will not reappear.

Superposition of Sinusoidal Waves
Let us now apply the principle of superposition to two sinusoidal waves traveling in 
the same direction in a linear medium. If the two waves are traveling to the right 
and have the same frequency, wavelength, and amplitude but differ in phase, we 
can express their individual wave functions as

y1 5 A sin (kx 2 vt) ​ ​  y2 5 A sin (kx 2 vt 1 f)

where, as usual, k 5 2p/l, v 5 2pf, and f is the phase constant as discussed in Sec-
tion 16.2. Hence, the resultant wave function y is

y 5 y1 1 y2 5 A [sin (kx 2 vt) 1  sin (kx 2 vt 1 f)]

To simplify this expression, we use the trigonometric identity

sin a 1 sin b 5 2 cos aa 2 b
2

b sin aa 1 b
2

b

b

c

d

a

y2 y 1

y 1 y2

y 1 y2

y2y 1





When the pulses overlap, the 
wave function is the sum of 
the individual wave functions.

When the crests of the two 
pulses align, the amplitude is 
the sum of the individual 
amplitudes.

When the pulses no longer 
overlap, they have not been 
permanently affected by the 
interference.

Figure 18.1  Constructive interfer-
ence. Two positive pulses travel on 
a stretched string in opposite direc-
tions and overlap.

y 1

y 2

y 2
y 1

y 1 y 2

y 1 y 2

When the pulses overlap, the 
wave function is the sum of 
the individual wave functions.

When the crests of the two 
pulses align, the amplitude is 
the difference between the 
individual amplitudes.

When the pulses no longer 
overlap, they have not been 
permanently affected by the 
interference.

b

c

d

a

Figure 18.2  Destructive interfer-
ence. Two pulses, one positive and 
one negative, travel on a stretched 
string in opposite directions and 
overlap.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



536	C hapter 18  Superposition and Standing Waves

Letting a 5 kx 2 vt and b 5 kx 2 vt 1 f, we find that the resultant wave function y 
reduces to

y 5 2A cos af

2
b sin akx 2 vt 1

f

2
b

This result has several important features. The resultant wave function y also is 
sinusoidal and has the same frequency and wavelength as the individual waves 
because the sine function incorporates the same values of k and v that appear in 
the original wave functions. The amplitude of the resultant wave is 2A cos (f/2), 
and its phase constant is f/2. If the phase constant f of the original wave equals 0,  
then cos (f/2) 5 cos 0 5 1 and the amplitude of the resultant wave is 2A, twice the 
amplitude of either individual wave. In this case, the crests of the two waves are at 
the same locations in space and the waves are said to be everywhere in phase and 
therefore interfere constructively. The individual waves y1 and y2 combine to form 
the red-brown curve y of amplitude 2A shown in Figure 18.3a. Because the indi-
vidual waves are in phase, they are indistinguishable in Figure 18.3a, where they 
appear as a single blue curve. In general, constructive interference occurs when 
cos (f/2) 5 61. That is true, for example, when f 5 0, 2p, 4p, . . . rad, that is, when 
f is an even multiple of p.
	 When f is equal to p rad or to any odd multiple of p, then cos (f/2) 5 cos (p/2) 5 
0 and the crests of one wave occur at the same positions as the troughs of the sec-
ond wave (Fig. 18.3b). Therefore, as a consequence of destructive interference, the 
resultant wave has zero amplitude everywhere as shown by the straight red-brown 
line in Figure 18.3b. Finally, when the phase constant has an arbitrary value other 
than 0 or an integer multiple of p rad (Fig. 18.3c), the resultant wave has an ampli-
tude whose value is somewhere between 0 and 2A.
	 In the more general case in which the waves have the same wavelength but dif-
ferent amplitudes, the results are similar with the following exceptions. In the in-
phase case, the amplitude of the resultant wave is not twice that of a single wave, 
but rather is the sum of the amplitudes of the two waves. When the waves are p rad 
out of phase, they do not completely cancel as in Figure 18.3b. The result is a wave 
whose amplitude is the difference in the amplitudes of the individual waves.

Interference of Sound Waves
One simple device for demonstrating interference of sound waves is illustrated in 
Figure 18.4. Sound from a loudspeaker S is sent into a tube at point P, where there is 

Resultant of two traveling  
sinusoidal waves

y

x

x

x

y
y1 y2 y

y y y1 y2

5 60°

y

f

5 180°f

5 0°f

The individual waves are in phase 
and therefore indistinguishable.

Constructive interference: the 
amplitudes add.

The individual waves are 180° out 
of phase.

Destructive interference: the 
waves cancel.

This intermediate result is neither 
constructive nor destructive.

b

c

a

Figure 18.3  The superposition 
of two identical waves y1 and y2 
(blue and green, respectively) to 
yield a resultant wave (red-brown).

A sound wave from the speaker 
(S) propagates into the tube and 
splits into two parts at point P.

Path length r1

Path length r2

R

S

P

The two waves, which combine 
at the opposite side, are 
detected at the receiver (R).

Figure 18.4  ​An acoustical 
system for demonstrating interfer-
ence of sound waves. The upper 
path length r2 can be varied by 
sliding the upper section.
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a T-shaped junction. Half the sound energy travels in one direction, and half travels 
in the opposite direction. Therefore, the sound waves that reach the receiver R can 
travel along either of the two paths. The distance along any path from speaker to 
receiver is called the path length r. The lower path length r1 is fixed, but the upper 
path length r2 can be varied by sliding the U-shaped tube, which is similar to that 
on a slide trombone. When the difference in the path lengths Dr 5 |r2 2 r1| is either 
zero or some integer multiple of the wavelength l (that is, Dr 5 nl, where n 5  
0, 1, 2, 3, . . .), the two waves reaching the receiver at any instant are in phase and 
interfere constructively as shown in Figure 18.3a. For this case, a maximum in the 
sound intensity is detected at the receiver. If the path length r2 is adjusted such that 
the path difference Dr 5 l/2, 3l/2, . . . , nl/2 (for n odd), the two waves are exactly 
p rad, or 180°, out of phase at the receiver and hence cancel each other. In this case 
of destructive interference, no sound is detected at the receiver. This simple experi-
ment demonstrates that a phase difference may arise between two waves generated 
by the same source when they travel along paths of unequal lengths. This impor-
tant phenomenon will be indispensable in our investigation of the interference of 
light waves in Chapter 37.

Example 18.1	     Two Speakers Driven by the Same Source 

Two identical loudspeakers placed 3.00 m apart are driven by the same oscillator (Fig. 18.5). A listener is originally at 
point O, located 8.00 m from the center of the line connecting the two speakers. The listener then moves to point P, 
which is a perpendicular distance 0.350 m from O, and she experiences the first minimum in sound intensity. What is 
the frequency of the oscillator?

Conceptualize  ​In Figure 18.4, a sound wave enters a 
tube and is then acoustically split into two different paths 
before recombining at the other end. In this example, 
a signal representing the sound is electrically split and 
sent to two different loudspeakers. After leaving the 
speakers, the sound waves recombine at the position of 
the listener. Despite the difference in how the splitting 
occurs, the path difference discussion related to Figure 
18.4 can be applied here.

Categorize  ​Because the sound waves from two separate sources combine, we apply the waves in interference analysis 
model.

AM

S o l u ti  o n

3.00 m

8.00 m 

r2

8.00 m 

r1 0.350 m 

1.85 m 

P
1.15 m 

O

Figure 18.5  ​(Example 18.1) Two identical loudspeakers emit 
sound waves to a listener at P.

continued

Imagine two waves traveling 
in the same location through 
a medium. The displacement 
of elements of the medium is 
affected by both waves. Accord-
ing to the principle of superpo-
sition, the displacement is the 
sum of the individual displace-
ments that would be caused by 
each wave. When the waves are in phase, constructive interference 
occurs and the resultant displacement is larger than the individual 
displacements. Destructive interference occurs when the waves are 
out of phase. 

Analysis Model	    Waves in Interference

Examples: 

•	 a piano tuner listens to a piano string 
and a tuning fork vibrating together 
and notices beats (Section 18.7)

•	 light waves from two coherent sources 
combine to form an interference pat-
tern on a screen (Chapter 37)

•	 a thin film of oil on top of water shows 
swirls of color (Chapter 37)

•	 x-rays passing through a crystalline solid 
combine to form a Laue pattern  
(Chapter 38)

y1  y2

y1  y2

Destructive
interference

Constructive
interference

y1 y2

y2
y1
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538	C hapter 18  Superposition and Standing Waves

What if the speakers were connected out of phase? What happens at point P in Figure 18.5?

Answer  ​In this situation, the path difference of l/2 combines with a phase difference of l/2 due to the incorrect wir-
ing to give a full phase difference of l. As a result, the waves are in phase and there is a maximum intensity at point P.

What If ?

To obtain the oscillator frequency, use Equation 16.12, 
v 5 lf, where v is the speed of sound in air, 343 m/s: f 5

v
l

5
343 m/s
0.26 m

5   1.3 kHz

Finalize  ​This example enables us to understand why the 
speaker wires in a stereo system should be connected 
properly. When connected the wrong way—that is, when 
the positive (or red) wire is connected to the negative 
(or black) terminal on one of the speakers and the other 
is correctly wired—the speakers are said to be “out of 
phase,” with one speaker moving outward while the other 
moves inward. As a consequence, the sound wave com-

ing from one speaker destructively interferes with the 
wave coming from the other at point O in Figure 18.5. A 
rarefaction region due to one speaker is superposed on 
a compression region from the other speaker. Although 
the two sounds probably do not completely cancel each 
other (because the left and right stereo signals are usu-
ally not identical), a substantial loss of sound quality 
occurs at point O.

18.2	 Standing Waves
The sound waves from the pair of loudspeakers in Example 18.1 leave the speakers 
in the forward direction, and we considered interference at a point in front of the 
speakers. Suppose we turn the speakers so that they face each other and then have 
them emit sound of the same frequency and amplitude. In this situation, two identi-
cal waves travel in opposite directions in the same medium as in Figure 18.6. These 
waves combine in accordance with the waves in interference model.
	 We can analyze such a situation by considering wave functions for two transverse 
sinusoidal waves having the same amplitude, frequency, and wavelength but travel-
ing in opposite directions in the same medium:

y1 5 A sin (kx 2 vt) ​ ​  y2 5 A sin (kx 1 vt)

where y1 represents a wave traveling in the positive x direction and y2 represents one 
traveling in the negative x direction. Adding these two functions gives the resultant 
wave function y:

y 5 y1 1 y2 5 A sin (kx 2 vt) 1 A sin (kx 1 vt)

When we use the trigonometric identity sin (a 6 b) 5 sin a cos b 6 cos a sin b, this 
expression reduces to

	 y 5 (2A sin kx) cos vt	 (18.1)

	 Equation 18.1 represents the wave function of a standing wave. A standing wave 
such as the one on a string shown in Figure 18.7 is an oscillation pattern with a sta-
tionary outline that results from the superposition of two identical waves traveling in 
opposite directions.

vS

vS

Figure 18.6  ​Two identical loud-
speakers emit sound waves toward 
each other. When they overlap, 
identical waves traveling in opposite 
directions will combine to form 
standing waves.

From the shaded triangles, find the path lengths from 
the speakers to the listener:

 r 1 5 "18.00 m 22 1 11.15 m 22 5 8.08 m

 r2 5 "18.00 m 22 1 11.85 m 22 5 8.21 m

Hence, the path difference is r2 2 r1 5 0.13 m. Because this path difference must equal l/2 for the first minimum,  
l 5 0.26 m.

Analyze  ​Figure 18.5 shows the physical arrangement of the speakers, along with two shaded right triangles that can be 
drawn on the basis of the lengths described in the problem. The first minimum occurs when the two waves reaching 
the listener at point P are 180° out of phase, in other words, when their path difference Dr equals l/2.

	

▸ 18.1 c o n t i n u e d
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	 18.2  Standing Waves	 539

	 Notice that Equation 18.1 does not contain a function of kx 2 vt. Therefore, it 
is not an expression for a single traveling wave. When you observe a standing wave, 
there is no sense of motion in the direction of propagation of either original wave. 
Comparing Equation 18.1 with Equation 15.6, we see that it describes a special kind 
of simple harmonic motion. Every element of the medium oscillates in simple har-
monic motion with the same angular frequency v (according to the cos vt factor 
in the equation). The amplitude of the simple harmonic motion of a given element 
(given by the factor 2A sin kx, the coefficient of the cosine function) depends on 
the location x of the element in the medium, however.
	 If you can find a noncordless telephone with a coiled cord connecting the hand-
set to the base unit, you can see the difference between a standing wave and a trav-
eling wave. Stretch the coiled cord out and flick it with a finger. You will see a pulse 
traveling along the cord. Now shake the handset up and down and adjust your shak-
ing frequency until every coil on the cord is moving up at the same time and then 
down. That is a standing wave, formed from the combination of waves moving away 
from your hand and reflected from the base unit toward your hand. Notice that 
there is no sense of traveling along the cord like there was for the pulse. You only 
see up-and-down motion of the elements of the cord. 
	 Equation 18.1 shows that the amplitude of the simple harmonic motion of an 
element of the medium has a minimum value of zero when x satisfies the condition 
sin kx 5 0, that is, when

kx 5 0, p, 2p, 3p, . . .

Because k 5 2p/l, these values for kx give

	 x 5 0, 
l

2
, l, 

3l

2
, c 5

nl

2
  n 5 0, 1, 2, 3, c	 (18.2)

These points of zero amplitude are called nodes.
	 The element of the medium with the greatest possible displacement from equi-
librium has an amplitude of 2A, which we define as the amplitude of the standing 
wave. The positions in the medium at which this maximum displacement occurs 
are called antinodes. The antinodes are located at positions for which the coordi-
nate x satisfies the condition sin kx 5 61, that is, when

kx 5
p

2
, 

3p

2
, 

5p

2
, c

Therefore, the positions of the antinodes are given by

	 x 5
l

4
, 

3l

4
, 

5l

4
, c 5

nl

4
 n 5 1, 3, 5, c	 (18.3)

WW Positions of nodes

WW Positions of antinodes

Figure 18.7  ​Multiflash pho-
tograph of a standing wave on a 
string. The time behavior of the 
vertical displacement from equi-
librium of an individual element 
of the string is given by cos vt. 
That is, each element vibrates at 
an angular frequency v.Antinode Antinode

Node

2A sin kx

Node

The amplitude of the vertical oscillation of any element of the string 
depends on the horizontal position of the element. Each element 
vibrates within the confines of the envelope function 2A sin kx.
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Pitfall Prevention 18.2
Three Types of Amplitude  We 
need to distinguish carefully here 
between the amplitude of the 
individual waves, which is A, and 
the amplitude of the simple har-
monic motion of the elements of 
the medium, which is 2A sin kx. A 
given element in a standing wave 
vibrates within the constraints of 
the envelope function 2A sin kx, 
where x is that element’s position 
in the medium. Such vibration is 
in contrast to traveling sinusoidal 
waves, in which all elements oscil-
late with the same amplitude and 
the same frequency and the ampli-
tude A of the wave is the same 
as the amplitude A of the simple 
harmonic motion of the elements. 
Furthermore, we can identify the 
amplitude of the standing wave 
as 2A.
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540	C hapter 18  Superposition and Standing Waves

	 Two nodes and two antinodes are labeled in the standing wave in Figure 18.7. 
The light blue curve labeled 2A sin kx in Figure 18.7 represents one wavelength of 
the traveling waves that combine to form the standing wave. Figure 18.7 and Equa-
tions 18.2 and 18.3 provide the following important features of the locations of 
nodes and antinodes:

The distance between adjacent antinodes is equal to l/2.
The distance between adjacent nodes is equal to l/2.
The distance between a node and an adjacent antinode is l/4.

	 Wave patterns of the elements of the medium produced at various times by two 
transverse traveling waves moving in opposite directions are shown in Figure 18.8. 
The blue and green curves are the wave patterns for the individual traveling waves, 
and the red-brown curves are the wave patterns for the resultant standing wave. At  
t 5 0 (Fig. 18.8a), the two traveling waves are in phase, giving a wave pattern in 
which each element of the medium is at rest and experiencing its maximum dis-
placement from equilibrium. One-quarter of a period later, at t 5 T/4 (Fig. 18.8b), 
the traveling waves have moved one-fourth of a wavelength (one to the right and 
the other to the left). At this time, the traveling waves are out of phase, and each 
element of the medium is passing through the equilibrium position in its simple 
harmonic motion. The result is zero displacement for elements at all values of x; 
that is, the wave pattern is a straight line. At t 5 T/2 (Fig. 18.8c), the traveling 
waves are again in phase, producing a wave pattern that is inverted relative to the 
t 5 0 pattern. In the standing wave, the elements of the medium alternate in time 
between the extremes shown in Figures 18.8a and 18.8c.

Q	 uick Quiz 18.2 ​ Consider the waves in Figure 18.8 to be waves on a stretched 
string. Define the velocity of elements of the string as positive if they are moving 
upward in the figure. (i) At the moment the string has the shape shown by the 
red-brown curve in Figure 18.8a, what is the instantaneous velocity of elements 
along the string? (a) zero for all elements (b) positive for all elements (c) nega-
tive for all elements (d) varies with the position of the element (ii) From the same 
choices, at the moment the string has the shape shown by the red-brown curve in 
Figure 18.8b, what is the instantaneous velocity of elements along the string?

 t = 0

y1

y2

y
N N N N N

AA

 t = T/4

y2

y1

y

t = T/2

y1

A A

y2

y
N N N N N

A A

A A

a b c

Figure 18.8  Standing-wave  
patterns produced at various times 
by two waves of equal amplitude 
traveling in opposite directions. 
For the resultant wave y, the nodes 
(N) are points of zero displace-
ment and the antinodes (A) are 
points of maximum displacement.

Example 18.2	     Formation of a Standing Wave

Two waves traveling in opposite directions produce a standing wave. The individual wave functions are

y1 5 4.0 sin (3.0x 2 2.0t)

y2 5 4.0 sin (3.0x 1 2.0t)

where x and y are measured in centimeters and t is in seconds.

(A)  ​Find the amplitude of the simple harmonic motion of the element of the medium located at x 5 2.3 cm.
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	 18.3  Analysis Model: Waves Under Boundary Conditions	 541

18.3	 �Analysis Model: Waves Under  
Boundary Conditions

Consider a string of length L fixed at both ends as shown in Figure 18.9. We will use 
this system as a model for a guitar string or piano string. Waves can travel in both 
directions on the string. Therefore, standing waves can be set up in the string by a 
continuous superposition of waves incident on and reflected from the ends. Notice 
that there is a boundary condition for the waves on the string: because the ends of 
the string are fixed, they must necessarily have zero displacement and are there-
fore nodes by definition. The condition that both ends of the string must be nodes 
fixes the wavelength of the standing wave on the string according to Equation 18.2, 
which, in turn, determines the frequency of the wave. The boundary condition 
results in the string having a number of discrete natural patterns of oscillation, 
called normal modes, each of which has a characteristic frequency that is easily cal-
culated. This situation in which only certain frequencies of oscillation are allowed 
is called quantization. Quantization is a common occurrence when waves are sub-
ject to boundary conditions and is a central feature in our discussions of quantum 
physics in the extended version of this text. Notice in Figure 18.8 that there are 
no boundary conditions, so standing waves of any frequency can be established; 
there is no quantization without boundary conditions. Because boundary condi-
tions occur so often for waves, we identify an analysis model called waves under 
boundary conditions for the discussion that follows.
	 The normal modes of oscillation for the string in Figure 18.9 can be described 
by imposing the boundary conditions that the ends be nodes and that the nodes be 
separated by one-half of a wavelength with antinodes halfway between the nodes. 
The first normal mode that is consistent with these requirements, shown in Figure 
18.10a (page 542), has nodes at its ends and one antinode in the middle. This normal  

From the equations for the waves, we see that A 5 4.0 cm, 
k 5 3.0 rad/cm, and v 5 2.0 rad/s. Use Equation 18.1 to 
write an expression for the standing wave:

y 5 (2A sin kx) cos vt 5 8.0 sin 3.0x cos 2.0t

Find the amplitude of the simple harmonic motion of 
the element at the position x 5 2.3 cm by evaluating the 
sine function at this position:

ymax 5 (8.0 cm) sin 3.0x |x 5 2.3

5 (8.0 cm) sin (6.9 rad) 5   4.6 cm

Find the wavelength of the traveling waves: k 5
2p

l
5 3.0 rad/cm S l 5

2p

3.0
 cm

Use Equation 18.2 to find the locations of the nodes: x 5 n 
l

2
5 n a p

3.0
b cm n 5 0, 1, 2, 3, c

Use Equation 18.3 to find the locations of the antinodes: x 5 n 
l

4
5 n a p

6.0
b cm n 5 1, 3, 5, 7, c

(B)  ​Find the positions of the nodes and antinodes if one end of the string is at x 5 0.

S o l u ti  o n

L

Figure 18.9  ​A string of length L 
fixed at both ends.

Conceptualize  ​The waves described by the given equations are identical except for their directions of travel, so they 
indeed combine to form a standing wave as discussed in this section. We can represent the waves graphically by the 
blue and green curves in Figure 18.8.

Categorize  ​We will substitute values into equations developed in this section, so we categorize this example as a sub-
stitution problem.

S o l u ti  o n

	

▸ 18.2 c o n t i n u e d
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542	C hapter 18  Superposition and Standing Waves

mode is the longest-wavelength mode that is consistent with our boundary condi-
tions. The first normal mode occurs when the wavelength l1 is equal to twice the 
length of the string, or l1 5 2L. The section of a standing wave from one node to 
the next node is called a loop. In the first normal mode, the string is vibrating in 
one loop. In the second normal mode (see Fig. 18.10b), the string vibrates in two 
loops. When the left half of the string is moving upward, the right half is moving 
downward. In this case, the wavelength l2 is equal to the length of the string, as 
expressed by l2 5 L. The third normal mode (see Fig. 18.10c) corresponds to the 
case in which l3 5 2L/3, and the string vibrates in three loops. In general, the wave-
lengths of the various normal modes for a string of length L fixed at both ends are

	 ln 5
2L
n
 n 5 1, 2, 3, c	 (18.4)

where the index n refers to the nth normal mode of oscillation. These modes are 
possible. The actual modes that are excited on a string are discussed shortly.
	 The natural frequencies associated with the modes of oscillation are obtained 
from the relationship f 5 v/l, where the wave speed v is the same for all frequen-
cies. Using Equation 18.4, we find that the natural frequencies fn of the normal 
modes are

	 fn 5
v
ln

5 n 
v

2L
 n 5 1, 2, 3, c	 (18.5)

These natural frequencies are also called the quantized frequencies associated with the  
vibrating string fixed at both ends.
	 Because v 5 !T/m (see Eq. 16.18) for waves on a string, where T is the tension 
in the string and m is its linear mass density, we can also express the natural fre-
quencies of a taut string as

	 fn 5
n

2L
 Å

T
m
 n 5 1, 2, 3, c	 (18.6)

The lowest frequency f1, which corresponds to n 5 1, is called either the fundamen-
tal or the fundamental frequency and is given by

	 f1 5
1

2L
 Å

T
m

	 (18.7)

	 The frequencies of the remaining normal modes are integer multiples of the 
fundamental frequency (Eq. 18.5). Frequencies of normal modes that exhibit such 
an integer- multiple relationship form a harmonic series, and the normal modes 
are called harmonics. The fundamental frequency f1 is the frequency of the first 
harmonic, the frequency f2 5 2f1 is that of the second harmonic, and the frequency 
fn 5 nf1 is that of the nth harmonic. Other oscillating systems, such as a drumhead, 
exhibit normal modes, but the frequencies are not related as integer multiples of 
a fundamental (see Section 18.6). Therefore, we do not use the term harmonic in 
association with those types of systems.

Wavelengths of 
normal modes

Natural frequencies of 
normal modes as functions 
of wave speed and length 

of string

Natural frequencies of  
normal modes as functions 

of string tension and 
linear mass density

Fundamental frequency
of a taut string 

n 5 1

N
A

N

L 5 – 1
1
2
l

f1

a

Fundamental, or first harmonic

N NA A N

n 5 2 L 5 2l

f2

b

Second harmonic

n  5 3

N N N NA A A

L  5 – 3
3
2
l

f3

c

Third harmonic

Figure 18.10  The normal modes of vibration of the string in Figure 18.9 form a harmonic series. 
The string vibrates between the extremes shown.
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18.3 nalysis Model: Waves Under Boundary onditions 543

Let us examine further how the various harmonics are created in a string. To 
excite only a single harmonic, the string would have to be distorted into a shape 
that corresponds to that of the desired harmonic. After being released, the string 
would vibrate at the frequency of that harmonic. This maneuver is difficult to 
perform, however, and is not how a string of a musical instrument is excited. If 
the string is distorted into a general, nonsinusoidal shape, the resulting vibration 
includes a combination of various harmonics. Such a distortion occurs in musical 
instruments when the string is plucked (as in a guitar), bowed (as in a cello), or 
struck (as in a piano). When the string is distorted into a nonsinusoidal shape, only 
waves that satisfy the boundary conditions can persist on the string. These waves 
are the harmonics.

The frequency of a string that defines the musical note that it plays is that of the 
fundamental, even though other harmonics are present. The string’s frequency can 
be varied by changing the string’s tension or its length. For example, the tension 
in guitar and violin strings is varied by a screw adjustment mechanism or by tun
ing pegs located on the neck of the instrument. As the tension is increased, the 
frequency of the normal modes increases in accordance with Equation 18.6. Once 
the instrument is “tuned,” players vary the frequency by moving their fingers along 
the neck, thereby changing the length of the oscillating portion of the string. As the 
length is shortened, the frequency increases because, as Equation 18.6 specifies, the 
normal-mode frequencies are inversely proportional to string length.

uick Quiz 18.3 ​ When a standing wave is set up on a string fixed at both ends, 
which of the following statements is true? (a) The number of nodes is equal to 
the number of antinodes. (b) The wavelength is equal to the length of the string 
divided by an integer. (c) The frequency is equal to the number of nodes times 
the fundamental frequency. (d) The shape of the string at any instant shows a 
symmetry about the midpoint of the string.

continued

Example 18.3     Give Me a C Note!

The middle C string on a piano has a fundamental frequency of 262 Hz, and the string for the first A above middle C 
has a fundamental frequency of 440 Hz.

Calculate the frequencies of the next two harmonics of the C string.

Imagine a wave that is not free 
to travel throughout all  space 
as in the traveling wave model. 
If the wave is subject to bound
ary conditions, such that cer
tain requirements must be met 
at specific locations in space, 
the wave is limited to a set of 
normal modes with quantized wavelengths and quantized natural 
frequencies.

For waves on a string fixed at both ends, the natural frequencies are

 ​  1, 2, 3, (18.6)

where  is the tension in the string and  is its linear mass density.

Analysis Model	  Waves Under Boundary Conditions

Examples: 

•	 waves traveling back and forth on
a guitar string combine to form a 
standing wave 

•	 sound waves traveling back and forth
in a clarinet combine to form stand-
ing waves (Section 18.5)

•	 a microscopic particle confined to
small region of space is modeled as a 
wave and exhibits quantized energies 
(Chapter 41)

•	 the Fermi energy of metal is deter
mined by modeling electrons as wave-
like particles in a box (Chapter 43)
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544	C hapter 18  Superposition and Standing Waves

Finalize  ​If the frequencies of piano strings were determined solely by tension, this result suggests that the ratio of ten-
sions from the lowest string to the highest string on the piano would be enormous. Such large tensions would make it 
difficult to design a frame to support the strings. In reality, the frequencies of piano strings vary due to additional param-
eters, including the mass per unit length and the length of the string. The What If? below explores a variation in length.

​If you look inside a real piano, you’ll see that the assumption made in part (B) is only partially true. The 
strings are not likely to have the same length. The string densities for the given notes might be equal, but suppose the 
length of the A string is only 64% of the length of the C string. What is the ratio of their tensions?

Answer  ​Using Equation 18.7 again, we set up the ratio of frequencies:

f1A

f1C
5

LC

LA Å
TA

TC
   S   

TA

TC
5 aLA

L C
b

2

a f1A

f1C
b

2

TA

TC
5 10.64 22 a440

262
b

2

5 1.16

Notice that this result represents only a 16% increase in tension, compared with the 182% increase in part (B).

What If ?

Knowing that the fundamental frequency is f1 5 262 Hz, 
find the frequencies of the next harmonics by multiply-
ing by integers:

f2 5 2f1 5   524 Hz

f3 5 3f1 5   786 Hz

Analyze  ​Use Equation 18.7 to write expressions for the 
fundamental frequencies of the two strings:

f1A 5
1

2L
 Å

TA

m
 ​ ​  and ​ ​  f1C 5

1
2L

 Å
TC

m

Divide the first equation by the second and solve for the 
ratio of tensions:

f 1A

f 1C
5 Å

TA

TC
   S   

TA

TC
5 a f1A

f 1C
b

2

5 a440
262

b
2

5  2.82

(B)  ​If the A and C strings have the same linear mass density m and length L, determine the ratio of tensions in the 
two strings.

Categorize  ​This part of the example is more of an analysis problem than is part (A) and uses the waves under boundary 
conditions model.

S o l u ti  o n

Conceptualize  ​Remember that the harmonics of a vibrating string have frequencies that are related by integer mul-
tiples of the fundamental.

Categorize  ​This first part of the example is a simple substitution problem.

S o l u ti  o n

	

▸ 18.3 c o n t i n u e d

Example 18.4	     Changing String Vibration with Water 

One end of a horizontal string is attached to a vibrating blade, and the other end passes over a pulley as in Figure 
18.11a. A sphere of mass 2.00 kg hangs on the end of the string. The string is vibrating in its second harmonic. A con-
tainer of water is raised under the sphere so that the sphere is completely submerged. In this configuration, the string 
vibrates in its fifth harmonic as shown in Figure 18.11b. What is the radius of the sphere?

Conceptualize  ​Imagine what happens when the sphere is immersed in the water. The buoyant force acts upward on 
the sphere, reducing the tension in the string. The change in tension causes a change in the speed of waves on the 

AM

S o l u ti  o n
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	 18.3  Analysis Model: Waves Under Boundary Conditions	 545

string, which in turn causes a change in the wavelength. This altered wavelength results in the string vibrating in its 
fifth normal mode rather than the second.

Categorize  ​The hanging sphere is modeled as a particle in equilibrium. One of the forces acting on it is the buoyant 
force from the water. We also apply the waves under boundary conditions model to the string.

ba

Figure 18.11  ​(Example 18.4) 
(a) When the sphere hangs in air, 
the string vibrates in its second 
harmonic. (b) When the sphere 
is immersed in water, the string 
vibrates in its fifth harmonic.

Analyze  ​Apply the particle in equilibrium model to the 
sphere in Figure 18.11a, identifying T1 as the tension in 
the string as the sphere hangs in air:

o F 5 T1 2 mg 5 0

T1 5 mg

Apply the particle in equilibrium model to the sphere in 
Figure 18.11b, where T2 is the tension in the string as the 
sphere is immersed in water:

T2 1 B 2 mg 5 0

(1)   B 5 mg 2 T2

Write the equation for the frequency of a standing wave 
on a string (Eq. 18.6) twice, once before the sphere is 
immersed and once after. Notice that the frequency f is 
the same in both cases because it is determined by the 
vibrating blade. In addition, the linear mass density m 
and the length L of the vibrating portion of the string 
are the same in both cases. Divide the equations:

f 5
n 1

2L Å
T1

m

f 5
n 2

2L Å
T2

m

   
S   1 5

n 1

n 2 Å
T1

T2

Solve for T2: T2 5 an 1

n 2
b

2

T1 5 an 1

n 2
b

2

mg

Substitute this result into Equation (1): (2)   B 5 mg 2 an 1

n 2
b

2

mg 5 mg c1 2 an 1

n 2
b

2

d

The desired quantity, the radius of the sphere, will appear in the expression for the buoyant force B. Before proceed-
ing in this direction, however, we must evaluate T2 from the information about the standing wave.

Finalize  ​Notice that only certain radii of the sphere will result in the string vibrating in a normal mode; the speed of 
waves on the string must be changed to a value such that the length of the string is an integer multiple of half wave-
lengths. This limitation is a feature of the quantization that was introduced earlier in this chapter: the sphere radii that 
cause the string to vibrate in a normal mode are quantized.

Using Equation 14.5, express the buoyant force in terms 
of the radius of the sphere:

B 5 rwater gVsphere 5 rwater g 14
3 pr 3 2

Solve for the radius of the sphere and substitute from 
Equation (2):

r 5 a 3B
4prwaterg

b
1/3

 5 e 3m
4prwater

c1 2 an 1

n 2
b

2

d f
1/3

Substitute numerical values: r 5 e 3 12.00 kg 2
4p 11 000 kg/m3 2 c1 2 a2

5
b

2

d f
1/3

 

5  0.073 7 m 5  7.37 cm

	

▸ 18.4 c o n t i n u e d
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546	C hapter 18  Superposition and Standing Waves

1Strictly speaking, the open end of an air column is not exactly a displacement antinode. A compression reaching 
an open end does not reflect until it passes beyond the end. For a tube of circular cross section, an end correction 
equal to approximately 0.6R , where R is the tube’s radius, must be added to the length of the air column. Hence, the 
effective length of the air column is longer than the true length L. We ignore this end correction in this discussion.

Vibrating
blade 

When the blade vibrates at one of
the natural frequencies of the
string, large-amplitude standing
waves are created.

Figure 18.12  ​Standing waves are 
set up in a string when one end is 
connected to a vibrating blade.

18.4	 Resonance
We have seen that a system such as a taut string is capable of oscillating in one or 
more normal modes of oscillation. Suppose we drive such a string with a vibrating 
blade as in Figure 18.12. We find that if a periodic force is applied to such a system, 
the amplitude of the resulting motion of the string is greatest when the frequency 
of the applied force is equal to one of the natural frequencies of the system. This 
phenomenon, known as resonance, was discussed in Section 15.7 with regard to a 
simple harmonic oscillator. Although a block–spring system or a simple pendulum 
has only one natural frequency, standing-wave systems have a whole set of natural 
frequencies, such as that given by Equation 18.6 for a string. Because an oscillat-
ing system exhibits a large amplitude when driven at any of its natural frequencies, 
these frequencies are often referred to as resonance frequencies.
	 Consider the string in Figure 18.12 again. The fixed end is a node, and the end 
connected to the blade is very nearly a node because the amplitude of the blade’s 
motion is small compared with that of the elements of the string. As the blade oscil-
lates, transverse waves sent down the string are reflected from the fixed end. As 
we learned in Section 18.3, the string has natural frequencies that are determined 
by its length, tension, and linear mass density (see Eq. 18.6). When the frequency 
of the blade equals one of the natural frequencies of the string, standing waves 
are produced and the string oscillates with a large amplitude. In this resonance 
case, the wave generated by the oscillating blade is in phase with the reflected wave 
and the string absorbs energy from the blade. If the string is driven at a frequency 
that is not one of its natural frequencies, the oscillations are of low amplitude and 
exhibit no stable pattern.
	 Resonance is very important in the excitation of musical instruments based on 
air columns. We shall discuss this application of resonance in Section 18.5.

18.5	 Standing Waves in Air Columns
The waves under boundary conditions model can also be applied to sound waves in 
a column of air such as that inside an organ pipe or a clarinet. Standing waves in 
this case are the result of interference between longitudinal sound waves traveling 
in opposite directions.
	 In a pipe closed at one end, the closed end is a displacement node because the 
rigid barrier at this end does not allow longitudinal motion of the air. Because the 
pressure wave is 90° out of phase with the displacement wave (see Section 17.1),  
the closed end of an air column corresponds to a pressure antinode (that is, a 
point of maximum pressure variation).
	 The open end of an air column is approximately a displacement antinode1 and 
a pressure node. We can understand why no pressure variation occurs at an open 
end by noting that the end of the air column is open to the atmosphere; therefore, 
the pressure at this end must remain constant at atmospheric pressure.
	 You may wonder how a sound wave can reflect from an open end because there 
may not appear to be a change in the medium at this point: the medium through 
which the sound wave moves is air both inside and outside the pipe. Sound can be 
represented as a pressure wave, however, and a compression region of the sound 
wave is constrained by the sides of the pipe as long as the region is inside the pipe. 
As the compression region exits at the open end of the pipe, the constraint of the 
pipe is removed and the compressed air is free to expand into the atmosphere. 
Therefore, there is a change in the character of the medium between the inside 
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	 18.5  Standing Waves in Air Columns	 547

of the pipe and the outside even though there is no change in the material of the 
medium. This change in character is sufficient to allow some reflection.
	 With the boundary conditions of nodes or antinodes at the ends of the air col-
umn, we have a set of normal modes of oscillation as is the case for the string fixed 
at both ends. Therefore, the air column has quantized frequencies.
	 The first three normal modes of oscillation of a pipe open at both ends are 
shown in Figure 18.13a. Notice that both ends are displacement antinodes (approx-
imately). In the first normal mode, the standing wave extends between two adjacent 
antinodes, which is a distance of half a wavelength. Therefore, the wavelength is 
twice the length of the pipe, and the fundamental frequency is f1 5 v/2L. As Figure 
18.13a shows, the frequencies of the higher harmonics are 2f1, 3f1, . . . .

In a pipe open at both ends, the natural frequencies of oscillation form a har-
monic series that includes all integral multiples of the fundamental frequency.

Because all harmonics are present and because the fundamental frequency is given 
by the same expression as that for a string (see Eq. 18.5), we can express the natural 
frequencies of oscillation as

	 fn 5 n 
v

2L
 ​ ​  n 5 1, 2, 3, . . . 	 (18.8)

Despite the similarity between Equations 18.5 and 18.8, you must remember that v 
in Equation 18.5 is the speed of waves on the string, whereas v in Equation 18.8 is 
the speed of sound in air.
	 If a pipe is closed at one end and open at the other, the closed end is a displace-
ment node (see Fig. 18.13b). In this case, the standing wave for the fundamental 
mode extends from an antinode to the adjacent node, which is one-fourth of a wave-
length. Hence, the wavelength for the first normal mode is 4L , and the fundamental  

�Natural frequencies of a pipe 
WW open at both ends

Third harmonic

L

First harmonic

Second harmonic

First harmonic

Third harmonic

Fifth harmonic

A A
N

A AA

N N

AA A A

NN N

1 5 2L

f1 5 — 5 —v
1

v
2L

l

l

2 5 L

f2 5 — 5 2f1
v
L

l

3 5 — L

f3 5 — 5 3f1
3v
2L

2
3

l

L

A
N

A

N

A

N

AA

NN

A

N

3 5 — L

f3 5 — 5 3f1
3v
4L

4
3l

5 5 — L

f5 5 — 5 5f1
5v
4L

4
5

l

1 5 4L

f1 5 — 5 —v
1

v
4L

l

l

In a pipe open at both ends, the 
ends are displacement antinodes 
and the harmonic series contains 
all integer multiples of the 
fundamental.

In a pipe closed at one end, the 
open end is a displacement 
antinode and the closed end is 
a node. The harmonic series 
contains only odd integer 
multiples of the fundamental.

a b

Figure 18.13  ​Graphical  
representations of the motion of 
elements of air in standing lon-
gitudinal waves in (a) a column 
open at both ends and (b) a col-
umn closed at one end.

Pitfall Prevention 18.3
Sound Waves in Air Are Lon-
gitudinal, Not Transverse  The 
standing longitudinal waves are 
drawn as transverse waves in Fig-
ure 18.13. Because they are in the 
same direction as the propaga-
tion, it is difficult to draw longitu-
dinal displacements. Therefore, it 
is best to interpret the red-brown 
curves in Figure 18.13 as a graphi-
cal representation of the waves 
(our diagrams of string waves are 
pictorial representations), with 
the vertical axis representing the 
horizontal displacement s(x, t) of 
the elements of the medium.www.as
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548	C hapter 18  Superposition and Standing Waves

frequency is f1 5 v/4L. As Figure 18.13b shows, the higher-frequency waves that sat-
isfy our conditions are those that have a node at the closed end and an antinode at 
the open end; hence, the higher harmonics have frequencies 3f1, 5f1, . . . .

In a pipe closed at one end, the natural frequencies of oscillation form a har-
monic series that includes only odd integral multiples of the fundamental 
frequency.

We express this result mathematically as

	 fn 5 n 
v

4L
 ​ ​  n 5 1, 3, 5, . . .	 (18.9)

	 It is interesting to investigate what happens to the frequencies of instruments 
based on air columns and strings during a concert as the temperature rises. The 
sound emitted by a flute, for example, becomes sharp (increases in frequency) 
as the flute warms up because the speed of sound increases in the increasingly 
warmer air inside the flute (consider Eq. 18.8). The sound produced by a violin 
becomes flat (decreases in frequency) as the strings thermally expand because the 
expansion causes their tension to decrease (see Eq. 18.6).
	 Musical instruments based on air columns are generally excited by resonance. 
The air column is presented with a sound wave that is rich in many frequencies. The 
air column then responds with a large-amplitude oscillation to the frequencies that 
match the quantized frequencies in its set of harmonics. In many woodwind instru-
ments, the initial rich sound is provided by a vibrating reed. In brass instruments, 
this excitation is provided by the sound coming from the vibration of the player’s 
lips. In a flute, the initial excitation comes from blowing over an edge at the mouth-
piece of the instrument in a manner similar to blowing across the opening of a bot-
tle with a narrow neck. The sound of the air rushing across the bottle opening has 
many frequencies, including one that sets the air cavity in the bottle into resonance.

Q	 uick Quiz 18.4  ​A pipe open at both ends resonates at a fundamental frequency 
fopen. When one end is covered and the pipe is again made to resonate, the  
fundamental frequency is fclosed. Which of the following expressions describes 
how these two resonant frequencies compare? (a) fclosed 5 fopen (b) fclosed 5 1

2 fopen 
(c) fclosed 5 2 fopen (d) fclosed 5 3

2 fopen

Q	 uick Quiz 18.5 ​ Balboa Park in San Diego has an outdoor organ. When the air 
temperature increases, the fundamental frequency of one of the organ pipes  
(a) stays the same, (b) goes down, (c) goes up, or (d) is impossible to determine.

�N atural frequencies of 
a pipe closed at one end  

and open at the other

Find the frequency of the first harmonic of the culvert, 
modeling it as an air column open at both ends:

f1 5
v

2L
5

343 m/s
2 11.23 m 2 5  139 Hz

Find the next harmonics by multiplying by integers: f2 5 2f1 5   279 Hz

f3 5 3f1 5   418 Hz 

Example 18.5	     Wind in a Culvert

A section of drainage culvert 1.23 m in length makes a howling noise when the wind blows across its open ends.

(A)  ​Determine the frequencies of the first three harmonics of the culvert if it is cylindrical in shape and open at 
both ends. Take v 5 343 m/s as the speed of sound in air.

Conceptualize  ​The sound of the wind blowing across the end of the pipe contains many frequencies, and the culvert 
responds to the sound by vibrating at the natural frequencies of the air column.

Categorize  ​This example is a relatively simple substitution problem.

S o l u ti  o n
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Find the frequency of the first harmonic of the culvert, 
modeling it as an air column closed at one end:

f1 5
v

4L
5

343 m/s
4 11.23 m 2 5  69.7 Hz

Find the next two harmonics by multiplying by odd 
integers:

f3 5 3f1 5   209 Hz

f5 5 5f1 5   349 Hz

(B)  ​What are the three lowest natural frequencies of the culvert if it is blocked at one end?

S o l u ti  o n

Example 18.6	     Measuring the Frequency of a Tuning Fork 

A simple apparatus for demonstrating resonance in an air col-
umn is depicted in Figure 18.14. A vertical pipe open at both 
ends is partially submerged in water, and a tuning fork vibrat-
ing at an unknown frequency is placed near the top of the pipe. 
The length L of the air column can be adjusted by moving the 
pipe vertically. The sound waves generated by the fork are rein-
forced when L corresponds to one of the resonance frequen-
cies of the pipe. For a certain pipe, the smallest value of L for 
which a peak occurs in the sound intensity is 9.00 cm.

(A)  ​What is the frequency of the tuning fork?

Conceptualize  ​Sound waves from the tuning fork enter the 
pipe at its upper end. Although the pipe is open at its lower 
end to allow the water to enter, the water’s surface acts like a 
barrier. The waves reflect from the water surface and combine 
with those moving downward to form a standing wave.

Categorize  Because of the reflection of the sound waves from the water surface, we can model the pipe as open at 
the upper end and closed at the lower end. Therefore, we can apply the waves under boundary conditions model to this 
situation.

Analyze

AM

S o l u ti  o n

f 5 ?

First
resonance

Second
resonance

(third
harmonic)

Third
resonance

(fifth
harmonic)

/4

3 /4

5 /4

l

l

l

L

Water

a b

Figure 18.14  ​(Example 18.6) (a) Apparatus for dem-
onstrating the resonance of sound waves in a pipe closed 
at one end. The length L of the air column is varied by 
moving the pipe vertically while it is partially submerged 
in water. (b) The first three normal modes of the system 
shown in (a).

Use Equation 18.9 to find the fundamental frequency 
for L 5 0.090 0 m:

f1 5
v

4L
5

343 m/s
4 10.090 0  m 2 5  953 Hz

Use Equation 16.12 to find the wavelength of the sound 
wave from the tuning fork:

l 5
v
f

5
343 m/s
953 Hz

5 0.360 m

Notice from Figure 18.14b that the length of the air col-
umn for the second resonance is 3l/4:

L 5 3l/4 5  0.270 m

Notice from Figure 18.14b that the length of the air col-
umn for the third resonance is 5l/4:

L 5 5l/4 5  0.450 m

Because the tuning fork causes the air column to resonate at this frequency, this frequency must also be that of the 
tuning fork.

(B)  ​What are the values of L for the next two resonance conditions?

S o l u ti  o n

	

▸ 18.5 c o n t i n u e d

Finalize  Consider how this problem differs from the preceding example. In the culvert, the length was fixed and the 
air column was presented with a mixture of many frequencies. The pipe in this example is presented with one single 
frequency from the tuning fork, and the length of the pipe is varied until resonance is achieved.
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01 11 21 02 31 12

1 1.59 2.14 2.30 2.65 2.92

41 22 03 51 32 61

3.16 3.50 3.60 3.65 4.06 4.15

Elements of the medium moving 
out of the page at an instant of time.

Elements of the medium moving 
into the page at an instant of time.

Below each pattern 
is a factor by which 
the frequency of the 
mode is larger than 
that of the 01 mode. 
The frequencies of 
oscillation do not 
form a harmonic 
series because these 
factors are not 
integers.

Figure 18.16  ​Representation 
of some of the normal modes 
possible in a circular membrane 
fixed at its perimeter. The pair of 
numbers above each pattern cor-
responds to the number of radial 
nodes and the number of circular 
nodes, respectively. In each dia-
gram, elements of the membrane 
on either side of a nodal line move 
in opposite directions, as indicated 
by the colors. (Adapted from T. D. 
Rossing, The Science of Sound, 3rd 
ed., Reading, Massachusetts, Addison-
Wesley Publishing Co., 2001)

18.6	 Standing Waves in Rods and Membranes
Standing waves can also be set up in rods and membranes. A rod clamped in the 
middle and stroked parallel to the rod at one end oscillates as depicted in Figure 
18.15a. The oscillations of the elements of the rod are longitudinal, and so the red-
brown curves in Figure 18.15 represent longitudinal displacements of various parts 
of the rod. For clarity, the displacements have been drawn in the transverse direc-
tion as they were for air columns. The midpoint is a displacement node because it 
is fixed by the clamp, whereas the ends are displacement antinodes because they 
are free to oscillate. The oscillations in this setup are analogous to those in a pipe 
open at both ends. The red-brown lines in Figure 18.15a represent the first normal 
mode, for which the wavelength is 2L and the frequency is f 5 v/2L, where v is the 
speed of longitudinal waves in the rod. Other normal modes may be excited by 
clamping the rod at different points. For example, the second normal mode (Fig. 
18.15b) is excited by clamping the rod a distance L/4 away from one end.
	 It is also possible to set up transverse standing waves in rods. Musical instru-
ments that depend on transverse standing waves in rods or bars include triangles, 
marimbas, xylophones, glockenspiels, chimes, and vibraphones. Other devices that 
make sounds from vibrating bars include music boxes and wind chimes.
	 Two-dimensional oscillations can be set up in a flexible membrane stretched 
over a circular hoop such as that in a drumhead. As the membrane is struck at 
some point, waves that arrive at the fixed boundary are reflected many times. The 
resulting sound is not harmonic because the standing waves have frequencies that 
are not related by integer multiples. Without this relationship, the sound may be 
more correctly described as noise rather than as music. The production of noise 
is in contrast to the situation in wind and stringed instruments, which produce 
sounds that we describe as musical.
	 Some possible normal modes of oscillation for a two-dimensional circular mem-
brane are shown in Figure 18.16. Whereas nodes are points in one-dimensional 
standing waves on strings and in air columns, a two-dimensional oscillator has 
curves along which there is no displacement of the elements of the medium. The 
lowest normal mode, which has a frequency f1, contains only one nodal curve; this 
curve runs around the outer edge of the membrane. The other possible normal 
modes show additional nodal curves that are circles and straight lines across the 
diameter of the membrane.

18.7	 Beats: Interference in Time
The interference phenomena we have studied so far involve the superposition of 
two or more waves having the same frequency. Because the amplitude of the oscil-

b

NA A

L
4

A N

l2 5 L 

f2 5 5 2f1 
v
L

Figure 18.15  ​Normal-mode 
longitudinal vibrations of a rod 
of length L (a) clamped at the 
middle to produce the first nor-
mal mode and (b) clamped at 
a distance L/4 from one end to 
produce the second normal mode. 
Notice that the red-brown curves 
are graphical representations of 
oscillations parallel to the rod 
(longitudinal waves).

A N A

L

f1 5 5 
v v

2Ll1

l1 5 2L 
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y

y

t

tb

a

Figure 18.17  Beats are formed 
by the combination of two waves 
of slightly different frequencies. 
(a) The individual waves. (b) The 
combined wave. The envelope 
wave (dashed line) represents the 
beating of the combined sounds.

lation of elements of the medium varies with the position in space of the element 
in such a wave, we refer to the phenomenon as spatial interference. Standing waves in 
strings and pipes are common examples of spatial interference.
	 Now let’s consider another type of interference, one that results from the super-
position of two waves having slightly different frequencies. In this case, when the two 
waves are observed at a point in space, they are periodically in and out of phase. 
That is, there is a temporal (time) alternation between constructive and destructive 
interference. As a consequence, we refer to this phenomenon as interference in time 
or temporal interference. For example, if two tuning forks of slightly different frequen-
cies are struck, one hears a sound of periodically varying amplitude. This phenom-
enon is called beating.

Beating is the periodic variation in amplitude at a given point due to the 
superposition of two waves having slightly different frequencies.

	 The number of amplitude maxima one hears per second, or the beat frequency, 
equals the difference in frequency between the two sources as we shall show below. 
The maximum beat frequency that the human ear can detect is about 20 beats/s. 
When the beat frequency exceeds this value, the beats blend indistinguishably with 
the sounds producing them.
	 Consider two sound waves of equal amplitude and slightly different frequencies 
f1 and f2 traveling through a medium. We use equations similar to Equation 16.13 to 
represent the wave functions for these two waves at a point that we identify as x 5 0.  
We also choose the phase angle in Equation 16.13 as f 5 p/2:

 y1 5 A sin ap

2
2 v1tb 5 A cos 12pf1t 2

 y2 5 A sin ap

2
2 v2tb 5 A cos 12pf 2t 2

Using the superposition principle, we find that the resultant wave function at this 
point is

y 5 y1 1 y2 5 A (cos 2pf1t 1 cos 2pf2t)

The trigonometric identity

cos a 1 cos b 5 2 cos aa 2 b
2

b cos aa 1 b
2

b

allows us to write the expression for y as

	 y 5 c2A cos 2pa f1 2 f2

2
bt d  cos 2pa f1 1 f2

2
bt 	 (18.10)

Graphs of the individual waves and the resultant wave are shown in Figure 18.17. 
From the factors in Equation 18.10, we see that the resultant wave has an effective 

WW Definition of beating

WW �Resultant of two waves of 
different frequencies but 
equal amplitude
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Analyze  ​Set up a ratio of the fundamental frequencies 
of the two strings using Equation 18.5:

f 2

f 1
5

1v2/2L 2
1v1/2L 2 5

v2

v1

Use Equation 16.18 to substitute for the wave speeds on 
the strings:

f 2

f 1
5

"T2/m

"T1/m
5 Å

T2

T1

Incorporate that the tension in one string is 1.0% larger 
than the other; that is, T2 5 1.010T1:

f 2

f 1
5 Å

1.010T1

T1
5 1.005

Solve for the frequency of the tightened string: f2 5 1.005f1 5 1.005(440 Hz) 5 442 Hz

Finalize  ​Notice that a 1.0% mistuning in tension leads to an easily audible beat frequency of 2 Hz. A piano tuner can 
use beats to tune a stringed instrument by “beating” a note against a reference tone of known frequency. The tuner 
can then adjust the string tension until the frequency of the sound it emits equals the frequency of the reference 
tone. The tuner does so by tightening or loosening the string until the beats produced by it and the reference source 
become too infrequent to notice.

Find the beat frequency using Equation 18.12: fbeat 5 442 Hz 2 440 Hz 5   2 Hz

frequency equal to the average frequency ( f1 1 f2)/2. This wave is multiplied by an 
envelope wave given by the expression in the square brackets:

	 yenvelope 5 2A cos 2pa f1 2 f2

2
bt 	 (18.11)

That is, the amplitude and therefore the intensity of the resultant sound vary 
in time. The dashed black line in Figure 18.17b is a graphical representation of 
the envelope wave in Equation 18.11 and is a sine wave varying with frequency  
( f1 2 f2)/2.
	 A maximum in the amplitude of the resultant sound wave is detected whenever

cos 2pa f 1 2 f2

2
bt 5 61

Hence, there are two maxima in each period of the envelope wave. Because the 
amplitude varies with frequency as ( f1 2 f2)/2, the number of beats per second, or 
the beat frequency fbeat, is twice this value. That is,

	 fbeat 5 0 f1 2 f 2 0 	 (18.12)

	 For instance, if one tuning fork vibrates at 438 Hz and a second one vibrates at 
442 Hz, the resultant sound wave of the combination has a frequency of 440 Hz 
(the musical note A) and a beat frequency of 4 Hz. A listener would hear a 440-Hz 
sound wave go through an intensity maximum four times every second.

Beat frequency 

Example 18.7	     The Mistuned Piano Strings 

Two identical piano strings of length 0.750 m are each tuned exactly to 440 Hz. The tension in one of the strings is 
then increased by 1.0%. If they are now struck, what is the beat frequency between the fundamentals of the two strings?

Conceptualize  ​As the tension in one of the strings is changed, its fundamental frequency changes. Therefore, when 
both strings are played, they will have different frequencies and beats will be heard.

Categorize  ​We must combine our understanding of the waves under boundary conditions model for strings with our new 
knowledge of beats.

AM

S o l u ti  o n
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18.8	 Nonsinusoidal Wave Patterns
It is relatively easy to distinguish the sounds coming from a violin and a saxophone 
even when they are both playing the same note. On the other hand, a person 
untrained in music may have difficulty distinguishing a note played on a clarinet 
from the same note played on an oboe. We can use the pattern of the sound waves 
from various sources to explain these effects.
	 When frequencies that are integer multiples of a fundamental frequency are 
combined to make a sound, the result is a musical sound. A listener can assign a 
pitch to the sound based on the fundamental frequency. Pitch is a psychological 
reaction to a sound that allows the listener to place the sound on a scale from low to 
high (bass to treble). Combinations of frequencies that are not integer multiples of 
a fundamental result in a noise rather than a musical sound. It is much harder for a 
listener to assign a pitch to a noise than to a musical sound.
	 The wave patterns produced by a musical instrument are the result of the super-
position of frequencies that are integer multiples of a fundamental. This superposi-
tion results in the corresponding richness of musical tones. The human perceptive 
response associated with various mixtures of harmonics is the quality or timbre of 
the sound. For instance, the sound of the trumpet is perceived to have a “brassy” 
quality (that is, we have learned to associate the adjective brassy with that sound); 
this quality enables us to distinguish the sound of the trumpet from that of the sax-
ophone, whose quality is perceived as “reedy.” The clarinet and oboe, however, both 
contain air columns excited by reeds; because of this similarity, they have similar 
mixtures of frequencies and it is more difficult for the human ear to distinguish 
them on the basis of their sound quality.
	 The sound wave patterns produced by the majority of musical instruments are 
nonsinusoidal. Characteristic patterns produced by a tuning fork, a flute, and a 
clarinet, each playing the same note, are shown in Figure 18.18. Each instrument 
has its own characteristic pattern. Notice, however, that despite the differences in 
the patterns, each pattern is periodic. This point is important for our analysis of 
these waves.
	 The problem of analyzing nonsinusoidal wave patterns appears at first sight to 
be a formidable task. If the wave pattern is periodic, however, it can be represented 
as closely as desired by the combination of a sufficiently large number of sinusoidal 
waves that form a harmonic series. In fact, we can represent any periodic function 
as a series of sine and cosine terms by using a mathematical technique based on 
Fourier’s theorem.2 The corresponding sum of terms that represents the periodic 
wave pattern is called a Fourier series. Let y(t) be any function that is periodic in 
time with period T such that y(t 1 T) 5 y(t). Fourier’s theorem states that this func-
tion can be written as

	 y(t) 5 o (An sin 2pfnt 1 Bn cos 2pfnt)	 (18.13)

where the lowest frequency is f1 5 1/T. The higher frequencies are integer multiples 
of the fundamental, fn 5 nf1, and the coefficients An and Bn represent the ampli-
tudes of the various waves. Figure 18.19 on page 554 represents a harmonic analysis 
of the wave patterns shown in Figure 18.18. Each bar in the graph represents one 
of the terms in the series in Equation 18.13 up to n 5 9. Notice that a struck tuning 
fork produces only one harmonic (the first), whereas the flute and clarinet produce 
the first harmonic and many higher ones.
	 Notice the variation in relative intensity of the various harmonics for the flute 
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f, all having different 
intensities.

WW Fourier’s theorem

Pitfall Prevention 18.4
Pitch Versus Frequency  Do not 
confuse the term pitch with fre-
quency. Frequency is the physical 
measurement of the number of 
oscillations per second. Pitch is a 
psychological reaction to sound 
that enables a person to place the 
sound on a scale from high to low 
or from treble to bass. Therefore, 
frequency is the stimulus and 
pitch is the response. Although 
pitch is related mostly (but not 
completely) to frequency, they are 
not the same. A phrase such as 
“the pitch of the sound” is incor-
rect because pitch is not a physical 
property of the sound.

Tuning fork

Flute

Clarinet

t

t

t

b

c

a

Figure 18.18  ​Sound wave pat-
terns produced by (a) a tuning 
fork, (b) a flute, and (c) a clarinet, 
each at approximately the same 
frequency.

2 Developed by Jean Baptiste Joseph Fourier (1786–1830).
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554	C hapter 18  Superposition and Standing Waves

Square wave

5f

f

3f

f

3f

b

c

a
Waves of frequency f and 
3f are added to give the 
blue curve.

One more odd harmonic 
of frequency 5f  is added 
to give the green curve.

The synthesis curve 
(red-brown) approaches 
closer to the square wave 
(black curve) when odd 
frequencies up to 9f  are 
added.

Figure 18.20  Fourier synthesis 
of a square wave, represented by 
the sum of odd multiples of the 
first harmonic, which has fre-
quency f.

	 We have discussed the analysis of a wave pattern using Fourier’s theorem. The 
analysis involves determining the coefficients of the harmonics in Equation 18.13 
from a knowledge of the wave pattern. The reverse process, called Fourier synthesis, 
can also be performed. In this process, the various harmonics are added together 
to form a resultant wave pattern. As an example of Fourier synthesis, consider the 
building of a square wave as shown in Figure 18.20. The symmetry of the square 
wave results in only odd multiples of the fundamental frequency combining in its 
synthesis. In Figure 18.20a, the blue curve shows the combination of f and 3f. In 
Figure 18.20b, we have added 5f to the combination and obtained the green curve. 
Notice how the general shape of the square wave is approximated, even though the 
upper and lower portions are not flat as they should be.
	 Figure 18.20c shows the result of adding odd frequencies up to 9f. This approxi-
mation (red-brown curve) to the square wave is better than the approximations 
in Figures 18.20a and 18.20b. To approximate the square wave as closely as pos-
sible, we must add all odd multiples of the fundamental frequency, up to infinite 
frequency.
	 Using modern technology, musical sounds can be generated electronically by 
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical 
tones.
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Figure 18.19  ​Harmonics of the wave patterns shown in Figure 18.18. Notice the variations in inten-
sity of the various harmonics. Parts (a), (b), and (c) correspond to those in Figure 18.18.
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Summary

  The superposition principle speci-
fies that when two or more waves move 
through a medium, the value of the 
resultant wave function equals the alge-
braic sum of the values of the individual 
wave functions.

  The phenomenon of beating is the periodic variation in intensity at 
a given point due to the superposition of two waves having slightly dif-
ferent frequencies. The beat frequency is

	 f beat 5 0 f1 2 f 2 0 	 (18.12)
where f1 and f2 are the frequencies of the individual waves.

  Standing waves are formed from the combination of two sinusoidal waves having the same frequency, amplitude, 
and wavelength but traveling in opposite directions. The resultant standing wave is described by the wave function

	 y 5 (2A sin kx) cos vt	 (18.1)

Hence, the amplitude of the standing wave is 2A, and the amplitude of the simple harmonic motion of any element  
of the medium varies according to its position as 2A sin kx. The points of zero amplitude (called nodes) occur at  
x 5 nl/2 (n 5 0, 1, 2, 3, . . .). The maximum amplitude points (called antinodes) occur at x 5 nl/4 (n 5 1, 3, 5, . . .). 
Adjacent antinodes are separated by a distance l/2. Adjacent nodes also are separated by a distance l/2.

Concepts and Principles

Analysis Models for Problem Solving

y1  y2

y1  y2

Destructive
interference

Constructive
interference

y1 y2

y2
y1

  Waves in Interference. When two travel-
ing waves having equal frequencies super-
impose, the resultant wave is described by 
the principle of superposition and has an 
amplitude that depends on the phase angle 
f between the two waves. Constructive 
interference occurs when the two waves 
are in phase, corresponding to f 5 0, 2p, 
4p, . . . rad. Destructive interference occurs 
when the two waves are 180° out of phase, 
corresponding to f 5 p, 3p, 5p, . . . rad.

  Waves Under Boundary 
Conditions. When a wave is 
subject to boundary condi-
tions, only certain natural 
frequencies are allowed; we 
say that the frequencies are 
quantized.
	 For waves on a string 
fixed at both ends, the natural frequencies are

	 fn 5
n

2L Å
T
m

  ​  ​n 5 1, 2, 3, . . .	 (18.6)

where T is the tension in the string and m is its linear mass density.
	 For sound waves with speed v in an air column of length L open 
at both ends, the natural frequencies are

	 fn 5 n 
v

2L
 ​ ​  n 5 1, 2, 3, . . .	 (18.8)

	 If an air column is open at one end and closed at the other, 
only odd harmonics are present and the natural frequencies are

	 fn 5 n 
v

4L
 ​ ​  n 5 1, 3, 5, . . .	 (18.9)

n 5 1

n 5 2

n 5 3

Rank the following situations according to the intensity 
of sound at the receiver from the highest to the lowest. 
Assume the tube walls absorb no sound energy. Give 
equal ranks to situations in which the intensity is equal. 

	 1.	 In Figure OQ18.1 (page 556), a sound wave of wave-
length 0.8 m divides into two equal parts that recombine  
to interfere constructively, with the original difference 
between their path lengths being |r2 2 r1| 5 0.8 m. 

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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556	C hapter 18  Superposition and Standing Waves

forks has a frequency of 245 Hz, what is the frequency 
of the other tuning fork? (a) 240 Hz (b) 242.5 Hz  
(c) 247.5 Hz (d)  250 Hz (e) More than one answer 
could be correct.

	 7.	 A tuning fork is known to vibrate with frequency  
262 Hz. When it is sounded along with a mandolin 
string, four beats are heard every second. Next, a bit of 
tape is put onto each tine of the tuning fork, and the 
tuning fork now produces five beats per second with 
the same mandolin string. What is the frequency of 
the string? (a) 257 Hz (b) 258 Hz (c) 262 Hz (d) 266 Hz  
(e) 267 Hz

	 8.	 An archer shoots an arrow horizontally from the center 
of the string of a bow held vertically. After the arrow 
leaves it, the string of the bow will vibrate as a superpo-
sition of what standing-wave harmonics? (a) It vibrates 
only in harmonic number 1, the fundamental. (b) It 
vibrates only in the second harmonic. (c) It vibrates 
only in the odd-numbered harmonics 1, 3, 5, 7, . . . .  
(d) It vibrates only in the even-numbered harmonics 2, 
4, 6, 8, . . . . (e) It vibrates in all harmonics.

	 9.	 As oppositely moving pulses of the same shape (one 
upward, one downward) on a string pass through each 
other, at one particular instant the string shows no dis-
placement from the equilibrium position at any point. 
What has happened to the energy carried by the pulses 
at this instant of time? (a) It was used up in producing 
the previous motion. (b) It is all potential energy. (c) It 
is all internal energy. (d) It is all kinetic energy. (e) The 
positive energy of one pulse adds to zero with the nega-
tive energy of the other pulse.

	10.	A standing wave having three nodes is set up in a string 
fixed at both ends. If the frequency of the wave is dou-
bled, how many antinodes will there be? (a) 2 (b) 3  
(c) 4 (d) 5 (e) 6

	11.	 Suppose all six equal-length strings of an acoustic 
guitar are played without fingering, that is, without 
being pressed down at any frets. What quantities are 
the same for all six strings? Choose all correct answers.  
(a) the fundamental frequency (b) the fundamental 
wavelength of the string wave (c) the fundamental 
wavelength of the sound emitted (d) the speed of the 
string wave (e) the speed of the sound emitted

	12.	Assume two identical sinusoidal waves are moving 
through the same medium in the same direction. 
Under what condition will the amplitude of the resul-
tant wave be greater than either of the two original 
waves? (a) in all cases (b) only if the waves have no dif-
ference in phase (c) only if the phase difference is less 
than 90° (d) only if the phase difference is less than 
120° (e) only if the phase difference is less than 180°

(a) From its original 
position, the sliding 
section is moved out by 
0.1 m. (b) Next it slides 
out an additional 0.1 m.  
(c) It slides out still 
another 0.1 m. (d) It 
slides out 0.1 m more.

	 2.	 A string of length L, 
mass per unit length m, 
and tension T is vibrat-
ing at its fundamental 
frequency. (i) If the 
length of the string is 
doubled, with all other 
factors held constant, what is the effect on the funda-
mental frequency? (a) It becomes two times larger. (b) It  
becomes !2 times larger. (c) It is unchanged. (d) It 
becomes 1/!2 times as large. (e) It becomes one-half 
as large. (ii) If the mass per unit length is doubled, 
with all other factors held constant, what is the effect 
on the fundamental frequency? Choose from the same 
possibilities as in part (i). (iii) If the tension is doubled, 
with all other factors held constant, what is the effect 
on the fundamental frequency? Choose from the same 
possibilities as in part (i).

	 3.	 In Example 18.1, we investigated an oscillator at 1.3 kHz  
driving two identical side-by-side speakers. We found 
that a listener at point O hears sound with maximum 
intensity, whereas a listener at point P hears a mini-
mum. What is the intensity at P? (a) less than but close 
to the intensity at O (b) half the intensity at O (c) very 
low but not zero (d) zero (e) indeterminate

	 4.	 A series of pulses, each of amplitude 0.1 m, is sent down 
a string that is attached to a post at one end. The pulses 
are reflected at the post and travel back along the string 
without loss of amplitude. (i) What is the net displace-
ment at a point on the string where two pulses are cross-
ing? Assume the string is rigidly attached to the post.  
(a) 0.4 m (b) 0.3 m (c) 0.2 m (d) 0.1 m (e) 0 (ii) Next 
assume the end at which reflection occurs is free to slide 
up and down. Now what is the net displacement at a point 
on the string where two pulses are crossing? Choose your 
answer from the same possibilities as in part (i).

	 5.	 A flute has a length of 58.0 cm. If the speed of sound 
in air is 343 m/s, what is the fundamental frequency of 
the flute, assuming it is a tube closed at one end and 
open at the other? (a) 148 Hz (b) 296 Hz (c) 444 Hz  
(d) 591 Hz (e) none of those answers

	 6.	 When two tuning forks are sounded at the same time, 
a beat frequency of 5 Hz occurs. If one of the tuning 

r1

r2

Speaker

Receiver

Sliding section

Figure OQ18.1  Objective 
Question 1 and Problem 6.

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 A crude model of the human throat is that of a pipe 
open at both ends with a vibrating source to introduce 
the sound into the pipe at one end. Assuming the 
vibrating source produces a range of frequencies, dis-
cuss the effect of changing the pipe’s length.

	 2.	 When two waves interfere constructively or destruc-
tively, is there any gain or loss in energy in the system 
of the waves? Explain.

	 3.	 Explain how a musical instrument such as a piano may 
be tuned by using the phenomenon of beats.
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	 6.	 An airplane mechanic notices that the sound from a 
twin-engine aircraft rapidly varies in loudness when 
both engines are running. What could be causing this 
variation from loud to soft?

	 7.	 Despite a reasonably steady hand, a person often spills 
his coffee when carrying it to his seat. Discuss reso-
nance as a possible cause of this difficulty and devise a 
means for preventing the spills.

	 8.	 A soft-drink bottle resonates as air is blown across its 
top. What happens to the resonance frequency as the 
level of fluid in the bottle decreases?

	 9.	 Does the phenomenon of wave interference apply only 
to sinusoidal waves?

	 3.	 Two waves on one string are described by the wave 
functions

y1 5 3.0 cos (4.0x 2 1.6t)    y2 5 4.0 sin (5.0x 2 2.0t)

		  where x and y are in centimeters and t is in seconds. 
Find the superposition of the waves y1 1 y2 at the points 
(a) x 5 1.00, t 5 1.00; (b) x 5 1.00, t 5 0.500; and (c) x 5  
0.500, t 5 0. Note: Remember that the arguments of the 
trigonometric functions are in radians.

	 4.	 Two pulses of different amplitudes approach each 
other, each having a speed of v 5 1.00 m/s. Figure 
P18.4 shows the positions of the pulses at time t 5 0.  
(a) Sketch the resultant wave at t 5 2.00 s, 4.00 s,  
5.00 s, and 6.00 s. (b) What If? If the pulse on the 
right is inverted so that it is upright, how would your 
sketches of the resultant wave change?

1.0

y (m)

x (m)

0.5

0.5
2 4 6 8 10

12 14

16

v

v

Figure P18.4

	 5.	 A tuning fork generates sound waves with a frequency 
of 246 Hz. The waves travel in opposite directions along 
a hallway, are reflected by end walls, and return. The 
hallway is 47.0 m long and the tuning fork is located 
14.0 m from one end. What is the phase difference  

W

	 4.	 What limits the amplitude of motion of a real vibrating 
system that is driven at one of its resonant frequencies?

	 5.	 A tuning fork by itself produces a faint sound. Explain 
how each of the following methods can be used to 
obtain a louder sound from it. Explain also any effect 
on the time interval for which the fork vibrates audibly. 
(a) holding the edge of a sheet of paper against one 
vibrating tine (b) pressing the handle of the tuning 
fork against a chalkboard or a tabletop (c) holding the 
tuning fork above a column of air of properly chosen 
length as in Example 18.6 (d) holding the tuning fork 
close to an open slot cut in a sheet of foam plastic or 
cardboard (with the slot similar in size and shape to 
one tine of the fork and the motion of the tines per-
pendicular to the sheet)

Note: Unless otherwise specified, assume the speed of 
sound in air is 343 m/s, its value at an air temperature 
of 20.0°C. At any other Celsius temperature TC, the 
speed of sound in air is described by

v 5 331 Å1 1
TC

273

where v is in m/s and T is in °C.

Section 18.1 ​ Analysis Model: Waves in Interference

	 1.	 Two waves are traveling in the same direction along a 
stretched string. The waves are 90.0° out of phase. Each 
wave has an amplitude of 4.00 cm. Find the amplitude 
of the resultant wave.

	 2.	 Two wave pulses A and B are moving in opposite direc-
tions, each with a speed v 5 2.00 cm/s. The amplitude 
of A is twice the amplitude of B. The pulses are shown 
in Figure P18.2 at t 5 0. Sketch the resultant wave at t 5  
1.00 s, 1.50 s, 2.00 s, 2.50 s, and 3.00 s.

W

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO
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Figure P18.2
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558	C hapter 18  Superposition and Standing Waves

	11.	 Two sinusoidal waves in a string are defined by the 
wave functions

y1 5 2.00 sin (20.0x 2 32.0t)    y2 5 2.00 sin (25.0x 2 40.0t)

		  where x, y1, and y2 are in centimeters and t is in sec-
onds. (a) What is the phase difference between these 
two waves at the point x 5 5.00 cm at t 5 2.00 s?  
(b) What is the positive x value closest to the origin for 
which the two phases differ by 6p at t 5 2.00 s? (At 
that location, the two waves add to zero.)

	12.	Two identical sinusoidal waves with wavelengths of  
3.00 m travel in the same direction at a speed of  
2.00 m/s. The second wave originates from the same 
point as the first, but at a later time. The amplitude 
of the resultant wave is the same as that of each of the 
two initial waves. Determine the minimum possible 
time interval between the starting moments of the two 
waves.

	13.	Two identical loudspeakers 10.0 m apart are driven 
by the same oscillator with a frequency of f 5 21.5 Hz 
(Fig.  P18.13) in an area where the speed of sound is 
344  m/s. (a) Show that a receiver at point A records 
a minimum in sound intensity from the two speak-
ers. (b) If the receiver is moved in the plane of the 
speakers, show that the path it should take so that the 
intensity remains at a minimum is along the hyperbola  
9x2 2 16y2 5 144 (shown in red-brown in Fig. P18.13). 
(c) Can the receiver remain at a minimum and move 
very far away from the two sources? If so, determine the 
limiting form of the path it must take. If not, explain 
how far it can go.

9.00 m 

10.0 m 

y

(x, y)

A x

Figure P18.13

Section 18.2 ​ Standing Waves

	14.	Two waves simultaneously present on a long string have 
a phase difference f between them so that a standing 
wave formed from their combination is described by

y 1x, t 2 5 2A sin akx 1
f

2
b cos avt 2

f

2
b

		  (a) Despite the presence of the phase angle f, is it still 
true that the nodes are one-half wavelength apart? 
Explain. (b) Are the nodes different in any way from 
the way they would be if f were zero? Explain.

	15.	Two sinusoidal waves traveling in opposite directions 
interfere to produce a standing wave with the wave 
function

y 5 1.50 sin (0.400x) cos (200t)

M

Q/C

Q/C

W

between the reflected waves when they meet at the tun-
ing fork? The speed of sound in air is 343 m/s.

	 6.	 The acoustical system shown in Figure OQ18.1 is 
driven by a speaker emitting sound of frequency  
756 Hz. (a) If constructive interference occurs at a 
particular location of the sliding section, by what mini-
mum amount should the sliding section be moved 
upward so that destructive interference occurs instead? 
(b) What minimum distance from the original posi-
tion of the sliding section will again result in construc-
tive interference?

	 7.	 Two pulses traveling on the same string are described 
by

y 1 5
5

13x 2 4t 22 1 2
 ​ ​ ​ ​    y 2 5

25
13x 1 4t 2 6 22 1 2

		  (a) In which direction does each pulse travel? (b) At 
what instant do the two cancel everywhere? (c) At what 
point do the two pulses always cancel?

	 8.	 Two identical loudspeakers are placed on a wall 2.00 m 
apart. A listener stands 3.00 m from the wall directly 
in front of one of the speakers. A single oscillator is 
driving the speakers at a frequency of 300 Hz. (a) What  
is the phase difference in radians between the waves 
from the speakers when they reach the observer?  
(b) What If? What is the frequency closest to 300 Hz 
to which the oscillator may be adjusted such that the 
observer hears minimal sound?

	 9.	 Two traveling sinusoidal waves are described by the 
wave functions

y1 5 5.00 sin [p(4.00x 2 1 200t)]

y2 5 5.00 sin [p(4.00x 2 1 200t 2 0.250)]

		  where x, y1, and y2 are in meters and t is in seconds. 
(a) What is the amplitude of the resultant wave func-
tion y1 1 y2? (b) What is the frequency of the resultant 
wave function?

	10.	Why is the following situation impossible? Two identical 
loudspeakers are driven by the same oscillator at fre-
quency 200 Hz. They are located on the ground a dis-
tance d 5 4.00 m from each other. Starting far from 
the speakers, a man walks straight toward the right-
hand speaker as shown in Figure P18.10. After passing 
through three minima in sound intensity, he walks to 
the next maximum and stops. Ignore any sound reflec-
tion from the ground.

AMT

M

x

d

Figure P18.10
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entire length. A fret is provided for limiting vibration to 
just the lower two-thirds of the string. (a) If the string is 
pressed down at this fret and plucked, what is the new 
fundamental frequency? (b) What If? The guitarist can 
play a “natural harmonic” by gently touching the string 
at the location of this fret and plucking the string at 
about one-sixth of the way along its length from the 
other end. What frequency will be heard then?

	23.	The A string on a cello vibrates in its first normal mode 
with a frequency of 220 Hz. The vibrating segment 
is 70.0 cm long and has a mass of 1.20 g. (a) Find the 
tension in the string. (b) Determine the frequency of 
vibration when the string vibrates in three segments.

	24.	A taut string has a length of 2.60 m and is fixed at 
both ends. (a) Find the wavelength of the fundamental 
mode of vibration of the string. (b) Can you find the 
frequency of this mode? Explain why or why not.

	25.	A certain vibrating string on a piano has a length of 
74.0  cm and forms a standing wave having two anti-
nodes. (a) Which harmonic does this wave represent? 
(b) Determine the wavelength of this wave. (c) How 
many nodes are there in the wave pattern?

	26.	A string that is 30.0 cm long and has a mass per unit 
length of 9.00 3 1023 kg/m is stretched to a tension 
of 20.0 N. Find (a) the fundamental frequency and  
(b) the next three frequencies that could cause stand-
ing-wave patterns on the string.

	27.	 In the arrangement shown in Figure P18.27, an object 
can be hung from a string (with linear mass density m 5  
0.002 00 kg/m) that passes over a light pulley. The 
string is connected to a vibrator (of constant frequency 
f ), and the length of the string between point P and the 
pulley is L 5 2.00 m. When the mass m of the object is 
either 16.0 kg or 25.0 kg, standing waves are observed; 
no standing waves are observed with any mass between 
these values, however. (a) What is the frequency of the 
vibrator? Note: The greater the tension in the string, 
the smaller the number of nodes in the standing wave. 
(b) What is the largest object mass for which standing 
waves could be observed?

L

P

Vibrator

PP
m

m

Figure P18.27  Problems 27 and 28.

	28.	In the arrangement shown in Figure P18.27, an object 
of mass m 5 5.00 kg hangs from a cord around a light 
pulley. The length of the cord between point P and the 
pulley is L 5 2.00 m. (a) When the vibrator is set to a 
frequency of 150 Hz, a standing wave with six loops is 
formed. What must be the linear mass density of the 
cord? (b) How many loops (if any) will result if m is 
changed to 45.0 kg? (c)  How many loops (if any) will 
result if m is changed to 10.0 kg?

W

W
AMT

M

		  where x and y are in meters and t is in seconds. Deter-
mine (a) the wavelength, (b) the frequency, and (c) the 
speed of the interfering waves.

	16.	Verify by direct substitution that the wave function for 
a standing wave given in Equation 18.1,

y 5 (2A sin kx) cos vt

		  is a solution of the general linear wave equation, Equa-
tion 16.27:

'2y

'x 2 5
1
v 2  

'2y

't 2

	17.	 Two transverse sinusoidal waves combining in a 
medium are described by the wave functions

y1 5 3.00 sin p(x 1 0.600t)    y2 5 3.00 sin p(x 2 0.600t)

		  where x, y1, and y2 are in centimeters and t is in sec-
onds. Determine the maximum transverse position of 
an element of the medium at (a) x 5 0.250 cm, (b) x 5  
0.500 cm, and (c) x 5 1.50 cm. (d) Find the three small-
est values of x corresponding to antinodes.

	18.	A standing wave is described by the wave function

y 5 6 sin ap

2
xb cos 1100pt 2

		  where x and y are in meters and t is in seconds.  
(a) Prepare graphs showing y as a function of x for 
five instants: t 5 0, 5 ms, 10 ms, 15 ms, and 20 ms.  
(b) From the graph, identify the wavelength of the wave 
and explain how to do so. (c) From the graph, identify 
the frequency of the wave and explain how to do so.  
(d) From the equation, directly identify the wavelength 
of the wave and explain how to do so. (e) From the 
equation, directly identify the frequency and explain 
how to do so.

	19.	Two identical loudspeakers are driven in phase by a 
common oscillator at 800 Hz and face each other at 
a distance of 1.25 m. Locate the points along the line 
joining the two speakers where relative minima of 
sound pressure amplitude would be expected.

Section 18.3 ​ Analysis Model: Waves  
Under Boundary Conditions

	20.	A standing wave is established in a 120-cm-long string 
fixed at both ends. The string vibrates in four segments 
when driven at 120 Hz. (a) Determine the wavelength. 
(b) What is the fundamental frequency of the string?

	21.	 A string with a mass m 5 8.00 g  
and a length L 5 5.00 m has 
one end attached to a wall; 
the other end is draped over a 
small, fixed pulley a distance 
d 5 4.00 m from the wall and 
attached to a hanging object 
with a mass M 5 4.00 kg as in 
Figure P18.21. If the horizon-
tal part of the string is plucked, what is the fundamen-
tal frequency of its vibration?

	22.	The 64.0-cm-long string of a guitar has a fundamen-
tal frequency of 330 Hz when it vibrates freely along its 
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560	C hapter 18  Superposition and Standing Waves

sider a seiche produced in a farm pond. Suppose the 
pond is 9.15 m long and assume it has a uniform width 
and depth. You measure that a pulse produced at one 
end reaches the other end in 2.50 s. (a) What is the 
wave speed? (b) What should be the frequency of the 
ground motion during the earthquake to produce a 
seiche that is a standing wave with antinodes at each 
end of the pond and one node at the center?

	36.	High-frequency sound can 
be used to produce stand-
ing-wave vibrations in a 
wine glass. A standing-wave 
vibration in a wine glass is 
observed to have four nodes 
and four antinodes equally 
spaced around the 20.0-cm 
circumference of the rim 
of the glass. If transverse 
waves move around the glass 
at 900 m/s, an opera singer 
would have to produce a 
high harmonic with what frequency to shatter the glass 
with a resonant vibration as shown in Figure P18.36?

Section 18.5 ​ Standing Waves in Air Columns
	37.	 The windpipe of one typical whooping crane is 5.00 feet  

long. What is the fundamental resonant frequency of 
the bird’s trachea, modeled as a narrow pipe closed at 
one end? Assume a temperature of 37°C.

	38.	If a human ear canal can be thought of as resembling 
an organ pipe, closed at one end, that resonates at a 
fundamental frequency of 3 000 Hz, what is the length 
of the canal? Use a normal body temperature of  
37°C for your determination of the speed of sound in 
the canal.

	39.	Calculate the length of a pipe that has a fundamental 
frequency of 240 Hz assuming the pipe is (a) closed at 
one end and (b) open at both ends.

	40.	The overall length of a piccolo is 32.0 cm. The reso-
nating air column is open at both ends. (a) Find the 
frequency of the lowest note a piccolo can sound.  
(b) Opening holes in the side of a piccolo effectively 
shortens the length of the resonant column. Assume 
the highest note a piccolo can sound is 4 000 Hz. Find 
the distance between adjacent antinodes for this mode 
of vibration.

	41.	The fundamental frequency of an open organ pipe 
corresponds to middle C (261.6 Hz on the chromatic 
musical scale). The third resonance of a closed organ 
pipe has the same frequency. What is the length of  
(a) the open pipe and (b) the closed pipe?

	42.	The longest pipe on a certain organ is 4.88 m. What 
is the fundamental frequency (at 0.00°C) if the pipe 
is (a) closed at one end and (b) open at each end?  
(c) What will be the frequencies at 20.0°C?

	43.	An air column in a glass tube is open at one end and 
closed at the other by a movable piston. The air in the 
tube is warmed above room temperature, and a 384-Hz 
tuning fork is held at the open end. Resonance is heard 
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	29.	Review. A sphere of mass M 5  
1.00 kg is supported by a 
string that passes over a pul-
ley at the end of a horizontal 
rod of length L 5 0.300 m  
(Fig. P18.29). The string 
makes an angle u 5 35.0° with 
the rod. The fundamental 
frequency of standing waves 
in the portion of the string 
above the rod is f 5 60.0 Hz. 
Find the mass of the portion of the string above the rod.

	30.	Review. A sphere of mass M is supported by a string 
that passes over a pulley at the end of a horizontal rod 
of length L (Fig. P18.29). The string makes an angle u 
with the rod. The fundamental frequency of standing 
waves in the portion of the string above the rod is f. 
Find the mass of the portion of the string above the 
rod.

	31.	 A violin string has a length of 0.350 m and is tuned to 
concert G, with fG 5 392 Hz. (a) How far from the end 
of the string must the violinist place her finger to play 
concert A, with fA 5 440 Hz? (b) If this position is to 
remain correct to one-half the width of a finger (that 
is, to within 0.600 cm), what is the maximum allowable 
percentage change in the string tension?

	32.	Review. A solid copper object hangs at the bottom of a 
steel wire of negligible mass. The top end of the wire 
is fixed. When the wire is struck, it emits sound with a 
fundamental frequency of 300 Hz. The copper object 
is then submerged in water so that half its volume is 
below the water line. Determine the new fundamental 
frequency.

	33.	A standing-wave pattern is observed in a thin wire with 
a length of 3.00 m. The wave function is

y 5 0.002 00 sin (px) cos (100pt)

		  where x and y are in meters and t is in seconds.  
(a) How many loops does this pattern exhibit? (b) What 
is the fundamental frequency of vibration of the wire?  
(c) What If? If the original frequency is held constant 
and the tension in the wire is increased by a factor of 9, 
how many loops are present in the new pattern?

Section 18.4 ​ Resonance

	34.	The Bay of Fundy, Nova Scotia, has the highest tides 
in the world. Assume in midocean and at the mouth 
of the bay the Moon’s gravity gradient and the Earth’s 
rotation make the water surface oscillate with an ampli-
tude of a few centimeters and a period of 12 h 24 min. 
At the head of the bay, the amplitude is several meters. 
Assume the bay has a length of 210 km and a uniform 
depth of 36.1 m. The speed of long-wavelength water 
waves is given by v 5 !gd, where d is the water’s depth. 
Argue for or against the proposition that the tide is 
magnified by standing-wave resonance.

	35.	An earthquake can produce a seiche in a lake in which 
the water sloshes back and forth from end to end with 
remarkably large amplitude and long period. Con-
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Figure P18.29   
Problems 29 and 30.
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	51.	 Two adjacent natural frequencies of an organ pipe are 
determined to be 550 Hz and 650 Hz. Calculate (a) the 
fundamental frequency and (b) the length of this pipe.

	52.	Why is the following situation impossible? A student is lis-
tening to the sounds from an air column that is 0.730 m  
long. He doesn’t know if the column is open at both 
ends or open at only one end. He hears resonance 
from the air column at frequencies 235 Hz and 587 Hz.

	53.	A student uses an audio oscillator of adjustable fre-
quency to measure the depth of a water well. The 
student reports hearing two successive resonances at  
51.87 Hz and 59.85  Hz. (a) How deep is the well?  
(b) How many antinodes are in the standing wave at 
51.87 Hz?

Section 18.6 ​ Standing Waves in Rods and Membranes

	54.	An aluminum rod is clamped one-fourth of the way 
along its length and set into longitudinal vibration by 
a variable-frequency driving source. The lowest fre-
quency that produces resonance is 4 400 Hz. The speed 
of sound in an aluminum rod is 5 100 m/s. Determine 
the length of the rod.

	55.	An aluminum rod 1.60 m long is held at its center. It 
is stroked with a rosin-coated cloth to set up a longi-
tudinal vibration. The speed of sound in a thin rod 
of aluminum is 5 100 m/s. (a) What is the fundamen-
tal frequency of the waves established in the rod?  
(b) What harmonics are set up in the rod held in this 
manner? (c) What If? What would be the fundamental 
frequency if the rod were copper, in which the speed of 
sound is 3 560 m/s?

Section 18.7 ​ Beats: Interference in Time

	56.	While attempting to tune the note C at 523 Hz, a piano 
tuner hears 2.00 beats/s between a reference oscillator 
and the string. (a) What are the possible frequencies 
of the string? (b) When she tightens the string slightly, 
she hears 3.00 beats/s. What is the frequency of the 
string now? (c)  By what percentage should the piano 
tuner now change the tension in the string to bring it 
into tune?

	57.	 In certain ranges of a piano keyboard, more than one 
string is tuned to the same note to provide extra loud-
ness. For example, the note at 110 Hz has two strings 
at this frequency. If one string slips from its nor-
mal tension of 600 N to 540 N, what beat frequency 
is heard when the hammer strikes the two strings 
simultaneously?

	58.	Review. Jane waits on a railroad platform while two 
trains approach from the same direction at equal 
speeds of 8.00 m/s. Both trains are blowing their whis-
tles (which have the same frequency), and one train is 
some distance behind the other. After the first train 
passes Jane but before the second train passes her, 
she hears beats of frequency 4.00 Hz. What is the fre-
quency of the train whistles?

	59.	Review. A student holds a tuning fork oscillating at 
256  Hz. He walks toward a wall at a constant speed 
of 1.33 m/s. (a) What beat frequency does he observe 
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when the piston is at a distance d1 5 22.8 cm from the 
open end and again when it is at a distance d2 5 68.3 cm 
from the open end. (a) What speed of sound is implied 
by these data? (b) How far from the open end will the 
piston be when the next resonance is heard?

	44.	A tuning fork with a frequency 
of f 5 512 Hz is placed near the 
top of the tube shown in Figure 
P18.44. The water level is low-
ered so that the length L slowly 
increases from an initial value 
of 20.0 cm. Determine the next 
two values of L that correspond 
to resonant modes.

	45.	With a particular fingering, 
a flute produces a note with 
frequency 880 Hz at 20.0°C. 
The flute is open at both ends.  
(a) Find the air column length. 
(b) At the beginning of the 
halftime performance at a late-
season football game, the ambient temperature is 
25.00°C and the flutist has not had a chance to warm 
up her instrument. Find the frequency the flute pro-
duces under these conditions.

	46.	A shower stall has dimensions 86.0 cm 3 86.0 cm 3 
210 cm. Assume the stall acts as a pipe closed at both 
ends, with nodes at opposite sides. Assume singing 
voices range from 130 Hz to 2 000 Hz and let the speed 
of sound in the hot air be 355 m/s. For someone sing-
ing in this shower, which frequencies would sound the 
richest (because of resonance)?

	47.	 A glass tube (open at both ends) of length L is posi-
tioned near an audio speaker of frequency f 5 680 Hz. 
For what values of L will the tube resonate with the 
speaker?

	48.	A tunnel under a river is 2.00 km long. (a) At what fre-
quencies can the air in the tunnel resonate? (b) Explain 
whether it would be good to make a rule against blow-
ing your car horn when you are in the tunnel.

	49.	As shown in Figure P18.49, 
water is pumped into a tall, 
vertical cylinder at a volume 
flow rate R 5 1.00 L/min. 
The radius of the cylinder is 
r 5 5.00 cm, and at the open 
top of the cylinder a tuning 
fork is vibrating with a fre-
quency f 5 512 Hz. As the 
water rises, what time interval 
elapses between successive 
resonances?

	50.	As shown in Figure P18.49, 
water is pumped into a tall, 
vertical cylinder at a volume 
flow rate R. The radius of the cylinder is r, and at the 
open top of the cylinder a tuning fork is vibrating with 
a frequency f. As the water rises, what time interval 
elapses between successive resonances?

f
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Figure P18.44
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Figure P18.49   
Problems 49 and 50.S
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562	C hapter 18  Superposition and Standing Waves

	66.	A 2.00-m-long wire having a mass of 0.100 kg is fixed 
at both ends. The tension in the wire is maintained at 
20.0 N. (a) What are the frequencies of the first three 
allowed modes of vibration? (b) If a node is observed at 
a point 0.400 m from one end, in what mode and with 
what frequency is it vibrating?

	67.	 The fret closest to the bridge on a guitar is 21.4 cm 
from the bridge as shown in Figure P18.67. When the 
thinnest string is pressed down at this first fret, the 
string produces the highest frequency that can be 
played on that guitar, 2 349 Hz. The next lower note 
that is produced on the string has frequency 2 217 Hz. 
How far away from the first fret should the next fret 
be?

Bridge

Frets21.4 cm

Figure P18.67
	68.	A string fixed at both ends and having a mass of 4.80 g, 

a length of 2.00 m, and a tension of 48.0 N vibrates in 
its second (n 5 2) normal mode. (a) Is the wavelength 
in air of the sound emitted by this vibrating string 
larger or smaller than the wavelength of the wave on 
the string? (b) What is the ratio of the wavelength in 
air of the sound emitted by this vibrating string and 
the wavelength of the wave on the string?

	69.	A quartz watch contains a crystal oscillator in the form 
of a block of quartz that vibrates by contracting and 
expanding. An electric circuit feeds in energy to main-
tain the oscillation and also counts the voltage pulses 
to keep time. Two opposite faces of the block, 7.05 mm 
apart, are antinodes, moving alternately toward each 
other and away from each other. The plane halfway 
between these two faces is a node of the vibration. The 
speed of sound in quartz is equal to 3.70 3 103 m/s. 
Find the frequency of the vibration.

	70.	Review. For the arrangement shown in Figure P18.70, 
the inclined plane and the small pulley are frictionless; 
the string supports the object of mass M at the bottom 
of the plane; and the string has mass m. The system 
is in equilibrium, and the vertical part of the string 
has a length h. We wish to study standing waves set up 
in the vertical section of the string. (a) What analysis 
model describes the object of mass M? (b) What analy-
sis model describes the waves on the vertical part of the 
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between the tuning fork and its echo? (b) How fast 
must he walk away from the wall to observe a beat fre-
quency of 5.00 Hz?

Section 18.8 ​ Nonsinusoidal Wave Patterns

	60.	An A-major chord consists of the notes called A, C#, 
and E. It can be played on a piano by simultaneously 
striking strings with fundamental frequencies of 
440.00 Hz, 554.37 Hz, and 659.26 Hz. The rich con-
sonance of the chord is associated with near equality 
of the frequencies of some of the higher harmonics of 
the three tones. Consider the first five harmonics of 
each string and determine which harmonics show near 
equality.

	61.	 Suppose a flutist plays a 523-Hz C note with first har-
monic displacement amplitude A1 5 100 nm. From Fig-
ure 18.19b read, by proportion, the displacement ampli-
tudes of harmonics 2 through 7. Take these as the values 
A2 through A7 in the Fourier analysis of the sound and 
assume B1 5 B2 5 ??? 5 B 7 5 0. Construct a graph of 
the waveform of the sound. Your waveform will not look 
exactly like the flute waveform in Figure 18.18b because 
you simplify by ignoring cosine terms; nevertheless, it 
produces the same sensation to human hearing.

Additional Problems

	62.	A pipe open at both ends has a fundamental frequency 
of 300 Hz when the temperature is 0°C. (a) What is the 
length of the pipe? (b) What is the fundamental fre-
quency at a temperature of 30.0°C?

	63.	A string is 0.400 m long and has a mass per unit length 
of 9.00 3 10–3 kg/m. What must be the tension in the 
string if its second harmonic has the same frequency as 
the second resonance mode of a 1.75-m-long pipe open 
at one end?

	64.	Two strings are vibrating at the same frequency of 
150  Hz. After the tension in one of the strings is 
decreased, an observer hears four beats each second 
when the strings vibrate together. Find the new fre-
quency in the adjusted string.

	65.	The ship in Figure P18.65 travels along a straight line 
parallel to the shore and a distance d 5 600 m from 
it. The ship’s radio receives simultaneous signals of the 
same frequency from antennas A and B, separated by 
a distance L 5 800 m. The signals interfere construc-
tively at point C, which is equidistant from A and B. 
The signal goes through the first minimum at point D, 
which is directly outward from the shore from point B. 
Determine the wavelength of the radio waves.
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at this moment? Explain your answer. (c) What if? The 
experiment is repeated after more mass has been added 
to the yo-yo body. The mass distribution is kept the same 
so that the yo-yo still moves with downward acceleration 
0.800 m/s2. At the 1.20-s point in this case, is the rate 
of change of the fundamental wavelength of the string 
vibration still equal to 1.92 m/s? Explain. (d) Is the rate 
of change of the second harmonic wavelength the same 
as in part (b)? Explain.

	75.	On a marimba (Fig. P18.75), the wooden bar that 
sounds a tone when struck vibrates in a transverse 
standing wave having three antinodes and two nodes. 
The lowest-frequency note is 87.0 Hz, produced by a 
bar 40.0 cm long. (a) Find the speed of transverse 
waves on the bar. (b) A resonant pipe suspended verti-
cally below the center of the bar enhances the loudness 
of the emitted sound. If the pipe is open at the top end 
only, what length of the pipe is required to resonate 
with the bar in part (a)?

Figure P18.75
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	76.	A nylon string has mass 5.50 g and 
length L 5 86.0 cm. The lower end 
is tied to the floor, and the upper 
end is tied to a small set of wheels 
through a slot in a track on which 
the wheels move (Fig. P18.76). The 
wheels have a mass that is negli-
gible compared with that of the 
string, and they roll without fric-
tion on the track so that the upper 
end of the string is essentially free. 
At equilibrium, the string is vertical 
and motionless. When it is carrying a small-amplitude 
wave, you may assume the string is always under uni-
form tension 1.30 N. (a) Find the speed of transverse 
waves on the string. (b) The string’s vibration pos-
sibilities are a set of standing-wave states, each with 
a node at the fixed bottom end and an antinode at 
the free top end. Find the node–antinode distances 
for each of the three simplest states. (c) Find the fre-
quency of each of these states.

	77.	 Two train whistles have identical frequencies of  
180 Hz. When one train is at rest in the station and 
the other is moving nearby, a commuter standing on 
the station platform hears beats with a frequency of 
2.00 beats/s when the whistles operate together. What 

L

Figure P18.76

M

string? (c) Find the tension in the string. (d) Model the 
shape of the string as one leg and the hypotenuse of 
a right triangle. Find the whole length of the string.  
(e) Find the mass per unit length of the string. (f) Find 
the speed of waves on the string. (g) Find the lowest 
frequency for a standing wave on the vertical section 
of the string. (h) Evaluate this result for M 5 1.50 kg, 
m 5 0.750 g, h 5 0.500 m, and u 5 30.0°. (i) Find the 
numerical value for the lowest frequency for a standing 
wave on the sloped section of the string.

	71.	A 0.010 0-kg wire, 2.00 m long, is fixed at both ends and 
vibrates in its simplest mode under a tension of 200 N. 
When a vibrating tuning fork is placed near the wire, a 
beat frequency of 5.00 Hz is heard. (a) What could be 
the frequency of the tuning fork? (b) What should the 
tension in the wire be if the beats are to disappear?

	72.	Two speakers are driven by the same oscillator of fre-
quency f. They are located a distance d from each 
other on a vertical pole. A man walks straight toward 
the lower speaker in a direction perpendicular to the 
pole as shown in Figure P18.72. (a) How many times 
will he hear a minimum in sound intensity? (b) How 
far is he from the pole at these moments? Let v repre-
sent the speed of sound and assume that the ground 
does not reflect sound. The man’s ears are at the same 
level as the lower speaker.

dL

Figure P18.72
	73.	Review. Consider the apparatus shown in Figure 18.11 

and described in Example 18.4. Suppose the number 
of antinodes in Figure 18.11b is an arbitrary value n. 
(a) Find an expression for the radius of the sphere in 
the water as a function of only n. (b) What is the mini-
mum allowed value of n for a sphere of nonzero size? 
(c) What is the radius of the largest sphere that will 
produce a standing wave on the string? (d) What hap-
pens if a larger sphere is used?

	74.	 Review. The top end of a yo-yo string is held stationary. 
The yo-yo itself is much more massive than the string. It 
starts from rest and moves down with constant accelera-
tion 0.800 m/s2 as it unwinds from the string. The rub-
bing of the string against the edge of the yo-yo excites 
transverse standing-wave vibrations in the string. Both 
ends of the string are nodes even as the length of the 
string increases. Consider the instant 1.20 s after the 
motion begins from rest. (a) Show that the rate of change 
with time of the wavelength of the fundamental mode of 
oscillation is 1.92 m/s. (b) What if? Is the rate of change 
of the wavelength of the second harmonic also 1.92 m/s 
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564	C hapter 18  Superposition and Standing Waves

(b) Determine the amplitude and phase angle for this 
sinusoidal wave.

	84.	A flute is designed so that it produces a frequency of 
261.6 Hz, middle C, when all the holes are covered and 
the temperature is 20.0°C. (a) Consider the flute as a 
pipe that is open at both ends. Find the length of the 
flute, assuming middle C is the fundamental. (b) A sec-
ond player, nearby in a colder room, also attempts to 
play middle C on an identical flute. A beat frequency 
of 3.00 Hz is heard when both flutes are playing. What 
is the temperature of the second room?

	85.	Review. A 12.0-kg object hangs in equilibrium from a 
string with a total length of L 5 5.00 m and a linear mass 
density of m 5 0.001 00 kg/m. The string is wrapped 
around two light, frictionless pulleys that are separated 
by a distance of d 5 2.00 m (Fig. P18.85a). (a) Deter-
mine the tension in the string. (b) At what frequency 
must the string between the pulleys vibrate to form the 
standing-wave pattern shown in Figure P18.85b?

gS 

m

d

m

d

a b

Figure P18.85  Problems 85 and 86.

	86.	Review. An object of mass m hangs in equilibrium 
from a string with a total length L and a linear mass 
density m. The string is wrapped around two light, 
frictionless pulleys that are separated by a distance d 
(Fig. P18.85a). (a) Determine the tension in the string.  
(b) At what frequency must the string between the pul-
leys vibrate to form the standing-wave pattern shown in 
Figure P18.85b?

Challenge Problems

	87.	 Review. Consider the apparatus shown in Figure 
P18.87a, where the hanging object has mass M and the 
string is vibrating in its second harmonic. The vibrat-
ing blade at the left maintains a constant frequency. 
The wind begins to blow to the right, applying a con-
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are the two possible speeds and directions the moving 
train can have?

	78.	Review. A loudspeaker at the front of a room and an 
identical loudspeaker at the rear of the room are being 
driven by the same oscillator at 456 Hz. A student 
walks at a uniform rate of 1.50 m/s along the length 
of the room. She hears a single tone repeatedly becom-
ing louder and softer. (a) Model these variations as 
beats between the Doppler-shifted sounds the student 
receives. Calculate the number of beats the student 
hears each second. (b) Model the two speakers as pro-
ducing a standing wave in the room and the student as 
walking between antinodes. Calculate the number of 
intensity maxima the student hears each second.

	79.	Review. Consider the copper object hanging from 
the steel wire in Problem 32. The top end of the wire 
is fixed. When the wire is struck, it emits sound with a 
fundamental frequency of 300 Hz. The copper object is 
then submerged in water. If the object can be positioned 
with any desired fraction of its volume submerged, what 
is the lowest possible new fundamental frequency?

	80.	Two wires are welded together end to end. The wires 
are made of the same material, but the diameter of one 
is twice that of the other. They are subjected to a ten-
sion of 4.60 N. The thin wire has a length of 40.0 cm 
and a linear mass density of 2.00 g/m. The combina-
tion is fixed at both ends and vibrated in such a way 
that two antinodes are present, with the node between 
them being right at the weld. (a) What is the frequency 
of vibration? (b) What is the length of the thick wire?

	81.	 A string of linear density 1.60 g/m is stretched between 
clamps 48.0 cm apart. The string does not stretch 
appreciably as the tension in it is steadily raised from 
15.0 N at t 5 0 to 25.0 N at t 5 3.50 s. Therefore, the 
tension as a function of time is given by the expression 
T 5 15.0 1 10.0t/3.50, where T is in newtons and t is 
in seconds. The string is vibrating in its fundamental 
mode throughout this process. Find the number of 
oscillations it completes during the 3.50-s interval.

	82.	A standing wave is set up in a string of variable length 
and tension by a vibrator of variable frequency. Both 
ends of the string are fixed. When the vibrator has a 
frequency f, in a string of length L and under tension 
T, n antinodes are set up in the string. (a) If the length 
of the string is doubled, by what factor should the fre-
quency be changed so that the same number of anti-
nodes is produced? (b) If the frequency and length are 
held constant, what tension will produce n 1 1 anti-
nodes? (c) If the frequency is tripled and the length of 
the string is halved, by what factor should the tension be 
changed so that twice as many antinodes are produced?

	83.	Two waves are described by the wave functions

y1(x, t) 5 5.00 sin (2.00x 2 10.0t)

y2(x, t) 5 10.0 cos (2.00x 2 10.0t)

		  where x, y1, and y2 are in meters and t is in seconds. 
(a)  Show that the wave resulting from their super-
position can be expressed as a single sine function.  

M

S

M

MF
S

a

b

Figure P18.87
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		  Express Equation 18.13 with angular frequencies:

y 1t 2 5 a
n

1An sin nvt 1 Bn cos nvt 2

		  Now proceed as follows. (a) Multiply both sides of Equa-
tion 18.13 by sin mvt and integrate both sides over one 
period T. Show that the left-hand side of the resulting 
equation is equal to 0 if m is even and is equal to 4A/mv  
if m is odd. (b) Using trigonometric identities, show 
that all terms on the right-hand side involving Bn are 
equal to zero. (c) Using trigonometric identities, show 
that all terms on the right-hand side involving An are 
equal to zero except for the one case of m 5 n. (d) Show 
that the entire right-hand side of the equation reduces 
to 1

2AmT. (e) Show that the Fourier series expansion for 
a square wave is

y 1t 2 5 a
n

 
4A
np

 sin nvt

stant horizontal force F
S

 on the hanging object. What 
is the magnitude of the force the wind must apply to 
the hanging object so that the string vibrates in its first 
harmonic as shown in Figure 18.87b?

	88.	In Figures 18.20a and 18.20b, notice that the ampli-
tude of the component wave for frequency f is large, 
that for 3f is smaller, and that for 5f smaller still. How 
do we know exactly how much amplitude to assign to 
each frequency component to build a square wave? 
This problem helps us find the answer to that question. 
Let the square wave in Figure 18.20c have an ampli-
tude A and let t 5 0 be at the extreme left of the figure. 
So, one period T of the square wave is described by

y 1 t 2 5 µ
A 0 , t ,

T
2

2A
T
2

, t , T

S
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Thermodynamics

A bubble in one of the many 
mud pots in Yellowstone 
National Park is caught just 
at the moment of popping. A 
mud pot is a pool of bubbling 
hot mud that demonstrates the 
existence of thermodynamic 
processes below the Earth’s 
surface. (© Adambooth/

Dreamstime.com) 

pa  r t  

3

We now direct our attention to the study of thermodynamics, which involves situ-
ations in which the temperature or state (solid, liquid, gas) of a system changes due to 
energy transfers. As we shall see, thermodynamics is very successful in explaining the bulk 
properties of matter and the correlation between these properties and the mechanics of atoms and 
molecules.
	 Historically, the development of thermodynamics paralleled the development of the atomic the-
ory of matter. By the 1820s, chemical experiments had provided solid evidence for the existence 
of atoms. At that time, scientists recognized that a connection between thermodynamics and the 
structure of matter must exist. In 1827, botanist Robert Brown reported that grains of pollen sus-
pended in a liquid move erratically from one place to another as if under constant agitation. In 
1905, Albert Einstein used kinetic theory to explain the cause of this erratic motion, known today 
as Brownian motion. Einstein explained this phenomenon by assuming the grains are under constant 
bombardment by “invisible” molecules in the liquid, which themselves move erratically. This expla-
nation gave scientists insight into the concept of molecular motion and gave credence to the idea 
that matter is made up of atoms. A connection was thus forged between the everyday world and the 
tiny, invisible building blocks that make up this world.
	T hermodynamics also addresses more practical questions. Have you ever wondered how a refrig-
erator is able to cool its contents, or what types of transformations occur in a power plant or in 
the engine of your automobile, or what happens to the kinetic energy of a moving object when the 
object comes to rest? The laws of thermodynamics can be used to provide explanations for these 
and other phenomena.  ■
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Why would someone designing a 
pipeline include these strange loops? 
Pipelines carrying liquids often 
contain such loops to allow for 
expansion and contraction as the 
temperature changes. We will study 
thermal expansion in this chapter.  
(© Lowell Georgia/CORBIS)

19.1	 Temperature and 
the Zeroth Law of 
Thermodynamics

19.2	 Thermometers and the 
Celsius Temperature Scale

19.3	 The Constant-Volume  
Gas Thermometer  
and the Absolute 
Temperature Scale

19.4	 Thermal Expansion of 
Solids and Liquids

19.5	 Macroscopic Description  
of an Ideal Gas

c h a p t e r 

19 Temperature

In our study of mechanics, we carefully defined such concepts as mass, force, and 
kinetic energy to facilitate our quantitative approach. Likewise, a quantitative description 
of thermal phenomena requires careful definitions of such important terms as temperature, 
heat, and internal energy. This chapter begins with a discussion of temperature.
	 Next, when studying thermal phenomena, we consider the importance of the particu-
lar substance we are investigating. For example, gases expand appreciably when heated, 
whereas liquids and solids expand only slightly.
	T his chapter concludes with a study of ideal gases on the macroscopic scale. Here, we are 
concerned with the relationships among such quantities as pressure, volume, and tempera-
ture of a gas. In Chapter 21, we shall examine gases on a microscopic scale, using a model 
that represents the components of a gas as small particles.

19.1	 �Temperature and the Zeroth Law  
of Thermodynamics

We often associate the concept of temperature with how hot or cold an object feels 
when we touch it. In this way, our senses provide us with a qualitative indication of 
temperature. Our senses, however, are unreliable and often mislead us. For exam-

568  	
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	 19.1  Temperature and the Zeroth Law of Thermodynamics	 569

ple, if you stand in bare feet with one foot on carpet and the other on an adjacent 
tile floor, the tile feels colder than the carpet even though both are at the same tem-
perature. The two objects feel different because tile transfers energy by heat at a 
higher rate than carpet does. Your skin “measures” the rate of energy transfer by 
heat rather than the actual temperature. What we need is a reliable and reproduc-
ible method for measuring the relative hotness or coldness of objects rather than 
the rate of energy transfer. Scientists have developed a variety of thermometers for 
making such quantitative measurements.
	 Two objects at different initial temperatures eventually reach some intermediate 
temperature when placed in contact with each other. For example, when hot water 
and cold water are mixed in a bathtub, energy is transferred from the hot water to 
the cold water and the final temperature of the mixture is somewhere between the 
initial hot and cold temperatures.
	 Imagine that two objects are placed in an insulated container such that they 
interact with each other but not with the environment. If the objects are at differ-
ent temperatures, energy is transferred between them, even if they are initially not 
in physical contact with each other. The energy-transfer mechanisms from Chap-
ter 8 that we will focus on are heat and electromagnetic radiation. For purposes 
of this discussion, let’s assume two objects are in thermal contact with each other 
if energy can be exchanged between them by these processes due to a tempera-
ture difference. Thermal equilibrium is a situation in which two objects would not 
exchange energy by heat or electromagnetic radiation if they were placed in ther-
mal contact.
	 Let’s consider two objects A and B, which are not in thermal contact, and a third 
object C, which is our thermometer. We wish to determine whether A and B are in 
thermal equilibrium with each other. The thermometer (object C) is first placed 
in thermal contact with object A until thermal equilibrium is reached1 as shown in 
Figure 19.1a. From that moment on, the thermometer’s reading remains constant 
and we record this reading. The thermometer is then removed from object A and 
placed in thermal contact with object B as shown in Figure 19.1b. The reading is 
again recorded after thermal equilibrium is reached. If the two readings are the 
same, we can conclude that object A and object B are in thermal equilibrium with 
each other. If they are placed in contact with each other as in Figure 19.1c, there is 
no exchange of energy between them.

A

C C

A B

The temperatures of A and B are measured 
to be the same by placing them in thermal 
contact with a thermometer (object C).

No energy will be 
exchanged 
between A and B 
when they are 
placed in thermal 
contact with each 
other.

B

a b c

Figure 19.1  ​The zeroth law of 
thermodynamics.

1We assume a negligible amount of energy transfers between the thermometer and object A in the time interval dur-
ing which they are in thermal contact. Without this assumption, which is also made for the thermometer and object 
B, the measurement of the temperature of an object disturbs the system so that the measured temperature is differ-
ent from the initial temperature of the object. In practice, whenever you measure a temperature with a thermometer, 
you measure the disturbed system, not the original system.
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570	C hapter 19 T emperature

	 We can summarize these results in a statement known as the zeroth law of ther-
modynamics (the law of equilibrium):

If objects A and B are separately in thermal equilibrium with a third object C, 
then A and B are in thermal equilibrium with each other.

This statement can easily be proved experimentally and is very important because 
it enables us to define temperature. We can think of temperature as the property 
that determines whether an object is in thermal equilibrium with other objects. 
Two objects in thermal equilibrium with each other are at the same temperature. 
Conversely, if two objects have different temperatures, they are not in thermal 
equilibrium with each other. We now know that temperature is something that 
determines whether or not energy will transfer between two objects in thermal 
contact. In Chapter 21, we will relate temperature to the mechanical behavior of 
molecules.

Q	 uick Quiz 19.1 ​ Two objects, with different sizes, masses, and temperatures, are 
placed in thermal contact. In which direction does the energy travel? (a) Energy 
travels from the larger object to the smaller object. (b) Energy travels from the 
object with more mass to the one with less mass. (c) Energy travels from the 
object at higher temperature to the object at lower temperature.

19.2	 �Thermometers and the Celsius  
Temperature Scale

Thermometers are devices used to measure the temperature of a system. All ther-
mometers are based on the principle that some physical property of a system 
changes as the system’s temperature changes. Some physical properties that change 
with temperature are (1) the volume of a liquid, (2) the dimensions of a solid, 
(3)  the pressure of a gas at constant volume, (4) the volume of a gas at constant 
pressure, (5) the electric resistance of a conductor, and (6) the color of an object.
	 A common thermometer in everyday use consists of a mass of liquid—usually 
mercury or alcohol—that expands into a glass capillary tube when heated (Fig. 
19.2). In this case, the physical property that changes is the volume of a liquid. 
Any temperature change in the range of the thermometer can be defined as being 
proportional to the change in length of the liquid column. The thermometer can 
be calibrated by placing it in thermal contact with a natural system that remains 

Zeroth law 
of thermodynamics

Figure 19.2  ​A mercury ther-
mometer before and after increas-
ing its temperature.

20�C

30�C

The level of the mercury in the thermometer rises 
as the mercury is heated by water in the test tube.
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at constant temperature. One such system is a mixture of water and ice in thermal 
equilibrium at atmospheric pressure. On the Celsius temperature scale, this mix-
ture is defined to have a temperature of zero degrees Celsius, which is written as 
08C; this temperature is called the ice point of water. Another commonly used system 
is a mixture of water and steam in thermal equilibrium at atmospheric pressure; its 
temperature is defined as 1008C, which is the steam point of water. Once the liquid 
levels in the thermometer have been established at these two points, the length of 
the liquid column between the two points is divided into 100 equal segments to cre-
ate the Celsius scale. Therefore, each segment denotes a change in temperature of 
one Celsius degree.
	 Thermometers calibrated in this way present problems when extremely accurate 
readings are needed. For instance, the readings given by an alcohol thermometer 
calibrated at the ice and steam points of water might agree with those given by a 
mercury thermometer only at the calibration points. Because mercury and alcohol 
have different thermal expansion properties, when one thermometer reads a tem-
perature of, for example, 508C, the other may indicate a slightly different value. 
The discrepancies between thermometers are especially large when the tempera-
tures to be measured are far from the calibration points.2

	 An additional practical problem of any thermometer is the limited range of tem-
peratures over which it can be used. A mercury thermometer, for example, cannot 
be used below the freezing point of mercury, which is 2398C, and an alcohol ther-
mometer is not useful for measuring temperatures above 858C, the boiling point of 
alcohol. To surmount this problem, we need a universal thermometer whose read-
ings are independent of the substance used in it. The gas thermometer, discussed 
in the next section, approaches this requirement.

19.3	 �The Constant-Volume Gas Thermometer  
and the Absolute Temperature Scale

One version of a gas thermometer is the constant-volume apparatus shown in Fig-
ure 19.3. The physical change exploited in this device is the variation of pressure 
of a fixed volume of gas with temperature. The flask is immersed in an ice-water 
bath, and mercury reservoir B is raised or lowered until the top of the mercury in 
column A is at the zero point on the scale. The height h, the difference between the 
mercury levels in reservoir B and column A, indicates the pressure in the flask at 
08C by means of Equation 14.4, P 5 P0 1 rgh.
	 The flask is then immersed in water at the steam point. Reservoir B is read-
justed until the top of the mercury in column A is again at zero on the scale, which 
ensures that the gas’s volume is the same as it was when the flask was in the ice bath 
(hence the designation “constant-volume”). This adjustment of reservoir B gives a 
value for the gas pressure at 1008C. These two pressure and temperature values are 
then plotted as shown in Figure 19.4. The line connecting the two points serves as 
a calibration curve for unknown temperatures. (Other experiments show that a 
linear relationship between pressure and temperature is a very good assumption.) 
To measure the temperature of a substance, the gas flask of Figure 19.3 is placed in 
thermal contact with the substance and the height of reservoir B is adjusted until 
the top of the mercury column in A is at zero on the scale. The height of the mer-
cury column in B indicates the pressure of the gas; knowing the pressure, the tem-
perature of the substance is found using the graph in Figure 19.4.
	 Now suppose temperatures of different gases at different initial pressures 
are measured with gas thermometers. Experiments show that the thermometer 
readings are nearly independent of the type of gas used as long as the gas pres-
sure is low and the temperature is well above the point at which the gas liquefies  

2Two thermometers that use the same liquid may also give different readings, due in part to difficulties in construct-
ing uniform-bore glass capillary tubes.

A B

The volume of gas in the flask is 
kept constant by raising or 
lowering reservoir B to keep the 
mercury level in column A 
constant.

h

Scale

0

Mercury
reservoir

Flexible
hose

Bath or
environment
to be measured

P
Gas

Figure 19.3  ​A constant-volume 
gas thermometer measures the 
pressure of the gas contained in 
the flask immersed in the bath.

1000
T (�C)

P

The two dots represent known 
reference temperatures (the 
ice and steam points of water).

Figure 19.4  ​A typical graph 
of pressure versus temperature 
taken with a constant-volume gas 
thermometer.
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572	C hapter 19 T emperature

(Fig. 19.5). The agreement among thermometers using various gases improves as 
the pressure is reduced.
	 If we extend the straight lines in Figure 19.5 toward negative temperatures, we 
find a remarkable result: in every case, the pressure is zero when the temperature 
is 2273.158C! This finding suggests some special role that this particular tempera-
ture must play. It is used as the basis for the absolute temperature scale, which sets 
2273.158C as its zero point. This temperature is often referred to as absolute zero. It 
is indicated as a zero because at a lower temperature, the pressure of the gas would 
become negative, which is meaningless. The size of one degree on the absolute tem-
perature scale is chosen to be identical to the size of one degree on the Celsius 
scale. Therefore, the conversion between these temperatures is

	 TC 5 T 2 273.15	 (19.1)

where TC is the Celsius temperature and T is the absolute temperature.
	 Because the ice and steam points are experimentally difficult to duplicate and 
depend on atmospheric pressure, an absolute temperature scale based on two new 
fixed points was adopted in 1954 by the International Committee on Weights and 
Measures. The first point is absolute zero. The second reference temperature for this 
new scale was chosen as the triple point of water, which is the single combination of 
temperature and pressure at which liquid water, gaseous water, and ice (solid water) 
coexist in equilibrium. This triple point occurs at a temperature of 0.018C and a pres-
sure of 4.58 mm of mercury. On the new scale, which uses the unit kelvin, the tem-
perature of water at the triple point was set at 273.16 kelvins, abbreviated 273.16 K.  
This choice was made so that the old absolute temperature scale based on the ice 
and steam points would agree closely with the new scale based on the triple point. 
This new absolute temperature scale (also called the Kelvin scale) employs the SI 
unit of absolute temperature, the kelvin, which is defined to be 1/273.16 of the dif-
ference between absolute zero and the temperature of the triple point of water.
	 Figure 19.6 gives the absolute temperature for various physical processes and 
structures. The temperature of absolute zero (0 K) cannot be achieved, although 
laboratory experiments have come very close, reaching temperatures of less than 
one nanokelvin.

The Celsius, Fahrenheit, and Kelvin Temperature Scales3

Equation 19.1 shows that the Celsius temperature TC is shifted from the absolute 
(Kelvin) temperature T by 273.158. Because the size of one degree is the same on 
the two scales, a temperature difference of 58C is equal to a temperature difference 
of 5 K. The two scales differ only in the choice of the zero point. Therefore, the 
ice-point temperature on the Kelvin scale, 273.15 K, corresponds to 0.008C, and the 
Kelvin-scale steam point, 373.15 K, is equivalent to 100.008C.
	 A common temperature scale in everyday use in the United States is the Fahren-
heit scale. This scale sets the temperature of the ice point at 328F and the tempera-
ture of the steam point at 2128F. The relationship between the Celsius and Fahrenheit 
temperature scales is

	 TF 5 9
5TC 1 328F	 (19.2)

We can use Equations 19.1 and 19.2 to find a relationship between changes in tem-
perature on the Celsius, Kelvin, and Fahrenheit scales:

	 DTC 5 DT 5 5
9 DTF	 (19.3)

	 Of these three temperature scales, only the Kelvin scale is based on a true zero 
value of temperature. The Celsius and Fahrenheit scales are based on an arbitrary 
zero associated with one particular substance, water, on one particular planet, the 

Trial 2

Trial 3

Trial 1
P

200
T (�C)

1000�100�200

For all three trials, the pressure 
extrapolates to zero at the 
temperature �273.15�C.

Figure 19.5  ​Pressure versus 
temperature for experimental tri-
als in which gases have different 
pressures in a constant-volume gas 
thermometer.

Pitfall Prevention 19.1
A Matter of Degree  Notations for 
temperatures in the Kelvin scale do 
not use the degree sign. The unit 
for a Kelvin temperature is simply 
“kelvins” and not “degrees Kelvin.”

3Named after Anders Celsius (1701–1744), Daniel Gabriel Fahrenheit (1686–1736), and William Thomson, Lord Kel-
vin (1824–1907), respectively.

Hydrogen bomb

109

108

107

106

105

104

103

102

10

1

Interior of the Sun 

Solar corona

Surface of the Sun
Copper melts

Water freezes
Liquid nitrogen
Liquid hydrogen

Liquid helium

Lowest temperature
achieved ˜ 10–9 K 

Temperature (K)

Note that the scale is logarithmic.

Figure 19.6  ​Absolute tempera-
tures at which various physical 
processes occur.
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Earth. Therefore, if you encounter an equation that calls for a temperature T or 
that involves a ratio of temperatures, you must convert all temperatures to kelvins. If 
the equation contains a change in temperature DT, using Celsius temperatures will 
give you the correct answer, in light of Equation 19.3, but it is always safest to convert 
temperatures to the Kelvin scale.

Q	 uick Quiz 19.2 ​ Consider the following pairs of materials. Which pair repre-
sents two materials, one of which is twice as hot as the other? (a) boiling water 
at 1008C, a glass of water at 508C (b) boiling water at 1008C, frozen methane at 
2508C (c) an ice cube at 2208C, flames from a circus fire-eater at 2338C  
(d) none of those pairs

Example 19.1	     Converting Temperatures

On a day when the temperature reaches 508F, what is the temperature in degrees Celsius and in kelvins?

Conceptualize  ​In the United States, a temperature of 508F is well understood. In many other parts of the world, how-
ever, this temperature might be meaningless because people are familiar with the Celsius temperature scale.

Categorize  ​This example is a simple substitution problem.

S o l u t i o n

Solve Equation 19.2 for the Celsius temperature and sub-
stitute numerical values:

TC 5 5
9 1TF 2 32 2 5 5

9 150 2 32 2 5 108C

Use Equation 19.1 to find the Kelvin temperature: T 5 TC 1 273.15 5 108C 1 273.15 5   283 K

A convenient set of weather-related temperature equivalents to keep in mind is that 08C is (literally) freezing at 328F, 
108C is cool at 508F, 208C is room temperature, 308C is warm at 868F, and 408C is a hot day at 1048F.

19.4	 Thermal Expansion of Solids and Liquids
Our discussion of the liquid thermometer makes use of one of the best-known 
changes in a substance: as its temperature increases, its volume increases. This phe-
nomenon, known as thermal expansion, plays an important role in numerous engi-
neering applications. For example, thermal-expansion joints such as those shown 
in Figure 19.7 must be included in buildings, concrete highways, railroad tracks, 

Figure 19.7  ​Thermal-expansion 
joints in (a) bridges and (b) walls.

The long, vertical joint is filled with a soft material 
that allows the wall to expand and contract as the 
temperature of the bricks changes.

b
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Without these joints to separate sections of 
roadway on bridges, the surface would buckle 
due to thermal expansion on very hot days or 
crack due to contraction on very cold days.
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brick walls, and bridges to compensate for dimensional changes that occur as the 
temperature changes.
	 Thermal expansion is a consequence of the change in the average separation 
between the atoms in an object. To understand this concept, let’s model the atoms 
as being connected by stiff springs as discussed in Section 15.3 and shown in Figure 
15.11b. At ordinary temperatures, the atoms in a solid oscillate about their equi-
librium positions with an amplitude of approximately 10211 m and a frequency of 
approximately 1013 Hz. The average spacing between the atoms is about 10210 m. 
As the temperature of the solid increases, the atoms oscillate with greater ampli-
tudes; as a result, the average separation between them increases.4 Consequently, 
the object expands.
	 If thermal expansion is sufficiently small relative to an object’s initial dimen-
sions, the change in any dimension is, to a good approximation, proportional to 
the first power of the temperature change. Suppose an object has an initial length 
Li along some direction at some temperature and the length changes by an amount 
DL for a change in temperature DT. Because it is convenient to consider the frac-
tional change in length per degree of temperature change, we define the average 
coefficient of linear expansion as

	 a ;
DL/Li

DT
	

Experiments show that a is constant for small changes in temperature. For pur-
poses of calculation, this equation is usually rewritten as

	 DL 5 aLi DT	 (19.4)

or as

	 Lf 2 Li 5 aLi(Tf 2 Ti)	 (19.5)

where Lf is the final length, Ti and Tf are the initial and final temperatures, respec-
tively, and the proportionality constant a is the average coefficient of linear expan-
sion for a given material and has units of (8C)21. Equation 19.4 can be used for both 
thermal expansion, when the temperature of the material increases, and thermal 
contraction, when its temperature decreases.
	 It may be helpful to think of thermal expansion as an effective magnification 
or as a photographic enlargement of an object. For example, as a metal washer is 
heated (Fig. 19.8), all dimensions, including the radius of the hole, increase accord-
ing to Equation 19.4. A cavity in a piece of material expands in the same way as if 
the cavity were filled with the material.
	 Table 19.1 lists the average coefficients of linear expansion for various materi-
als. For these materials, a is positive, indicating an increase in length with increas-
ing temperature. That is not always the case, however. Some substances—calcite 
(CaCO3) is one example—expand along one dimension (positive a) and contract 
along another (negative a) as their temperatures are increased.
	 Because the linear dimensions of an object change with temperature, it follows 
that surface area and volume change as well. The change in volume is propor-
tional to the initial volume Vi and to the change in temperature according to the 
relationship

	 DV 5 bVi DT	 (19.6)

where b is the average coefficient of volume expansion. To find the relationship 
between b and a, assume the average coefficient of linear expansion of the solid is 
the same in all directions; that is, assume the material is isotropic. Consider a solid 
box of dimensions ,, w, and h. Its volume at some temperature Ti is Vi 5 ,wh. If the 

Thermal expansion 
in one dimension

Thermal expansion 
in three dimensions

4More precisely, thermal expansion arises from the asymmetrical nature of the potential energy curve for the atoms 
in a solid as shown in Figure 15.11a. If the oscillators were truly harmonic, the average atomic separations would not 
change regardless of the amplitude of vibration.

Pitfall Prevention 19.2
Do Holes Become Larger or 
Smaller?  When an object’s tem-
perature is raised, every linear 
dimension increases in size. That 
includes any holes in the material, 
which expand in the same way 
as if the hole were filled with the 
material as shown in Figure 19.8.
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temperature changes to Ti 1 DT, its volume changes to Vi 1 DV, where each dimen-
sion changes according to Equation 19.4. Therefore,

Vi 1 DV 5 (, 1 D,)(w 1 Dw)(h 1 Dh)

5 (, 1 a, DT )(w 1 aw DT )(h 1 ah DT )

5 ,wh(1 1 a DT)3

5 Vi[1 1 3a DT 1 3(a DT )2 1 (a DT )3]

Dividing both sides by Vi and isolating the term DV/Vi , we obtain the fractional 
change in volume:

DV
Vi

5 3a DT 1 3 1a DT 22 1 1a DT 23

Because a DT ,, 1 for typical values of DT (, , 1008C), we can neglect the terms 
3(a DT)2 and (a DT)3. Upon making this approximation, we see that

DV
Vi

5 3a DT    S   DV 5 13a 2Vi DT

Comparing this expression to Equation 19.6 shows that

b 5 3a

In a similar way, you can show that the change in area of a rectangular plate is given 
by DA 5 2aAi DT (see Problem 61).
	 A simple mechanism called a bimetallic strip, found in practical devices such as 
mechanical thermostats, uses the difference in coefficients of expansion for differ-
ent materials. It consists of two thin strips of dissimilar metals bonded together. As 
the temperature of the strip increases, the two metals expand by different amounts 
and the strip bends as shown in Figure 19.9.

Q	 uick Quiz 19.3  ​If you are asked to make a very sensitive glass thermometer, 
which of the following working liquids would you choose? (a) mercury (b) alco-
hol (c) gasoline (d) glycerin

Q	 uick Quiz 19.4 ​ Two spheres are made of the same metal and have the same 
radius, but one is hollow and the other is solid. The spheres are taken through 
the same temperature increase. Which sphere expands more? (a) The solid 
sphere expands more. (b) The hollow sphere expands more. (c) They expand by 
the same amount. (d) There is not enough information to say.

Table 19.1 Average Expansion Coefficients  
for Some Materials Near Room Temperature
	 Average Linear		  Average Volume
	 Expansion		  Expansion
Material	 Coefficient	 Material	 Coefficient
(Solids)	 (a)(°C)21	 (Liquids and Gases)	 (b)(°C)21

Aluminum	 24 3 1026	 Acetone	 1.5 3 1024

Brass and bronze	 19 3 1026	 Alcohol, ethyl	 1.12 3 1024

Concrete	 12 3 1026	 Benzene	 1.24 3 1024

Copper	 17 3 1026	 Gasoline	 9.6 3 1024

Glass (ordinary)	 9 3 1026	 Glycerin	 4.85 3 1024

Glass (Pyrex)	 3.2 3 1026	 Mercury	 1.82 3 1024

Invar (Ni–Fe alloy)	 0.9 3 1026	 Turpentine	 9.0 3 1024

Lead	 29 3 1026	 Aira at 08C	 3.67 3 1023

Steel	 11 3 1026	 Heliuma	 3.665 3 1023

aGases do not have a specific value for the volume expansion coefficient because the amount of expansion depends 
on the type of process through which the gas is taken. The values given here assume the gas undergoes an expansion 
at constant pressure.

Steel

BrassRoom
temperature

Higher
temperature

Bimetallic
strip

Off 30�COn 25�C

a

b

Figure 19.9  ​(a) A bimetallic 
strip bends as the temperature 
changes because the two metals 
have different expansion coeffi-
cients. (b) A bimetallic strip used 
in a thermostat to break or make 
electrical contact.

Figure 19.8  Thermal expansion 
of a homogeneous metal washer. 
(The expansion is exaggerated in 
this figure.)

a

b

b � �b 

a � �a

Ti � �T

Ti

As the washer is heated, all 
dimensions increase, including 
the radius of the hole.
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Example 19.2	     Expansion of a Railroad Track

A segment of steel railroad track has a length of 30.000 m when the temperature is 0.08C.

(A)  ​What is its length when the temperature is 40.08C?

Conceptualize  ​Because the rail is relatively long, we expect to obtain a measurable increase in length for a 408C tem-
perature increase.

Categorize  ​We will evaluate a length increase using the discussion of this section, so this part of the example is a sub-
stitution problem.

S o l u t i o n

Use Equation 19.4 and the value of the coeffi-
cient of linear expansion from Table 19.1:

DL 5 aLi DT 5 [11 3 1026 (8C)21](30.000 m)(40.08C) 5 0.013 m

Find the new length of the track: Lf 5 30.000 m 1 0.013 m 5   30.013 m

Find the tensile stress from Equation 12.6 using 
Young’s modulus for steel from Table 12.1:

Tensile stress 5
F
A

5 Y 
DL
Li

F
A

5 120 3 1010 N/m2 2 a 0.013 m
30.000 m

b 5  8.7 3 107 N/m2

(B)  ​Suppose the ends of the rail are rigidly clamped at 0.08C so that expansion is prevented. What is the thermal 
stress set up in the rail if its temperature is raised to 40.08C?

Categorize  ​This part of the example is an analysis problem because we need to use concepts from another chapter.

Analyze  The thermal stress is the same as the tensile stress in the situation in which the rail expands freely and is then 
compressed with a mechanical force F back to its original length.

S o l u t i o n

Finalize  ​The expansion in part (A) is 1.3 cm. This expansion is indeed measurable as predicted in the Conceptualize 
step. The thermal stress in part (B) can be avoided by leaving small expansion gaps between the rails.

​What if the temperature drops to 240.08C? What is the length of the unclamped segment?

Answer  ​The expression for the change in length in Equation 19.4 is the same whether the temperature increases or 
decreases. Therefore, if there is an increase in length of 0.013 m when the temperature increases by 408C, there is a 
decrease in length of 0.013 m when the temperature decreases by 408C. (We assume a is constant over the entire range 
of temperatures.) The new length at the colder temperature is 30.000 m 2 0.013 m 5 29.987 m.

What If ?

Example 19.3	     The Thermal Electrical Short

A poorly designed electronic device has two bolts 
attached to different parts of the device that almost 
touch each other in its interior as in Figure 19.10. The 
steel and brass bolts are at different electric potentials, 
and if they touch, a short circuit will develop, damag-
ing the device. (We will study electric potential in Chap-
ter 25.) The initial gap between the ends of the bolts is  
d 5 5.0 mm at 278C. At what temperature will the bolts 
touch? Assume the distance between the walls of the 
device is not affected by the temperature change.

Conceptualize  ​Imagine the ends of both bolts expanding into the gap between them as the temperature rises.

S o l u t i o n

0.010 m 0.030 m 

5.0 mm 

Steel Brass

Figure 19.10  ​(Example 19.3) Two bolts attached to different 
parts of an electrical device are almost touching when the temper-
ature is 278C. As the temperature increases, the ends of the bolts 
move toward each other.
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Finalize  ​This temperature is possible if the air conditioning in the building housing the device fails for a long period 
on a very hot summer day.

Analyze  ​Set the sum of the length 
changes equal to the width of the gap:

DL br 1 DL st 5 abrLi,br DT 1 astLi,st DT 5 d

Solve for DT :

Substitute numerical values:

 DT 5
d

abrLi ,br 1 astLi ,st

DT 5
5.0 3 1026 m

319 3 1026 18C 221 4 10.030 m 2 1 311 3 1026 1 8C 221 4 10.010 m 2 5 7.48C

Find the temperature at which the 
bolts touch:

T 5 278C 1 7.48C 5   348C

1.00

0.99

0.98

0.97

0.96

0.95

0 20 40 60 80 100

Temperature (�C)

0.999 9

0

1.000 0

0.999 8
0.999 7
0.999 6
0.999 5

2 64 8 10 12
Temperature (�C)

(g/cm3)r

(g/cm3)r

This blown-up portion of the 
graph shows that the maximum 
density of water occurs at 4�C.

Figure 19.11  ​The variation in 
the density of water at atmospheric 
pressure with temperature.

	

▸ 19.3 c o n t i n u e d

Categorize  ​We categorize this example as a thermal expansion problem in which the sum of the changes in length of 
the two bolts must equal the length of the initial gap between the ends.

The Unusual Behavior of Water
Liquids generally increase in volume with increasing temperature and have aver-
age coefficients of volume expansion about ten times greater than those of solids.  
Cold water is an exception to this rule as you can see from its density-versus-
temperature curve shown in Figure 19.11. As the temperature increases from 08C to 
48C, water contracts and its density therefore increases. Above 48C, water expands 
with increasing temperature and so its density decreases. Therefore, the density of 
water reaches a maximum value of 1.000 g/cm3 at 48C.
	 We can use this unusual thermal-expansion behavior of water to explain why a 
pond begins freezing at the surface rather than at the bottom. When the air tem-
perature drops from, for example, 78C to 68C, the surface water also cools and con-
sequently decreases in volume. The surface water is denser than the water below it, 
which has not cooled and decreased in volume. As a result, the surface water sinks, 
and warmer water from below moves to the surface. When the air temperature is 
between 48C and 08C, however, the surface water expands as it cools, becoming less 
dense than the water below it. The mixing process stops, and eventually the surface 
water freezes. As the water freezes, the ice remains on the surface because ice is less 
dense than water. The ice continues to build up at the surface, while water near the 
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bottom remains at 48C. If that were not the case, fish and other forms of marine life 
would not survive.

19.5	 Macroscopic Description of an Ideal Gas
The volume expansion equation DV 5 bVi DT is based on the assumption that the 
material has an initial volume Vi before the temperature change occurs. Such is the 
case for solids and liquids because they have a fixed volume at a given temperature.
	 The case for gases is completely different. The interatomic forces within gases are 
very weak, and, in many cases, we can imagine these forces to be nonexistent and 
still make very good approximations. Therefore, there is no equilibrium separation for 
the atoms and no “standard” volume at a given temperature; the volume depends 
on the size of the container. As a result, we cannot express changes in volume DV in 
a process on a gas with Equation 19.6 because we have no defined volume Vi at the 
beginning of the process. Equations involving gases contain the volume V, rather 
than a change in the volume from an initial value, as a variable.
	 For a gas, it is useful to know how the quantities volume V, pressure P, and tem-
perature T are related for a sample of gas of mass m. In general, the equation that 
interrelates these quantities, called the equation of state, is very complicated. If the gas 
is maintained at a very low pressure (or low density), however, the equation of state is 
quite simple and can be determined from experimental results. Such a low-density 
gas is commonly referred to as an ideal gas.5 We can use the ideal gas model to make 
predictions that are adequate to describe the behavior of real gases at low pressures.
	 It is convenient to express the amount of gas in a given volume in terms of the 
number of moles n. One mole of any substance is that amount of the substance that 
contains Avogadro’s number NA 5 6.022 3 1023 of constituent particles (atoms or 
molecules). The number of moles n of a substance is related to its mass m through 
the expression

	 n 5
m
M

	 (19.7)

where M is the molar mass of the substance. The molar mass of each chemical 
element is the atomic mass (from the periodic table; see Appendix C) expressed 
in grams per mole. For example, the mass of one He atom is 4.00 u (atomic mass 
units), so the molar mass of He is 4.00 g/mol.
	 Now suppose an ideal gas is confined to a cylindrical container whose volume 
can be varied by means of a movable piston as in Figure 19.12. If we assume the cyl-
inder does not leak, the mass (or the number of moles) of the gas remains constant. 
For such a system, experiments provide the following information:

•	When the gas is kept at a constant temperature, its pressure is inversely propor-
tional to the volume. (This behavior is described historically as Boyle’s law.)

•	When the pressure of the gas is kept constant, the volume is directly propor-
tional to the temperature. (This behavior is described historically as Charles’s 
law.)

•	When the volume of the gas is kept constant, the pressure is directly propor-
tional to the temperature. (This behavior is described historically as Gay– 
Lussac’s law.)

	 These observations are summarized by the equation of state for an ideal gas:

	 PV 5 nRT	 (19.8)Equation of state for  
an ideal gas

5To be more specific, the assumptions here are that the temperature of the gas must not be too low (the gas must not 
condense into a liquid) or too high and that the pressure must be low. The concept of an ideal gas implies that the 
gas molecules do not interact except upon collision and that the molecular volume is negligible compared with the 
volume of the container. In reality, an ideal gas does not exist. The concept of an ideal gas is nonetheless very useful 
because real gases at low pressures are well-modeled as ideal gases.

Figure 19.12  An ideal gas con-
fined to a cylinder whose volume 
can be varied by means of a mov-
able piston.

Gas
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In this expression, also known as the ideal gas law, n is the number of moles of gas 
in the sample and R is a constant. Experiments on numerous gases show that as the 
pressure approaches zero, the quantity PV/nT approaches the same value R for all 
gases. For this reason, R is called the universal gas constant. In SI units, in which 
pressure is expressed in pascals (1 Pa 5 1 N/m2) and volume in cubic meters, the 
product PV has units of newton ​? ​meters, or joules, and R has the value

	 R 5 8.314 J/mol ? K	 (19.9)

If the pressure is expressed in atmospheres and the volume in liters (1 L 5 
103 cm3 5 1023 m3), then R has the value

	 R 5 0.082 06 L ? atm/mol ? K	

Using this value of R and Equation 19.8 shows that the volume occupied by 1 mol of 
any gas at atmospheric pressure and at 08C (273 K) is 22.4 L.
	 The ideal gas law states that if the volume and temperature of a fixed amount of 
gas do not change, the pressure also remains constant. Consider a bottle of cham-
pagne that is shaken and then spews liquid when opened as shown in Figure 19.13. 
A common misconception is that the pressure inside the bottle is increased when 
the bottle is shaken. On the contrary, because the temperature of the bottle and 
its contents remains constant as long as the bottle is sealed, so does the pressure, 
as can be shown by replacing the cork with a pressure gauge. The correct expla-
nation is as follows. Carbon dioxide gas resides in the volume between the liquid 
surface and the cork. The pressure of the gas in this volume is set higher than 
atmospheric pressure in the bottling process. Shaking the bottle displaces some of 
the carbon dioxide gas into the liquid, where it forms bubbles, and these bubbles 
become attached to the inside of the bottle. (No new gas is generated by shaking.) 
When the bottle is opened, the pressure is reduced to atmospheric pressure, which 
causes the volume of the bubbles to increase suddenly. If the bubbles are attached 
to the bottle (beneath the liquid surface), their rapid expansion expels liquid from 
the bottle. If the sides and bottom of the bottle are first tapped until no bubbles 
remain beneath the surface, however, the drop in pressure does not force liquid 
from the bottle when the champagne is opened.
	 The ideal gas law is often expressed in terms of the total number of molecules N. 
Because the number of moles n equals the ratio of the total number of molecules 
and Avogadro’s number NA, we can write Equation 19.8 as

	  PV 5 nRT 5
N
NA

 RT 	

	 PV 5 Nk BT	 (19.10)

where kB is Boltzmann’s constant, which has the value

	 kB 5
R

NA
5 1.38 3 10223 J/K	 (19.11)

It is common to call quantities such as P, V, and T the thermodynamic variables of 
an ideal gas. If the equation of state is known, one of the variables can always be 
expressed as some function of the other two.

Q	 uick Quiz 19.5  ​A common material for cushioning objects in packages is made 
by trapping bubbles of air between sheets of plastic. Is this material more effec-
tive at keeping the contents of the package from moving around inside the 
package on (a) a hot day, (b) a cold day, or (c) either hot or cold days?

Q	 uick Quiz 19.6 ​ On a winter day, you turn on your furnace and the tempera-
ture of the air inside your home increases. Assume your home has the normal 
amount of leakage between inside air and outside air. Is the number of moles of 
air in your room at the higher temperature (a) larger than before, (b) smaller 
than before, or (c) the same as before?

WW Boltzmann’s constant

Figure 19.13  ​A bottle of cham-
pagne is shaken and opened. 
Liquid spews out of the opening. 
A common misconception is that 
the pressure inside the bottle is 
increased by the shaking.
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Pitfall Prevention 19.3
So Many ks  There are a variety of 
physical quantities for which the 
letter k is used. Two we have seen 
previously are the force constant 
for a spring (Chapter 15) and the 
wave number for a mechanical 
wave (Chapter 16). Boltzmann’s 
constant is another k, and we will 
see k used for thermal conductiv-
ity in Chapter 20 and for an elec-
trical constant in Chapter 23. To 
make some sense of this confusing 
state of affairs, we use a subscript 
B for Boltzmann’s constant to help 
us recognize it. In this book, you 
will see Boltzmann’s constant as 
kB, but you may see Boltzmann’s 
constant in other resources as 
simply k.
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Example 19.4	     Heating a Spray Can

A spray can containing a propellant gas at twice atmospheric pressure (202 kPa) and having a volume of 125.00 cm3 is 
at 228C. It is then tossed into an open fire. (Warning: Do not do this experiment; it is very dangerous.) When the tem-
perature of the gas in the can reaches 1958C, what is the pressure inside the can? Assume any change in the volume of 
the can is negligible.

Conceptualize  ​Intuitively, you should expect that the pressure of the gas in the container increases because of the 
increasing temperature.

Categorize  ​We model the gas in the can as ideal and use the ideal gas law to calculate the new pressure.

S o l u t i o n

Analyze  ​Rearrange Equation 19.8: (1)   
PV
T

5 nR

No air escapes during the compression, so n, and there-
fore nR, remains constant. Hence, set the initial value of 
the left side of Equation (1) equal to the final value:

(2)   
PiVi

Ti
5

PfVf

Tf
 

Because the initial and final volumes of the gas are 
assumed to be equal, cancel the volumes:

(3)   
Pi

Ti
5

Pf

Tf

Solve for Pf : Pf 5 a
Tf

Ti
bPi 5 a468 K

295 K
b 1202 kPa 2 5  320 kPa

Find the change in the volume of the can using Equa-
tion 19.6 and the value for a for steel from Table 19.1:

DV 5 bVi DT 5 3aVi DT

5 3[11 3 1026 (8C)21](125.00 cm3)(1738C) 5 0.71 cm3

Start from Equation (2) again and find an equation for 
the final pressure:

Pf 5 a
Tf

Ti
b aVi

Vf
bPi

This result differs from Equation (3) only in the factor 
Vi/Vf . Evaluate this factor:

Vi

Vf
5

125.00 cm3

1125.00 cm3 1 0.71 cm3 2 5 0.994 5 99.4%

Finalize  ​The higher the temperature, the higher the pressure exerted by the trapped gas as expected. If the pressure 
increases sufficiently, the can may explode. Because of this possibility, you should never dispose of spray cans in a fire.

​Suppose we include a volume change due to thermal expansion of the steel can as the temperature 
increases. Does that alter our answer for the final pressure significantly?

Answer  ​Because the thermal expansion coefficient of steel is very small, we do not expect much of an effect on our 
final answer.

What If ?

Therefore, the final pressure will differ by only 0.6% from the value calculated without considering the thermal expan-
sion of the can. Taking 99.4% of the previous final pressure, the final pressure including thermal expansion is 318 kPa.

Summary

  Two objects are in thermal equilibrium with each other if they do not exchange energy when in thermal contact.

Definitions
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  Temperature is the property that determines whether an object is in thermal equilibrium with other objects. Two 
objects in thermal equilibrium with each other are at the same temperature. The SI unit of absolute temperature is 
the kelvin, which is defined to be 1/273.16 of the difference between absolute zero and the temperature of the triple 
point of water.

  An ideal gas is one for which PV/nT is constant. An ideal gas is described by the equation of state,

	 PV 5 nRT	 (19.8)

where n equals the number of moles of the gas, P is its pressure, V is its volume, R is the universal gas constant  
(8.314 J/mol ? K), and T is the absolute temperature of the gas. A real gas behaves approximately as an ideal gas if  
it has a low density.

  The zeroth law of thermody-
namics states that if objects A and 
B are separately in thermal equi-
librium with a third object C, then 
objects A and B are in thermal 
equilibrium with each other.

  When the temperature of an object is changed by an amount DT, its length 
changes by an amount DL that is proportional to DT and to its initial length Li:

	 DL 5 aLi DT	 (19.4)

where the constant a is the average coefficient of linear expansion. The aver-
age coefficient of volume expansion b for a solid is approximately equal to 3a.

Concepts and Principles

stant, what new volume does the gas occupy? (a) 1.0 m3 
(b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3

	 7.	 What would happen if the glass of a thermometer 
expanded more on warming than did the liquid in the 
tube? (a) The thermometer would break. (b) It could 
be used only for temperatures below room tempera-
ture. (c) You would have to hold it with the bulb on top. 
(d) The scale on the thermometer is reversed so that 
higher temperature values would be found closer to 
the bulb. (e) The numbers would not be evenly spaced.

	 8.	 A cylinder with a piston contains a sample of a thin gas. 
The kind of gas and the sample size can be changed. 
The cylinder can be placed in different constant- 
temperature baths, and the piston can be held in dif-
ferent positions. Rank the following cases according 
to the pressure of the gas from the highest to the low-
est, displaying any cases of equality. (a) A 0.002-mol 
sample of oxygen is held at 300 K in a 100-cm3 con-
tainer. (b) A 0.002-mol sample of oxygen is held at 
600 K in a 200-cm3 container. (c) A 0.002-mol sample 
of oxygen is held at 600 K in a 300-cm3 container.  
(d) A 0.004-mol sample of helium is held at 300 K in a  
200-cm3 container. (e) A 0.004-mol sample of helium is 
held at 250 K in a 200-cm3 container.

	 9.	 Two cylinders A and B at the same temperature con-
tain the same quantity of the same kind of gas. Cylin-
der A has three times the volume of cylinder B. What 
can you conclude about the pressures the gases exert? 
(a) We can conclude nothing about the pressures.  

	 1.	 Markings to indicate length are placed on a steel tape 
in a room that is at a temperature of 228C. Measure-
ments are then made with the same tape on a day when 
the temperature is 278C. Assume the objects you are 
measuring have a smaller coefficient of linear expan-
sion than steel. Are the measurements (a) too long,  
(b) too short, or (c) accurate?

	 2.	 When a certain gas under a pressure of 5.00 3 106 Pa 
at 25.08C is allowed to expand to 3.00 times its origi-
nal volume, its final pressure is 1.07 3 106 Pa. What 
is its final temperature? (a) 450 K (b) 233 K (c) 212 K  
(d) 191 K (e) 115 K

	 3.	 If the volume of an ideal gas is doubled while its tem-
perature is quadrupled, does the pressure (a) remain 
the same, (b) decrease by a factor of 2, (c) decrease by a 
factor of 4, (d) increase by a factor of 2, or (e) increase 
by a factor of 4

	 4.	 The pendulum of a certain pendulum clock is made 
of brass. When the temperature increases, what hap-
pens to the period of the clock? (a) It increases. (b) It 
decreases. (c) It remains the same.

	 5.	 A temperature of 1628F is equivalent to what tempera-
ture in kelvins? (a) 373 K (b) 288 K (c) 345 K (d) 201 K 
(e) 308 K

	 6.	 A cylinder with a piston holds 0.50 m3 of oxygen at 
an absolute pressure of 4.0 atm. The piston is pulled 
outward, increasing the volume of the gas until the 
pressure drops to 1.0 atm. If the temperature stays con-

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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	12.	Suppose you empty a tray of ice cubes into a bowl 
partly full of water and cover the bowl. After one-half 
hour, the contents of the bowl come to thermal equi-
librium, with more liquid water and less ice than you 
started with. Which of the following is true? (a) The 
temperature of the liquid water is higher than the 
temperature of the remaining ice. (b) The tempera-
ture of the liquid water is the same as that of the ice. 
(c) The temperature of the liquid water is less than 
that of the ice. (d) The comparative temperatures 
of the liquid water and ice depend on the amounts 
present.

	13.	A hole is drilled in a metal plate. When the metal is 
raised to a higher temperature, what happens to the 
diameter of the hole? (a) It decreases. (b) It increases. 
(c) It remains the same. (d) The answer depends on 
the initial temperature of the metal. (e) None of those 
answers is correct.

	14.	On a very cold day in upstate New York, the tempera-
ture is 2258C, which is equivalent to what Fahrenheit 
temperature? (a) 2468F (b) 2778F (c) 188F (d) 2258F 
(e) 2138F

	 7.	 An automobile radiator is filled to the brim with water 
when the engine is cool. (a) What happens to the water 
when the engine is running and the water has been 
raised to a high temperature? (b) What do modern 
automobiles have in their cooling systems to prevent 
the loss of coolants?

	 8.	 When the metal ring and metal sphere in Figure 
CQ19.8 are both at room temperature, the sphere can 
barely be passed through the ring. (a) After the sphere 
is warmed in a flame, it cannot be passed through the 
ring. Explain. (b) What If? What if the ring is warmed 
and the sphere is left at room temperature? Does the 
sphere pass through the ring?

Figure CQ19.8
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	 9.	 Is it possible for two objects to be in thermal equi-
librium if they are not in contact with each other? 
Explain.

	10.	Use a periodic table of the elements (see Appendix 
C) to determine the number of grams in one mole of  
(a) hydrogen, which has diatomic molecules; (b) helium;  
and (c) carbon monoxide.

(b) The pressure in A is three times the pressure in B. 
(c) The pressures must be equal. (d) The pressure in A 
must be one-third the pressure in B.

	10.	A rubber balloon is filled with 1 L of air at 1 atm and 
300 K and is then put into a cryogenic refrigerator at 
100 K. The rubber remains flexible as it cools. (i) What 
happens to the volume of the balloon? (a) It decreases 
to 1

3  L. (b)  It decreases to 1/!3 L. (c) It is constant.  
(d) It increases to !3 L. (e) It increases to 3 L. (ii) What 
happens to the pressure of the air in the balloon? (a) It 
decreases to 1

3 atm. (b) It decreases to 1/!3 atm. (c) It 
is constant. (d) It increases to !3 atm. (e) It increases 
to 3 atm.

	11.	 The average coefficient of linear expansion of cop-
per is 17 3 1026 (8C)21. The Statue of Liberty is 93 m 
tall on a summer morning when the temperature is 
258C. Assume the copper plates covering the statue are 
mounted edge to edge without expansion joints and do 
not buckle or bind on the framework supporting them 
as the day grows hot. What is the order of magnitude 
of the statue’s increase in height? (a) 0.1 mm (b) 1 mm 
(c) 1 cm (d) 10 cm (e) 1 m

	 1.	 Common thermometers are made of a mercury col-
umn in a glass tube. Based on the operation of these 
thermometers, which has the larger coefficient of lin-
ear expansion, glass or mercury? (Don’t answer the 
question by looking in a table.)

	 2.	 A piece of copper is dropped into a beaker of water. 
(a)  If the water’s temperature rises, what happens 
to the temperature of the copper? (b) Under what 
conditions are the water and copper in thermal 
equilibrium?

	 3.	 (a) What does the ideal gas law predict about the vol-
ume of a sample of gas at absolute zero? (b) Why is this 
prediction incorrect?

	 4.	 Some picnickers stop at a convenience store to buy 
some food, including bags of potato chips. They 
then drive up into the mountains to their picnic site. 
When they unload the food, they notice that the bags 
of chips are puffed up like balloons. Why did that 
happen?

	 5.	 In describing his upcoming trip to the Moon, and as 
portrayed in the movie Apollo 13 (Universal, 1995), 
astronaut Jim Lovell said, “I’ll be walking in a place 
where there’s a 400-degree difference between sun-
light and shadow.” Suppose an astronaut standing on 
the Moon holds a thermometer in his gloved hand.  
(a) Is the thermometer reading the temperature of the 
vacuum at the Moon’s surface? (b) Does it read any 
temperature? If so, what object or substance has that 
temperature?

	 6.	 Metal lids on glass jars can often be loosened by run-
ning hot water over them. Why does that work?

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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should the engineer leave between the sections to elim-
inate buckling if the concrete is to reach a temperature 
of 50.08C?

	 9.	 The active element of a certain laser 
is made of a glass rod 30.0 cm long 
and 1.50 cm in diameter. Assume 
the average coefficient of linear 
expansion of the glass is equal to 
9.00 3 1026 (8C)21. If the tempera-
ture of the rod increases by 65.08C, 
what is the increase in (a) its length, 
(b) its diameter, and (c) its volume?

	10.	 Review. Inside the wall of a house, an 
L-shaped section of hot-water pipe 
consists of three parts: a straight, 
horizontal piece h 5 28.0 cm long; an 
elbow; and a straight, vertical piece 
, 5 134  cm long (Fig. P19.10). A stud and a second- 
story floorboard hold the ends of this section of cop-
per pipe stationary. Find the magnitude and direction 
of the displacement of the pipe elbow when the water 
flow is turned on, raising the temperature of the pipe 
from 18.08C to 46.58C.

	11.	 A copper telephone wire has essentially no sag between 
poles 35.0 m apart on a winter day when the tempera-
ture is 220.08C. How much longer is the wire on a sum-
mer day when the temperature is 35.08C?

	12.	A pair of eyeglass frames is made of epoxy plastic. At 
room temperature (20.0°C), the frames have circular 
lens holes 2.20 cm in radius. To what temperature must 
the frames be heated if lenses 2.21 cm in radius are to 
be inserted in them? The average coefficient of linear 
expansion for epoxy is 1.30 3 10–4 (°C)–1.

	13.	The Trans-Alaska pipeline is 1 300 km long, reaching 
from Prudhoe Bay to the port of Valdez. It experiences 
temperatures from 273°C to 135°C. How much does 
the steel pipeline expand because of the difference in 
temperature? How can this expansion be compensated 
for?

	14.	Each year thousands of children are badly burned by 
hot tap water. Figure P19.14 (page 584) shows a cross-
sectional view of an antiscalding faucet attachment 
designed to prevent such accidents. Within the device, a 
spring made of material with a high coefficient of ther-
mal expansion controls a movable plunger. When the 
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Section 19.2 ​ Thermometers and the Celsius Temperature Scale

Section 19.3 ​ The Constant-Volume Gas Thermometer  
and the Absolute Temperature Scale
	 1.	 A nurse measures the temperature of a patient to be  

41.58C. (a) What is this temperature on the Fahren-
heit scale? (b) Do you think the patient is seriously ill? 
Explain.

	 2.	 The temperature difference between the inside and 
the outside of a home on a cold winter day is 57.08F. 
Express this difference on (a) the Celsius scale and  
(b) the Kelvin scale.

	 3.	 Convert the following temperatures to their values on 
the Fahrenheit and Kelvin scales: (a) the sublimation 
point of dry ice, 278.58C; (b) human body tempera-
ture, 37.08C.

	 4.	 The boiling point of liquid hydrogen is 20.3 K at atmo-
spheric pressure. What is this temperature on (a) the 
Celsius scale and (b) the Fahrenheit scale?

	 5.	 Liquid nitrogen has a boiling point of 2195.818C at 
atmospheric pressure. Express this temperature (a) in 
degrees Fahrenheit and (b) in kelvins.

	 6.	 Death Valley holds the record for the highest recorded 
temperature in the United States. On July 10, 1913, at a 
place called Furnace Creek Ranch, the temperature rose 
to 134°F. The lowest U.S. temperature ever recorded 
occurred at Prospect Creek Camp in Alaska on January 
23, 1971, when the temperature plummeted to 279.8° F.  
(a) Convert these temperatures to the Celsius scale.  
(b) Convert the Celsius temperatures to Kelvin.

	 7.	 In a student experiment, a constant-volume gas ther-
mometer is calibrated in dry ice (278.58C) and in boil-
ing ethyl alcohol (78.08C). The separate pressures are 
0.900  atm and 1.635 atm. (a) What value of absolute 
zero in degrees Celsius does the calibration yield? 
What pressures would be found at (b) the freezing and 
(c) the boiling points of water? Hint: Use the linear 
relationship P 5 A 1 BT, where A and B are constants.

Section 19.4 Thermal Expansion of Solids and Liquids

Note: Table 19.1 is available for use in solving problems 
in this section.

	 8.	 The concrete sections of a certain superhighway are 
designed to have a length of 25.0 m. The sections are 
poured and cured at 10.08C. What minimum spacing 
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Figure P19.10

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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584	C hapter 19 T emperature

	21.	 A hollow aluminum cylinder 20.0 cm deep has an inter-
nal capacity of 2.000 L at 20.08C. It is completely filled 
with turpentine at 20.08C. The turpentine and the alu-
minum cylinder are then slowly warmed together to 
80.08C. (a) How much turpentine overflows? (b) What 
is the volume of turpentine remaining in the cylinder 
at 80.08C? (c) If the combination with this amount 
of turpentine is then cooled back to 20.08C, how far 
below the cylinder’s rim does the turpentine’s surface 
recede?

	22.	Review. The Golden Gate Bridge in San Francisco 
has a main span of length 1.28 km, one of the lon-
gest in the world. Imagine that a steel wire with this 
length and a cross-sectional area of 4.00 3 1026 m2  
is laid in a straight line on the bridge deck with its 
ends attached to the towers of the bridge. On a 
summer day the temperature of the wire is 35.08C.  
(a) When winter arrives, the towers stay the same dis-
tance apart and the bridge deck keeps the same shape 
as its expansion joints open. When the temperature 
drops to 210.08C, what is the tension in the wire? Take 
Young’s modulus for steel to be 20.0 3 1010 N/m2.  
(b) Permanent deformation occurs if the stress in 
the steel exceeds its elastic limit of 3.00 3 108 N/m2. 
At what temperature would the wire reach its elastic 
limit? (c) What If? Explain how your answers to parts 
(a) and (b) would change if the Golden Gate Bridge 
were twice as long.

	23.	A sample of lead has a mass of 20.0 kg and a density of 
11.3 3 103 kg/m3 at 08C. (a) What is the density of lead 
at 90.08C? (b) What is the mass of the sample of lead at 
90.08C?

	24.	A sample of a solid substance has a mass m and a den-
sity r0 at a temperature T0. (a) Find the density of the 
substance if its temperature is increased by an amount 
DT in terms of the coefficient of volume expansion b. 
(b) What is the mass of the sample if the temperature 
is raised by an amount DT ?

	25.	An underground gasoline tank can hold 1.00 3 103 gal- 
lons of gasoline at 52.0°F. Suppose the tank is being 
filled on a day when the outdoor temperature (and 
the temperature of the gasoline in a tanker truck) is 
95.0°F. When the underground tank registers that it is 
full, how many gallons have been transferred from the 
truck, according to a non-temperature-compensated 
gauge on the truck? Assume the temperature of the 
gasoline quickly cools from 95.0°F to 52.0°F upon enter-
ing the tank.

Section 19.5 ​ Macroscopic Description of an Ideal Gas

	26.	A rigid tank contains 1.50 moles of an ideal gas. Deter-
mine the number of moles of gas that must be with-
drawn from the tank to lower the pressure of the gas 
from 25.0 atm to 5.00 atm. Assume the volume of the 
tank and the temperature of the gas remain constant 
during this operation.

	27.	Gas is confined in a tank at a pressure of 11.0 atm 
and a temperature of 25.08C. If two-thirds of the gas 

Q/C

S

M

water temperature rises above a 
preset safe value, the expansion 
of the spring causes the plunger 
to shut off the water flow. Assum-
ing that the initial length L of 
the unstressed spring is 2.40 cm  
and its coefficient of linear 
expansion is 22.0 3 10–6 (°C)–1, 
determine the increase in length 
of the spring when the water 
temperature rises by 30.0°C. 
(You will find the increase in 
length to be small. Therefore, 
to provide a greater variation in 
valve opening for the tempera-
ture change anticipated, actual 
devices have a more complicated mechanical design.)

	15.	A square hole 8.00 cm along each side is cut in a sheet 
of copper. (a) Calculate the change in the area of this 
hole resulting when the temperature of the sheet is 
increased by 50.0 K. (b) Does this change represent an 
increase or a decrease in the area enclosed by the hole?

	16.	The average coefficient of volume expansion for car-
bon tetrachloride is 5.81 3 10–4 (°C)–1. If a 50.0-gal 
steel container is filled completely with carbon tetra-
chloride when the temperature is 10.0°C, how much 
will spill over when the temperature rises to 30.0°C?

	17.	 At 20.08C, an aluminum ring has an inner diameter of 
5.000 0 cm and a brass rod has a diameter of 5.050 0 cm. 
(a) If only the ring is warmed, what temperature must it 
reach so that it will just slip over the rod? (b) What If?  
If both the ring and the rod are warmed together, what 
temperature must they both reach so that the ring 
barely slips over the rod? (c) Would this latter process 
work? Explain. Hint: Consult Table 20.2 in the next 
chapter.

	18.	Why is the following situation impossible? A thin brass 
ring has an inner diameter 10.00 cm at 20.08C. A solid 
aluminum cylinder has diameter 10.02 cm at 20.08C. 
Assume the average coefficients of linear expansion 
of the two metals are constant. Both metals are cooled 
together to a temperature at which the ring can be 
slipped over the end of the cylinder.

	19.	 A volumetric flask made of Pyrex is calibrated at 20.08C. 
It is filled to the 100-mL mark with 35.08C acetone. 
After the flask is filled, the acetone cools and the flask 
warms so that the combination of acetone and flask 
reaches a uniform temperature of 32.08C. The combi-
nation is then cooled back to 20.08C. (a) What is the 
volume of the acetone when it cools to 20.08C? (b) At 
the temperature of 32.08C, does the level of acetone lie 
above or below the 100-mL mark on the flask? Explain.

	20.	Review. On a day that the temperature is 20.08C, a 
concrete walk is poured in such a way that the ends of 
the walk are unable to move. Take Young’s modulus for 
concrete to be 7.00 3 109 N/m2 and the compressive 
strength to be 2.00 3 109 N/m2. (a) What is the stress 
in the cement on a hot day of 50.08C? (b) Does the con-
crete fracture?
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air, Avogadro’s number of molecules has mass 28.9 g. 
Calculate the mass of one cubic meter of air. (c) State 
how this result compares with the tabulated density of 
air at 20.08C.

	34.	Use the definition of Avogadro’s number to find the 
mass of a helium atom.

	35.	A popular brand of cola contains 6.50 g of carbon diox-
ide dissolved in 1.00 L of soft drink. If the evaporating 
carbon dioxide is trapped in a cylinder at 1.00 atm and 
20.0°C, what volume does the gas occupy?

	36.	In state-of-the-art vacuum systems, pressures as low as 
1.00 3 1029 Pa are being attained. Calculate the num-
ber of molecules in a 1.00-m3 vessel at this pressure 
and a temperature of 27.08C.

	37.	 An automobile tire is inflated with air originally at 
10.08C and normal atmospheric pressure. During the 
process, the air is compressed to 28.0% of its original 
volume and the temperature is increased to 40.08C.  
(a) What is the tire pressure? (b) After the car is driven 
at high speed, the tire’s air temperature rises to 85.08C 
and the tire’s interior volume increases by 2.00%. What 
is the new tire pressure (absolute)?

	38.	Review. To measure how far below the ocean surface a 
bird dives to catch a fish, a scientist uses a method origi-
nated by Lord Kelvin. He dusts the interiors of plastic 
tubes with powdered sugar and then seals one end of 
each tube. He captures the bird at nighttime in its nest 
and attaches a tube to its back. He then catches the same 
bird the next night and removes the tube. In one trial, 
using a tube 6.50 cm long, water washes away the sugar 
over a distance of 2.70 cm from the open end of the tube. 
Find the greatest depth to which the bird dived, assum-
ing the air in the tube stayed at constant temperature.

	39.	Review. The mass of a hot-air balloon and its cargo 
(not including the air inside) is 200 kg. The air outside 
is at 10.08C and 101 kPa. The volume of the balloon is 
400 m3. To what temperature must the air in the bal-
loon be warmed before the balloon will lift off? (Air 
density at 10.08C is 1.244 kg/m3.)

	40.	A room of volume V contains air having equivalent 
molar mass M (in g/mol). If the temperature of the 
room is raised from T1 to T2, what mass of air will leave 
the room? Assume that the air pressure in the room is 
maintained at P0.

	41.	Review. At 25.0 m below the surface of the sea, where 
the temperature is 5.008C, a diver exhales an air bub-
ble having a volume of 1.00 cm3. If the surface tem-
perature of the sea is 20.08C, what is the volume of the 
bubble just before it breaks the surface?

	42.	Estimate the mass of the air in your bedroom. State 
the quantities you take as data and the value you mea-
sure or estimate for each.

	43.	A cook puts 9.00 g of water in a 2.00-L pressure cooker 
that is then warmed to 5008C. What is the pressure 
inside the container?

	44.	The pressure gauge on a cylinder of gas registers the 
gauge pressure, which is the difference between the 
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is withdrawn and the temperature is raised to 75.08C, 
what is the pressure of the gas remaining in the tank?

	28.	Your father and your younger brother are confronted 
with the same puzzle. Your father’s garden sprayer and 
your brother’s water cannon both have tanks with a 
capacity of 5.00 L (Fig. P19.28). Your father puts a neg-
ligible amount of concentrated fertilizer into his tank. 
They both pour in 4.00 L of water and seal up their 
tanks, so the tanks also contain air at atmospheric 
pressure. Next, each uses a hand-operated pump to 
inject more air until the absolute pressure in the tank 
reaches 2.40 atm. Now each uses his device to spray 
out water—not air—until the stream becomes feeble, 
which it does when the pressure in the tank reaches 
1.20 atm. To accomplish spraying out all the water, 
each finds he must pump up the tank three times. 
Here is the puzzle: most of the water sprays out after 
the second pumping. The first and the third pumping-
up processes seem just as difficult as the second but 
result in a much smaller amount of water coming out. 
Account for this phenomenon.

Figure P19.28

	29.	Gas is contained in an 8.00-L vessel at a temperature of 
20.08C and a pressure of 9.00 atm. (a) Determine the 
number of moles of gas in the vessel. (b) How many 
molecules are in the vessel?

	30.	A container in the shape of a cube 10.0 cm on each edge 
contains air (with equivalent molar mass 28.9 g/mol)  
at atmospheric pressure and temperature 300 K. Find 
(a)  the mass of the gas, (b) the gravitational force 
exerted on it, and (c) the force it exerts on each face of 
the cube. (d) Why does such a small sample exert such 
a great force?

	31.	 An auditorium has dimensions 10.0 m 3 20.0 m 3 
30.0 m. How many molecules of air fill the auditorium 
at 20.08C and a pressure of 101 kPa (1.00 atm)?

	32.	The pressure gauge on a tank registers the gauge pres-
sure, which is the difference between the interior pres-
sure and exterior pressure. When the tank is full of 
oxygen (O2), it contains 12.0 kg of the gas at a gauge 
pressure of 40.0  atm. Determine the mass of oxygen 
that has been withdrawn from the tank when the pres-
sure reading is 25.0 atm. Assume the temperature of 
the tank remains constant.

	33.	(a) Find the number of moles in one cubic meter of an 
ideal gas at 20.08C and atmospheric pressure. (b) For 
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important that the pressure of the gas never fall below 
0.850 atm so that the piston will support a delicate 
and very expensive part of the apparatus. Without 
such support, the delicate apparatus can be severely 
damaged and rendered useless. When the design is 
turned into a working prototype, it operates perfectly.

	51.	 A mercury thermometer 
is constructed as shown in 
Figure P19.51. The Pyrex 
glass capillary tube has a 
diameter of 0.004 00 cm, 
and the bulb has a diam-
eter of 0.250 cm. Find 
the change in height of 
the mercury column that 
occurs with a temperature 
change of 30.08C.

	52.	A liquid with a coefficient 
of volume expansion b 
just fills a spherical shell of volume V (Fig. P19.51). The 
shell and the open capillary of area A projecting from 
the top of the sphere are made of a material with an 
average coefficient of linear expansion a. The liquid 
is free to expand into the capillary. Assuming the tem-
perature increases by DT, find the distance Dh the liq-
uid rises in the capillary.

	53.	Review. An aluminum pipe is open at both ends and 
used as a flute. The pipe is cooled to 5.008C, at which 
its length is 0.655 m. As soon as you start to play it, the 
pipe fills with air at 20.08C. After that, by how much 
does its fundamental frequency change as the metal 
rises in temperature to 20.08C?

	54.	Two metal bars are made 
of invar and a third bar 
is made of aluminum. At 
08C, each of the three bars 
is drilled with two holes 
40.0 cm apart. Pins are put 
through the holes to assem-
ble the bars into an equi-
lateral triangle as in Figure 
P19.54. (a) First ignore the 
expansion of the invar. Find 
the angle between the invar bars as a function of Celsius 
temperature. (b) Is your answer accurate for negative as 
well as positive temperatures? (c) Is it accurate for 08C? 
(d) Solve the problem again, including the expansion 
of the invar. Aluminum melts at 6608C and invar at  
1 4278C. Assume the tabulated expansion coefficients 
are constant. What are (e) the greatest and (f) the 
smallest attainable angles between the invar bars?

	55.	A student measures the length of a brass rod with a 
steel tape at 20.08C. The reading is 95.00 cm. What will 
the tape indicate for the length of the rod when the 
rod and the tape are at (a) 215.08C and (b) 55.08C?

	56.	The density of gasoline is 730 kg/m3 at 08C. Its average 
coefficient of volume expansion is 9.60 3 1024 (8C)21. 
Assume 1.00 gal of gasoline occupies 0.003 80 m3.  
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interior pressure and the exterior pressure P0. Let’s 
call the gauge pressure Pg . When the cylinder is full, 
the mass of the gas in it is mi at a gauge pressure of 
Pgi. Assuming the temperature of the cylinder remains 
constant, show that the mass of the gas remaining in the 
cylinder when the pressure reading is Pg f is given by

mf 5 m i a
Pg f 1 P0

Pg i 1 P0
b

Additional Problems

	45.	Long-term space missions require reclamation of the 
oxygen in the carbon dioxide exhaled by the crew. In 
one method of reclamation, 1.00 mol of carbon diox-
ide produces 1.00 mol of oxygen and 1.00 mol of meth-
ane as a byproduct. The methane is stored in a tank 
under pressure and is available to control the attitude 
of the spacecraft by controlled venting. A single astro-
naut exhales 1.09 kg of carbon dioxide each day. If 
the methane generated in the respiration recycling of 
three astronauts during one week of flight is stored in 
an originally empty 150-L tank at 245.0°C, what is the 
final pressure in the tank?

	46.	A steel beam being used in the construction of a sky-
scraper has a length of 35.000 m when delivered on 
a cold day at a temperature of 15.0008F. What is the 
length of the beam when it is being installed later on a 
warm day when the temperature is 90.0008F?

	47.	 A spherical steel ball bearing has a diameter of 2.540 
cm at 25.008C. (a) What is its diameter when its tem-
perature is raised to 100.08C? (b) What temperature 
change is required to increase its volume by 1.000%?

	48.	A bicycle tire is inflated to a gauge pressure of 2.50 
atm when the temperature is 15.08C. While a man 
rides the bicycle, the temperature of the tire rises 
to 45.08C. Assuming the volume of the tire does not 
change, find the gauge pressure in the tire at the 
higher temperature.

	49.	In a chemical processing plant, a reaction chamber of 
fixed volume V0 is connected to a reservoir chamber of 
fixed volume 4V0 by a passage containing a thermally 
insulating porous plug. The plug permits the cham-
bers to be at different temperatures. The plug allows 
gas to pass from either chamber to the other, ensuring 
that the pressure is the same in both. At one point in 
the processing, both chambers contain gas at a pres-
sure of 1.00 atm and a temperature of 27.0°C. Intake 
and exhaust valves to the pair of chambers are closed. 
The reservoir is maintained at 27.0°C while the reac-
tion chamber is heated to 400°C. What is the pressure 
in both chambers after that is done?

	50.	Why is the following situation impossible? An apparatus is 
designed so that steam initially at T 5 1508C, P 5  
1.00 atm, and V 5 0.500 m3 in a piston–cylinder appa-
ratus undergoes a process in which (1) the volume 
remains constant and the pressure drops to 0.870 atm,  
followed by (2) an expansion in which the pressure 
remains constant and the volume increases to 1.00 m3, 
followed by (3) a return to the initial conditions. It is 
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each dimension increases according to Equation 19.4, 
where a is the average coefficient of linear expansion. 
(a)  Show that the increase in area is DA 5 2aAi DT.  
(b) What approximation does this expression assume?

	62.	The measurement of the average coefficient of volume 
expansion b for a liquid is complicated because the con-
tainer also changes size with temperature. Figure P19.62  
shows a simple means for measuring b despite the 
expansion of the container. With this apparatus, one 
arm of a U-tube is maintained at 08C in a water–ice 
bath, and the other arm is maintained at a different 
temperature TC in a constant-temperature bath. The 
connecting tube is hori-
zontal. A difference in 
the length or diameter 
of the tube between 
the two arms of the 
U-tube has no effect on 
the pressure balance 
at the bottom of the 
tube because the pres-
sure depends only on 
the depth of the liquid. 
Derive an expression for 
b for the liquid in terms 
of h0, ht, and TC.

	63.	A copper rod and a steel rod are different in length by 
5.00 cm at 08C. The rods are warmed and cooled 
together. (a) Is it possible that the length difference 
remains constant at all temperatures? Explain. (b) If 
so, describe the lengths at 08C as precisely as you can. 
Can you tell which rod is longer? Can you tell the 
lengths of the rods?

	64.	A vertical cylinder of cross-
sectional area A is fitted with a 
tight-fitting, frictionless piston 
of mass m (Fig.  P19.64). The 
piston is not restricted in its 
motion in any way and is sup-
ported by the gas at pressure P 
below it. Atmospheric pressure 
is P0. We wish to find the height 
h in Figure P19.64.  (a) What 
analysis model is appropriate to 
describe the piston? (b) Write 
an appropriate force equation 
for the piston from this analy-
sis model in terms of P, P0, m, 
A, and g. (c) Suppose n moles of 
an ideal gas are in the cylinder at a temperature of T. 
Substitute for P in your answer to part (b) to find the 
height h of the piston above the bottom of the cylinder.

	65.	Review. Consider an object with any one of the 
shapes displayed in Table 10.2. What is the percentage 
increase in the moment of inertia of the object when 
it is warmed from 08C to 1008C if it is composed of  
(a) copper or (b) aluminum? Assume the average lin-
ear expansion coefficients shown in Table 19.1 do not 
vary between 08C and 1008C. (c) Why are the answers 
for parts (a) and (b) the same for all the shapes?

hth0

Liquid 
sample

Constant-
temperature
bath at TC

Water–ice
bath at 0�C

Figure P19.62
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How many extra kilograms of gasoline would you 
receive if you bought 10.0 gal of gasoline at 08C rather 
than at 20.08C from a pump that is not temperature 
compensated?

	57.	 A liquid has a density r. (a) Show that the fractional 
change in density for a change in temperature DT is 
Dr/r 5 2b DT. (b) What does the negative sign signify?  
(c) Fresh water has a maximum density of 1.000 0 g/cm3  
at 4.08C. At 10.08C, its density is 0.999 7 g/cm3. What is 
b for water over this temperature interval? (d) At 08C, 
the density of water is 0.999 9 g/cm3. What is the value 
for b over the temperature range 08C to 4.008C?

	58.	(a) Take the definition of the coefficient of volume 
expansion to be

b 5
1
V

  
dV
dT

`
P 5constant

5
1
V

  
'V
'T

		  Use the equation of state for an ideal gas to show that 
the coefficient of volume expansion for an ideal gas at 
constant pressure is given by b 5 1/T, where T is the 
absolute temperature. (b) What value does this expres-
sion predict for b at 08C? State how this result com-
pares with the experimental values for (c) helium and 
(d) air in Table 19.1. Note: These values are much larger 
than the coefficients of volume expansion for most liq-
uids and solids.

	59.	Review. A clock with a brass pendulum has a period of 
1.000 s at 20.08C. If the temperature increases to 30.08C, 
(a) by how much does the period change and (b) how 
much time does the clock gain or lose in one week?

	60.	A bimetallic strip of length L is made 
of two ribbons of different metals 
bonded together. (a) First assume 
the strip is originally straight. As the 
strip is warmed, the metal with the 
greater average coefficient of expan-
sion expands more than the other, 
forcing the strip into an arc with 
the outer radius having a greater 
circumference (Fig.  P19.60). Derive 
an expression for the angle of bending u as a function 
of the initial length of the strips, their average coeffi-
cients of linear expansion, the change in temperature, 
and the separation of the centers of the strips (Dr 5  
r2 2 r1). (b) Show that the angle of bending decreases 
to zero when DT decreases to zero and also when the 
two average coefficients of expansion become equal. 
(c) What If? What happens if the strip is cooled?

	61.	 The rectangular plate shown in Figure P19.61 has an 
area Ai equal to ,w. If the temperature increases by DT, 

Q/C

Q/C

r 2
r 1

u

Figure P19.60
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588	C hapter 19 T emperature

copper to be 11.0 3 1010 N/m2. At this lower tempera-
ture, find (a) the tension in the wire and (b) the x coor-
dinate of the junction between the wires.

	73.	Review. A steel guitar string with a diameter of 1.00 mm  
is stretched between supports 80.0 cm apart. The tem-
perature is 0.08C. (a) Find the mass per unit length of 
this string. (Use the value 7.86 3 103 kg/m3 for the den-
sity.) (b)  The fundamental frequency of transverse 
oscillations of the string is 200 Hz. What is the tension 
in the string? Next, the temperature is raised to 30.08C. 
Find the resulting values of (c) the tension and (d) the 
fundamental frequency. Assume both the Young’s mod-
ulus of 20.0 3 1010 N/m2 and the average coefficient of 
expansion a 5 11.0 3 1026 (8C)21 have constant values 
between 0.08C and 30.08C.

	74.	A cylinder is closed by 
a piston connected to 
a spring of constant 
2.00  3 103 N/m (see 
Fig. P19.74). With the 
spring relaxed, the 
cylinder is filled with 
5.00 L of gas at a pres-
sure of 1.00 atm and a 
temperature of 20.08C. 
(a)  If the piston has a 
cross-sectional area of 
0.010 0  m2 and negli-
gible mass, how high 
will it rise when the 
temperature is raised 
to 2508C? (b) What is 
the pressure of the gas at 2508C?

	75.	Helium gas is sold in steel tanks that will rupture if sub-
jected to tensile stress greater than its yield strength of 
5 3 108 N/m2. If the helium is used to inflate a balloon, 
could the balloon lift the spherical tank the helium 
came in? Justify your answer. Suggestion: You may con-
sider a spherical steel shell of radius r and thickness t 
having the density of iron and on the verge of breaking 
apart into two hemispheres because it contains helium 
at high pressure.

	76.	A cylinder that has a 40.0-cm radius and is 50.0 cm 
deep is filled with air at 20.08C and 1.00 atm (Fig. 
P19.76a). A 20.0-kg piston is now lowered into the cyl-
inder, compressing the air trapped inside as it takes 
equilibrium height hi (Fig. P19.76b). Finally, a 25.0-kg 
dog stands on the piston, further compressing the air, 
which remains at 208C (Fig. P19.76c). (a) How far down 

k

h

T � 20.0�C T � 250�C

Figure P19.74

W

Q/C

	66.	(a) Show that the density of an ideal gas occupying a 
volume V is given by r 5 PM/RT, where M is the molar 
mass. (b) Determine the density of oxygen gas at atmo-
spheric pressure and 20.08C.

	67.	 Two concrete spans of 
a 250-m-long bridge 
are placed end to 
end so that no room 
is allowed for expan-
sion (Fig. P19.67a). If a 
temperature increase 
of 20.08C occurs, 
what is the height y 
to which the spans 
rise when they buckle 
(Fig. P19.67b)?

	68.	Two concrete spans 
that form a bridge 
of length L are placed end to end so that no room is 
allowed for expansion (Fig. P19.67a). If a temperature 
increase of DT occurs, what is the height y to which the 
spans rise when they buckle (Fig. P19.67b)?

	69.	Review. (a) Derive an expression for the buoyant force 
on a spherical balloon, submerged in water, as a func-
tion of the depth h below the surface, the volume Vi of 
the balloon at the surface, the pressure P0 at the sur-
face, and the density rw of the water. Assume the water 
temperature does not change with depth. (b) Does the 
buoyant force increase or decrease as the balloon is sub-
merged? (c) At what depth is the buoyant force one-
half the surface value?

	70.	Review. Following a collision in outer space, a copper 
disk at 8508C is rotating about its axis with an angular 
speed of 25.0 rad/s. As the disk radiates infrared light, 
its temperature falls to 20.08C. No external torque acts 
on the disk. (a) Does the angular speed change as the 
disk cools? Explain how it changes or why it does not. 
(b) What is its angular speed at the lower temperature?

	71.	Starting with Equation 19.10, show that the total pres-
sure P in a container filled with a mixture of several 
ideal gases is P 5 P1 1 P2 1 P3 1  . . . , where P1, P2, . . . 
are the pressures that each gas would exert if it alone 
filled the container. (These individual pressures are 
called the partial pressures of the respective gases.) This 
result is known as Dalton’s law of partial pressures.

Challenge Problems

	72.	Review. A steel wire and a copper wire, each of diameter 
2.000 mm, are joined end to end. At 40.08C, each has 
an unstretched length of 2.000 m. The wires are con-
nected between two fixed supports 4.000 m apart on 
a tabletop. The steel wire extends from x 5 22.000 m  
to x 5 0, the copper wire extends from x 5 0 to x 5 
2.000 m, and the tension is negligible. The temperature 
is then lowered to 20.08C. Assume the average coeffi-
cient of linear expansion of steel is 11.0 3 1026 (8C)21  
and that of copper is 17.0 3 1026 (8C)21. Take Young’s 
modulus for steel to be 20.0 3 1010 N/m2 and that for 

T

250 m

T � 20�C
y

a

b

Figure P19.67   
Problems 67 and 68.
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	 Problems	 589

of the plate below the stationary line are moving down 
relative to the roof and feel a force of kinetic friction 
acting up the roof. Elements of area above the station-
ary line are sliding up the roof, and on them kinetic 
friction acts downward parallel to the roof. The sta-
tionary line occupies no area, so we assume no force of 
static friction acts on the plate while the temperature 
is changing. The plate as a whole is very nearly in equi-
librium, so the net friction force on it must be equal to 
the component of its weight acting down the incline. 
(a) Prove that the stationary line is at a distance of

L
2
a1 2

tan u
mk

b

		  below the top edge of the plate. (b) Analyze the forces 
that act on the plate when the temperature is falling 
and prove that the stationary line is at that same dis-
tance above the bottom edge of the plate. (c) Show that 
the plate steps down the roof like an inchworm, mov-
ing each day by the distance

	
L
mk

1a2 2 a1 2 1Th 2 Tc 2  tan u

		  (d) Evaluate the distance an aluminum plate moves 
each day if its length is 1.20 m, the temperature 
cycles between 4.008C and 36.08C, and if the roof has 
slope 18.5°, coefficient of linear expansion 1.50 3  
1025 (8C)21, and coefficient of friction 0.420 with the 
plate. (e) What If? What if the expansion coefficient 
of the plate is less than that of the roof? Will the plate 
creep up the roof?

	79.	A 1.00-km steel railroad rail is fastened securely at 
both ends when the temperature is 20.08C. As the tem-
perature increases, the rail buckles, taking the shape 
of an arc of a vertical circle. Find the height h of the 
center of the rail when the temperature is 25.08C. (You 
will need to solve a transcendental equation.)

(Dh) does the piston move when the dog steps onto it? 
(b) To what temperature should the gas be warmed to 
raise the piston and dog back to hi?

	77.	 The relationship L 5 Li 1 aLi DT is a valid approxi-
mation when a DT is small. If a DT is large, one must 
integrate the relationship dL 5 aL dT to determine 
the final length. (a) Assuming the coefficient of linear 
expansion of a material is constant as L varies, deter-
mine a general expression for the final length of a rod 
made of the material. Given a rod of length 1.00 m  
and a temperature change of 100.08C, determine 
the error caused by the approximation when (b) a 5  
2.00 3 1025 (8C)21 (a typical value for a metal) and  
(c) when a 5 0.020 0 (8C)21 (an unrealistically large 
value for comparison). (d) Using the equation from 
part (a), solve Problem 21 again to find more accurate 
results.

	78.	Review. A house roof is a perfectly flat plane that 
makes an angle u with the horizontal. When its temper-
ature changes, between Tc before dawn each day and 
Th in the middle of each afternoon, the roof expands 
and contracts uniformly with a coefficient of thermal 
expansion a1. Resting on the roof is a flat, rectangular 
metal plate with expansion coefficient a2, greater than 
a1. The length of the plate is L, measured along the 
slope of the roof. The component of the plate’s weight 
perpendicular to the roof is supported by a normal 
force uniformly distributed over the area of the plate. 
The coefficient of kinetic friction between the plate 
and the roof is mk. The plate is always at the same tem-
perature as the roof, so we assume its temperature is 
continuously changing. Because of the difference in 
expansion coefficients, each bit of the plate is moving 
relative to the roof below it, except for points along a 
certain horizontal line running across the plate called 
the stationary line. If the temperature is rising, parts 
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c h a p t e r 

20 The First Law of 
Thermodynamics

590  	

In this photograph of the Mt. Baker 
area near Bellingham, Washington, 
we see evidence of water in all 
three phases. In the lake is liquid 
water, and solid water in the form 
of snow appears on the ground. The 
clouds in the sky consist of liquid 
water droplets that have condensed 
from the gaseous water vapor in the 
air. Changes of a substance from 
one phase to another are a result of 
energy transfer. (© iStockphoto.com/

KingWu)

Until about 1850, the fields of thermodynamics and mechanics were considered to be 
two distinct branches of science. The principle of conservation of energy seemed to describe 
only certain kinds of mechanical systems. Mid-19th-century experiments performed by  
Englishman James Joule and others, however, showed a strong connection between the 
transfer of energy by heat in thermal processes and the transfer of energy by work in 
mechanical processes. Today we know that mechanical energy can be transformed to inter-
nal energy, which is formally defined in this chapter. Once the concept of energy was gener-
alized from mechanics to include internal energy, the principle of conservation of energy as 
discussed in Chapter 8 emerged as a universal law of nature.
	 This chapter focuses on the concept of internal energy, the first law of thermodynamics, 
and some important applications of the first law. The first law of thermodynamics describes 
systems in which the only energy change is that of internal energy and the transfers of energy 
are by heat and work. A major difference in our discussion of work in this chapter from that in 
most of the chapters on mechanics is that we will consider work done on deformable systems.

20.1	 Heat and Internal Energy
At the outset, it is important to make a major distinction between internal energy 
and heat, terms that are often incorrectly used interchangeably in popular 
language.

20.1	 Heat and Internal Energy

20.2	 Specific Heat  
and Calorimetry

20.3	 Latent Heat

20.4	 Work and Heat in 
Thermodynamic Processes

20.5	 The First Law of 
Thermodynamics

20.6	 Some Applications of  
the First Law of 
Thermodynamics

20.7	 Energy Transfer Mechanisms 
in Thermal Processes
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	 20.1  Heat and Internal Energy	 591

Internal energy is all the energy of a system that is associated with its micro-
scopic components—atoms and molecules—when viewed from a reference 
frame at rest with respect to the center of mass of the system.

The last part of this sentence ensures that any bulk kinetic energy of the system 
due to its motion through space is not included in internal energy. Internal energy 
includes kinetic energy of random translational, rotational, and vibrational motion 
of molecules; vibrational potential energy associated with forces between atoms in 
molecules; and electric potential energy associated with forces between molecules. 
It is useful to relate internal energy to the temperature of an object, but this rela-
tionship is limited. We show in Section 20.3 that internal energy changes can also 
occur in the absence of temperature changes. In that discussion, we will investi-
gate the internal energy of the system when there is a physical change, most often 
related to a phase change, such as melting or boiling. We assign energy associated 
with chemical changes, related to chemical reactions, to the potential energy term 
in Equation 8.2, not to internal energy. Therefore, we discuss the chemical potential 
energy in, for example, a human body (due to previous meals), the gas tank of a car 
(due to an earlier transfer of fuel), and a battery of an electric circuit (placed in the 
battery during its construction in the manufacturing process).

Heat is defined as a process of transferring energy across the boundary of a 
system because of a temperature difference between the system and its sur-
roundings. It is also the amount of energy Q transferred by this process.

When you heat a substance, you are transferring energy into it by placing it in con-
tact with surroundings that have a higher temperature. Such is the case, for exam-
ple, when you place a pan of cold water on a stove burner. The burner is at a higher 
temperature than the water, and so the water gains energy by heat. 
	 Read this definition of heat (Q in Eq. 8.2) very carefully. In particular, notice 
what heat is not in the following common quotes. (1) Heat is not energy in a hot sub-
stance. For example, “The boiling water has a lot of heat” is incorrect; the boiling 
water has internal energy Eint. (2) Heat is not radiation. For example, “It was so hot 
because the sidewalk was radiating heat” is incorrect; energy is leaving the sidewalk 
by electromagnetic radiation, TER in Equation 8.2. (3) Heat is not warmth of an envi-
ronment. For example, “The heat in the air was so oppressive” is incorrect; on a hot 
day, the air has a high temperature T.
	 As an analogy to the distinction between heat and internal energy, consider the 
distinction between work and mechanical energy discussed in Chapter 7. The work 
done on a system is a measure of the amount of energy transferred to the system 
from its surroundings, whereas the mechanical energy (kinetic energy plus poten-
tial energy) of a system is a consequence of the motion and configuration of the 
system. Therefore, when a person does work on a system, energy is transferred from 
the person to the system. It makes no sense to talk about the work of a system; one 
can refer only to the work done on or by a system when some process has occurred 
in which energy has been transferred to or from the system. Likewise, it makes no 
sense to talk about the heat of a system; one can refer to heat only when energy has 
been transferred as a result of a temperature difference. Both heat and work are 
ways of transferring energy between a system and its surroundings.

Units of Heat
Early studies of heat focused on the resultant increase in temperature of a sub-
stance, which was often water. Initial notions of heat were based on a fluid called 
caloric that flowed from one substance to another and caused changes in tempera-
ture. From the name of this mythical fluid came an energy unit related to ther-
mal processes, the calorie (cal), which is defined as the amount of energy transfer 

Pitfall Prevention 20.1
Internal Energy, Thermal Energy,  
and Bond Energy  When reading 
other physics books, you may see 
terms such as thermal energy and 
bond energy. Thermal energy can 
be interpreted as that part of the 
internal energy associated with 
random motion of molecules and 
therefore related to temperature. 
Bond energy is the intermolecular 
potential energy. Therefore,

  Internal energy 5  
      thermal energy 1 bond energy

Although this breakdown is pre-
sented here for clarification with 
regard to other books, we will not 
use these terms because there is 
no need for them.

Pitfall Prevention 20.2
Heat, Temperature, and Internal 
Energy Are Different  As you read 
the newspaper or explore the 
Internet, be alert for incorrectly 
used phrases including the word 
heat and think about the proper 
word to be used in place of heat. 
Incorrect examples include “As 
the truck braked to a stop, a large 
amount of heat was generated by 
friction” and “The heat of a hot 
summer day . . . .”
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592	C hapter 20 T he First Law of Thermodynamics

necessary to raise the temperature of 1 g of water from 14.5°C to 15.5°C.1 (The 
“Calorie,” written with a capital “C” and used in describing the energy content of 
foods, is actually a kilocalorie.) The unit of energy in the U.S. customary system is 
the British thermal unit (Btu), which is defined as the amount of energy transfer 
required to raise the temperature of 1 lb of water from 63°F to 64°F.
	 Once the relationship between energy in thermal and mechanical processes 
became clear, there was no need for a separate unit related to thermal processes. 
The joule has already been defined as an energy unit based on mechanical pro-
cesses. Scientists are increasingly turning away from the calorie and the Btu and 
are using the joule when describing thermal processes. In this textbook, heat, work, 
and internal energy are usually measured in joules.

The Mechanical Equivalent of Heat
In Chapters 7 and 8, we found that whenever friction is present in a mechanical 
system, the mechanical energy in the system decreases; in other words, mechani-
cal energy is not conserved in the presence of nonconservative forces. Various 
experiments show that this mechanical energy does not simply disappear but is 
transformed into internal energy. You can perform such an experiment at home 
by hammering a nail into a scrap piece of wood. What happens to all the kinetic 
energy of the hammer once you have finished? Some of it is now in the nail as 
internal energy, as demonstrated by the nail being measurably warmer. Notice that 
there is no transfer of energy by heat in this process. For the nail and board as a 
nonisolated system, Equation 8.2 becomes DEint 5 W 1 TMW, where W is the work 
done by the hammer on the nail and TMW is the energy leaving the system by sound 
waves when the nail is struck. Although this connection between mechanical and 
internal energy was first suggested by Benjamin Thompson, it was James Prescott 
Joule who established the equivalence of the decrease in mechanical energy and 
the increase in internal energy.
	 A schematic diagram of Joule’s most famous experiment is shown in Figure 20.1. 
The system of interest is the Earth, the two blocks, and the water in a thermally 
insulated container. Work is done within the system on the water by a rotating pad-
dle wheel, which is driven by heavy blocks falling at a constant speed. If the energy 
transformed in the bearings and the energy passing through the walls by heat are 
neglected, the decrease in potential energy of the system as the blocks fall equals 
the work done by the paddle wheel on the water and, in turn, the increase in inter-
nal energy of the water. If the two blocks fall through a distance h, the decrease 
in potential energy of the system is 2mgh, where m is the mass of one block; this 
energy causes the temperature of the water to increase. By varying the conditions 
of the experiment, Joule found that the decrease in mechanical energy is propor-
tional to the product of the mass of the water and the increase in water tempera-
ture. The proportionality constant was found to be approximately 4.18 J/g ? °C. 
Hence, 4.18 J of mechanical energy raises the temperature of 1 g of water by 1°C. 
More precise measurements taken later demonstrated the proportionality to be  
4.186 J/g ? °C when the temperature of the water was raised from 14.5°C to 15.5°C. 
We adopt this “15-degree calorie” value:

	 1 cal 5 4.186 J	 (20.1)

This equality is known, for purely historical reasons, as the mechanical equivalent 
of heat. A more proper name would be equivalence between mechanical energy and 
internal energy, but the historical name is well entrenched in our language, despite 
the incorrect use of the word heat.

1Originally, the calorie was defined as the energy transfer necessary to raise the temperature of 1 g of water by 1°C. 
Careful measurements, however, showed that the amount of energy required to produce a 1°C change depends 
somewhat on the initial temperature; hence, a more precise definition evolved.

Thermal
insulator

The falling blocks rotate the 
paddles, causing the temperature 
of the water to increase.

m m

Figure 20.1  ​Joule’s experiment 
for determining the mechanical 
equivalent of heat.

James Prescott Joule
British physicist (1818–1889)
Joule received some formal education 
in mathematics, philosophy, and chem-
istry from John Dalton but was in large 
part self-educated. Joule’s research led 
to the establishment of the principle 
of conservation of energy. His study 
of the quantitative relationship among 
electrical, mechanical, and chemi-
cal effects of heat culminated in his 
announcement in 1843 of the amount 
of work required to produce a unit of 
energy, called the mechanical equiva-
lent of heat.
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	 20.2  Specific Heat and Calorimetry	 593

	

Example 20.1	     Losing Weight the Hard Way 

A student eats a dinner rated at 2 000 Calories. He wishes to do an equivalent amount of work in the gymnasium by 
lifting a 50.0-kg barbell. How many times must he raise the barbell to expend this much energy? Assume he raises the 
barbell 2.00 m each time he lifts it and he regains no energy when he lowers the barbell.

Conceptualize  ​Imagine the student raising the barbell. He is doing work on the system of the barbell and the Earth, so 
energy is leaving his body. The total amount of work that the student must do is 2 000 Calories.

Categorize  ​We model the system of the barbell and the Earth as a nonisolated system for energy.

AM

S o l uti   o n

Analyze  ​Reduce the conservation of energy equa-
tion, Equation 8.2, to the appropriate expression 
for the system of the barbell and the Earth:

(1)   DUtotal 5 Wtotal

Express the change in gravitational potential energy 
of the system after the barbell is raised once:

DU 5 mgh

Express the total amount of energy that must be 
transferred into the system by work for lifting the 
barbell n times, assuming energy is not regained 
when the barbell is lowered:

(2)   DUtotal 5 nmgh

Substitute Equation (2) into Equation (1): nmgh 5 Wtotal

Solve for n:

Substitute numerical values:

n 5
Wtotal

mgh

n 5
12 000 Cal 2

150.0 kg 2 19.80 m/s2 2 12.00 m 2 a
1.00 3 103 cal

Calorie
b a4.186 J

1 cal
b 

5   8.54 3 103 times

Finalize  ​If the student is in good shape and lifts the barbell once every 5 s, it will take him about 12 h to perform this 
feat. Clearly, it is much easier for this student to lose weight by dieting.
	 In reality, the human body is not 100% efficient. Therefore, not all the energy transformed within the body from 
the dinner transfers out of the body by work done on the barbell. Some of this energy is used to pump blood and 
perform other functions within the body. Therefore, the 2 000 Calories can be worked off in less time than 12 h when 
these other energy processes are included.

20.2	 Specific Heat and Calorimetry
When energy is added to a system and there is no change in the kinetic or potential 
energy of the system, the temperature of the system usually rises. (An exception to 
this statement is the case in which a system undergoes a change of state—also called 
a phase transition—as discussed in the next section.) If the system consists of a sam-
ple of a substance, we find that the quantity of energy required to raise the tempera-
ture of a given mass of the substance by some amount varies from one substance 
to another. For example, the quantity of energy required to raise the temperature 
of 1 kg of water by 1°C is 4 186 J, but the quantity of energy required to raise the 
temperature of 1 kg of copper by 1°C is only 387 J. In the discussion that follows, we 
shall use heat as our example of energy transfer, but keep in mind that the tempera-
ture of the system could be changed by means of any method of energy transfer.
	 The heat capacity C of a particular sample is defined as the amount of energy 
needed to raise the temperature of that sample by 1°C. From this definition, we see 
that if energy Q produces a change DT in the temperature of a sample, then

	 Q 5 C DT	 (20.2)
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594	C hapter 20 T he First Law of Thermodynamics

	 The specific heat c of a substance is the heat capacity per unit mass. Therefore, 
if energy Q transfers to a sample of a substance with mass m and the temperature of 
the sample changes by DT, the specific heat of the substance is

	 c ;
Q

m DT
	 (20.3)

Specific heat is essentially a measure of how thermally insensitive a substance is to 
the addition of energy. The greater a material’s specific heat, the more energy must 
be added to a given mass of the material to cause a particular temperature change. 
Table 20.1 lists representative specific heats.
	 From this definition, we can relate the energy Q transferred between a sample of 
mass m of a material and its surroundings to a temperature change DT as

	 Q 5 mc DT	 (20.4)

For example, the energy required to raise the temperature of 0.500 kg of water by 
3.00°C is Q 5 (0.500 kg)(4 186 J/kg ? °C)(3.00°C) 5 6.28 3 103 J. Notice that when 
the temperature increases, Q and DT are taken to be positive and energy trans-
fers into the system. When the temperature decreases, Q and DT are negative and 
energy transfers out of the system.
	 We can identify mc DT as the change in internal energy of the system if we ignore 
any thermal expansion or contraction of the system. (Thermal expansion or con-
traction would result in a very small amount of work being done on the system 
by the surrounding air.) Then, Equation 20.4 is a reduced form of Equation 8.2: 
DE int 5 Q. The internal energy of the system can be changed by transferring energy 
into the system by any mechanism. For example, if the system is a baked potato in 
a microwave oven, Equation 8.2 reduces to the following analog to Equation 20.4: 
DE int 5 TER 5 mc DT, where TER is the energy transferred to the potato from the 
microwave oven by electromagnetic radiation. If the system is the air in a bicycle 
pump, which becomes hot when the pump is operated, Equation 8.2 reduces to the 
following analog to Equation 20.4: DE int 5 W 5 mc DT, where W is the work done on 
the pump by the operator. By identifying mc DT as DE int, we have taken a step toward 
a better understanding of temperature: temperature is related to the energy of the 
molecules of a system. We will learn more details of this relationship in Chapter 21.
	 Specific heat varies with temperature. If, however, temperature intervals are not too 
great, the temperature variation can be ignored and c can be treated as a constant.2  

Specific heat 

Table 20.1 Specific Heats of Some Substances at 25°C  
and Atmospheric Pressure
	 Specific Heat		  Specific Heat
Substance	 ( J/kg ? °C)	 Substance	 ( J/kg ? °C)

Elemental solids		  Other solids
Aluminum	 900	 Brass	 380
Beryllium	 1 830	 Glass	 837
Cadmium	 230	 Ice (25°C)	 2 090
Copper	 387	 Marble	 860
Germanium	 322	 Wood	 1 700
Gold	 129	 Liquids
Iron	 448	

Alcohol (ethyl)	 2 400Lead	 128	
Mercury	 140Silicon	 703	
Water (15°C)	 4 186Silver	 234	
Gas

		  Steam (100°C)	 2 010

Note: To convert values to units of cal/g ? °C, divide by 4 186.

2The definition given by Equation 20.4 assumes the specific heat does not vary with temperature over the interval  
DT 5 Tf 2 Ti. In general, if c varies with temperature over the interval, the correct expression for Q is Q 5 m e

Tf

Ti  
c dT.

Pitfall Prevention 20.3
An Unfortunate Choice  
of Terminology  The name specific 
heat is an unfortunate holdover 
from the days when thermody-
namics and mechanics developed 
separately. A better name would 
be specific energy transfer, but the 
existing term is too entrenched to 
be replaced.

Pitfall Prevention 20.4
Energy Can Be Transferred  
by Any Method  The symbol Q 
represents the amount of energy 
transferred, but keep in mind that 
the energy transfer in Equation 
20.4 could be by any of the meth-
ods introduced in Chapter 8; it 
does not have to be heat. For exam-
ple, repeatedly bending a wire coat 
hanger raises the temperature at 
the bending point by work.www.as
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For example, the specific heat of water varies by only about 1% from 0°C to 100°C at 
atmospheric pressure. Unless stated otherwise, we shall neglect such variations.

Q	 uick Quiz 20.1 ​ Imagine you have 1 kg each of iron, glass, and water, and all 
three samples are at 10°C. (a) Rank the samples from highest to lowest tempera-
ture after 100 J of energy is added to each sample. (b) Rank the samples from 
greatest to least amount of energy transferred by heat if each sample increases 
in temperature by 20°C.

Isolated system boundary

Hot sample

Qcold

mw
cw

Tw

mx
cx

Tx

Qhot

Cold water

Figure 20.2  In a calorimetry 
experiment, a hot sample whose 
specific heat is unknown is placed 
in cold water in a container that 
isolates the system from the 
environment.

	 Notice from Table 20.1 that water has the highest specific heat of common mate-
rials. This high specific heat is in part responsible for the moderate climates found 
near large bodies of water. As the temperature of a body of water decreases during 
the winter, energy is transferred from the cooling water to the air by heat, increas-
ing the internal energy of the air. Because of the high specific heat of water, a rela-
tively large amount of energy is transferred to the air for even modest temperature 
changes of the water. The prevailing winds on the West Coast of the United States 
are toward the land (eastward). Hence, the energy liberated by the Pacific Ocean as 
it cools keeps coastal areas much warmer than they would otherwise be. As a result, 
West Coast states generally have more favorable winter weather than East Coast 
states, where the prevailing winds do not tend to carry the energy toward land.

Calorimetry
One technique for measuring specific heat involves heating a sample to some 
known temperature Tx , placing it in a vessel containing water of known mass and 
temperature Tw , Tx , and measuring the temperature of the water after equilibrium 
has been reached. This technique is called calorimetry, and devices in which this 
energy transfer occurs are called calorimeters. Figure 20.2 shows the hot sample in 
the cold water and the resulting energy transfer by heat from the high-temperature 
part of the system to the low-temperature part. If the system of the sample and the 
water is isolated, the principle of conservation of energy requires that the amount 
of energy Q hot that leaves the sample (of unknown specific heat) equal the amount 
of energy Q cold that enters the water.3 Conservation of energy allows us to write the 
mathematical representation of this energy statement as

	 Q cold 5 2Q hot	 (20.5)

	 Suppose mx is the mass of a sample of some substance whose specific heat we 
wish to determine. Let’s call its specific heat cx and its initial temperature Tx as 
shown in Figure 20.2. Likewise, let mw, cw, and Tw represent corresponding values 
for the water. If Tf is the final temperature after the system comes to equilibrium, 
Equation 20.4 shows that the energy transfer for the water is mwcw(Tf 2 Tw), which 
is positive because Tf . Tw , and that the energy transfer for the sample of unknown 
specific heat is mxcx(Tf 2 Tx), which is negative. Substituting these expressions into 
Equation 20.5 gives

	 mwcw(Tf 2 Tw) 5 2mxcx(Tf 2 Tx)	

This equation can be solved for the unknown specific heat cx.

Example 20.2	     Cooling a Hot Ingot

A 0.050 0-kg ingot of metal is heated to 200.0°C and then dropped into a calorimeter containing 0.400 kg of water ini-
tially at 20.0°C. The final equilibrium temperature of the mixed system is 22.4°C. Find the specific heat of the metal.

Pitfall Prevention 20.5
Remember the Negative Sign  It is 
critical to include the negative sign 
in Equation 20.5. The negative 
sign in the equation is necessary 
for consistency with our sign con-
vention for energy transfer. The 
energy transfer Q hot has a negative 
value because energy is leaving 
the hot substance. The negative 
sign in the equation ensures that 
the right side is a positive number, 
consistent with the left side, which 
is positive because energy is enter-
ing the cold water.

continued
3For precise measurements, the water container should be included in our calculations because it also exchanges 
energy with the sample. Doing so would require that we know the container’s mass and composition, however. If the 
mass of the water is much greater than that of the container, we can neglect the effects of the container.
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596	C hapter 20 T he First Law of Thermodynamics

Conceptualize  ​Imagine the process occurring in the isolated system of Figure 20.2. Energy leaves the hot ingot and 
goes into the cold water, so the ingot cools off and the water warms up. Once both are at the same temperature, the 
energy transfer stops.

Categorize  ​We use an equation developed in this section, so we categorize this example as a substitution problem.

S o l uti   o n

Use Equation 20.4 to evaluate each side of 
Equation 20.5:

mwcw(Tf 2 Tw) 5 2mxcx(Tf 2 Tx)

Solve for cx: cx 5
mwcw 1Tf 2 Tw 2

mx 1Tx 2 Tf 2

Substitute numerical values: cx 5
10.400 kg 2 14 186 J/kg # 8C 2 122.48C 2 20.08C 2

10.050 0 kg 2 1200.08C 2 22.48C 2
5 453 J/kg # 8C

The ingot is most likely iron as you can see by comparing this result with the data given in Table 20.1. The temperature 
of the ingot is initially above the steam point. Therefore, some of the water may vaporize when the ingot is dropped 
into the water. We assume the system is sealed and this steam cannot escape. Because the final equilibrium tempera-
ture is lower than the steam point, any steam that does result recondenses back into water.

​Suppose you are performing an experiment in the laboratory that uses this technique to determine the 
specific heat of a sample and you wish to decrease the overall uncertainty in your final result for cx. Of the data given 
in this example, changing which value would be most effective in decreasing the uncertainty?

Answer  ​The largest experimental uncertainty is associated with the small difference in temperature of 2.4°C for the 
water. For example, using the rules for propagation of uncertainty in Appendix Section B.8, an uncertainty of 0.1°C in 
each of Tf and Tw leads to an 8% uncertainty in their difference. For this temperature difference to be larger experi-
mentally, the most effective change is to decrease the amount of water.

What If ?

	

▸ 20.2 c o n t i n u e d

Example 20.3	     Fun Time for a Cowboy 

A cowboy fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume all the internal 
energy generated by the impact remains with the bullet. What is the temperature change of the bullet?

Conceptualize  ​Imagine similar experiences you may have had in which mechanical energy is transformed to internal 
energy when a moving object is stopped. For example, as mentioned in Section 20.1, a nail becomes warm after it is hit 
a few times with a hammer.

Categorize  ​The bullet is modeled as an isolated system. No work is done on the system because the force from the wall 
moves through no displacement. This example is similar to the skateboarder pushing off a wall in Section 9.7. There, no 
work is done on the skateboarder by the wall, and potential energy stored in the body from previous meals is transformed 
to kinetic energy. Here, no work is done by the wall on the bullet, and kinetic energy is transformed to internal energy.

AM

S o l uti   o n

Analyze  ​Reduce the conservation of energy equation, 
Equation 8.2, to the appropriate expression for the sys-
tem of the bullet:

(1)   ​DK 1 DE int 5 0

The change in the bullet’s internal energy is related to 
its change in temperature:

(2)   ​DE int 5 mc DT

Substitute Equation (2) into Equation (1): 10 2 1
2mv 2 2 1 mc DT 5 0
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	 20.3  Latent Heat	 597

Solve for DT, using 234 J/kg ? °C as the specific heat of 
silver (see Table 20.1):

(3)   DT 5

1
2mv 2

mc
5

v 2

2c
5

1200 m/s 22

2 1234 J/kg # 8C 2 5 85.58C

Finalize  ​Notice that the result does not depend on the mass of the bullet.

Suppose the cowboy runs out of silver bullets and fires a lead bullet at the same speed into the wall. Will 
the temperature change of the bullet be larger or smaller?

Answer  ​Table 20.1 shows that the specific heat of lead is 128 J/kg ? °C, which is smaller than that for silver. Therefore, 
a given amount of energy input or transformation raises lead to a higher temperature than silver and the final tem-
perature of the lead bullet will be larger. In Equation (3), let’s substitute the new value for the specific heat:

DT 5
v 2

2c
5

1200 m/s 22

2 1128 J/kg # 8C 2 5 1568C

There is no requirement that the silver and lead bullets have the same mass to determine this change in temperature. 
The only requirement is that they have the same speed.

What If ?

	

▸ 20.3 c o n t i n u e d

20.3	 Latent Heat
As we have seen in the preceding section, a substance can undergo a change in tem-
perature when energy is transferred between it and its surroundings. In some situ-
ations, however, the transfer of energy does not result in a change in temperature. 
That is the case whenever the physical characteristics of the substance change from 
one form to another; such a change is commonly referred to as a phase change. 
Two common phase changes are from solid to liquid (melting) and from liquid to 
gas (boiling); another is a change in the crystalline structure of a solid. All such 
phase changes involve a change in the system’s internal energy but no change in 
its temperature. The increase in internal energy in boiling, for example, is repre-
sented by the breaking of bonds between molecules in the liquid state; this bond 
breaking allows the molecules to move farther apart in the gaseous state, with a 
corresponding increase in intermolecular potential energy.
	 As you might expect, different substances respond differently to the addition or 
removal of energy as they change phase because their internal molecular arrange-
ments vary. Also, the amount of energy transferred during a phase change depends on 
the amount of substance involved. (It takes less energy to melt an ice cube than it does 
to thaw a frozen lake.) When discussing two phases of a material, we will use the term 
higher-phase material to mean the material existing at the higher temperature. So, for 
example, if we discuss water and ice, water is the higher-phase material, whereas steam 
is the higher-phase material in a discussion of steam and water. Consider a system 
containing a substance in two phases in equilibrium such as water and ice. The initial 
amount of the higher-phase material, water, in the system is mi. Now imagine that 
energy Q enters the system. As a result, the final amount of water is mf due to the melt-
ing of some of the ice. Therefore, the amount of ice that melted, equal to the amount 
of new water, is Dm 5 mf 2 mi. We define the latent heat for this phase change as

	 L ;
Q

Dm
	 (20.6)

This parameter is called latent heat (literally, the “hidden” heat) because this 
added or removed energy does not result in a temperature change. The value of L 
for a substance depends on the nature of the phase change as well as on the proper-
ties of the substance. If the entire amount of the lower-phase material undergoes a 
phase change, the change in mass Dm of the higher-phase material is equal to the 
initial mass of the lower-phase material. For example, if an ice cube of mass m on a 
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598	C hapter 20 T he First Law of Thermodynamics

plate melts completely, the change in mass of the water is mf 2 0 5 m, which is the 
mass of new water and is also equal to the initial mass of the ice cube.
	 From the definition of latent heat, and again choosing heat as our energy trans-
fer mechanism, the energy required to change the phase of a pure substance is

	 Q 5 L Dm	 (20.7)

where Dm is the change in mass of the higher-phase material.
	 Latent heat of fusion Lf is the term used when the phase change is from solid to 
liquid (to fuse means “to combine by melting”), and latent heat of vaporization Lv is 
the term used when the phase change is from liquid to gas (the liquid “vaporizes”).4 
The latent heats of various substances vary considerably as data in Table 20.2 show. 
When energy enters a system, causing melting or vaporization, the amount of the 
higher-phase material increases, so Dm is positive and Q is positive, consistent with 
our sign convention. When energy is extracted from a system, causing freezing or 
condensation, the amount of the higher-phase material decreases, so Dm is nega-
tive and Q is negative, again consistent with our sign convention. Keep in mind that 
Dm in Equation 20.7 always refers to the higher-phase material.
	 To understand the role of latent heat in phase changes, consider the energy 
required to convert a system consisting of a 1.00-g cube of ice at 230.0°C to steam 
at 120.0°C. Figure 20.3 indicates the experimental results obtained when energy is 
gradually added to the ice. The results are presented as a graph of temperature of 
the system versus energy added to the system. Let’s examine each portion of the 
red-brown curve, which is divided into parts A through E.

Part A. On this portion of the curve, the temperature of the system changes from 
230.0°C to 0.0°C. Equation 20.4 indicates that the temperature varies linearly 
with the energy added, so the experimental result is a straight line on the graph. 
Because the specific heat of ice is 2 090 J/kg ? °C, we can calculate the amount of 
energy added by using Equation 20.4:

	 Q 5 mici DT 5 (1.00 3 1023 kg)(2 090 J/kg ? °C)(30.0°C) 5 62.7 J	

Part B. When the temperature of the system reaches 0.0°C, the ice–water mixture 
remains at this temperature—even though energy is being added—until all the ice 
melts. The energy required to melt 1.00 g of ice at 0.0°C is, from Equation 20.7,

	 Q 5 Lf  Dmw 5 Lfmi 5 (3.33 3 105 J/kg)(1.00 3 1023 kg) 5 333 J	

� Energy transferred to 
a substance during 

a phase change

4When a gas cools, it eventually condenses; that is, it returns to the liquid phase. The energy given up per unit mass 
is called the latent heat of condensation and is numerically equal to the latent heat of vaporization. Likewise, when a 
liquid cools, it eventually solidifies, and the latent heat of solidification is numerically equal to the latent heat of fusion.

Table 20.2 Latent Heats of Fusion and Vaporization
		  Latent Heat
	 Melting	 of Fusion	 Boiling	 Latent Heat
Substance	 Point (°C)	 ( J/kg)	 Point (°C)	 of Vaporization ( J/kg)

Heliuma	 2272.2	 5.23 3 103	 2268.93	 2.09 3 104

Oxygen	 2218.79	 1.38 3 104	 2182.97	 2.13 3 105

Nitrogen	 2209.97	 2.55 3 104	 2195.81	 2.01 3 105

Ethyl alcohol	 2114	 1.04 3 105	 78	 8.54 3 105

Water	 0.00	 3.33 3 105	 100.00	 2.26 3 106

Sulfur	 119	 3.81 3 104	 444.60	 3.26 3 105

Lead	 327.3	 2.45 3 104	 1 750	 8.70 3 105

Aluminum	 660	 3.97 3 105	 2 450	 1.14 3 107

Silver	 960.80	 8.82 3 104	 2 193	 2.33 3 106

Gold	 1 063.00	 6.44 3 104	 2 660	 1.58 3 106

Copper	 1 083	 1.34 3 105	 1 187	 5.06 3 106

aHelium does not solidify at atmospheric pressure. The melting point given here corresponds to a pressure of 2.5 MPa.

Pitfall Prevention 20.6
Signs Are Critical  Sign errors 
occur very often when students 
apply calorimetry equations. For 
phase changes, remember that 
Dm in Equation 20.7 is always the 
change in mass of the higher-
phase material. In Equation 20.4, 
be sure your DT is always the final 
temperature minus the initial tem-
perature. In addition, you must 
always include the negative sign on 
the right side of Equation 20.5.
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	 20.3  Latent Heat	 599

At this point, we have moved to the 396 J (5 62.7 J 1 333 J) mark on the energy axis 
in Figure 20.3.

Part C. Between 0.0°C and 100.0°C, nothing surprising happens. No phase change 
occurs, and so all energy added to the system, which is now water, is used to increase 
its temperature. The amount of energy necessary to increase the temperature from 
0.0°C to 100.0°C is

	 Q 5 mwcw DT 5 (1.00 3 1023 kg)(4.19 3 103 J/kg ? °C)(100.0°C) 5 419 J	

where mw is the mass of the water in the system, which is the same as the mass mi of 
the original ice.

Part D. At 100.0°C, another phase change occurs as the system changes from water 
at 100.0°C to steam at 100.0°C. Similar to the ice–water mixture in part B, the 
water–steam mixture remains at 100.0°C—even though energy is being added—
until all the liquid has been converted to steam. The energy required to convert 
1.00 g of water to steam at 100.0°C is

	 Q 5 Lv Dms 5 Lvmw 5 (2.26 3 106 J/kg)(1.00 3 1023 kg) 5 2.26 3 103 J	

Part E. On this portion of the curve, as in parts A and C, no phase change occurs; 
therefore, all energy added is used to increase the temperature of the system, which 
is now steam. The energy that must be added to raise the temperature of the steam 
from 100.0°C to 120.0°C is

	 Q 5 mscs DT 5 (1.00 3 1023 kg)(2.01 3 103 J/kg ? °C)(20.0°C) 5 40.2 J	

The total amount of energy that must be added to the system to change 1 g of ice 
at 230.0°C to steam at 120.0°C is the sum of the results from all five parts of the 
curve, which is 3.11 3 103 J. Conversely, to cool 1 g of steam at 120.0°C to ice at 
230.0°C, we must remove 3.11 3 103 J of energy.
	 Notice in Figure 20.3 the relatively large amount of energy that is transferred 
into the water to vaporize it to steam. Imagine reversing this process, with a large 
amount of energy transferred out of steam to condense it into water. That is why a 
burn to your skin from steam at 100°C is much more damaging than exposure of 
your skin to water at 100°C. A very large amount of energy enters your skin from 
the steam, and the steam remains at 100°C for a long time while it condenses. Con-
versely, when your skin makes contact with water at 100°C, the water immediately 
begins to drop in temperature as energy transfers from the water to your skin.
	 If liquid water is held perfectly still in a very clean container, it is possible for the 
water to drop below 0°C without freezing into ice. This phenomenon, called super-
cooling, arises because the water requires a disturbance of some sort for the mol-
ecules to move apart and start forming the large, open ice structure that makes the 
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Figure 20.3  ​A plot of tempera-
ture versus energy added when a 
system initially consisting of 1.00 g  
of ice at 230.0°C is converted to 
steam at 120.0°C.
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600	C hapter 20 T he First Law of Thermodynamics

density of ice lower than that of water as discussed in Section 19.4. If supercooled 
water is disturbed, it suddenly freezes. The system drops into the lower-energy con-
figuration of bound molecules of the ice structure, and the energy released raises 
the temperature back to 0°C.
	 Commercial hand warmers consist of liquid sodium acetate in a sealed plastic 
pouch. The solution in the pouch is in a stable supercooled state. When a disk in the 
pouch is clicked by your fingers, the liquid solidifies and the temperature increases, 
just like the supercooled water just mentioned. In this case, however, the freezing 
point of the liquid is higher than body temperature, so the pouch feels warm to the 
touch. To reuse the hand warmer, the pouch must be boiled until the solid lique-
fies. Then, as it cools, it passes below its freezing point into the supercooled state.
	 It is also possible to create superheating. For example, clean water in a very clean 
cup placed in a microwave oven can sometimes rise in temperature beyond 100°C 
without boiling because the formation of a bubble of steam in the water requires 
scratches in the cup or some type of impurity in the water to serve as a nucleation 
site. When the cup is removed from the microwave oven, the superheated water can 
become explosive as bubbles form immediately and the hot water is forced upward 
out of the cup.

Q	 uick Quiz 20.2 ​ Suppose the same process of adding energy to the ice cube is 
performed as discussed above, but instead we graph the internal energy of the 
system as a function of energy input. What would this graph look like?

Analyze  ​Write Equation 20.5 to describe the calo-
rimetry process:

(1)   Q cold 5 2Q hot

The steam undergoes three processes: first a decrease 
in temperature to 100°C, then condensation into 
liquid water, and finally a decrease in temperature of 
the water to 50.0°C. Find the energy transfer in the 
first process using the unknown mass ms of the steam:

Q 1 5 mscs DTs

Find the energy transfer in the second process: Q 2 5 Lv Dms 5 Lv(0 2 ms) 5 2msLv

Find the energy transfer in the third process: Q 3 5 mscw  DThot water

Add the energy transfers in these three stages: (2)   Q hot 5 Q 1 1 Q 2 1 Q 3 5 ms(cs DTs 2 Lv 1 cw DThot water)

Example 20.4	     Cooling the Steam 

What mass of steam initially at 130°C is needed to warm 200 g of water in a 100-g glass container from 20.0°C to 50.0°C?

Conceptualize  ​Imagine placing water and steam together in a closed insulated container. The system eventually 
reaches a uniform state of water with a final temperature of 50.0°C.

Categorize  ​Based on our conceptualization of this situation, we categorize this example as one involving calorimetry 
in which a phase change occurs. The calorimeter is an isolated system for energy: energy transfers between the compo-
nents of the system but does not cross the boundary between the system and the environment.

AM

S o l uti   o n

The 20.0°C water and the glass undergo only one 
process, an increase in temperature to 50.0°C. Find 
the energy transfer in this process:

(3)   Q cold 5 mwcw  DTcold water 1 mgcg  DTglass

Substitute Equations (2) and (3) into Equation (1): mwcw DTcold water 1 mgcg DTglass 5 2ms(cs DTs 2 Lv 1 cw DThot water)

Solve for ms: ms 5 2
mwcw DTcold water 1 mgcg DTglass

cs DTs 2 Lv 1 cw DThot water
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dy

P

A

V

a b

Figure 20.4  ​Work is done on 
a gas contained in a cylinder at a 
pressure P as the piston is  
pushed downward so that the gas 
is compressed.

​What if the final state of the system is water at 100°C? Would we need more steam or less steam? How 
would the analysis above change?

Answer  ​More steam would be needed to raise the temperature of the water and glass to 100°C instead of 50.0°C. 
There would be two major changes in the analysis. First, we would not have a term Q 3 for the steam because the water 
that condenses from the steam does not cool below 100°C. Second, in Q cold, the temperature change would be 80.0°C 
instead of 30.0°C. For practice, show that the result is a required mass of steam of 31.8 g.

What If ?

Substitute 
numerical 
values:

ms 5 2
10.200 kg 2 14 186 J/kg # 8C 2 150.08C 2 20.08C 2 1 10.100 kg 2 1837 J/kg # 8C 2 150.08C 2 20.08C 2
12 010 J/kg # 8C 2 11008C 2 1308C 2 2 12.26 3 106 J/kg 2 1 14 186 J/kg # 8C 2 150.08C 2 1008C 2

5 1.09 3 1022 kg 5   10.9 g

	

▸ 20.4 c o n t i n u e d

20.4	 Work and Heat in Thermodynamic Processes
In thermodynamics, we describe the state of a system using such variables as pres-
sure, volume, temperature, and internal energy. As a result, these quantities belong 
to a category called state variables. For any given configuration of the system, we 
can identify values of the state variables. (For mechanical systems, the state vari-
ables include kinetic energy K and potential energy U.) A state of a system can be 
specified only if the system is in thermal equilibrium internally. In the case of a gas 
in a container, internal thermal equilibrium requires that every part of the gas be 
at the same pressure and temperature.
	 A second category of variables in situations involving energy is transfer vari-
ables. These variables are those that appear on the right side of the conservation 
of energy equation, Equation 8.2. Such a variable has a nonzero value if a process 
occurs in which energy is transferred across the system’s boundary. The transfer 
variable is positive or negative, depending on whether energy is entering or leaving 
the system. Because a transfer of energy across the boundary represents a change 
in the system, transfer variables are not associated with a given state of the system, 
but rather with a change in the state of the system.
	 In the previous sections, we discussed heat as a transfer variable. In this section, 
we study another important transfer variable for thermodynamic systems, work. Work 
performed on particles was studied extensively in Chapter 7, and here we investigate 
the work done on a deformable system, a gas. Consider a gas contained in a cylinder 
fitted with a movable piston (Fig. 20.4). At equilibrium, the gas occupies a volume V 
and exerts a uniform pressure P on the cylinder’s walls and on the piston. If the pis-
ton has a cross-sectional area A, the magnitude of the force exerted by the gas on the 
piston is F 5 PA. By Newton’s third law, the magnitude of the force exerted by the pis-
ton on the gas is also PA. Now let’s assume we push the piston inward and compress 
the gas quasi-statically, that is, slowly enough to allow the system to remain essen-
tially in internal thermal equilibrium at all times. The point of application of the 
force on the gas is the bottom face of the piston. As the piston is pushed downward 
by an external force  F

S
 5 2F ĵ through a displacement of d rS 5 dy ĵ (Fig. 20.4b), the 

work done on the gas is, according to our definition of work in Chapter 7,

	 dW 5 F
S

?d rS 5 2F ĵ ?dy ĵ 5 2F dy 5 2PA dy	

The mass of the piston is assumed to be negligible in this discussion. Because A  dy 
is the change in volume of the gas dV, we can express the work done on the gas as

	 dW 5 2P dV	 (20.8)

	 If the gas is compressed, dV is negative and the work done on the gas is positive. 
If the gas expands, dV is positive and the work done on the gas is negative. If the 
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602	C hapter 20 T he First Law of Thermodynamics

volume remains constant, the work done on the gas is zero. The total work done on 
the gas as its volume changes from Vi to Vf is given by the integral of Equation 20.8:

	 W 5  23
Vf

Vi

 P dV 	 (20.9)

To evaluate this integral, you must know how the pressure varies with volume dur-
ing the process.
	 In general, the pressure is not constant during a process followed by a gas, but 
depends on the volume and temperature. If the pressure and volume are known 
at each step of the process, the state of the gas at each step can be plotted on an 
important graphical representation called a PV diagram as in Figure 20.5. This type 
of diagram allows us to visualize a process through which a gas is progressing. The 
curve on a PV diagram is called the path taken between the initial and final states.
	 Notice that the integral in Equation 20.9 is equal to the area under a curve on a 
PV diagram. Therefore, we can identify an important use for PV diagrams:

The work done on a gas in a quasi-static process that takes the gas from an 
initial state to a final state is the negative of the area under the curve on a PV 
diagram, evaluated between the initial and final states.

	 For the process of compressing a gas in a cylinder, the work done depends on the 
particular path taken between the initial and final states as Figure 20.5 suggests. To 
illustrate this important point, consider several different paths connecting i and f 
(Fig. 20.6). In the process depicted in Figure 20.6a, the volume of the gas is first 
reduced from Vi to Vf at constant pressure Pi and the pressure of the gas then 
increases from Pi to Pf by heating at constant volume Vf . The work done on the gas 
along this path is 2Pi(Vf 2 Vi). In Figure 20.6b, the pressure of the gas is increased 
from Pi to Pf at constant volume Vi and then the volume of the gas is reduced from 
Vi to Vf at constant pressure Pf . The work done on the gas is 2Pf(Vf 2 Vi). This value 
is greater than that for the process described in Figure 20.6a because the piston is 
moved through the same displacement by a larger force. Finally, for the process 
described in Figure 20.6c, where both P and V change continuously, the work done 
on the gas has some value between the values obtained in the first two processes. 
To evaluate the work in this case, the function P(V ) must be known so that we can 
evaluate the integral in Equation 20.9.
	 The energy transfer Q into or out of a system by heat also depends on the pro-
cess. Consider the situations depicted in Figure 20.7. In each case, the gas has the 
same initial volume, temperature, and pressure, and is assumed to be ideal. In Figure 
20.7a, the gas is thermally insulated from its surroundings except at the bottom of 
the gas-filled region, where it is in thermal contact with an energy reservoir. An energy 
reservoir is a source of energy that is considered to be so great that a finite transfer of 
energy to or from the reservoir does not change its temperature. The piston is held 

Work done on a gas 

fPf

P

i

V
ViVf

Pi

f
Pf

P

i

V
ViVf

Pi

f
Pf

P

i

V
ViVf

Pi

A constant-pressure 
compression followed by a 
constant-volume process

A constant-volume process 
followed by a constant-
pressure compression

An arbitrary 
compression

a b c

Figure 20.6  The work done on 
a gas as it is taken from an initial 
state to a final state depends on 
the path between these states.

Figure 20.5  A gas is compressed 
quasi-statically (slowly) from state 
i to state f. An outside agent must 
do positive work on the gas to 
compress it.

f
Pf

P

i

V
ViVf

Pi

The work done on a gas 
equals the negative of the area 
under the PV curve. The area 
is negative here because the 
volume is decreasing, resulting 
in positive work.
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	 20.5  The First Law of Thermodynamics	 603

Figure 20.7  ​Gas in a cylinder. (a) The gas is in contact with an energy reservoir. The walls of the cylinder are perfectly insulating, but the 
base in contact with the reservoir is conducting. (b) The gas expands slowly to a larger volume. (c) The gas is contained by a membrane in 
half of a volume, with vacuum in the other half. The entire cylinder is perfectly insulating. (d) The gas expands freely into the larger volume.

The hand 
reduces its 
downward force,  
allowing the 
piston to move 
up slowly. The 
energy reservoir 
keeps the gas at 
temperature Ti . The gas is 

initially at 
temperature Ti . 

a b

Energy reservoir at Ti Energy reservoir at Ti

c d

The gas is 
initially at 
temperature
Ti  and 
contained
by a thin 
membrane, 
with vacuum 
above. 

The membrane
is broken, and 
the gas expands 
freely into the 
evacuated 
region.

at its initial position by an external agent such as a hand. When the force holding the 
piston is reduced slightly, the piston rises very slowly to its final position shown in Fig-
ure 20.7b. Because the piston is moving upward, the gas is doing work on the piston. 
During this expansion to the final volume Vf , just enough energy is transferred by 
heat from the reservoir to the gas to maintain a constant temperature Ti.
	 Now consider the completely thermally insulated system shown in Figure 20.7c. 
When the membrane is broken, the gas expands rapidly into the vacuum until it 
occupies a volume Vf and is at a pressure Pf . The final state of the gas is shown in 
Figure 20.7d. In this case, the gas does no work because it does not apply a force; no 
force is required to expand into a vacuum. Furthermore, no energy is transferred 
by heat through the insulating wall.
	 As we discuss in Section 20.5, experiments show that the temperature of the ideal 
gas does not change in the process indicated in Figures 20.7c and 20.7d. Therefore, 
the initial and final states of the ideal gas in Figures 20.7a and 20.7b are identical  
to the initial and final states in Figures 20.7c and 20.7d, but the paths are different. 
In the first case, the gas does work on the piston and energy is transferred slowly to 
the gas by heat. In the second case, no energy is transferred by heat and the value of 
the work done is zero. Therefore, energy transfer by heat, like work done, depends on 
the particular process occurring in the system. In other words, because heat and work 
both depend on the path followed on a PV diagram between the initial and final states, 
neither quantity is determined solely by the endpoints of a thermodynamic process.

20.5	 The First Law of Thermodynamics
When we introduced the law of conservation of energy in Chapter 8, we stated that 
the change in the energy of a system is equal to the sum of all transfers of energy 
across the system’s boundary (Eq. 8.2). The first law of thermodynamics is a spe-
cial case of the law of conservation of energy that describes processes in which only 
the internal energy5 changes and the only energy transfers are by heat and work:

	 DE int 5 Q 1 W	 (20.10) WW First law of thermodynamics

5It is an unfortunate accident of history that the traditional symbol for internal energy is U, which is also the tra-
ditional symbol for potential energy as introduced in Chapter 7. To avoid confusion between potential energy and 
internal energy, we use the symbol Eint for internal energy in this book. If you take an advanced course in thermody-
namics, however, be prepared to see U used as the symbol for internal energy in the first law.
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604	C hapter 20 T he First Law of Thermodynamics

Look back at Equation 8.2 to see that the first law of thermodynamics is contained 
within that more general equation.
	 Let us investigate some special cases in which the first law can be applied. First, 
consider an isolated system, that is, one that does not interact with its surroundings, 
as we have seen before. In this case, no energy transfer by heat takes place and the 
work done on the system is zero; hence, the internal energy remains constant. That 
is, because Q 5 W 5 0, it follows that DE int 5 0; therefore, E int,i 5 E int, f . We con-
clude that the internal energy E int of an isolated system remains constant.
	 Next, consider the case of a system that can exchange energy with its surround-
ings and is taken through a cyclic process, that is, a process that starts and ends at 
the same state. In this case, the change in the internal energy must again be zero 
because E int is a state variable; therefore, the energy Q added to the system must 
equal the negative of the work W done on the system during the cycle. That is, in a 
cyclic process,

	 DE int 5 0 ​ ​  and ​ ​  Q 5 2W  (cyclic process)	

On a PV diagram for a gas, a cyclic process appears as a closed curve. (The pro-
cesses described in Figure 20.6 are represented by open curves because the initial 
and final states differ.) It can be shown that in a cyclic process for a gas, the net 
work done on the system per cycle equals the area enclosed by the path represent-
ing the process on a PV diagram.

20.6	 �Some Applications of the First Law  
of Thermodynamics

In this section, we consider additional applications of the first law to processes 
through which a gas is taken. As a model, let’s consider the sample of gas contained 
in the piston–cylinder apparatus in Figure 20.8. This figure shows work being done 
on the gas and energy transferring in by heat, so the internal energy of the gas is 
rising. In the following discussion of various processes, refer back to this figure 
and mentally alter the directions of the transfer of energy to reflect what is hap-
pening in the process.
	 Before we apply the first law of thermodynamics to specific systems, it is useful 
to first define some idealized thermodynamic processes. An adiabatic process is 
one during which no energy enters or leaves the system by heat; that is, Q 5 0. An 
adiabatic process can be achieved either by thermally insulating the walls of the 
system or by performing the process rapidly so that there is negligible time for 
energy to transfer by heat. Applying the first law of thermodynamics to an adia-
batic process gives

	 DE int 5 W   (adiabatic process)	 (20.11)

This result shows that if a gas is compressed adiabatically such that W is positive, 
then DE int is positive and the temperature of the gas increases. Conversely, the tem-
perature of a gas decreases when the gas expands adiabatically.
	 Adiabatic processes are very important in engineering practice. Some common 
examples are the expansion of hot gases in an internal combustion engine, the 
liquefaction of gases in a cooling system, and the compression stroke in a diesel 
engine.
	 The process described in Figures 20.7c and 20.7d, called an adiabatic free 
expansion, is unique. The process is adiabatic because it takes place in an insulated 
container. Because the gas expands into a vacuum, it does not apply a force on a 
piston as does the gas in Figures 20.7a and 20.7b, so no work is done on or by the 
gas. Therefore, in this adiabatic process, both Q 5 0 and W 5 0. As a result, DEint 5  
0 for this process as can be seen from the first law. That is, the initial and final 
internal energies of a gas are equal in an adiabatic free expansion. As we shall see 

Pitfall Prevention 20.7
Dual Sign Conventions  Some phys-
ics and engineering books present 
the first law as DE int 5 Q 2 W, with 
a minus sign between the heat 
and work. The reason is that work 
is defined in these treatments as 
the work done by the gas rather 
than on the gas, as in our treat-
ment. The equivalent equation to 
Equation 20.9 in these treatments 
defines work as W 5 e

Vf

Vi
 P dV. 

Therefore, if positive work is done 
by the gas, energy is leaving the 
system, leading to the negative 
sign in the first law.
  	 In your studies in other chem-
istry or engineering courses, or 
in your reading of other physics 
books, be sure to note which sign 
convention is being used for the 
first law.

Pitfall Prevention 20.8
The First Law  With our approach 
to energy in this book, the first law 
of thermodynamics is a special case 
of Equation 8.2. Some physicists 
argue that the first law is the gen-
eral equation for energy conserva-
tion, equivalent to Equation 8.2. 
In this approach, the first law is 
applied to a closed system (so that 
there is no matter transfer), heat 
is interpreted so as to include elec-
tromagnetic radiation, and work is 
interpreted so as to include electri-
cal transmission (“electrical work”) 
and mechanical waves (“molecular 
work”). Keep that in mind if you 
run across the first law in your 
reading of other physics books.

Q

W

Q

�Eint

Figure 20.8  The first law of ther-
modynamics equates the change in 
internal energy E int in a system to 
the net energy transfer to the sys-
tem by heat Q and work W. In the 
situation shown here, the internal 
energy of the gas increases.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 20.6  Some Applications of the First Law of Thermodynamics	 605

Pitfall Prevention 20.9
Q 20 in an Isothermal Process   
Do not fall into the common trap 
of thinking there must be no 
transfer of energy by heat if the 
temperature does not change as is 
the case in an isothermal process. 
Because the cause of temperature 
change can be either heat or work, 
the temperature can remain con-
stant even if energy enters the gas 
by heat, which can only happen 
if the energy entering the gas by 
heat leaves by work.

in Chapter 21, the internal energy of an ideal gas depends only on its temperature. 
Therefore, we expect no change in temperature during an adiabatic free expan-
sion. This prediction is in accord with the results of experiments performed at low 
pressures. (Experiments performed at high pressures for real gases show a slight 
change in temperature after the expansion due to intermolecular interactions, 
which represent a deviation from the model of an ideal gas.)
	 A process that occurs at constant pressure is called an isobaric process. In Fig-
ure 20.8, an isobaric process could be established by allowing the piston to move 
freely so that it is always in equilibrium between the net force from the gas pushing 
upward and the weight of the piston plus the force due to atmospheric pressure 
pushing downward. The first process in Figure 20.6a and the second process in 
Figure 20.6b are both isobaric.
	 In such a process, the values of the heat and the work are both usually nonzero. 
The work done on the gas in an isobaric process is simply

	 W 5 2P(Vf 2 Vi)  (isobaric process)	 (20.12)

where P is the constant pressure of the gas during the process.
	 A process that takes place at constant volume is called an isovolumetric process. 
In Figure 20.8, clamping the piston at a fixed position would ensure an isovolu-
metric process. The second process in Figure 20.6a and the first process in Figure 
20.6b are both isovolumetric.
	 Because the volume of the gas does not change in such a process, the work given 
by Equation 20.9 is zero. Hence, from the first law we see that in an isovolumetric 
process, because W 5 0,

	 DE int 5 Q  (isovolumetric process)	 (20.13)

This expression specifies that if energy is added by heat to a system kept at constant 
volume, all the transferred energy remains in the system as an increase in its inter-
nal energy. For example, when a can of spray paint is thrown into a fire, energy 
enters the system (the gas in the can) by heat through the metal walls of the can. 
Consequently, the temperature, and therefore the pressure, in the can increases 
until the can possibly explodes.
	 A process that occurs at constant temperature is called an isothermal process. 
This process can be established by immersing the cylinder in Figure 20.8 in an 
ice–water bath or by putting the cylinder in contact with some other constant-
temperature reservoir. A plot of P versus V at constant temperature for an ideal 
gas yields a hyperbolic curve called an isotherm. The internal energy of an ideal 
gas is a function of temperature only. Hence, because the temperature does not 
change in an isothermal process involving an ideal gas, we must have DEint 5 0. 
For an isothermal process, we conclude from the first law that the energy transfer 
Q must be equal to the negative of the work done on the gas; that is, Q 5 2W. Any 
energy that enters the system by heat is transferred out of the system by work; as 
a result, no change in the internal energy of the system occurs in an isothermal 
process.

Q	 uick Quiz 20.3 ​ In the last three columns of the following table, fill in the boxes 
with the correct signs (2, 1, or 0) for Q , W, and DEint. For each situation, the sys-
tem to be considered is identified.

Situation	 System	 Q	 W	 DE int

(a)	 Rapidly pumping up	 Air in the pump
	 a bicycle tire	
(b)	Pan of room-temperature	 Water in the pan
	 water sitting on a hot stove	
(c)	 Air quickly leaking out	 Air originally in the balloon
	 of a balloon	

WW Isobaric process

WW Isovolumetric process

WW Isothermal process
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606	C hapter 20 T he First Law of Thermodynamics

Isothermal Expansion of an Ideal Gas
Suppose an ideal gas is allowed to expand quasi-statically at constant temperature. 
This process is described by the PV diagram shown in Figure 20.9. The curve is a 
hyperbola (see Appendix B, Eq. B.23), and the ideal gas law (Eq. 19.8) with T con-
stant indicates that the equation of this curve is PV 5 nRT 5 constant.
	 Let’s calculate the work done on the gas in the expansion from state i to state f. 
The work done on the gas is given by Equation 20.9. Because the gas is ideal and the 
process is quasi-static, the ideal gas law is valid for each point on the path. Therefore,

	 W 5 23
Vf

Vi

 P dV 5 23
Vf

Vi

 
nRT

V
 dV 	

Because T is constant in this case, it can be removed from the integral along with 
n and R:

	 W 5 2nRT  3
Vf

Vi

 
dV
V

5 2nRT lnV `
Vf

Vi

	

To evaluate the integral, we used e(dx/x) 5 ln x. (See Appendix B.) Evaluating the 
result at the initial and final volumes gives

	 W 5 nRT ln aVi

Vf
b 	 (20.14)

Numerically, this work W equals the negative of the shaded area under the PV curve 
shown in Figure 20.9. Because the gas expands, Vf . Vi and the value for the work 
done on the gas is negative as we expect. If the gas is compressed, then Vf , Vi and 
the work done on the gas is positive.

Q	 uick Quiz 20.4 ​ Characterize the paths in Figure 20.10 as isobaric, isovolumet-
ric, isothermal, or adiabatic. For path B, Q 5 0. The blue curves are isotherms.

Example 20.5	     An Isothermal Expansion

A 1.0-mol sample of an ideal gas is kept at 0.0°C during an expansion from 3.0 L to 10.0 L.

(A)  ​How much work is done on the gas during the expansion?

Conceptualize  ​Run the process in your mind: the cylinder in Figure 20.8 is immersed in an ice-water bath, and the 
piston moves outward so that the volume of the gas increases. You can also use the graphical representation in Figure 
20.9 to conceptualize the process.

Categorize  ​We will evaluate parameters using equations developed in the preceding sections, so we categorize this 
example as a substitution problem. Because the temperature of the gas is fixed, the process is isothermal.

S o l uti   o n

Substitute the given values into Equation 20.14: W 5 nRT ln aVi

Vf
b

5 11.0 mol 2 18.31 J/mol # K 2 1273 K 2  ln a 3.0 L
10.0 L

b
5  22.7 3 103 J

(B)  ​How much energy transfer by heat occurs between the gas and its surroundings in this process?

f

i

V

PV = constant

Isotherm

P

Pi

Pf

Vi Vf

The curve is a 
hyperbola.

Figure 20.9  ​The PV diagram 
for an isothermal expansion of an 
ideal gas from an initial state to a 
final state.

A

B
C

D

V

P

T1

T3

T2

T4

Figure 20.10  ​(Quick Quiz 20.4) 
Identify the nature of paths A, B, 
C, and D.

S o l uti   o n

Find the heat from the first law: DE int 5 Q 1 W

0 5 Q 1 W
Q 5 2W 5   2.7 3 103 J
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(C)  ​If the gas is returned to the original volume by means of an isobaric process, how much work is done on the gas?

S o l uti   o n

Use Equation 20.12. The pressure is 
not given, so incorporate the ideal 
gas law:

W 5 2P 1Vf 2 Vi 2 5 2
nRTi

Vi

1Vf 2 Vi 2

 5 2
11.0 mol 2 18.31 J/mol # K 2 1273 K 2

10.0 3 1023 m3
13.0 3 1023 m3 2 10.0 3 1023 m3 2

5   1.6 3 103 J

We used the initial temperature and volume to calculate the work done because the final temperature was unknown. 
The work done on the gas is positive because the gas is being compressed.

Example 20.6	     Boiling Water

Suppose 1.00 g of water vaporizes isobarically at atmospheric pressure (1.013 3 105 Pa). Its volume in the liquid state is 
Vi 5 Vliquid 5 1.00 cm3, and its volume in the vapor state is Vf 5 Vvapor 5 1 671 cm3. Find the work done in the expansion 
and the change in internal energy of the system. Ignore any mixing of the steam and the surrounding air; imagine 
that the steam simply pushes the surrounding air out of the way.

Conceptualize  ​Notice that the temperature of the system does not change. There is a phase change occurring as the 
water evaporates to steam.

Categorize  ​Because the expansion takes place at constant pressure, we categorize the process as isobaric. We will use 
equations developed in the preceding sections, so we categorize this example as a substitution problem.

S o l uti   o n

Use the first law to find the change in internal energy 
of the system:

DE int 5 Q 1 W 5 2 260 J 1 (2169 J) 5   2.09 kJ

Use Equation 20.7 and the latent heat of vaporization 
for water to find the energy transferred into the system 
by heat:

Q 5 Lv Dms 5 msLv 5 (1.00 3 1023 kg)(2.26 3 106 J/kg) 

5 2 260 J

Use Equation 20.12 to find the work done on the sys-
tem as the air is pushed out of the way:

W 5 2P(Vf 2 Vi)

5 2(1.013 3 105 Pa)(1 671 3 1026 m3 2 1.00 3 1026 m3)

5   2169 J

The positive value for DE int indicates that the internal energy of the system increases. The largest fraction of the 
energy (2 090 J/ 2260 J 5 93%) transferred to the liquid goes into increasing the internal energy of the system. The 
remaining 7% of the energy transferred leaves the system by work done by the steam on the surrounding atmosphere.

Example 20.7	     Heating a Solid

A 1.0-kg bar of copper is heated at atmospheric pressure so that its temperature increases from 20°C to 50°C.

(A)  What is the work done on the copper bar by the surrounding atmosphere?

Conceptualize  ​This example involves a solid, whereas the preceding two examples involved liquids and gases. For a 
solid, the change in volume due to thermal expansion is very small.

S o l uti   o n

	

▸ 20.5 c o n t i n u e d

continued
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608	C hapter 20 T he First Law of Thermodynamics

Categorize  ​Because the expansion takes place at constant atmospheric pressure, we categorize the process as isobaric.

Analyze  ​Find the work done on the copper bar using 
Equation 20.12:

W 5 2P DV

Express the change in volume using Equation 19.6 and 
that b 5 3a:

W 5 2P(bVi  DT) 5 2P(3aVi  DT) 5 23aPVi  DT

Substitute for the volume in terms of the mass and den-
sity of the copper:

W 5 23aP am
r
b DT

Substitute numerical values: W 5 23 31.7 3 1025 1 8C 221 4 11.013 3 105 N/m2 2 a 1.0 kg

8.92 3 103 kg/m3b 1508C 2 208C 2

5   21.7 3 1022  J

Because this work is negative, work is done by the copper bar on the atmosphere.

(B)  ​How much energy is transferred to the copper bar by heat?

S o l uti   o n

Use Equation 20.4 and the specific heat of copper from 
Table 20.1:

Q 5 mc DT 5 (1.0 kg)(387 J/kg ? °C)(50°C 2 20°C)

5   1.2 3 104 J

(C)  ​What is the increase in internal energy of the copper bar?

S o l uti   o n

Use the first law of thermodynamics: DE int 5 Q 1 W 5 1.2 3 104 J 1 (21.7 3 1022 J)

5   1.2 3 104 J

Finalize  ​Most of the energy transferred into the system by heat goes into increasing the internal energy of the cop-
per bar. The fraction of energy used to do work on the surrounding atmosphere is only about 1026. Hence, when the 
thermal expansion of a solid or a liquid is analyzed, the small amount of work done on or by the system is usually 
ignored.

	

▸ 20.7 c o n t i n u e d

20.7	 �Energy Transfer Mechanisms  
in Thermal Processes

In Chapter 8, we introduced a global approach to the energy analysis of physical 
processes through Equation 8.1, DE system 5 o T, where T represents energy transfer, 
which can occur by several mechanisms. Earlier in this chapter, we discussed two of 
the terms on the right side of this equation, work W and heat Q. In this section, we 
explore more details about heat as a means of energy transfer and two other energy 
transfer methods often related to temperature changes: convection (a form of mat-
ter transfer TMT) and electromagnetic radiation TER.

Thermal Conduction
The process of energy transfer by heat (Q in Eq. 8.2) can also be called conduc-
tion or thermal conduction. In this process, the transfer can be represented on an 
atomic scale as an exchange of kinetic energy between microscopic particles—mol-
ecules, atoms, and free electrons—in which less-energetic particles gain energy in 
collisions with more-energetic particles. For example, if you hold one end of a long 
metal bar and insert the other end into a flame, you will find that the temperature 
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of the metal in your hand soon increases. The energy reaches your hand by means 
of conduction. Initially, before the rod is inserted into the flame, the microscopic 
particles in the metal are vibrating about their equilibrium positions. As the flame 
raises the temperature of the rod, the particles near the flame begin to vibrate with 
greater and greater amplitudes. These particles, in turn, collide with their neigh-
bors and transfer some of their energy in the collisions. Slowly, the amplitudes of 
vibration of metal atoms and electrons farther and farther from the flame increase 
until eventually those in the metal near your hand are affected. This increased 
vibration is detected by an increase in the temperature of the metal and of your 
potentially burned hand.
	 The rate of thermal conduction depends on the properties of the substance 
being heated. For example, it is possible to hold a piece of asbestos in a flame indef-
initely, which implies that very little energy is conducted through the asbestos. In 
general, metals are good thermal conductors and materials such as asbestos, cork, 
paper, and fiberglass are poor conductors. Gases also are poor conductors because 
the separation distance between the particles is so great. Metals are good thermal 
conductors because they contain large numbers of electrons that are relatively free 
to move through the metal and so can transport energy over large distances. There-
fore, in a good conductor such as copper, conduction takes place by means of both 
the vibration of atoms and the motion of free electrons.
	 Conduction occurs only if there is a difference in temperature between two 
parts of the conducting medium. Consider a slab of material of thickness Dx and 
cross-sectional area A. One face of the slab is at a temperature Tc , and the other 
face is at a temperature Th . Tc (Fig. 20.11). Experimentally, it is found that energy 
Q transfers in a time interval Dt from the hotter face to the colder one. The rate P 5 
Q /Dt at which this energy transfer occurs is found to be proportional to the cross-
sectional area and the temperature difference DT 5 Th 2 Tc and inversely propor-
tional to the thickness:

	 P 5
Q

Dt
~ A 

DT
Dx

	

	 Notice that P has units of watts when Q is in joules and Dt is in seconds. That is 
not surprising because P is power, the rate of energy transfer by heat. For a slab of 
infinitesimal thickness dx and temperature difference dT, we can write the law of 
thermal conduction as

	 P 5 kA ` dT
dx

` 	 (20.15)

where the proportionality constant k is the thermal conductivity of the material 
and |dT/dx | is the temperature gradient (the rate at which temperature varies with 
position).
	 Substances that are good thermal conductors have large thermal conductiv-
ity values, whereas good thermal insulators have low thermal conductivity values. 
Table 20.3 lists thermal conductivities for various substances. Notice that metals are 
generally better thermal conductors than nonmetals.
	 Suppose a long, uniform rod of length L is thermally insulated so that energy 
cannot escape by heat from its surface except at the ends as shown in Figure 20.12 
(page 610). One end is in thermal contact with an energy reservoir at temperature 
Tc , and the other end is in thermal contact with a reservoir at temperature Th . Tc . 
When a steady state has been reached, the temperature at each point along the rod 
is constant in time. In this case, if we assume k is not a function of temperature, the 
temperature gradient is the same everywhere along the rod and is

	 ` dT
dx

` 5
Th 2 Tc

L
	

Table 20.3  
Thermal Conductivities
	 Thermal
	 Conductivity
Substance	 (W/m ? °C)

Metals (at 25°C)
Aluminum	 238
Copper	 397
Gold	 314
Iron	 79.5
Lead	 34.7
Silver	 427

Nonmetals (approximate values)
Asbestos	 0.08
Concrete	 0.8
Diamond	 2 300
Glass	 0.8
Ice	 2
Rubber	 0.2
Water	 0.6
Wood	 0.08

Gases (at 20°C)
Air	 0.023 4
Helium	 0.138
Hydrogen	 0.172
Nitrogen	 0.023 4
Oxygen	 0.023 8

The opposite faces are at different 
temperatures where Th � Tc .

Tc

Energy transfer
for Th � Tc 

Th
A

�x

Figure 20.11  ​Energy transfer 
through a conducting slab with a 
cross-sectional area A and a thick-
ness Dx.
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610	C hapter 20 T he First Law of Thermodynamics

Therefore, the rate of energy transfer by conduction through the rod is

	 P 5 kA aTh 2 Tc

L
b 	 (20.16)

	 For a compound slab containing several materials of thicknesses L1, L2, . . . and 
thermal conductivities k1, k2, . . . , the rate of energy transfer through the slab at 
steady state is

	 P 5
A 1Th 2 Tc 2
a

i

1Li /ki 2
	 (20.17)

where Th and Tc are the temperatures of the outer surfaces (which are held con-
stant) and the summation is over all slabs. Example 20.8 shows how Equation 20.17 
results from a consideration of two thicknesses of materials.

Q	 uick Quiz 20.5 ​ You have two rods of the same length and diameter, but they are 
formed from different materials. The rods are used to connect two regions at 
different temperatures so that energy transfers through the rods by heat. They 
can be connected in series as in Figure 20.13a or in parallel as in Figure 20.13b. 
In which case is the rate of energy transfer by heat larger? (a) The rate is larger 
when the rods are in series. (b) The rate is larger when the rods are in parallel. 
(c) The rate is the same in both cases.

Example 20.8	     Energy Transfer Through Two Slabs

Two slabs of thickness L1 and L2 and thermal conductivities k1 and k2 are in 
thermal contact with each other as shown in Figure 20.14. The temperatures of 
their outer surfaces are Tc and Th, respectively, and Th . Tc. Determine the tem-
perature at the interface and the rate of energy transfer by conduction through 
an area A of the slabs in the steady-state condition.

Conceptualize  ​Notice the phrase “in the steady-state condition.” We interpret 
this phrase to mean that energy transfers through the compound slab at the 
same rate at all points. Otherwise, energy would be building up or disappear-
ing at some point. Furthermore, the temperature varies with position in the two 
slabs, most likely at different rates in each part of the compound slab. When the 
system is in steady state, the interface is at some fixed temperature T.

Categorize  ​We categorize this example as a thermal conduction problem and 
impose the condition that the power is the same in both slabs of material.

S o l uti   o n

L2 L1

Th k2 k1 Tc

T

Figure 20.14  ​(Example 20.8) Energy 
transfer by conduction through two 
slabs in thermal contact with each 
other. At steady state, the rate of energy 
transfer through slab 1 equals the rate 
of energy transfer through slab 2.

The opposite ends of the rod 
are in thermal contact with 
energy reservoirs at different 
temperatures.

Th

Insulation  

Tc

L

Energy
transfer

Th � Tc

Figure 20.12  ​Conduction of energy through 
a uniform, insulated rod of length L.

a

b

Rod 1 Rod 2 
Th

Rod 1

Rod 2 
Th Tc

Tc

Figure 20.13  ​(Quick Quiz 20.5) 
In which case is the rate of energy 
transfer larger?
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Substitute Equation (3) into either Equation (1) or  
Equation (2):

(4)   P 5
A 1Th 2 Tc 2

1L1/k 1 2 1 1L 2/k 2 2

Solve for T : (3)   T 5
k1 L 2 Tc 1 k 2 L1 Th 

k1 L 2 1 k 2 L1 

Set these two rates equal to represent the steady-state 
situation:

k1A aT 2 Tc

L 1
b 5 k 2A aTh 2 T

L 2
b

Express the rate at which energy is transferred through 
the same area of slab 2:

(2)   P2 5 k 2A aTh 2 T
L 2

b

Analyze  ​Use Equation 20.16 to express the rate at which 
energy is transferred through an area A of slab 1:

(1)   P1 5 k1AaT 2 Tc 
L 1 

b

Finalize  ​Extension of this procedure to several slabs of materials leads to Equation 20.17.

Suppose you are building an insulated container with two layers of insulation and the rate of energy 
transfer determined by Equation (4) turns out to be too high. You have enough room to increase the thickness of one 
of the two layers by 20%. How would you decide which layer to choose?

Answer  ​To decrease the power as much as possible, you must increase the denominator in Equation (4) as much 
as possible. Whichever thickness you choose to increase, L1 or L2, you increase the corresponding term L/k in the 
denominator by 20%. For this percentage change to represent the largest absolute change, you want to take 20% of the 
larger term. Therefore, you should increase the thickness of the layer that has the larger value of L/k.

What If ?

	

▸ 20.8 c o n t i n u e d

Home Insulation
In engineering practice, the term L/k for a particular substance is referred to as 
the R-value of the material. Therefore, Equation 20.17 reduces to

	 P 5
A 1Th 2 Tc 2

a
i

R i

	 (20.18)

where Ri 5 Li/ki. The R-values for a few common building materials are given 
in Table 20.4. In the United States, the insulating properties of materials used in 
buildings are usually expressed in U.S. customary units, not SI units. Therefore, in 

Table 20.4 R-Values for Some Common Building Materials
Material	 R-value (ft2 ? °F ? h/Btu)

Hardwood siding (1 in. thick)	 0.91
Wood shingles (lapped)	 0.87
Brick (4 in. thick)	 4.00
Concrete block (filled cores)	 1.93
Fiberglass insulation (3.5 in. thick)	 10.90
Fiberglass insulation (6 in. thick)	 18.80
Fiberglass board (1 in. thick)	 4.35
Cellulose fiber (1 in. thick)	 3.70
Flat glass (0.125 in. thick)	 0.89
Insulating glass (0.25-in. space)	 1.54
Air space (3.5 in. thick)	 1.01
Stagnant air layer	 0.17
Drywall (0.5 in. thick)	 0.45
Sheathing (0.5 in. thick)	 1.32
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612	C hapter 20 T he First Law of Thermodynamics

	

Table 20.4, R-values are given as a combination of British thermal units, feet, hours, 
and degrees Fahrenheit.
	 At any vertical surface open to the air, a very thin stagnant layer of air adheres to 
the surface. One must consider this layer when determining the R-value for a wall. 
The thickness of this stagnant layer on an outside wall depends on the speed of the 
wind. Energy transfer through the walls of a house on a windy day is greater than 
that on a day when the air is calm. A representative R-value for this stagnant layer of 
air is given in Table 20.4.

Example 20.9	     The R-Value of a Typical Wall

Calculate the total R-value for a wall constructed as shown in Figure 20.15a. 
Starting outside the house (toward the front in the figure) and moving inward, 
the wall consists of 4 in. of brick, 0.5 in. of sheathing, an air space 3.5 in. thick, 
and 0.5 in. of drywall.

Conceptualize  ​Use Figure 20.15 to help conceptualize the 
structure of the wall. Do not forget the stagnant air layers 
inside and outside the house.

Categorize  ​We will use specific equations developed in 
this section on home insulation, so we categorize this example as a substitution problem.

S o l uti   o n

Drywall

Brick Sheathing

Air space
Insulation

a b

Figure 20.15  ​(Exam-
ple 20.9) An exterior 
house wall containing 
(a) an air space and 
(b) insulation.

Add the R-values to obtain the total R-value for 
the wall:

R total 5 R1 1 R 2 1 R3 1 R 4 1 R 5 1 R 6 5   7.12 ft2 ? °F ? h/Btu

Use Table 20.4 to find the R-value of each layer: 	R 1 (outside stagnant air layer)	5	 0.17 ft2 ? °F ? h/Btu	

	 R 2 (brick)	5	4.00 ft2 ? °F ? h/Btu	

	 R 3 (sheathing)	5	1.32 ft2 ? °F ? h/Btu	

	 R 4 (air space)	5	1.01 ft2 ? °F ? h/Btu	

	 R 5 (drywall)	5	0.45 ft2 ? °F ? h/Btu	

	 R 6 (inside stagnant air layer)	5	0.17 ft2 ? °F ? h/Btu	

Suppose you are not happy with this total R-value for the wall. You cannot change the overall structure, 
but you can fill the air space as in Figure 20.15b. To maximize the total R-value, what material should you choose to fill 
the air space?

Answer  ​Looking at Table 20.4, we see that 3.5 in. of fiberglass insulation is more than ten times as effective as 3.5 in. 
of air. Therefore, we should fill the air space with fiberglass insulation. The result is that we add 10.90 ft2 ? °F ? h/Btu 
of R-value, and we lose 1.01 ft2 ? °F ? h/Btu due to the air space we have replaced. The new total R-value is equal to  
7.12 ft2 ? °F ? h/Btu 1 9.89 ft2 ? °F ? h/Btu 5 17.01 ft2 ? °F ? h/Btu.

What If ?

Convection
At one time or another, you probably have warmed your hands by holding them 
over an open flame. In this situation, the air directly above the flame is heated and 
expands. As a result, the density of this air decreases and the air rises. This hot air 
warms your hands as it flows by. Energy transferred by the movement of a warm 
substance is said to have been transferred by convection, which is a form of matter 
transfer, TMT in Equation 8.2. When resulting from differences in density, as with 
air around a fire, the process is referred to as natural convection. Airflow at a beach 
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	 20.7  Energy Transfer Mechanisms in Thermal Processes	 613

Radiator

Figure 20.16  ​Convection cur-
rents are set up in a room warmed 
by a radiator.

is an example of natural convection, as is the mixing that occurs as surface water 
in a lake cools and sinks (see Section 19.4). When the heated substance is forced to 
move by a fan or pump, as in some hot-air and hot-water heating systems, the pro-
cess is called forced convection.
	 If it were not for convection currents, it would be very difficult to boil water. As 
water is heated in a teakettle, the lower layers are warmed first. This water expands 
and rises to the top because its density is lowered. At the same time, the denser, 
cool water at the surface sinks to the bottom of the kettle and is heated.
	 The same process occurs when a room is heated by a radiator. The hot radiator 
warms the air in the lower regions of the room. The warm air expands and rises to 
the ceiling because of its lower density. The denser, cooler air from above sinks, and 
the continuous air current pattern shown in Figure 20.16 is established.

Radiation
The third means of energy transfer we shall discuss is thermal radiation, TER in 
Equation 8.2. All objects radiate energy continuously in the form of electromag-
netic waves (see Chapter 34) produced by thermal vibrations of the molecules. You 
are likely familiar with electromagnetic radiation in the form of the orange glow 
from an electric stove burner, an electric space heater, or the coils of a toaster.
	 The rate at which the surface of an object radiates energy is proportional to the 
fourth power of the absolute temperature of the surface. Known as Stefan’s law, 
this behavior is expressed in equation form as

	 P 5 sAeT 4	 (20.19)

where P is the power in watts of electromagnetic waves radiated from the surface of 
the object, s is a constant equal to 5.669 6 3 1028 W/m2 ? K4, A is the surface area 
of the object in square meters, e is the emissivity, and T is the surface temperature 
in kelvins. The value of e can vary between zero and unity depending on the prop-
erties of the surface of the object. The emissivity is equal to the absorptivity, which 
is the fraction of the incoming radiation that the surface absorbs. A mirror has 
very low absorptivity because it reflects almost all incident light. Therefore, a mir-
ror surface also has a very low emissivity. At the other extreme, a black surface has 
high absorptivity and high emissivity. An ideal absorber is defined as an object that 
absorbs all the energy incident on it, and for such an object, e 5 1. An object for 
which e 5 1 is often referred to as a black body. We shall investigate experimental 
and theoretical approaches to radiation from a black body in Chapter 40.
	 Every second, approximately 1 370 J of electromagnetic radiation from the Sun 
passes perpendicularly through each 1 m2 at the top of the Earth’s atmosphere. 
This radiation is primarily visible and infrared light accompanied by a significant 
amount of ultraviolet radiation. We shall study these types of radiation in detail in 
Chapter 34. Enough energy arrives at the surface of the Earth each day to supply all 
our energy needs on this planet hundreds of times over, if only it could be captured 
and used efficiently. The growth in the number of solar energy–powered houses 
and proposals for solar energy “farms” in the United States reflects the increasing 
efforts being made to use this abundant energy.
	 What happens to the atmospheric temperature at night is another example of 
the effects of energy transfer by radiation. If there is a cloud cover above the Earth, 
the water vapor in the clouds absorbs part of the infrared radiation emitted by the 
Earth and re-emits it back to the surface. Consequently, temperature levels at the 
surface remain moderate. In the absence of this cloud cover, there is less in the way 
to prevent this radiation from escaping into space; therefore, the temperature 
decreases more on a clear night than on a cloudy one.
	 As an object radiates energy at a rate given by Equation 20.19, it also absorbs 
electromagnetic radiation from the surroundings, which consist of other objects 

WW Stefan’s law
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614	C hapter 20 T he First Law of Thermodynamics

that radiate energy. If the latter process did not occur, an object would eventually 
radiate all its energy and its temperature would reach absolute zero. If an object is 
at a temperature T and its surroundings are at an average temperature T0, the net 
rate of energy gained or lost by the object as a result of radiation is

	 Pnet 5 sAe(T 4 2 T0
4)	 (20.20)

	 When an object is in equilibrium with its surroundings, it radiates and absorbs 
energy at the same rate and its temperature remains constant. When an object is 
hotter than its surroundings, it radiates more energy than it absorbs and its tem-
perature decreases.

The Dewar Flask
The Dewar flask6 is a container designed to minimize energy transfers by conduc-
tion, convection, and radiation. Such a container is used to store cold or hot liquids 
for long periods of time. (An insulated bottle, such as a Thermos, is a common 
household equivalent of a Dewar flask.) The standard construction (Fig. 20.17) 
consists of a double-walled Pyrex glass vessel with silvered walls. The space between 
the walls is evacuated to minimize energy transfer by conduction and convection. 
The silvered surfaces minimize energy transfer by radiation because silver is a very 
good reflector and has very low emissivity. A further reduction in energy loss is 
obtained by reducing the size of the neck. Dewar flasks are commonly used to store 
liquid nitrogen (boiling point 77 K) and liquid oxygen (boiling point 90 K).
	 To confine liquid helium (boiling point 4.2 K), which has a very low heat of 
vaporization, it is often necessary to use a double Dewar system in which the Dewar 
flask containing the liquid is surrounded by a second Dewar flask. The space 
between the two flasks is filled with liquid nitrogen.
	 Newer designs of storage containers use “superinsulation” that consists of many 
layers of reflecting material separated by fiberglass. All this material is in a vacuum, 
and no liquid nitrogen is needed with this design.

6Invented by Sir James Dewar (1842–1923).

Vacuum 
(white 
area)

Hot or 
cold 
liquid

Silvered surfaces

Figure 20.17  A cross-sectional 
view of a Dewar flask, which is used 
to store hot or cold substances.

Summary

  Internal energy is a system’s energy 
associated with its temperature and its 
physical state (solid, liquid, gas). Internal 
energy includes kinetic energy of random 
translation, rotation, and vibration of mol-
ecules; vibrational potential energy within 
molecules; and potential energy between 
molecules.
	 Heat is the process of energy transfer 
across the boundary of a system resulting 
from a temperature difference between the 
system and its surroundings. The symbol 
Q represents the amount of energy trans-
ferred by this process.

  A calorie is the amount of energy necessary to raise the tem-
perature of 1 g of water from 14.5°C to 15.5°C.
	 The heat capacity C of any sample is the amount of energy 
needed to raise the temperature of the sample by 1°C.
	 The specific heat c of a substance is the heat capacity per  
unit mass:

	 c ;
Q

m DT
	 (20.3)

	 The latent heat of a substance is defined as the ratio of the 
energy input to a substance to the change in mass of the higher-
phase material:

	 L ;
Q

Dm
	 (20.6)

Definitions
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	   Objective Questions	 615

  The energy Q required to change the temperature of a 
mass m of a substance by an amount DT is

	 Q 5 mc DT	 (20.4)

where c is the specific heat of the substance.
	 The energy required to change the phase of a pure sub-
stance is

	 Q 5 L Dm	 (20.7)

where L is the latent heat of the substance, which depends 
on the nature of the phase change and the substance, and 
Dm is the change in mass of the higher-phase material.

  Conduction can be viewed as an exchange of kinetic energy between 
colliding molecules or electrons. The rate of energy transfer by conduction 
through a slab of area A is

	 P 5 kA ` dT
dx

` 	 (20.15)

where k is the thermal conductivity of the material from which the slab is 
made and |dT/dx| is the temperature gradient.

  The work done on a gas as its volume changes 
from some initial value Vi to some final value Vf is

	 W 5 23
Vf

Vi

P dV 	 (20.9)

where P is the pressure of the gas, which may vary 
during the process. To evaluate W, the process 
must be fully specified; that is, P and V must be 
known during each step. The work done depends 
on the path taken between the initial and final 
states.

  In convection, a warm sub-
stance transfers energy from one 
location to another.
	 All objects emit thermal 
radiation in the form of electro-
magnetic waves at the rate

	 P 5 sAeT 4	 (20.19)

Concepts and Principles

  The first law of thermodynamics is a specific reduction of the conservation of energy equation (Eq. 8.2) and states 
that when a system undergoes a change from one state to another, the change in its internal energy is

	 DE int 5 Q 1 W	 (20.10)

where Q is the energy transferred into the system by heat and W is the work done on the system. Although Q and W 
both depend on the path taken from the initial state to the final state, the quantity DE int does not depend on the path.

  In a cyclic process (one that originates and termi-
nates at the same state), DE int 5 0 and therefore Q 5 
2W. That is, the energy transferred into the system by 
heat equals the negative of the work done on the sys-
tem during the process.
	 In an adiabatic process, no energy is transferred 
by heat between the system and its surroundings (Q 5 
0). In this case, the first law gives DE int 5 W. In the 
adiabatic free expansion of a gas, Q 5 0 and W 5 0, so 
DE int 5 0. That is, the internal energy of the gas does 
not change in such a process.

  An isobaric process is one that occurs at constant 
pressure. The work done on a gas in such a process is  
W 5 2P(Vf 2 Vi ).
	 An isovolumetric process is one that occurs at con-
stant volume. No work is done in such a process, so  
DE int 5 Q.
	 An isothermal process is one that occurs at constant 
temperature. The work done on an ideal gas during an 
isothermal process is

	 W 5 nRT ln aVi

Vf
b 	 (20.14)

	 2.	 A poker is a stiff, nonflammable rod used to push burn-
ing logs around in a fireplace. For safety and comfort 
of use, should the poker be made from a material with 
(a) high specific heat and high thermal conductivity, 
(b) low specific heat and low thermal conductivity,  

	 1.	 An ideal gas is compressed to half its initial volume by 
means of several possible processes. Which of the fol-
lowing processes results in the most work done on the 
gas? (a)  isothermal (b) adiabatic (c) isobaric (d) The 
work done is independent of the process.

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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616	C hapter 20 T he First Law of Thermodynamics

largest to the smallest. In your ranking, note any cases 
of equality. (a) raising the temperature of 1 kg of H2O 
from 20°C to 26°C (b) raising the temperature of 2 kg 
of H2O from 20°C to 23°C (c) raising the temperature 
of 2 kg of H2O from 1°C to 4°C (d) raising the tempera-
ture of 2 kg of beryllium from 21°C to 2°C (e) raising 
the temperature of 2 kg of H2O from 21°C to 2°C

	 9.	 A person shakes a sealed insulated bottle containing 
hot coffee for a few minutes. (i) What is the change 
in the temperature of the coffee? (a) a large decrease  
(b) a slight decrease (c) no change (d) a slight increase 
(e) a large increase (ii) What is the change in the 
internal energy of the coffee? Choose from the same 
possibilities.

	10.	A 100-g piece of copper, initially at 95.0°C, is dropped 
into 200 g of water contained in a 280-g aluminum 
can; the water and can are initially at 15.0°C. What is 
the final temperature of the system? (Specific heats of 
copper and aluminum are 0.092 and 0.215 cal/g ? °C,  
respectively.) (a)  16°C (b) 18°C (c) 24°C (d) 26°C  
(e) none of those answers

	11.	 Star A has twice the radius and twice the absolute sur-
face temperature of star B. The emissivity of both stars 
can be assumed to be 1. What is the ratio of the power 
output of star A to that of star B? (a) 4 (b) 8 (c) 16  
(d) 32 (e) 64

	12.	If a gas is compressed isothermally, which of the fol-
lowing statements is true? (a) Energy is transferred 
into the gas by heat. (b) No work is done on the gas.  
(c) The temperature of the gas increases. (d) The 
internal energy of the gas remains constant. (e) None 
of those statements is true.

	13.	When a gas undergoes an adiabatic expansion, which 
of the following statements is true? (a) The tempera-
ture of the gas does not change. (b) No work is done by 
the gas. (c) No energy is transferred to the gas by heat. 
(d) The internal energy of the gas does not change.  
(e) The pressure increases.

	14.	 If a gas undergoes an isobaric process, which of the fol-
lowing statements is true? (a) The temperature of the 
gas doesn’t change. (b) Work is done on or by the gas. 
(c) No energy is transferred by heat to or from the gas. 
(d) The volume of the gas remains the same. (e) The 
pressure of the gas decreases uniformly.

	15.	How long would it take a 1 000 W heater to melt  
1.00 kg of ice at 220.0°C, assuming all the energy from 
the heater is absorbed by the ice? (a) 4.18 s (b) 41.8 s 
(c) 5.55 min (d) 6.25 min (e) 38.4 min

(c) low specific heat and high thermal conductivity, or 
(d) high specific heat and low thermal conductivity?

	 3.	 Assume you are measuring the specific heat of a sam-
ple of originally hot metal by using a calorimeter con-
taining water. Because your calorimeter is not perfectly 
insulating, energy can transfer by heat between the 
contents of the calorimeter and the room. To obtain 
the most accurate result for the specific heat of the 
metal, you should use water with which initial tem-
perature? (a) slightly lower than room temperature  
(b) the same as room temperature (c) slightly higher 
than room temperature (d) whatever you like because 
the initial temperature makes no difference

	 4.	 An amount of energy is added to ice, raising its temper-
ature from 210°C to 25°C. A larger amount of energy 
is added to the same mass of water, raising its tempera-
ture from 15°C to 20°C. From these results, what would 
you conclude? (a) Overcoming the latent heat of fusion 
of ice requires an input of energy. (b) The latent heat 
of fusion of ice delivers some energy to the system.  
(c) The specific heat of ice is less than that of water.  
(d) The specific heat of ice is greater than that of water. 
(e) More information is needed to draw any conclusion.

	 5.	 How much energy is required to raise the tempera-
ture of 5.00 kg of lead from 20.0°C to its melting point 
of 327°C? The specific heat of lead is 128 J/kg ? °C.  
(a) 4.04 3 105 J (b) 1.07 3 105 J (c) 8.15 3 104 J  
(d) 2.13 3 104 J (e) 1.96 3 105 J

	 6.	 Ethyl alcohol has about one-half the specific heat 
of water. Assume equal amounts of energy are trans-
ferred by heat into equal-mass liquid samples of alco-
hol and water in separate insulated containers. The 
water rises in temperature by 25°C. How much will the 
alcohol rise in temperature? (a) It will rise by 12°C. 
(b) It will rise by 25°C. (c) It will rise by 50°C. (d) It 
depends on the rate of energy transfer. (e) It will not 
rise in temperature.

	 7.	 The specific heat of substance A is greater than that 
of substance B. Both A and B are at the same initial 
temperature when equal amounts of energy are added 
to them. Assuming no melting or vaporization occurs, 
which of the following can be concluded about the 
final temperature TA of substance A and the final tem-
perature TB of substance B? (a) TA . TB (b) TA , TB  
(c) TA 5 TB (d) More information is needed.

	 8.	 Beryllium has roughly one-half the specific heat of 
water (H2O). Rank the quantities of energy input 
required to produce the following changes from the 

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Rub the palm of your hand on a metal surface for 
about 30 seconds. Place the palm of your other hand 
on an unrubbed portion of the surface and then on the 
rubbed portion. The rubbed portion will feel warmer. 
Now repeat this process on a wood surface. Why does 
the temperature difference between the rubbed and 
unrubbed portions of the wood surface seem larger 
than for the metal surface?

	 2.	 You need to pick up a very hot cooking pot in your 
kitchen. You have a pair of cotton oven mitts. To pick 
up the pot most comfortably, should you soak them in 
cold water or keep them dry?

	 3.	 What is wrong with the following statement: “Given 
any two bodies, the one with the higher temperature 
contains more heat.”
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wrap a wool blanket around the chest. Does doing so 
help to keep the beverages cool, or should you expect 
the wool blanket to warm them up? Explain your 
answer. (b) Your younger sister suggests you wrap her 
up in another wool blanket to keep her cool on the hot 
day like the ice chest. Explain your response to her.

	 8.	 In usually warm climates that experience a hard freeze, 
fruit growers will spray the fruit trees with water, hop-
ing that a layer of ice will form on the fruit. Why would 
such a layer be advantageous?

	 9.	 Suppose you pour hot coffee for your guests, and one 
of them wants it with cream. He wants the coffee to 
be as warm as possible several minutes later when he 
drinks it. To have the warmest coffee, should the per-
son add the cream just after the coffee is poured or just 
before drinking? Explain.

	10.	When camping in a canyon on a still night, a camper 
notices that as soon as the sun strikes the surrounding 
peaks, a breeze begins to stir. What causes the breeze?

	11.	 Pioneers stored fruits and vegetables in underground 
cellars. In winter, why did the pioneers place an open 
barrel of water alongside their produce?

	12.	Is it possible to convert internal energy to mechanical 
energy? Explain with examples.

	 4.	 Why is a person able to remove a piece of dry alumi-
num foil from a hot oven with bare fingers, whereas a 
burn results if there is moisture on the foil?

	 5.	 Using the first law of thermodynamics, explain why the 
total energy of an isolated system is always constant.

	 6.	 In 1801, Humphry Davy rubbed together pieces of ice 
inside an icehouse. He made sure that nothing in the 
environment was at a higher temperature than the 
rubbed pieces. He observed the production of drops 
of liquid water. Make a table listing this and other 
experiments or processes to illustrate each of the 
following situations. (a) A system can absorb energy 
by heat, increase in internal energy, and increase in 
temperature. (b) A system can absorb energy by heat 
and increase in internal energy without an increase 
in temperature. (c) A system can absorb energy by 
heat without increasing in temperature or in inter-
nal energy. (d) A system can increase in internal 
energy and in temperature without absorbing energy 
by heat. (e) A system can increase in internal energy 
without absorbing energy by heat or increasing in 
temperature.

	 7.	 It is the morning of a day that will become hot. You just 
purchased drinks for a picnic and are loading them, 
with ice, into a chest in the back of your car. (a) You 

	 3.	 A combination of 0.250 kg of water at 20.0°C, 0.400 kg  
of aluminum at 26.0°C, and 0.100 kg of copper at 
100°C is mixed in an insulated container and allowed 
to come to thermal equilibrium. Ignore any energy 
transfer to or from the container. What is the final 
temperature of the mixture?

	 4.	 The highest waterfall in the world is the Salto Angel 
in Venezuela. Its longest single falls has a height of 
807 m. If water at the top of the falls is at 15.0°C, what 
is the maximum temperature of the water at the bot-
tom of the falls? Assume all the kinetic energy of the 
water as it reaches the bottom goes into raising its 
temperature.

	 5.	 What mass of water at 25.0°C must be allowed to come 
to thermal equilibrium with a 1.85-kg cube of alumi-
num initially at 150°C to lower the temperature of 
the aluminum to 65.0°C? Assume any water turned to 
steam subsequently condenses.

	 6.	 The temperature of a silver bar rises by 10.0°C when it 
absorbs 1.23 kJ of energy by heat. The mass of the bar is M

Section 20.1 ​ Heat and Internal Energy

	 1.	 A 55.0-kg woman eats a 540 Calorie (540 kcal) jelly 
doughnut for breakfast. (a) How many joules of 
energy are the equivalent of one jelly doughnut?  
(b) How many steps must the woman climb on a 
very tall stairway to change the gravitational poten-
tial energy of the woman–Earth system by a value 
equivalent to the food energy in one jelly doughnut? 
Assume the height of a single stair is 15.0 cm. (c) If 
the human body is only 25.0% efficient in convert-
ing chemical potential energy to mechanical energy, 
how many steps must the woman climb to work off 
her breakfast?

Section 20.2 ​ Specific Heat and Calorimetry

	 2.	 Consider Joule’s apparatus described in Figure 20.1. 
The mass of each of the two blocks is 1.50 kg, and the 
insulated tank is filled with 200 g of water. What is the 
increase in the water’s temperature after the blocks fall 
through a distance of 3.00 m?
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618	C hapter 20 T he First Law of Thermodynamics

of steel in this case. (c) What pieces of data, if any, are 
unnecessary for the solution? Explain.

m
M

Figure P20.12

	13.	An aluminum calorimeter with a mass of 100 g con-
tains 250 g of water. The calorimeter and water are in 
thermal equilibrium at 10.0°C. Two metallic blocks are 
placed into the water. One is a 50.0-g piece of copper 
at 80.0°C. The other has a mass of 70.0 g and is origi-
nally at a temperature of 100°C. The entire system sta-
bilizes at a final temperature of 20.0°C. (a) Determine 
the specific heat of the unknown sample. (b) Using the 
data in Table 20.1, can you make a positive identifica-
tion of the unknown material? Can you identify a pos-
sible material? (c) Explain your answers for part (b).

	14.	A 3.00-g copper coin at 25.0°C drops 50.0 m to the 
ground. (a) Assuming 60.0% of the change in gravita-
tional potential energy of the coin–Earth system goes 
into increasing the internal energy of the coin, deter-
mine the coin’s final temperature. (b) What If? Does 
the result depend on the mass of the coin? Explain.

	15.	Two thermally insulated vessels are connected by a nar-
row tube fitted with a valve that is initially closed as 
shown in Figure P20.15. One vessel of volume 16.8 L 
contains oxygen at a temperature of 300 K and a pres-
sure of 1.75 atm. The other vessel of volume 22.4 L con-
tains oxygen at a temperature of 450 K and a pressure 
of 2.25 atm. When the valve is opened, the gases in 
the two vessels mix and the temperature and pressure 
become uniform throughout. (a) What is the final tem-
perature? (b) What is the final pressure?

Q/C
W

Q/C

525 g. Determine the specific heat of silver from these 
data.

	 7.	 In cold climates, including the northern United States, 
a house can be built with very large windows facing 
south to take advantage of solar heating. Sunlight shin-
ing in during the daytime is absorbed by the floor, 
interior walls, and objects in the room, raising their 
temperature to 38.0°C. If the house is well insulated, 
you may model it as losing energy by heat steadily at 
the rate 6 000 W on a day in April when the average 
exterior temperature is 4°C and when the conventional 
heating system is not used at all. During the period 
between 5:00 p.m. and 7:00 a.m., the temperature of 
the house drops and a sufficiently large “thermal mass” 
is required to keep it from dropping too far. The ther-
mal mass can be a large quantity of stone (with specific 
heat 850 J/kg ? °C) in the floor and the interior walls 
exposed to sunlight. What mass of stone is required if 
the temperature is not to drop below 18.0°C overnight?

	 8.	 A 50.0-g sample of copper is at 25.0°C. If 1 200 J of 
energy is added to it by heat, what is the final tempera-
ture of the copper?

	 9.	 An aluminum cup of mass 200 g contains 800 g of 
water in thermal equilibrium at 80.0°C. The combina-
tion of cup and water is cooled uniformly so that the 
temperature decreases by 1.50°C per minute. At what 
rate is energy being removed by heat? Express your 
answer in watts.

	10.	 If water with a mass mh at temperature Th is poured 
into an aluminum cup of mass mAl containing mass mc 
of water at Tc, where Th . Tc, what is the equilibrium 
temperature of the system?

	11.	 A 1.50-kg iron horseshoe initially at 600°C is dropped 
into a bucket containing 20.0 kg of water at 25.0°C. 
What is the final temperature of the water–horseshoe 
system? Ignore the heat capacity of the container and 
assume a negligible amount of water boils away.

	12.	An electric drill with a steel drill bit of mass m 5 27.0 g 
and diameter 0.635 cm is used to drill into a cubical 
steel block of mass M 5 240 g. Assume steel has the 
same properties as iron. The cutting process can be 
modeled as happening at one point on the circumfer-
ence of the bit. This point moves in a helix at constant 
tangential speed 40.0 m/s and exerts a force of con-
stant magnitude 3.20 N on the block. As shown in Fig-
ure P20.12, a groove in the bit carries the chips up to 
the top of the block, where they form a pile around the 
hole. The drill is turned on and drills into the block for 
a time interval of 15.0 s. Let’s assume this time interval 
is long enough for conduction within the steel to bring 
it all to a uniform temperature. Furthermore, assume 
the steel objects lose a negligible amount of energy by 
conduction, convection, and radiation into their envi-
ronment. (a) Suppose the drill bit cuts three-quarters 
of the way through the block during 15.0  s. Find the 
temperature change of the whole quantity of steel.  
(b) What If? Now suppose the drill bit is dull and cuts 
only one-eighth of the way through the block in 15.0 s. 
Identify the temperature change of the whole quantity 

S

M

Q/C

Pistons locked
in place

Valve
P � 1.75 atm
V � 16.8 L
T � 300 K

P � 2.25 atm
V � 22.4 L
T � 450 K

Figure P20.15
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down, keeping the pressure of the gas constant. How 
much work is done on the gas as the temperature of 
0.200 mol of the gas is raised from 20.0°C to 300°C?

	26.	An ideal gas is enclosed in a cylinder that has a mov-
able piston on top. The piston has a mass m and an 
area A and is free to slide up and down, keeping the 
pressure of the gas constant. How much work is done 
on the gas as the temperature of n mol of the gas is 
raised from T1 to T2?

	27.	One mole of an ideal gas is warmed slowly so that it 
goes from the PV state (Pi , Vi) to (3Pi , 3Vi) in such a 
way that the pressure of the gas is directly proportional 
to the volume. (a) How much work is done on the gas 
in the process? (b) How is the temperature of the gas 
related to its volume during this process?

	28.	(a) Determine the work done on a gas that expands 
from i to f as indicated in Figure P20.28. (b) What If? 
How much work is done on the gas if it is compressed 
from f to i along the same path?

6 � 106

P (Pa)

4 � 106

2 � 106

i

f

V (m3)
43210

Figure P20.28

	29.	An ideal gas is taken through a quasi-static process 
described by P 5 aV 2, with a 5 5.00 atm/m6, as shown 
in Figure P20.29. The gas is expanded to twice its origi-
nal volume of 1.00 m3. How much work is done on the 
expanding gas in this process?

P

i

f

P � V 2

V
1.00 m3 2.00 m3

a

Figure P20.29

Section 20.5 ​ The First Law of Thermodynamics

	30.	A gas is taken through the 
cyclic process described 
in Figure P20.30. (a) Find 
the net energy transferred 
to the system by heat dur-
ing one complete cycle. 
(b) What If? If the cycle 
is reversed—that is, the 
process follows the path 
ACBA—what is the net 
energy input per cycle by 
heat?

S

S
Q/C

W

M

4

6

2

8
P (kPa)

B

C
A

6 108
V (m3)

Figure P20.30   
Problems 30 and 31.

W

Section 20.3 ​ Latent Heat

	16.	A 50.0-g copper calorimeter contains 250 g of water at 
20.0°C. How much steam at 100°C must be condensed 
into the water if the final temperature of the system is 
to reach 50.0°C?

	17.	 A 75.0-kg cross-country 
skier glides over snow 
as in Figure P20.17. The 
coefficient of friction 
between skis and snow 
is 0.200. Assume all the 
snow beneath his skis is 
at 0°C and that all the 
internal energy gener-
ated by friction is added 
to snow, which sticks to 
his skis until it melts. 
How far would he have 
to ski to melt 1.00 kg of 
snow?

	18.	How much energy is required to change a 40.0-g ice 
cube from ice at 210.0°C to steam at 110°C?

	19.	A 75.0-g ice cube at 0°C is placed in 825 g of water at 
25.0°C. What is the final temperature of the mixture?

	20.	A 3.00-g lead bullet at 30.0°C is fired at a speed of  
240 m/s into a large block of ice at 0°C, in which it 
becomes embedded. What quantity of ice melts?

	21.	 Steam at 100°C is added to ice at 0°C. (a) Find the 
amount of ice melted and the final temperature when 
the mass of steam is 10.0 g and the mass of ice is 50.0 g. 
(b) What If? Repeat when the mass of steam is 1.00 g 
and the mass of ice is 50.0 g.

	22.	A 1.00-kg block of copper at 20.0°C is dropped into 
a large vessel of liquid nitrogen at 77.3 K. How many 
kilograms of nitrogen boil away by the time the cop-
per reaches 77.3 K? (The specific heat of copper is  
0.092 0 cal/g ? °C, and the latent heat of vaporization 
of nitrogen is 48.0 cal/g.)

	23.	In an insulated vessel, 250 g of ice at 0°C is added to 
600 g of water at 18.0°C. (a) What is the final tempera-
ture of the system? (b) How much ice remains when 
the system reaches equilibrium?

	24.	An automobile has a mass of 1 500 kg, and its alumi-
num brakes have an overall mass of 6.00 kg. (a) Assume 
all the mechanical energy that transforms into internal 
energy when the car stops is deposited in the brakes 
and no energy is transferred out of the brakes by heat. 
The brakes are originally at 20.0°C. How many times 
can the car be stopped from 25.0 m/s before the brakes 
start to melt? (b) Identify some effects ignored in part 
(a) that are important in a more realistic assessment of 
the warming of the brakes.

Section 20.4 Work and Heat in Thermodynamic Processes

	25.	An ideal gas is enclosed in a cylinder with a movable 
piston on top of it. The piston has a mass of 8 000 g 
and an area of 5.00 cm2 and is free to slide up and 

Figure P20.17
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620	C hapter 20 T he First Law of Thermodynamics

	40.	In Figure P20.40, the change in 
internal energy of a gas that is taken 
from A to C along the blue path is 
1800 J. The work done on the gas 
along the red path ABC is 2500 J. 
(a)  How much energy must be 
added to the system by heat as it 
goes from A through B to C ? (b) If 
the pressure at point A is five times 
that of point C, what is the work 
done on the system in going from C to D? (c) What is 
the energy exchanged with the surroundings by heat  
as the gas goes from C to A along the green path? (d) If 
the change in internal energy in going from point D to 
point A is 1500 J, how much energy must be added to 
the system by heat as it goes from point C to point D?

	41.	An ideal gas initially at Pi , 
Vi , and Ti is taken through 
a cycle as shown in Figure 
P20.41. (a) Find the net work 
done on the gas per cycle 
for 1.00 mol of gas initially 
at 0°C. (b)  What is the net 
energy added by heat to the 
gas per cycle?

	42.	An ideal gas initially at Pi , 
Vi , and Ti is taken through 
a cycle as shown in Figure 
P20.41. (a) Find the net work done on the gas per cycle. 
(b) What is the net energy added by heat to the system 
per cycle?

Section 20.7 ​ Energy Transfer Mechanisms  
in Thermal Processes
	43.	A glass windowpane in a home is 0.620 cm thick and 

has dimensions of 1.00 m 3 2.00 m. On a certain day, 
the temperature of the interior surface of the glass is 
25.0°C and the exterior surface temperature is 0°C.  
(a) What is the rate at which energy is transferred by 
heat through the glass? (b) How much energy is trans-
ferred through the window in one day, assuming the 
temperatures on the surfaces remain constant?

	44.	A concrete slab is 12.0 cm thick and has an area of 
5.00 m2. Electric heating coils are installed under the 
slab to melt the ice on the surface in the winter months. 
What minimum power must be supplied to the coils to 
maintain a temperature difference of 20.0°C between 
the bottom of the slab and its surface? Assume all the 
energy transferred is through the slab.

	45.	A student is trying to decide what to wear. His bed-
room is at 20.0°C. His skin temperature is 35.0°C. The 
area of his exposed skin is 1.50 m2. People all over the 
world have skin that is dark in the infrared, with emis-
sivity about 0.900. Find the net energy transfer from 
his body by radiation in 10.0 min.

	46.	The surface of the Sun has a temperature of about  
5 800 K. The radius of the Sun is 6.96 3 108 m. Calcu-
late the total energy radiated by the Sun each second. 
Assume the emissivity of the Sun is 0.986.

B C

DA

P

Pi

3Pi

Vi 3Vi
V

Figure P20.41   
Problems 41 and 42.
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	31.	 Consider the cyclic process depicted in Figure P20.30. 
If Q is negative for the process BC and DE int is nega-
tive for the process CA, what are the signs of Q , W, 
and DE int that are associated with each of the three 
processes?

	32.	Why is the following situation impossible? An ideal gas 
undergoes a process with the following parameters: Q 5  
10.0 J, W 5 12.0 J, and DT 5 22.00°C.

	33.	A thermodynamic system undergoes a process in which 
its internal energy decreases by 500 J. Over the same 
time interval, 220 J of work is done on the system. Find 
the energy transferred from it by heat.

	34.	A sample of an ideal gas goes through the process 
shown in Figure P20.34. From A to B, the process 
is adiabatic; from B to C, it is isobaric with 345 kJ of 
energy entering the system by heat; from C to D, the 
process is isothermal; and from D to A, it is isobaric 
with 371 kJ of energy leaving the system by heat. Deter-
mine the difference in internal energy E int ,B 2 E int ,A.

1

3

P (atm)

0.09 0.2 0.4 1.2

A

CB

D

V (m3)

Figure P20.34

Section 20.6 ​ Some Applications of the First Law  
of Thermodynamics

	35.	A 2.00-mol sample of helium gas initially at 300 K, and 
0.400 atm is compressed isothermally to 1.20 atm. Not-
ing that the helium behaves as an ideal gas, find (a) the 
final volume of the gas, (b) the work done on the gas, 
and (c) the energy transferred by heat.

	36.	(a) How much work is done on the steam when 1.00 mol  
of water at 100°C boils and becomes 1.00 mol of steam 
at 100°C at 1.00 atm pressure? Assume the steam to 
behave as an ideal gas. (b) Determine the change in 
internal energy of the system of the water and steam as 
the water vaporizes.

	37.	 An ideal gas initially at 300 K undergoes an isobaric 
expansion at 2.50 kPa. If the volume increases from 
1.00 m3 to 3.00 m3 and 12.5 kJ is transferred to the gas 
by heat, what are (a) the change in its internal energy 
and (b) its final temperature?

	38.	One mole of an ideal gas does 3 000 J of work on its 
surroundings as it expands isothermally to a final 
pressure of 1.00 atm and volume of 25.0 L. Determine 
(a) the initial volume and (b) the temperature of the 
gas.

	39.	A 1.00-kg block of aluminum is warmed at atmospheric 
pressure so that its temperature increases from 22.0°C 
to 40.0°C. Find (a) the work done on the aluminum, 
(b) the energy added to it by heat, and (c) the change 
in its internal energy.

W

M

M

W

P

V
CD

BA

Figure P20.40
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by using the thermal window instead of the single-pane 
window? Include the contributions of inside and out-
side stagnant air layers.

	54.	At our distance from the Sun, the intensity of solar 
radiation is 1 370 W/m2. The temperature of the 
Earth is affected by the greenhouse effect of the atmo-
sphere. This phenomenon describes the effect of 
absorption of infrared light emitted by the surface so 
as to make the surface temperature of the Earth 
higher than if it were airless. For comparison, consider 
a spherical object of radius r with no atmosphere at 
the same distance from the Sun as the Earth. Assume 
its emissivity is the same for all kinds of electromag-
netic waves and its temperature is uniform over its sur-
face. (a) Explain why the projected area over which it 
absorbs sunlight is pr 2 and the surface area over 
which it radiates is 4pr 2. (b) Compute its steady-state 
temperature. Is it chilly?

	55.	A bar of gold (Au) is in ther-
mal contact with a bar of silver 
(Ag) of the same length and 
area (Fig. P20.55). One end 
of the compound bar is main-
tained at 80.0°C, and the oppo-
site end is at 30.0°C. When the 
energy transfer reaches steady 
state, what is the temperature 
at the junction?

	56.	For bacteriological testing of 
water supplies and in medical 
clinics, samples must routinely be incubated for 24 h at 
37°C. Peace Corps volunteer and MIT engineer Amy 
Smith invented a low-cost, low-maintenance incuba-
tor. The incubator consists of a foam-insulated box 
containing a waxy material that melts at 37.0°C inter-
spersed among tubes, dishes, or bottles containing 
the test samples and growth medium (bacteria food). 
Outside the box, the waxy material is first melted by a 
stove or solar energy collector. Then the waxy material 
is put into the box to keep the test samples warm as 
the material solidifies. The heat of fusion of the phase-
change material is 205 kJ/kg. Model the insulation as 
a panel with surface area 0.490 m2, thickness 4.50 cm, 
and conductivity 0.012 0 W/m ? °C. Assume the exte-
rior temperature is 23.0°C for 12.0 h and 16.0°C for 
12.0 h. (a) What mass of the waxy material is required 
to conduct the bacteriological test? (b) Explain why 
your calculation can be done without knowing the 
mass of the test samples or of the insulation.

	57.	 A large, hot pizza floats in outer space after being jet-
tisoned as refuse from a spacecraft. What is the order 
of magnitude (a) of its rate of energy loss and (b) of 
its rate of temperature change? List the quantities you 
estimate and the value you estimate for each.

Additional Problems
	58.	A gas expands from I to F in Figure P20.58 (page 622). 

The energy added to the gas by heat is 418 J when the 
gas goes from I to F along the diagonal path. (a) What 
is the change in internal energy of the gas? (b) How 

Q/C

Insulation

Au

Ag

30.0� C

80.0� C

Figure P20.55
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	47.	 The tungsten filament of a certain 100-W lightbulb 
radiates 2.00 W of light. (The other 98 W is carried 
away by convection and conduction.) The filament has 
a surface area of 0.250 mm2 and an emissivity of 0.950. 
Find the filament’s temperature. (The melting point of 
tungsten is 3 683 K.)

	48.	At high noon, the Sun delivers 1 000 W to each square 
meter of a blacktop road. If the hot asphalt trans-
fers energy only by radiation, what is its steady-state 
temperature?

	49.	Two lightbulbs have cylindrical filaments much greater 
in length than in diameter. The evacuated bulbs are 
identical except that one operates at a filament tem-
perature of 2 100°C and the other operates at 2 000°C. 
(a) Find the ratio of the power emitted by the hot-
ter lightbulb to that emitted by the cooler lightbulb.  
(b) With the bulbs operating at the same respective 
temperatures, the cooler lightbulb is to be altered by 
making its filament thicker so that it emits the same 
power as the hotter one. By what factor should the 
radius of this filament be increased?

	50.	The human body must maintain its core temperature 
inside a rather narrow range around 37°C. Metabolic 
processes, notably muscular exertion, convert chemical 
energy into internal energy deep in the interior. From 
the interior, energy must flow out to the skin or lungs 
to be expelled to the environment. During moderate 
exercise, an 80-kg man can metabolize food energy at 
the rate 300 kcal/h, do 60 kcal/h of mechanical work, 
and put out the remaining 240 kcal/h of energy by 
heat. Most of the energy is carried from the body inte-
rior out to the skin by forced convection (as a plumber 
would say), whereby blood is warmed in the interior 
and then cooled at the skin, which is a few degrees 
cooler than the body core. Without blood flow, living 
tissue is a good thermal insulator, with thermal con-
ductivity about 0.210 W/m · °C. Show that blood flow 
is essential to cool the man’s body by calculating the 
rate of energy conduction in kcal/h through the tissue 
layer under his skin. Assume that its area is 1.40 m2, its 
thickness is 2.50 cm, and it is maintained at 37.0°C on 
one side and at 34.0°C on the other side.

	51.	 A copper rod and an aluminum rod of equal diameter 
are joined end to end in good thermal contact. The 
temperature of the free end of the copper rod is held 
constant at 100°C and that of the far end of the alumi-
num rod is held at 0°C. If the copper rod is 0.150 m 
long, what must be the length of the aluminum rod so 
that the temperature at the junction is 50.0°C?

	52.	A box with a total surface area of 1.20 m2 and a wall 
thickness of 4.00 cm is made of an insulating material. 
A 10.0-W electric heater inside the box maintains the 
inside temperature at 15.0°C above the outside temper-
ature. Find the thermal conductivity k of the insulating 
material.

	53.	(a) Calculate the R-value of a thermal window made of 
two single panes of glass each 0.125 in. thick and sepa-
rated by a 0.250-in. air space. (b) By what factor is the 
transfer of energy by heat through the window reduced 
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stream of the liquid while energy is added by heat 
at a known rate. A liquid of density 900 kg/m3 flows 
through the calorimeter with volume flow rate of 
2.00 L/min. At steady state, a temperature difference 
3.50°C is established between the input and output 
points when energy is supplied at the rate of 200 W. 
What is the specific heat of the liquid?

	64.	A flow calorimeter is an apparatus used to measure the 
specific heat of a liquid. The technique of flow calo-
rimetry involves measuring the temperature differ-
ence between the input and output points of a flowing 
stream of the liquid while energy is added by heat at 
a known rate. A liquid of density r flows through the 
calorimeter with volume flow rate R. At steady state, a 
temperature difference DT is established between the 
input and output points when energy is supplied at the 
rate P. What is the specific heat of the liquid?

	65.	Review. Following a collision between a large space-
craft and an asteroid, a copper disk of radius 28.0 m  
and thickness 1.20 m at a temperature of 850°C is 
floating in space, rotating about its symmetry axis 
with an angular speed of 25.0 rad/s. As the disk radi-
ates infrared light, its temperature falls to 20.0°C. No 
external torque acts on the disk. (a) Find the change 
in kinetic energy of the disk. (b) Find the change in 
internal energy of the disk. (c) Find the amount of 
energy it radiates.

	66.	An ice-cube tray is filled with 75.0 g of water. After 
the filled tray reaches an equilibrium temperature of 
20.0°C, it is placed in a freezer set at 28.00°C to make 
ice cubes. (a) Describe the processes that occur as 
energy is being removed from the water to make ice. 
(b) Calculate the energy that must be removed from 
the water to make ice cubes at 28.00°C.

	67.	 On a cold winter day, you buy roasted chestnuts from 
a street vendor. Into the pocket of your down parka 
you put the change he gives you: coins constituting  
9.00 g of copper at –12.0°C. Your pocket already con-
tains 14.0 g of silver coins at 30.0°C. A short time later 
the temperature of the copper coins is 4.00°C and is 
increasing at a rate of 0.500°C/s. At this time, (a) what 
is the temperature of the silver coins and (b) at what 
rate is it changing?

	68.	The rate at which a resting person converts food energy 
is called one’s basal metabolic rate (BMR). Assume that 
the resulting internal energy leaves a person’s body 
by radiation and convection of dry air. When you jog, 
most of the food energy you burn above your BMR 
becomes internal energy that would raise your body 
temperature if it were not eliminated. Assume that 
evaporation of perspiration is the mechanism for 
eliminating this energy. Suppose a person is jogging 
for “maximum fat burning,” converting food energy at 
the rate 400 kcal/h above his BMR, and putting out 
energy by work at the rate 60.0 W. Assume that the heat 
of evaporation of water at body temperature is equal 
to its heat of vaporization at 100°C. (a) Determine the 
hourly rate at which water must evaporate from his 
skin. (b) When you metabolize fat, the hydrogen atoms 
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much energy must be added to the gas by heat along 
the indirect path IAF ?
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Figure P20.58

	59.	Gas in a container is at a pressure of 1.50 atm and a 
volume of 4.00 m3. What is the work done on the gas 
(a) if it expands at constant pressure to twice its initial 
volume, and (b) if it is compressed at constant pressure 
to one-quarter its initial volume?

	60.	Liquid nitrogen has a boiling point of 77.3 K and a 
latent heat of vaporization of 2.01 3 105 J/kg. A 25.0-W 
electric heating element is immersed in an insulated 
vessel containing 25.0 L of liquid nitrogen at its boil-
ing point. How many kilograms of nitrogen are boiled 
away in a period of 4.00 h?

	61.	 An aluminum rod 0.500 m in length and with a cross-
sectional area of 2.50 cm2 is inserted into a thermally 
insulated vessel containing liquid helium at 4.20 K. 
The rod is initially at 300 K. (a) If one-half of the rod 
is inserted into the helium, how many liters of helium 
boil off by the time the inserted half cools to 4.20 K? 
Assume the upper half does not yet cool. (b) If the cir-
cular surface of the upper end of the rod is maintained 
at 300 K, what is the approximate boil-off rate of liq-
uid helium in liters per second after the lower half has 
reached 4.20 K? (Aluminum has thermal conductivity 
of 3 100 W/m · K at 4.20 K; ignore its temperature vari-
ation. The density of liquid helium is 125 kg/m3.)

	62.	Review. Two speeding lead bullets, one of mass 12.0 g 
moving to the right at 300 m/s and one of mass 8.00 g 
moving to the left at 400 m/s, collide head-on, and all 
the material sticks together. Both bullets are originally 
at temperature 30.0°C. Assume the change in kinetic 
energy of the system appears entirely as increased 
internal energy. We would like to determine the tem-
perature and phase of the bullets after the collision. 
(a) What two analysis models are appropriate for the 
system of two bullets for the time interval from before 
to after the collision? (b)  From one of these models, 
what is the speed of the combined bullets after the 
collision? (c)  How much of the initial kinetic energy 
has transformed to internal energy in the system after 
the collision? (d) Does all the lead melt due to the col-
lision? (e) What is the temperature of the combined 
bullets after the collision? (f) What is the phase of the 
combined bullets after the collision?

	63.	A flow calorimeter is an apparatus used to measure the 
specific heat of a liquid. The technique of flow calo-
rimetry involves measuring the temperature difference  
between the input and output points of a flowing 
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rial of the meteoroid rises momentarily to the same 
final temperature. Find this temperature. Assume the 
specific heat of liquid and of gaseous aluminum is  
1 170 J/kg ? °C.

	74.	Why is the following situation impossible? A group of camp-
ers arises at 8:30 a.m. and uses a solar cooker, which 
consists of a curved, reflecting surface that concen-
trates sunlight onto the object to be warmed (Fig. 
P20.74). During the day, the maximum solar intensity 
reaching the Earth’s surface at the cooker’s location 
is I 5 600 W/m2. The cooker faces the Sun and has a 
face diameter of d 5 0.600 m. Assume a fraction f of 
40.0% of the incident energy is transferred to 1.50 L 
of water in an open container, initially at 20.0°C. The 
water comes to a boil, and the campers enjoy hot cof-
fee for breakfast before hiking ten miles and returning 
by noon for lunch.

d

Figure P20.74

	75.	During periods of high activity, the Sun has more sun-
spots than usual. Sunspots are cooler than the rest of 
the luminous layer of the Sun’s atmosphere (the pho-
tosphere). Paradoxically, the total power output of the 
active Sun is not lower than average but is the same 
or slightly higher than average. Work out the details 
of the following crude model of this phenomenon. 
Consider a patch of the photosphere with an area of  
5.10 3 1014 m2. Its emissivity is 0.965. (a) Find the power 
it radiates if its temperature is uniformly 5 800 K,  
corresponding to the quiet Sun. (b) To represent a 
sunspot, assume 10.0% of the patch area is at 4 800 K  
and the other 90.0% is at 5 890 K. Find the power 
output of the patch. (c) State how the answer to part 
(b) compares with the answer to part (a). (d) Find 
the average temperature of the patch. Note that this 
cooler temperature results in a higher power output.

	76.	(a) In air at 0°C, a 1.60-kg copper block at 0°C is set 
sliding at 2.50 m/s over a sheet of ice at 0°C. Friction 
brings the block to rest. Find the mass of the ice that 
melts. (b) As the block slows down, identify its energy 
input Q , its change in internal energy DE int, and the 
change in mechanical energy for the block–ice system. 
(c) For the ice as a system, identify its energy input Q 
and its change in internal energy DE int. (d) A 1.60-kg  
block of ice at 0°C is set sliding at 2.50 m/s over a sheet 
of copper at 0°C. Friction brings the block to rest. 
Find the mass of the ice that melts. (e) Evaluate Q and 
DE int for the block of ice as a system and DE mech for the 
block–ice system. (f) Evaluate Q and DE int for the metal 

Q/C

in the fat molecule are transferred to oxygen to form 
water. Assume that metabolism of 1.00 g of fat gener-
ates 9.00 kcal of energy and produces 1.00 g of water. 
What fraction of the water the jogger needs is provided 
by fat metabolism?

	69.	An iron plate is held against an iron wheel so that a 
kinetic friction force of 50.0 N acts between the two 
pieces of metal. The relative speed at which the two sur-
faces slide over each other is 40.0 m/s. (a) Calculate the 
rate at which mechanical energy is converted to internal 
energy. (b) The plate and the wheel each have a mass of 
5.00 kg, and each receives 50.0% of the internal energy. 
If the system is run as described for 10.0 s and each 
object is then allowed to reach a uniform internal tem-
perature, what is the resultant temperature increase? 

	70.	A resting adult of average size converts chemical energy 
in food into internal energy at the rate 120 W, called 
her basal metabolic rate. To stay at constant temperature, 
the body must put out energy at the same rate. Several 
processes exhaust energy from your body. Usually, the 
most important is thermal conduction into the air in 
contact with your exposed skin. If you are not wear-
ing a hat, a convection current of warm air rises verti-
cally from your head like a plume from a smokestack. 
Your body also loses energy by electromagnetic radia-
tion, by your exhaling warm air, and by evaporation of 
perspiration. In this problem, consider still another 
pathway for energy loss: moisture in exhaled breath. 
Suppose you breathe out 22.0 breaths per minute, each 
with a volume of 0.600 L. Assume you inhale dry air 
and exhale air at 37.0°C containing water vapor with a 
vapor pressure of 3.20 kPa. The vapor came from evap-
oration of liquid water in your body. Model the water 
vapor as an ideal gas. Assume its latent heat of evapora-
tion at 37.0°C is the same as its heat of vaporization at 
100°C. Calculate the rate at which you lose energy by 
exhaling humid air.

	71.	A 40.0-g ice cube floats in 200 g of water in a 100-g 
copper cup; all are at a temperature of 0°C. A piece of 
lead at 98.0°C is dropped into the cup, and the final 
equilibrium temperature is 12.0°C. What is the mass of 
the lead?

	72.	One mole of an ideal gas is contained in a cylinder 
with a movable piston. The initial pressure, volume, 
and temperature are Pi, Vi, and Ti, respectively. Find 
the work done on the gas in the following processes. 
In operational terms, describe how to carry out each 
process and show each process on a PV diagram.  
(a) an isobaric compression in which the final volume 
is one-half the initial volume (b) an isothermal com-
pression in which the final pressure is four times the 
initial pressure (c) an isovolumetric process in which 
the final pressure is three times the initial pressure

	73.	Review. A 670-kg meteoroid happens to be composed 
of aluminum. When it is far from the Earth, its tem-
perature is 215.0°C and it moves at 14.0 km/s relative 
to the planet. As it crashes into the Earth, assume the 
internal energy transformed from the mechanical 
energy of the meteoroid–Earth system is shared equally 
between the meteoroid and the Earth and all the mate-
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624	C hapter 20 T he First Law of Thermodynamics

Mass of water:	   0.400 kg

Mass of calorimeter:	   0.040 kg

Specific heat of calorimeter:	   0.63 kJ/kg ? °C

Initial temperature of aluminum:	 27.0°C

Mass of aluminum:	   0.200 kg

Final temperature of mixture:	 66.3°C

		  (a) Use these data to determine the specific heat of 
aluminum. (b) Explain whether your result is within 
15% of the value listed in Table 20.1.

Challenge Problems

	81.	 Consider the piston–
cylinder apparatus shown 
in Figure P20.81. The bot-
tom of the cylinder con-
tains 2.00  kg of water at 
just under 100.0°C. The 
cylinder has a radius of  
r 5 7.50 cm. The piston of 
mass m 5 3.00 kg sits on 
the surface of the water. 
An electric heater in the 
cylinder base transfers 
energy into the water at a rate of 100 W. Assume the 
cylinder is much taller than shown in the figure, so  
we don’t need to be concerned about the piston reach-
ing the top of the cylinder. (a) Once the water begins 
boiling, how fast is the piston rising? Model the steam 
as an ideal gas. (b) After the water has completely 
turned to steam and the heater continues to transfer 
energy to the steam at the same rate, how fast is the 
piston rising?

	82.	A spherical shell has inner radius 3.00 cm and outer 
radius 7.00 cm. It is made of material with thermal 
conductivity k 5 0.800 W/m ? °C. The interior is main-
tained at temperature 5°C and the exterior at 40°C. 
After an interval of time, the shell reaches a steady 
state with the temperature at each point within it 
remaining constant in time. (a) Explain why the rate 
of energy transfer P must be the same through each 
spherical surface, of radius r, within the shell and must 
satisfy

dT
dr

5
P

4pkr 2

		  (b) Next, prove that

3
40

5
 dT 5

P
4pk

 3
0.07

0.03
r 22 dr

		  where T is in degrees Celsius and r is in meters.  
(c) Find the rate of energy transfer through the shell. 
(d) Prove that

3
T

5
 dT 5 1.84 3

r

0.03
 r22 dr

		  where T is in degrees Celsius and r is in meters.  
(e) Find the temperature within the shell as a func-
tion of radius. (f) Find the temperature at r 5 5.00 cm, 
halfway through the shell.

m
Water

Electric
heater in
base of
cylinder

r

Figure P20.81

Q/C

sheet as a system. (g) A thin, 1.60-kg slab of copper at 
20°C is set sliding at 2.50 m/s over an identical station-
ary slab at the same temperature. Friction quickly stops 
the motion. Assuming no energy is transferred to the 
environment by heat, find the change in temperature 
of both objects. (h) Evaluate Q and DE int for the slid-
ing slab and DE mech for the two-slab system. (i) Evalu-
ate Q and DE int for the stationary slab.

	77.	 Water in an electric teakettle is boiling. The power 
absorbed by the water is 1.00 kW. Assuming the pres-
sure of vapor in the kettle equals atmospheric pres-
sure, determine the speed of effusion of vapor from 
the kettle’s spout if the spout has a cross-sectional area 
of 2.00 cm2. Model the steam as an ideal gas.

	78.	The average thermal conductivity of the walls (includ-
ing the windows) and roof of the house depicted in 
Figure P20.78 is 0.480 W/m ? °C, and their average 
thickness is 21.0 cm. The house is kept warm with 
natural gas having a heat of combustion (that is, the 
energy provided per cubic meter of gas burned) of  
9 300 kcal/m3. How many cubic meters of gas must be 
burned each day to maintain an inside temperature of 
25.0°C if the outside temperature is 0.0°C? Disregard 
radiation and the energy transferred by heat through 
the ground.

5.00 m 

10.0 m 8.00 m 

37.0�

Figure P20.78
	79.	A cooking vessel on a slow burner contains 10.0 kg of 

water and an unknown mass of ice in equilibrium at 
0°C at time t 5 0. The temperature of the mixture is 
measured at various times, and the result is plotted in 
Figure P20.79. During the first 50.0 min, the mixture 
remains at 0°C. From 50.0 min to 60.0 min, the tem-
perature increases to 2.00°C. Ignoring the heat capac-
ity of the vessel, determine the initial mass of the ice.

0

1

2

3

20 40 60

T (�C)

t (min)
0

Figure P20.79
	80.	A student measures the following data in a calorimetry 

experiment designed to determine the specific heat of 
aluminum:

Initial temperature of water 
  and calorimeter:	 70.0°C
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		  Suggestions: The temperature gradient is dT/dr. A 
radial energy current passes through a concentric 
cylinder of area 2prL. (b) The passenger section of 
a jet airliner is in the shape of a cylindrical tube with 
a length of 35.0 m and an inner radius of 2.50 m. Its 
walls are lined with an insulating material 6.00 cm 
in thickness and having a thermal conductivity of  
4.00 3 1025 cal/s ? cm ? °C. A heater must maintain 
the interior temperature at 25.0°C while the outside 
temperature is 235.0°C. What power must be sup-
plied to the heater?

	83.	A pond of water at 0°C is covered with a layer of ice 
4.00 cm thick. If the air temperature stays constant 
at 210.0°C, what time interval is required for the ice 
thickness to increase to 8.00 cm? Suggestion: Use Equa-
tion 20.16 in the form

dQ

dt
5 kA 

DT
x

		  and note that the incremental energy dQ extracted 
from the water through the thickness x of ice is the 
amount required to freeze a thickness dx of ice. That 
is, dQ 5 Lf rA dx, where r is the density of the ice, A is 
the area, and Lf is the latent heat of fusion.

	84.	(a) The inside of a hollow cylinder is maintained at a 
temperature Ta, and the outside is at a lower tempera-
ture, Tb (Fig. P20.84). The wall of the cylinder has a 
thermal conductivity k. Ignoring end effects, show that 
the rate of energy conduction from the inner surface 
to the outer surface in the radial direction is

dQ

dt
5 2pLk cTa 2 Tb

ln 1b/a 2 d

T b

L

b a

T a

r

Figure P20.84
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In Chapter 19, we discussed the properties of an ideal gas by using such macroscopic 
variables as pressure, volume, and temperature. Such large-scale properties can be related 
to a description on a microscopic scale, where matter is treated as a collection of molecules. 
Applying Newton’s laws of motion in a statistical manner to a collection of particles pro-
vides a reasonable description of thermodynamic processes. To keep the mathematics  
relatively simple, we shall consider primarily the behavior of gases because in gases the 
interactions between molecules are much weaker than they are in liquids or solids.
	 We shall begin by relating pressure and temperature directly to the details of molecular 
motion in a sample of gas. Based on these results, we will make predictions of molar specific 
heats of gases. Some of these predictions will be correct and some will not. We will extend 
our model to explain those values that are not predicted correctly by the simpler model. 
Finally, we discuss the distribution of molecular speeds in a gas.

21.1	 Molecular Model of  
an Ideal Gas

21.2	 Molar Specific Heat  
of an Ideal Gas

21.3	 The Equipartition  
of Energy

21.4	 Adiabatic Processes  
for an Ideal Gas

21.5	 Distribution of  
Molecular Speeds

c h a p t e r 

21 The Kinetic Theory  
of Gases

A boy inflates his bicycle tire with a 
hand-operated pump. Kinetic theory 
helps to describe the details of the 
air in the pump. (© Cengage Learning/

George Semple)
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	 21.1  Molecular Model of an Ideal Gas	 627

21.1	 Molecular Model of an Ideal Gas
In this chapter, we will investigate a structural model for an ideal gas. A structural 
model is a theoretical construct designed to represent a system that cannot be 
observed directly because it is too large or too small. For example, we can only 
observe the solar system from the inside; we cannot travel outside the solar system 
and look back to see how it works. This restricted vantage point has led to different 
historical structural models of the solar system: the geocentric model, with the Earth at 
the center, and the heliocentric model, with the Sun at the center. Of course, the latter 
has been shown to be correct. An example of a system too small to observe directly 
is the hydrogen atom. Various structural models of this system have been devel-
oped, including the Bohr model (Section 42.3) and the quantum model (Section 42.4). 
Once a structural model is developed, various predictions are made for experimen-
tal observations. For example, the geocentric model of the solar system makes pre-
dictions of how the movement of Mars should appear from the Earth. It turns out 
that those predictions do not match the actual observations. When that occurs with 
a structural model, the model must be modified or replaced with another model.
	 The structural model that we will develop for an ideal gas is called kinetic the-
ory. This model treats an ideal gas as a collection of molecules with the following 
properties:

	 1.	 Physical components: 
		  The gas consists of a number of identical molecules within a cubic con-

tainer of side length d. The number of molecules in the gas is large, and the 
average separation between them is large compared with their dimensions. 
Therefore, the molecules occupy a negligible volume in the container. This 
assumption is consistent with the ideal gas model, in which we imagine the 
molecules to be point-like.

	 2.	 Behavior of the components: 
		  (a)	�The molecules obey Newton’s laws of motion, but as a whole their motion 

is isotropic: any molecule can move in any direction with any speed. 
		  (b)	�The molecules interact only by short-range forces during elastic colli-

sions. This assumption is consistent with the ideal gas model, in which 
the molecules exert no long-range forces on one another. 

		  (c)	�The molecules make elastic collisions with the walls.

Although we often picture an ideal gas as consisting of single atoms, the behavior of 
molecular gases approximates that of ideal gases rather well at low pressures. Usu-
ally, molecular rotations or vibrations have no effect on the motions considered here.
	 For our first application of kinetic theory, let us relate the macroscope variable 
of pressure P to microscopic quantities. Consider a collection of N molecules of an 
ideal gas in a container of volume V. As indicated above, the container is a cube 
with edges of length d (Fig. 21.1). We shall first focus our attention on one of these 
molecules of mass m0 and assume it is moving so that its component of velocity in 
the x direction is vxi as in Figure 21.2. (The subscript i here refers to the ith mol-
ecule in the collection, not to an initial value. We will combine the effects of all the 
molecules shortly.) As the molecule collides elastically with any wall (property 2(c) 
above), its velocity component perpendicular to the wall is reversed because the 
mass of the wall is far greater than the mass of the molecule. The molecule is mod-
eled as a nonisolated system for which the impulse from the wall causes a change in 
the molecule’s momentum. Because the momentum component pxi of the molecule 
is m0vxi before the collision and 2m0vxi after the collision, the change in the x com-
ponent of the momentum of the molecule is

	 Dpxi 5 2m0vxi 2 (m0vxi) 5 22m0vxi	 (21.1)

d

d d
z x

y

m 0

vxi

vi
S

One molecule of the gas 
moves with velocity v on 
its way toward a collision 
with the wall.

S

Figure 21.1  ​A cubical box with 
sides of length d containing an 
ideal gas. 

Figure 21.2  A molecule makes 
an elastic collision with the wall 
of the container. In this construc-
tion, we assume the molecule 
moves in the xy plane.

vyi

vxi

vyi

–vxi

vi
S

vi
S

The molecule’s x 
component of 
momentum is 
reversed, whereas 
its y component 
remains 
unchanged.www.as
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628	C hapter 21 T he Kinetic Theory of Gases

From the nonisolated system model for momentum, we can apply the impulse-
momentum theorem (Eqs. 9.11 and 9.13) to the molecule to give

	 Fi,on molecule Dtcollision 5 Dpxi 5 22m0vxi	 (21.2)

where F i,on molecule is the x component of the average force1 the wall exerts on the 
molecule during the collision and Dtcollision is the duration of the collision. For the 
molecule to make another collision with the same wall after this first collision, it 
must travel a distance of 2d in the x direction (across the cube and back). There-
fore, the time interval between two collisions with the same wall is

	 Dt 5
2d
vxi

	 (21.3)

The force that causes the change in momentum of the molecule in the collision 
with the wall occurs only during the collision. We can, however, find the long-term 
average force for many back-and-forth trips across the cube by averaging the force 
in Equation 21.2 over the time interval for the molecule to move across the cube 
and back once, Equation 21.3. The average change in momentum per trip for the 
time interval for many trips is the same as that for the short duration of the colli-
sion. Therefore, we can rewrite Equation 21.2 as

	 Fi Dt 5 22m0vxi	 (21.4)

where Fi  is the average force component over the time interval for the molecule to 
move across the cube and back. Because exactly one collision occurs for each such 
time interval, this result is also the long-term average force on the molecule over 
long time intervals containing any number of multiples of Dt.
	 Equation 21.3 and 21.4 enable us to express the x component of the long-term 
average force exerted by the wall on the molecule as

	 Fi 5 2
2m0vxi

Dt
5 2

2m0vxi
2

2d
5 2

m0vxi
2

d
	 (21.5)

Now, by Newton’s third law, the x component of the long-term average force exerted 
by the molecule on the wall is equal in magnitude and opposite in direction:

	 Fi,on wall 5 2Fi 5 2a2
m 0vxi

2

d
b 5

m 0vxi
2

d
	 (21.6)

	 The total average force F  exerted by the gas on the wall is found by adding the 
average forces exerted by the individual molecules. Adding terms such as those in 
Equation 21.6 for all molecules gives

	 F 5 a
N

i51

m 0vxi
2

d
5

m 0

d
 a

N

i51
vxi

2	 (21.7)

where we have factored out the length of the box and the mass m0 because property 
1 tells us that all the molecules are the same. We now impose an additional fea-
ture from property 1, that the number of molecules is large. For a small number of 
molecules, the actual force on the wall would vary with time. It would be nonzero 
during the short interval of a collision of a molecule with the wall and zero when 
no molecule happens to be hitting the wall. For a very large number of molecules 
such as Avogadro’s number, however, these variations in force are smoothed out so 
that the average force given above is the same over any time interval. Therefore, the 
constant force F on the wall due to the molecular collisions is

	 F 5
m0

d
 a

N

i51
vx i

2	 (21.8)

1For this discussion, we use a bar over a variable to represent the average value of the variable, such as F  for the aver-
age force, rather than the subscript “avg” that we have used before. This notation is to save confusion because we 
already have a number of subscripts on variables.
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	 21.1  Molecular Model of an Ideal Gas	 629

	 To proceed further, let’s consider how to express the average value of the square 
of the x component of the velocity for N molecules. The traditional average of a set 
of values is the sum of the values over the number of values:

	 vx
2 5

a
N

i51
vxi

2

N
   S   a

N

i51
vxi

2 5 N vx
2	 (21.9)

Using Equation 21.9 to substitute for the sum in Equation 21.8 gives

	 F 5
m0

d
 Nvx

2	 (21.10)

	 Now let’s focus again on one molecule with velocity components vxi, vyi, and vzi. 
The Pythagorean theorem relates the square of the speed of the molecule to the 
squares of the velocity components:

	 vi
2 5 vxi

2 1 vyi
2 1 vzi

2	 (21.11)

Hence, the average value of v2 for all the molecules in the container is related to 
the average values of vx

2, vy
2, and vz

2 according to the expression

	 v 2 5 vx
2 1 vy

2 1 vz
2 	 (21.12)

Because the motion is isotropic (property 2(a) above), the average values vx
2, vy

2, 
and vz

2  are equal to one another. Using this fact and Equation 21.12, we find that

	 v2 5 3vx
2 	 (21.13)

Therefore, from Equation 21.10, the total force exerted on the wall is

	 F 5 1
3 N  

m0v
2

d
	 (21.14)

Using this expression, we can find the total pressure exerted on the wall:

	 P 5
F
A

5
F
d 2 5 1

3 N  
m0v

2

d 3 5 1
3 a

N
V
bm0v

2 	

	 P 5 2
3 a

N
V
b 11

2m 0v
2 2 	 (21.15)

where we have recognized the volume V of the cube as d3.
	 Equation 21.15 indicates that the pressure of a gas is proportional to (1) the 
number of molecules per unit volume and (2) the average translational kinetic 
energy of the molecules, 1

2m 0v
2. In analyzing this structural model of an ideal gas, 

we obtain an important result that relates the macroscopic quantity of pressure 
to a microscopic quantity, the average value of the square of the molecular speed. 
Therefore, a key link between the molecular world and the large-scale world has 
been established.
	 Notice that Equation 21.15 verifies some features of pressure with which you 
are probably familiar. One way to increase the pressure inside a container is to 
increase the number of molecules per unit volume N/V in the container. That is 
what you do when you add air to a tire. The pressure in the tire can also be raised 
by increasing the average translational kinetic energy of the air molecules in the 
tire. That can be accomplished by increasing the temperature of that air, which 
is why the pressure inside a tire increases as the tire warms up during long road 
trips. The continuous flexing of the tire as it moves along the road surface results 
in work done on the rubber as parts of the tire distort, causing an increase in inter-
nal energy of the rubber. The increased temperature of the rubber results in the 
transfer of energy by heat into the air inside the tire. This transfer increases the 
air’s temperature, and this increase in temperature in turn produces an increase 
in pressure.

WW �Relationship between  
pressure and molecular  
kinetic energy
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630	C hapter 21 T he Kinetic Theory of Gases

Molecular Interpretation of Temperature
Let’s now consider another macroscopic variable, the temperature T of the gas. 
We can gain some insight into the meaning of temperature by first writing Equa-
tion 21.15 in the form

	 PV 5 2
3 N 11

2m0v
2 2 	 (21.16)

Let’s now compare this expression with the equation of state for an ideal gas 
(Eq. 19.10):

	 PV 5 NkBT	 (21.17)

Equating the right sides of Equations 21.16 and 21.17 and solving for T gives

	 T 5
2

3kB
11

2m0v
2 2 	 (21.18)

This result tells us that temperature is a direct measure of average molecular kinetic 
energy. By rearranging Equation 21.18, we can relate the translational molecular 
kinetic energy to the temperature:

	 1
2 m 0v

2 5 3
2 kBT 	 (21.19)

That is, the average translational kinetic energy per molecule is 3
2kBT . Because 

vx
2 5 1

3 v2  (Eq. 21.13), it follows that

	 1
2m 0vx

2 5 1
2kBT 	 (21.20)

In a similar manner, for the y and z directions,

	 1
2m 0vy

2 5 1
2kBT  and 1

2m 0vz
2 5 1

2kBT 	

Therefore, each translational degree of freedom contributes an equal amount of 
energy, 1

2 kBT , to the gas. (In general, a “degree of freedom” refers to an indepen-
dent means by which a molecule can possess energy.) A generalization of this result, 
known as the theorem of equipartition of energy, is as follows:

Each degree of freedom contributes 1
2kBT  to the energy of a system, where 

possible degrees of freedom are those associated with translation, rotation, 
and vibration of molecules.

	 The total translational kinetic energy of N molecules of gas is simply N times the 
average energy per molecule, which is given by Equation 21.19:

	 K tot trans 5 N 11
2m 0v

2 2 5 3
2 NkBT 5 3

2nRT 	 (21.21)

where we have used kB 5 R/NA for Boltzmann’s constant and n 5 N/NA for the num-
ber of moles of gas. If the gas molecules possess only translational kinetic energy, 
Equation 21.21 represents the internal energy of the gas. This result implies that 
the internal energy of an ideal gas depends only on the temperature. We will follow 
up on this point in Section 21.2.
	 The square root of v2  is called the root-mean-square (rms) speed of the mol-
ecules. From Equation 21.19, we find that the rms speed is

	 vrms 5 " v2 5 Å
3kBT
m0

5 Å
3RT
M

	 (21.22)

where M is the molar mass in kilograms per mole and is equal to m0NA. This expres-
sion shows that, at a given temperature, lighter molecules move faster, on the aver-
age, than do heavier molecules. For example, at a given temperature, hydrogen 
molecules, whose molar mass is 2.02 3 1023 kg/mol, have an average speed approxi-
mately four times that of oxygen molecules, whose molar mass is 32.0 3 1023 kg/mol.  
Table 21.1 lists the rms speeds for various molecules at 208C.

Relationship between 
temperature and molecular 

kinetic energy

� Average kinetic energy 
 per molecule

� Theorem of equipartition 
of energy

� Total translational kinetic 
 energy of N molecules

Root-mean-square speed 
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Table 21.1 Some Root-Mean-Square (rms) Speeds
	 Molar Mass	 vrms		  Molar Mass	 vrms
Gas	 (g/mol)	 at 208C (m/s)	 Gas	 (g/mol)	 at 208C (m/s)

H2	 2.02	 1902	 NO	 30.0	 494
He	 4.00	 1352	 O2	 32.0	 478
H2O	 18.0	 637	 CO2	 44.0	 408
Ne	 20.2	 602	 SO2	 64.1	 338
N2 or CO	 28.0	 511

Q	 uick Quiz 21.1 ​ Two containers hold an ideal gas at the same temperature and 
pressure. Both containers hold the same type of gas, but container B has twice 
the volume of container A. (i) What is the average translational kinetic energy 
per molecule in container B? (a) twice that of container A (b) the same as that 
of container A (c) half that of container A (d) impossible to determine (ii) From 
the same choices, describe the internal energy of the gas in container B.

	

Example 21.1	     A Tank of Helium

A tank used for filling helium balloons has a volume of 0.300 m3 and contains 2.00 mol of helium gas at 20.08C. 
Assume the helium behaves like an ideal gas.

(A)  ​What is the total translational kinetic energy of the gas molecules?

Conceptualize  ​Imagine a microscopic model of a gas in which you can watch the molecules move about the container 
more rapidly as the temperature increases. Because the gas is monatomic, the total translational kinetic energy of the 
molecules is the internal energy of the gas.

Categorize  ​We evaluate parameters with equations developed in the preceding discussion, so this example is a substi-
tution problem.

S o l u ti  o n

Use Equation 21.21 with n 5 2.00 mol and T 5 293 K: E int 5 3
2 nRT 5 3

2 12.00 mol 2 18.31 J/mol # K 2 1293 K 2
5   7.30 3 103 J

(B)  ​What is the average kinetic energy per molecule?

What if the temperature is raised from 20.08C to 40.08C? Because 40.0 is twice as large as 20.0, is the total 
translational energy of the molecules of the gas twice as large at the higher temperature?

Answer  ​The expression for the total translational energy depends on the temperature, and the value for the tempera-
ture must be expressed in kelvins, not in degrees Celsius. Therefore, the ratio of 40.0 to 20.0 is not the appropriate 
ratio. Converting the Celsius temperatures to kelvins, 20.08C is 293 K and 40.08C is 313 K. Therefore, the total transla-
tional energy increases by a factor of only 313 K/293 K 5 1.07.

What If ?

Use Equation 21.19: 1
2m0v

2 5 3
2kBT 5 3

2 11.38 3 10223 J/K 2 1293 K 2
5   6.07 3 10221 J

S o l u ti  o n

21.2	 Molar Specific Heat of an Ideal Gas
Consider an ideal gas undergoing several processes such that the change in tem-
perature is DT 5 Tf 2 Ti for all processes. The temperature change can be achieved 

Pitfall Prevention 21.1
The Square Root of the Square?   
Taking the square root of v 2  does 
not “undo” the square because 
we have taken an average between 
squaring and taking the square 
root. Although the square root of 
1v 22 is v 5 vavg because the squar-
ing is done after the averaging, 
the square root of v 2 is not vavg, 
but rather vrms.
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632	C hapter 21 T he Kinetic Theory of Gases

by taking a variety of paths from one isotherm to another as shown in Figure 21.3. 
Because DT is the same for all paths, the change in internal energy DE int is the 
same for all paths. The work W done on the gas (the negative of the area under 
the curves), however, is different for each path. Therefore, from the first law of 
thermodynamics, we can argue that the heat Q 5 DE int 2 W associated with a given 
change in temperature does not have a unique value as discussed in Section 20.4.
	 We can address this difficulty by defining specific heats for two special processes 
that we have studied: isovolumetric and isobaric. Because the number of moles n 
is a convenient measure of the amount of gas, we define the molar specific heats 
associated with these processes as follows:

	 Q 5 nCV DT	 (constant volume)	 (21.23)

	 Q 5 nCP DT	 (constant pressure)	 (21.24)

where CV is the molar specific heat at constant volume and CP is the molar spe-
cific heat at constant pressure. When energy is added to a gas by heat at constant 
pressure, not only does the internal energy of the gas increase, but (negative) work 
is done on the gas because of the change in volume required to keep the pres-
sure constant. Therefore, the heat Q in Equation 21.24 must account for both the 
increase in internal energy and the transfer of energy out of the system by work. 
For this reason, Q is greater in Equation 21.24 than in Equation 21.23 for given val-
ues of n and DT. Therefore, CP is greater than CV .
	 In the previous section, we found that the temperature of a gas is a measure of 
the average translational kinetic energy of the gas molecules. This kinetic energy 
is associated with the motion of the center of mass of each molecule. It does not 
include the energy associated with the internal motion of the molecule, namely, 
vibrations and rotations about the center of mass. That should not be surprising 
because the simple kinetic theory model assumes a structureless molecule.
	 So, let’s first consider the simplest case of an ideal monatomic gas, that is, a gas 
containing one atom per molecule such as helium, neon, or argon. When energy 
is added to a monatomic gas in a container of fixed volume, all the added energy 
goes into increasing the translational kinetic energy of the atoms. There is no other 
way to store the energy in a monatomic gas. Therefore, from Equation 21.21, we see 
that the internal energy E int of N molecules (or n mol) of an ideal monatomic gas is

	 E int 5 K tot trans 5 3
2NkBT 5 3

2nRT 	 (21.25)

For a monatomic ideal gas, E int is a function of T only and the functional relation-
ship is given by Equation 21.25. In general, the internal energy of any ideal gas is a 
function of T only and the exact relationship depends on the type of gas.
	 If energy is transferred by heat to a system at constant volume, no work is done 
on the system. That is, W 5 2e P dV 5 0 for a constant-volume process. Hence, from 
the first law of thermodynamics,

	 Q 5 DE int	 (21.26)

In other words, all the energy transferred by heat goes into increasing the inter-
nal energy of the system. A constant-volume process from i to f for an ideal gas is 
described in Figure 21.4, where DT is the temperature difference between the two 
isotherms. Substituting the expression for Q given by Equation 21.23 into Equation 
21.26, we obtain

	 DE int 5 nCV  DT	 (21.27)

This equation applies to all ideal gases, those gases having more than one atom per 
molecule as well as monatomic ideal gases. 
	 In the limit of infinitesimal changes, we can use Equation 21.27 to express the 
molar specific heat at constant volume as

	 CV 5
1
n

 
dE int

dT
	 (21.28)

� Internal energy of an ideal 
 monatomic gas

P

V

Isotherms

i

f

f �

T � �T

f �

T

Figure 21.3  ​An ideal gas is taken 
from one isotherm at temperature 
T to another at temperature T 1 
DT along three different paths.
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P

V
T

i

f

f �
Isotherms

T � �T

For the constant-volume 
path, all the energy input 
goes into increasing the 
internal energy of the gas 
because no work is done.

Along the constant-pressure 
path, part of the energy 
transferred in by heat is 
transferred out by work.

Figure 21.4  Energy is trans-
ferred by heat to an ideal gas in 
two ways.

Let’s now apply the results of this discussion to a monatomic gas. Substituting the 
internal energy from Equation 21.25 into Equation 21.28 gives

	 CV 5 3
2R 5 12.5 J/mol # K 	 (21.29)

This expression predicts a value of CV 5 3
2R  for all monatomic gases. This predic-

tion is in excellent agreement with measured values of molar specific heats for such 
gases as helium, neon, argon, and xenon over a wide range of temperatures (Table 
21.2). Small variations in Table 21.2 from the predicted values are because real 
gases are not ideal gases. In real gases, weak intermolecular interactions occur, 
which are not addressed in our ideal gas model.
	 Now suppose the gas is taken along the constant-pressure path i S f 9 shown in 
Figure 21.4. Along this path, the temperature again increases by DT. The energy 
that must be transferred by heat to the gas in this process is Q 5 nCP  DT. Because 
the volume changes in this process, the work done on the gas is W 5 2P  DV, where 
P is the constant pressure at which the process occurs. Applying the first law of 
thermodynamics to this process, we have

	 DE int 5 Q 1 W 5 nCP DT 1 (2P DV)	 (21.30)

In this case, the energy added to the gas by heat is channeled as follows. Part of it 
leaves the system by work (that is, the gas moves a piston through a displacement), 
and the remainder appears as an increase in the internal energy of the gas. The 
change in internal energy for the process i S f 9, however, is equal to that for the pro-
cess i S f because E int depends only on temperature for an ideal gas and DT is the 
same for both processes. In addition, because PV 5 nRT, note that for a constant- 
pressure process, P DV 5 nR DT. Substituting this value for P DV into Equation 
21.30 with DE int 5 nCV DT (Eq. 21.27) gives

	 nCV DT 5 nCP DT 2 nR DT	

	 CP 2 CV 5 R	 (21.31)

This expression applies to any ideal gas. It predicts that the molar specific heat of an 
ideal gas at constant pressure is greater than the molar specific heat at constant vol-
ume by an amount R, the universal gas constant (which has the value 8.31 J/mol ? K). 
This expression is applicable to real gases as the data in Table 21.2 show.

Table 21.2 Molar Specific Heats of Various Gases
Molar Specific Heat ( J/mol ? K)a

Gas	 CP	 CV	 CP  2 CV	 g 5 CP/CV

Monatomic gases
He	 20.8	 12.5	 8.33	 1.67
Ar	 20.8	 12.5	 8.33	 1.67
Ne	 20.8	 12.7	 8.12	 1.64
Kr	 20.8	 12.3	 8.49	 1.69

Diatomic gases
H2	 28.8	 20.4	 8.33	 1.41
N2	 29.1	 20.8	 8.33	 1.40
O2	 29.4	 21.1	 8.33	 1.40
CO	 29.3	 21.0	 8.33	 1.40
Cl2	 34.7	 25.7	 8.96	 1.35

Polyatomic gases
CO2	 37.0	 28.5	 8.50	 1.30
SO2	 40.4	 31.4	 9.00	 1.29
H2O	 35.4	 27.0	 8.37	 1.30
CH4	 35.5	 27.1	 8.41	 1.31

a All values except that for water were obtained at 300 K.
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634	C hapter 21 T he Kinetic Theory of Gases

	

	 Because CV 5 3
2R  for a monatomic ideal gas, Equation 21.31 predicts a value 

CP 5 5
2R 5 20.8 J/mol # K  for the molar specific heat of a monatomic gas at con-

stant pressure. The ratio of these molar specific heats is a dimensionless quantity g 
(Greek letter gamma):

	 g 5
CP

CV
5

5R /2
3R /2

5
5
3

5 1.67	 (21.32)

	 Theoretical values of CV , CP , and g are in excellent agreement with experimental 
values obtained for monatomic gases, but they are in serious disagreement with the 
values for the more complex gases (see Table 21.2). That is not surprising; the value 
CV 5 3

2 R  was derived for a monatomic ideal gas, and we expect some additional 
contribution to the molar specific heat from the internal structure of the more 
complex molecules. In Section 21.3, we describe the effect of molecular structure 
on the molar specific heat of a gas. The internal energy—and hence the molar 
specific heat—of a complex gas must include contributions from the rotational and 
the vibrational motions of the molecule.
	 In the case of solids and liquids heated at constant pressure, very little work is 
done during such a process because the thermal expansion is small. Consequently, 
CP and CV are approximately equal for solids and liquids.

Q	 uick Quiz 21.2 ​ (i) How does the internal energy of an ideal gas change as it fol-
lows path i S f in Figure 21.4? (a) E int increases. (b) E int decreases. (c) E int stays 
the same. (d) There is not enough information to determine how E int changes. 
(ii) From the same choices, how does the internal energy of an ideal gas change 
as it follows path f S f 9 along the isotherm labeled T 1 DT in Figure 21.4?

Ratio of molar specific heats  
for a monatomic ideal gas

Example 21.2	     Heating a Cylinder of Helium

A cylinder contains 3.00 mol of helium gas at a temperature of 300 K.

(A)  ​If the gas is heated at constant volume, how much energy must be transferred by heat to the gas for its tempera-
ture to increase to 500 K?

Conceptualize  ​Run the process in your mind with the help of the piston–cylinder arrangement in Figure 19.12. Imag-
ine that the piston is clamped in position to maintain the constant volume of the gas.

Categorize  ​We evaluate parameters with equations developed in the preceding discussion, so this example is a substi-
tution problem.

S o l u ti  o n

Use Equation 21.23 to find the energy transfer: Q 1 5 nCV  DT

Substitute the given values: Q 1 5 (3.00 mol)(12.5 J/mol ? K)(500 K 2 300 K)

5   7.50 3 103 J

Use Equation 21.24 to find the energy transfer: Q 2 5 nCP  DT

Substitute the given values: Q 2 5 (3.00 mol)(20.8 J/mol ? K)(500 K 2 300 K)

5   12.5 3 103 J

(B)  ​How much energy must be transferred by heat to the gas at constant pressure to raise the temperature to 500 K?

S o l u ti  o n

This value is larger than Q 1 because of the transfer of energy out of the gas by work to raise the piston in the constant 
pressure process.
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21.3	 The Equipartition of Energy
Predictions based on our model for molar specific heat agree quite well with the 
behavior of monatomic gases, but not with the behavior of complex gases (see Table 
21.2). The value predicted by the model for the quantity CP 2 CV 5 R, however, is 
the same for all gases. This similarity is not surprising because this difference is the 
result of the work done on the gas, which is independent of its molecular structure.
	 To clarify the variations in CV and CP in gases more complex than monatomic 
gases, let’s explore further the origin of molar specific heat. So far, we have 
assumed the sole contribution to the internal energy of a gas is the translational 
kinetic energy of the molecules. The internal energy of a gas, however, includes 
contributions from the translational, vibrational, and rotational motion of the mol-
ecules. The rotational and vibrational motions of molecules can be activated by 
collisions and therefore are “coupled” to the translational motion of the molecules. 
The branch of physics known as statistical mechanics has shown that, for a large num-
ber of particles obeying the laws of Newtonian mechanics, the available energy is, 
on average, shared equally by each independent degree of freedom. Recall from 
Section 21.1 that the equipartition theorem states that, at equilibrium, each degree 
of freedom contributes 1

2 kBT  of energy per molecule.
	 Let’s consider a diatomic gas whose molecules have the shape of a dumbbell (Fig. 
21.5). In this model, the center of mass of the molecule can translate in the x, y, and 
z directions (Fig. 21.5a). In addition, the molecule can rotate about three mutually 
perpendicular axes (Fig. 21.5b). The rotation about the y axis can be neglected 
because the molecule’s moment of inertia Iy and its rotational energy 1

2 Iyv
2 about 

this axis are negligible compared with those associated with the x and z axes. (If 
the two atoms are modeled as particles, then Iy is identically zero.) Therefore, there 
are five degrees of freedom for translation and rotation: three associated with the 
translational motion and two associated with the rotational motion. Because each 
degree of freedom contributes, on average, 1

2kBT  of energy per molecule, the inter-
nal energy for a system of N molecules, ignoring vibration for now, is

	 E int 5 3N 11
2kBT 2 1 2N 11

2kBT 2 5 5
2 NkBT 5 5

2nRT 	

We can use this result and Equation 21.28 to find the molar specific heat at con-
stant volume:

	 CV 5
1
n

  
dE int

dT
5

1
n

  
d

dT
15

2nRT 2 5 5
2R  5 20.8 J/mol ? K	 (21.33)

From Equations 21.31 and 21.32, we find that

	 CP 5 CV 1 R 5 7
2 R  5 29.1 J/mol ? K	

	 g 5
CP

CV
5

7
2R
5
2R

5
7
5

5 1.40	

These results agree quite well with most of the data for diatomic molecules given 
in Table 21.2. That is rather surprising because we have not yet accounted for the 
possible vibrations of the molecule.
	 In the model for vibration, the two atoms are joined by an imaginary spring (see 
Fig. 21.5c). The vibrational motion adds two more degrees of freedom, which cor-
respond to the kinetic energy and the potential energy associated with vibrations 
along the length of the molecule. Hence, a model that includes all three types of 
motion predicts a total internal energy of

	 E int 5 3N 11
2kBT 2 1 2N 11

2kBT 2 1 2N 11
2kBT 2 5 7

2Nk BT 5 7
2nRT 	

and a molar specific heat at constant volume of

	 CV 5
1
n

  
dE int

dT
5

1
n

  
d

dT
17

2nRT 2 5 7
2R  5 29.1 J/mol ? K	 (21.34)

x

z

y

yx

z

Translational motion of 
the center of mass

Rotational motion about 
the various axes

Vibrational motion along 
the molecular axis

a

b

c

Figure 21.5  ​Possible motions of 
a diatomic molecule.
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This value is inconsistent with experimental data for molecules such as H2 and N2 
(see Table 21.2) and suggests a breakdown of our model based on classical physics.
	 It might seem that our model is a failure for predicting molar specific heats for 
diatomic gases. We can claim some success for our model, however, if measure-
ments of molar specific heat are made over a wide temperature range rather than at 
the single temperature that gives us the values in Table 21.2. Figure 21.6 shows the 
molar specific heat of hydrogen as a function of temperature. The remarkable fea-
ture about the three plateaus in the graph’s curve is that they are at the values of the 
molar specific heat predicted by Equations 21.29, 21.33, and 21.34! For low tempera-
tures, the diatomic hydrogen gas behaves like a monatomic gas. As the temperature 
rises to room temperature, its molar specific heat rises to a value for a diatomic gas, 
consistent with the inclusion of rotation but not vibration. For high temperatures, 
the molar specific heat is consistent with a model including all types of motion.
	 Before addressing the reason for this mysterious behavior, let’s make some brief 
remarks about polyatomic gases. For molecules with more than two atoms, three 
axes of rotation are available. The vibrations are more complex than for diatomic 
molecules. Therefore, the number of degrees of freedom is even larger. The result is 
an even higher predicted molar specific heat, which is in qualitative agreement with 
experiment. The molar specific heats for the polyatomic gases in Table 21.2 are higher 
than those for diatomic gases. The more degrees of freedom available to a molecule, 
the more “ways” there are to store energy, resulting in a higher molar specific heat.

A Hint of Energy Quantization
Our model for molar specific heats has been based so far on purely classical notions. 
It predicts a value of the specific heat for a diatomic gas that, according to Figure 
21.6, only agrees with experimental measurements made at high temperatures. To 
explain why this value is only true at high temperatures and why the plateaus in 
Figure 21.6 exist, we must go beyond classical physics and introduce some quantum 
physics into the model. In Chapter 18, we discussed quantization of frequency for 
vibrating strings and air columns; only certain frequencies of standing waves can 
exist. That is a natural result whenever waves are subject to boundary conditions.
	 Quantum physics (Chapters 40 through 43) shows that atoms and molecules 
can be described by the waves under boundary conditions analysis model. Conse-
quently, these waves have quantized frequencies. Furthermore, in quantum physics, 
the energy of a system is proportional to the frequency of the wave representing the 
system. Hence, the energies of atoms and molecules are quantized.
	 For a molecule, quantum physics tells us that the rotational and vibrational ener-
gies are quantized. Figure 21.7 shows an energy-level diagram for the rotational 
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Figure 21.6  ​The molar specific 
heat of hydrogen as a function of 
temperature.
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and vibrational quantum states of a diatomic molecule. The lowest allowed state 
is called the ground state. The black lines show the energies allowed for the mol-
ecule. Notice that allowed vibrational states are separated by larger energy gaps 
than are rotational states.
	 At low temperatures, the energy a molecule gains in collisions with its neighbors 
is generally not large enough to raise it to the first excited state of either rotation or 
vibration. Therefore, even though rotation and vibration are allowed according to 
classical physics, they do not occur in reality at low temperatures. All molecules are 
in the ground state for rotation and vibration. The only contribution to the mol-
ecules’ average energy is from translation, and the specific heat is that predicted by 
Equation 21.29.
	 As the temperature is raised, the average energy of the molecules increases. In 
some collisions, a molecule may have enough energy transferred to it from another 
molecule to excite the first rotational state. As the temperature is raised further, 
more molecules can be excited to this state. The result is that rotation begins to 
contribute to the internal energy, and the molar specific heat rises. At about room 
temperature in Figure 21.6, the second plateau has been reached and rotation con-
tributes fully to the molar specific heat. The molar specific heat is now equal to the 
value predicted by Equation 21.33.
	 There is no contribution at room temperature from vibration because the mole-
cules are still in the ground vibrational state. The temperature must be raised even 
further to excite the first vibrational state, which happens in Figure 21.6 between 
1 000 K and 10 000 K. At 10 000 K on the right side of the figure, vibration is con-
tributing fully to the internal energy and the molar specific heat has the value pre-
dicted by Equation 21.34.
	 The predictions of this model are supportive of the theorem of equipartition of 
energy. In addition, the inclusion in the model of energy quantization from quan-
tum physics allows a full understanding of Figure 21.6.

Q	 uick Quiz 21.3  ​The molar specific heat of a diatomic gas is measured at constant 
volume and found to be 29.1 J/mol ? K. What are the types of energy that are con-
tributing to the molar specific heat? (a) translation only (b) translation and rota-
tion only (c) translation and vibration only (d) translation, rotation, and vibration

Q	 uick Quiz 21.4 ​ The molar specific heat of a gas is measured at constant volume 
and found to be 11R/2. Is the gas most likely to be (a) monatomic, (b) diatomic, 
or (c) polyatomic?

21.4	 Adiabatic Processes for an Ideal Gas
As noted in Section 20.6, an adiabatic process is one in which no energy is trans-
ferred by heat between a system and its surroundings. For example, if a gas is com-
pressed (or expanded) rapidly, very little energy is transferred out of (or into) the 
system by heat, so the process is nearly adiabatic. Such processes occur in the cycle 
of a gasoline engine, which is discussed in detail in Chapter 22. Another example 
of an adiabatic process is the slow expansion of a gas that is thermally insulated 
from its surroundings. All three variables in the ideal gas law—P, V, and T—change 
during an adiabatic process.
	 Let’s imagine an adiabatic gas process involving an infinitesimal change in 
volume dV and an accompanying infinitesimal change in temperature dT. The  
work done on the gas is 2P dV. Because the internal energy of an ideal gas depends 
only on temperature, the change in the internal energy in an adiabatic process 
is the same as that for an isovolumetric process between the same temperatures,  
dE int 5 nCV dT (Eq. 21.27). Hence, the first law of thermodynamics, DE int 5 Q 1 W, 
with Q 5 0, becomes the infinitesimal form

	 dE int 5 nCV dT 5 2P dV	 (21.35)

Rotational
states

Rotational
states

Vibrational
states

E
N

E
R

G
Y

The rotational states lie closer 
together in energy than do the
vibrational states.

Figure 21.7  ​An energy-level dia-
gram for vibrational and rotational 
states of a diatomic molecule. 
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638	C hapter 21 T he Kinetic Theory of Gases

Taking the total differential of the equation of state of an ideal gas, PV 5 nRT, gives

	 P dV 1 V dP 5 nR dT	 (21.36)

Eliminating dT from Equations 21.35 and 21.36, we find that

	 P dV 1 V dP 5 2
R
CV

 P dV 	

Substituting R 5 CP 2 CV and dividing by PV gives

	
dV
V

1
dP
P

5 2aCP 2 CV

CV
b dV

V
5 11 2 g 2 dV

V
	

	
dP
P

1 g 
dV
V

5 0	

Integrating this expression, we have

	 ln P 1 g ln V 5 constant	

which is equivalent to

	 PV g 5 constant	 (21.37)

	 The PV diagram for an adiabatic expansion is shown in Figure 21.8. Because  
g . 1, the PV curve is steeper than it would be for an isothermal expansion, for 
which PV 5 constant. By the definition of an adiabatic process, no energy is trans-
ferred by heat into or out of the system. Hence, from the first law, we see that DE int 
is negative (work is done by the gas, so its internal energy decreases) and so DT also 
is negative. Therefore, the temperature of the gas decreases (Tf , Ti) during an adi-
abatic expansion.2 Conversely, the temperature increases if the gas is compressed 
adiabatically. Applying Equation 21.37 to the initial and final states, we see that

	 PiVi
g 5 PfVf

g	 (21.38)

Using the ideal gas law, we can express Equation 21.37 as

	 TV g21 5 constant	 (21.39)

Relationship between P and V  
for an adiabatic process 

involving an ideal gas

Relationship between T and V  
for an adiabatic process 

involving an ideal gas

2In the adiabatic free expansion discussed in Section 20.6, the temperature remains constant. In this unique pro-
cess,  no work is done because the gas expands into a vacuum. In general, the temperature decreases in an adiabatic 
expansion in which work is done.

Example 21.3	     A Diesel Engine Cylinder

Air at 20.08C in the cylinder of a diesel engine is compressed from an initial pressure of 1.00 atm and volume of 
800.0 cm3 to a volume of 60.0 cm3. Assume air behaves as an ideal gas with g 5 1.40 and the compression is adiabatic. 
Find the final pressure and temperature of the air.

Conceptualize  ​Imagine what happens if a gas is compressed into a smaller volume. Our discussion above and Figure 
21.8 tell us that the pressure and temperature both increase.

Categorize  ​We categorize this example as a problem involving an adiabatic process.

S o l u ti  o n

Ti
Tf

Isotherms

P

V

Pi

Pf

Vi Vf

i

f

The temperature of a 
gas decreases in an 
adiabatic expansion.

Figure 21.8  ​The PV diagram 
for an adiabatic expansion of an 
ideal gas. 

Analyze  ​Use Equation 21.38 to find the final pressure: Pf 5 Pi a
Vi

Vf
b

g

5 11.00 atm 2 a800.0 cm3

60.0 cm3 b
1.40

5   37.6 atm
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Finalize  ​The temperature of the gas increases by a factor of 826 K/293 K 5 2.82. The high compression in a diesel 
engine raises the temperature of the gas enough to cause the combustion of fuel without the use of spark plugs.

21.5	 Distribution of Molecular Speeds
Thus far, we have considered only average values of the energies of all the molecules 
in a gas and have not addressed the distribution of energies among individual mol-
ecules. The motion of the molecules is extremely chaotic. Any individual molecule 
collides with others at an enormous rate, typically a billion times per second. Each 
collision results in a change in the speed and direction of motion of each of the 
participant molecules. Equation 21.22 shows that rms molecular speeds increase 
with increasing temperature. At a given time, what is the relative number of mol-
ecules that possess some characteristic such as energy within a certain range?
	 We shall address this question by considering the number density nV(E). This 
quantity, called a distribution function, is defined so that nV(E) dE is the number of 
molecules per unit volume with energy between E and E 1 dE. (The ratio of the 
number of molecules that have the desired characteristic to the total number of 
molecules is the probability that a particular molecule has that characteristic.) In 
general, the number density is found from statistical mechanics to be

	 nV 1E 2 5 n 0e
2E/kBT 	 (21.40)

where n0 is defined such that n0 dE is the number of molecules per unit volume hav-
ing energy between E 5 0 and E 5 dE. This equation, known as the Boltzmann dis-
tribution law, is important in describing the statistical mechanics of a large number 
of molecules. It states that the probability of finding the molecules in a particular 
energy state varies exponentially as the negative of the energy divided by kBT. All 
the molecules would fall into the lowest energy level if the thermal agitation at a 
temperature T did not excite the molecules to higher energy levels.

WW Boltzmann distribution law

Use the ideal gas law to find the final temperature:
PiVi

Ti
5

PfVf

Tf

Tf 5
Pf Vf

PiVi
Ti 5

137.6 atm 2 160.0 cm3 2
11.00 atm 2 1800.0 cm3 2 1293 K 2  

5 826 K 5   5538C

	

▸ 21.3 c o n t i n u e d

Example 21.4	     Thermal Excitation of Atomic Energy Levels

As discussed in Section 21.4, atoms can occupy only certain discrete energy levels. Con-
sider a gas at a temperature of 2 500 K whose atoms can occupy only two energy levels 
separated by 1.50 eV, where 1 eV (electron volt) is an energy unit equal to 1.60 3 10219 J 
(Fig. 21.9). Determine the ratio of the number of atoms in the higher energy level to the 
number in the lower energy level.

Conceptualize  ​In your mental representation of this example, remember that only two 
possible states are allowed for the system of the atom. Figure 21.9 helps you visualize the 
two states on an energy-level diagram. In this case, the atom has two possible energies, E1 
and E 2, where E1 , E 2.

S o l u ti  o n

continued

Pitfall Prevention 21.2
The Distribution Function   
The distribution function nV(E) 
is defined in terms of the number 
of molecules with energy in the 
range E to E 1 dE rather than in 
terms of the number of molecules 
with energy E. Because the num-
ber of molecules is finite and the 
number of possible values of the 
energy is infinite, the number of 
molecules with an exact energy E 
may be zero.

E1

E2

1.50 eV

E
N

E
R

G
Y

Figure 21.9  ​(Example 
21.4) Energy-level diagram 
for a gas whose atoms can 
occupy two energy states.
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640	C hapter 21 T he Kinetic Theory of Gases

	 Now that we have discussed the distribution of energies among molecules in a 
gas, let’s think about the distribution of molecular speeds. In 1860, James Clerk 
Maxwell (1831–1879) derived an expression that describes the distribution of 
molecular speeds in a very definite manner. His work and subsequent developments 
by other scientists were highly controversial because direct detection of molecules 
could not be achieved experimentally at that time. About 60 years later, however, 
experiments were devised that confirmed Maxwell’s predictions.
	 Let’s consider a container of gas whose molecules have some distribution of 
speeds. Suppose we want to determine how many gas molecules have a speed in the 
range from, for example, 400 to 401 m/s. Intuitively, we expect the speed distribu-
tion to depend on temperature. Furthermore, we expect the distribution to peak 
in the vicinity of vrms. That is, few molecules are expected to have speeds much less 
than or much greater than vrms because these extreme speeds result only from an 
unlikely chain of collisions.
	 The observed speed distribution of gas molecules in thermal equilibrium is 
shown in Figure 21.10. The quantity Nv , called the Maxwell–Boltzmann speed dis-
tribution function, is defined as follows. If N is the total number of molecules, the 
number of molecules with speeds between v and v 1 dv is dN 5 Nv dv. This number 
is also equal to the area of the shaded rectangle in Figure 21.10. Furthermore, the 
fraction of molecules with speeds between v and v 1 dv is (Nv dv)/N. This fraction 
is also equal to the probability that a molecule has a speed in the range v to v 1 dv.

Evaluate kBT in the exponent: kBT 5 11.38 3 10223 J/K 2 12 500 K 2 a 1 eV
1.60 3 10219 J

b 5 0.216 eV

Substitute this value into Equation (1):
nV 1E2 2
nV 1E1 2

5 e21.50 eV/0.216 eV 5 e26.96 5  9.52 3 1024

Finalize  ​This result indicates that at T 5 2 500 K, only a small fraction of the atoms are in the higher energy level. In 
fact, for every atom in the higher energy level, there are about 1 000 atoms in the lower level. The number of atoms in 
the higher level increases at even higher temperatures, but the distribution law specifies that at equilibrium there are 
always more atoms in the lower level than in the higher level.

​What if the energy levels in Figure 21.9 were closer together in energy? Would that increase or decrease 
the fraction of the atoms in the upper energy level?

Answer  ​If the excited level is lower in energy than that in Figure 21.9, it would be easier for thermal agitation to excite 
atoms to this level and the fraction of atoms in this energy level would be larger, which we can see mathematically by 
expressing Equation (1) as

r2 5 e21E22E12/k BT

where r2 is the ratio of atoms having energy E 2 to those with energy E1. Differentiating with respect to E 2, we find

dr2

dE 2
5

d
dE 2

3e21E2 2E12/kBT 4 5 2
1

kBT
 e21E22E12/kBT , 0

Because the derivative has a negative value, as E 2 decreases, r2 increases.

What If ?

Ludwig Boltzmann
Austrian physicist (1844–1906)
Boltzmann made many important 
contributions to the development of 
the kinetic theory of gases, electro-
magnetism, and thermodynamics. His 
pioneering work in the field of kinetic 
theory led to the branch of physics 
known as statistical mechanics.
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Analyze  ​Set up the ratio of the number of 
atoms in the higher energy level to the num-
ber in the lower energy level and use Equa-
tion 21.40 to express each number:

(1)   
nV 1E2 2
nV 1E1 2

5
n 0e

2E2/k BT

n 0e
2E1/k BT 5 e21E22E12/k BT

Categorize  ​We categorize this example as one in which we focus on particles in a two-state quantized system. We will 
apply the Boltzmann distribution law to this system.

	

▸ 21.4 c o n t i n u e d
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	 21.5  Distribution of Molecular Speeds	 641

	 The fundamental expression that describes the distribution of speeds of N gas 
molecules is

	 Nv 5 4pN a m0 
2pkBT

b
3/2

v2e2m 0v
2/2kBT 	 (21.41)

where m0 is the mass of a gas molecule, k B is Boltzmann’s constant, and T is the 
absolute temperature.3 Observe the appearance of the Boltzmann factor e2E/kBT  
with E 5 1

2m0v
2.

	 As indicated in Figure 21.10, the average speed is somewhat lower than the 
rms speed. The most probable speed vmp is the speed at which the distribution curve 
reaches a peak. Using Equation 21.41, we find that

	 vrms 5 " v2 5 Å
3kBT
m0

5 1.73Å
kBT
m 0

	 (21.42)

	 vavg 5 Å
8kBT
pm 0

5 1.60Å
kBT
m0

	 (21.43)

	 vmp 5 Å
2kBT
m0

5 1.41Å
kBT
m0

	 (21.44)

Equation 21.42 has previously appeared as Equation 21.22. The details of the deri-
vations of these equations from Equation 21.41 are left for the end-of-chapter prob-
lems (see Problems 42 and 69). From these equations, we see that

	 vrms . vavg . vmp	

	 Figure 21.11 represents speed distribution curves for nitrogen, N2. The curves 
were obtained by using Equation 21.41 to evaluate the distribution function at vari-
ous speeds and at two temperatures. Notice that the peak in each curve shifts to 
the right as T increases, indicating that the average speed increases with increasing 
temperature, as expected. Because the lowest speed possible is zero and the upper 
classical limit of the speed is infinity, the curves are asymmetrical. (In Chapter 39, 
we show that the actual upper limit is the speed of light.)
	 Equation 21.41 shows that the distribution of molecular speeds in a gas depends 
both on mass and on temperature. At a given temperature, the fraction of mol-
ecules with speeds exceeding a fixed value increases as the mass decreases. Hence, 

3 For the derivation of this expression, see an advanced textbook on thermodynamics.

vmp

vrms

Nv

v

v avg

Nv

dv

The number of molecules 
having speeds ranging from v 
to v � dv equals the area of 
the tan rectangle, Nv dv.

Figure 21.10  The speed distri-
bution of gas molecules at some 
temperature. The function Nv 
approaches zero as v approaches 
infinity.

Figure 21.11  The speed distri-
bution function for 105 nitrogen 
molecules at 300 K and 900 K.
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The total area under either curve is 
equal to N, the total number of 
molecules. In this case, N � 105.

Note that vrms � vavg � vmp.
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642	C hapter 21 T he Kinetic Theory of Gases

lighter molecules such as H2 and He escape into space more readily from the 
Earth’s atmosphere than do heavier molecules such as N2 and O2. (See the discus-
sion of escape speed in Chapter 13. Gas molecules escape even more readily from 
the Moon’s surface than from the Earth’s because the escape speed on the Moon is 
lower than that on the Earth.)
	 The speed distribution curves for molecules in a liquid are similar to those 
shown in Figure 21.11. We can understand the phenomenon of evaporation of a 
liquid from this distribution in speeds, given that some molecules in the liquid 
are more energetic than others. Some of the faster-moving molecules in the liq-
uid penetrate the surface and even leave the liquid at temperatures well below the 
boiling point. The molecules that escape the liquid by evaporation are those that 
have sufficient energy to overcome the attractive forces of the molecules in the 
liquid phase. Consequently, the molecules left behind in the liquid phase have a 
lower average kinetic energy; as a result, the temperature of the liquid decreases. 
Hence, evaporation is a cooling process. For example, an alcohol-soaked cloth can 
be placed on a feverish head to cool and comfort a patient.

Example 21.5	     A System of Nine Particles

Nine particles have speeds of 5.00, 8.00, 12.0, 12.0, 12.0, 14.0, 14.0, 17.0, and 20.0 m/s.

(A)  ​Find the particles’ average speed.

Conceptualize  ​Imagine a small number of particles moving in random directions with the few speeds listed. This situ-
ation is not representative of the large number of molecules in a gas, so we should not expect the results to be consis-
tent with those from statistical mechanics.

Categorize  ​Because we are dealing with a small number of particles, we can calculate the average speed directly.

S o l u ti  o n

Analyze  ​Find the average 
speed of the particles by divid-
ing the sum of the speeds by 
the total number of particles:

vavg 5
15.00 1 8.00 1 12.0 1 12.0 1 12.0 1 14.0 1 14.0 1 17.0 1 20.0 2  m/s

9

5   12.7 m/s

Find the average speed 
squared of the particles 
by dividing the sum of the 
speeds squared by the total 
number of particles:

v2 5
15.002 1 8.002 1 12.02 1 12.02 1 12.02 1 14.02 1 14.02 1 17.02 1 20.02 2  m2/s2 

9

5 178 m2/s2

Find the rms speed of the par-
ticles by taking the square root:

vrms 5 " v2 5 "178 m2/s2 5  13.3 m/s

(B)  ​What is the rms speed of the particles?

S o l u ti  o n

(C)  ​What is the most probable speed of the particles?

Three of the particles have a speed of 12.0 m/s, two have a speed of 14.0 m/s, and the remaining four have different 
speeds. Hence, the most probable speed vmp is 12.0 m/s.

Finalize  ​Compare this example, in which the number of particles is small and we know the individual particle speeds, 
with the next example.

S o l u ti  o n
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Example 21.6	     Molecular Speeds in a Hydrogen Gas

A 0.500-mol sample of hydrogen gas is at 300 K.

(A)  ​Find the average speed, the rms speed, and the most probable speed of the hydrogen molecules.

Conceptualize  ​Imagine a huge number of particles in a real gas, all moving in random directions with different speeds.

Categorize  ​We cannot calculate the averages as was done in Example 21.5 because the individual speeds of the par-
ticles are not known. We are dealing with a very large number of particles, however, so we can use the Maxwell-
Boltzmann speed distribution function.

S o l u ti  o n

Analyze  ​Use Equation 21.43 to find the average speed: vavg 5 1.60Å
kBT
m0

5 1.60 Å
11.38 3 10223 J/K 2 1300 K 2

2 11.67 3 10227 kg 2  

5   1.78 3 103 m/s

Use Equation 21.42 to find the rms speed: vrms 5 1.73 Å
kBT
m0

5 1.73 Å
11.38 3 10223 J/K 2 1300 K 2

2 11.67 3 10227 kg 2
5   1.93 3 103 m/s 

Use Equation 21.44 to find the most probable speed: vmp 5 1.41Å
kBT
m0

5 1.41Å
11.38 3 10223 J/K 2 1300 K 2

2 11.67 3 10227 kg 2
5   1.57 3 103 m/s 

Use Equation 21.41 to evaluate the number of molecules 
in a narrow speed range between v and v 1 dv:

(1)   Nv dv 5 4pN a m0

2pkBT
b

3/2

v 2e2m 0v
2/2k BT dv

Evaluate the constant in 
front of v 2:

4pN a m0

2pkBT
b

3/2

5 4pnNAa
m0

2pkBT
b

3/2

 

 5 4p 10.500 mol 2 16.02 3 1023 mol21 2 c 2 11.67 3 10227 kg 2
2p 11.38 3 10223 J/K 2 1300 K 2 d

3/2

5 1.74 3 1014 s3/m3

Evaluate the exponent of e that appears in Equation (1): 2
m 0v

2

2kBT
5 2

2 11.67 3 10227 kg 2 1400 m/s 22

2 11.38 3 10223 J/K 2 1300 K 2 5 20.064 5

Evaluate Nv dv using these values in Equation (1): Nv dv 5 11.74 3 1014 s3/m3 2 1400 m/s 22e20.064 5 11 m/s 2

5   2.61 3 1019 molecules 

(B)  ​Find the number of molecules with speeds between 400 m/s and 401 m/s.

S o l u ti  o n

Finalize  ​In this evaluation, we could calculate the result without integration because dv 5 1 m/s is much smaller than  
v 5 400 m/s. Had we sought the number of particles between, say, 400 m/s and 500 m/s, we would need to integrate 
Equation (1) between these speed limits.
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Summary

  The pressure of N molecules of an ideal gas contained in 
a volume V is

	 P 5 2
3 a

N
V
b 11

2m 0v
2 2 	 (21.15)

	 The average translational kinetic energy per molecule 
of a gas, 1

2m0v2, is related to the temperature T of the gas 
through the expression

	 1
2m0v

2 5 3
2kBT 	 (21.19)

where kB is Boltzmann’s constant. Each translational degree 
of freedom (x, y, or z) has 1

2kBT of energy associated with it.

  The internal energy of N molecules (or n mol) 
of an ideal monatomic gas is

	 E int 5 3
2NkBT 5 3

2nRT 	 (21.25)

	 The change in internal energy for n mol of any 
ideal gas that undergoes a change in temperature 
DT is

	 DEint 5 nCV DT 	 (21.27)

where CV is the molar specific heat at constant 
volume.

  The molar specific heat of an ideal monatomic gas 
at constant volume is CV 5 3

2R ; the molar specific heat 
at constant pressure is CP 5 5

2R . The ratio of specific 
heats is given by g 5 CP /CV 5 5

3.

  The Boltzmann distribution law describes the distri-
bution of particles among available energy states. The 
relative number of particles having energy between E 
and E 1 dE is nV(E) dE, where

	 nV 1E 2 5 n 0e
2E/k BT 	 (21.40)

The Maxwell–Boltzmann speed distribution function 
describes the distribution of speeds of molecules in a 
gas:

	 Nv 5 4pN a m0

2pkBT
b

3/2

v2e2m0v
2/2kBT 	 (21.41)

  If an ideal gas undergoes an adiabatic expansion or 
compression, the first law of thermodynamics, together 
with the equation of state, shows that

	 PV g 5 constant	 (21.37)

  Equation 21.41 enables us to calculate the root-
mean-square speed, the average speed, and the most 
probable speed of molecules in a gas:

	 vrms 5 " v2 5 Å
3kBT
m0

5 1.73 Å
kBT
m0

 	 (21.42)

	 vavg 5 Å
8kBT
pm0

5 1.60 Å
kBT
m0

 	 (21.43)

	 vmp 5 Å
2kBT
m0

5 1.41Å
kBT
m0

 	 (21.44)

Concepts and Principles

!3 times the original speed. (e) It increases by a factor 
of 6.

	 3.	 Two samples of the same ideal gas have the same pres-
sure and density. Sample B has twice the volume of 
sample A. What is the rms speed of the molecules in 
sample B? (a) twice that in sample A (b) equal to that 
in sample A (c) half that in sample A (d) impossible to 
determine

	 4.	 A helium-filled latex balloon initially at room tem-
perature is placed in a freezer. The latex remains 
flexible. (i)  Does the balloon’s volume (a) increase,  
(b) decrease, or (c)  remain the same? (ii) Does the 
pressure of the helium gas (a) increase significantly, 
(b) decrease significantly, or (c) remain approximately 
the same?

	 1.	 Cylinder A contains oxygen (O2) gas, and cylinder B 
contains nitrogen (N2) gas. If the molecules in the two 
cylinders have the same rms speeds, which of the fol-
lowing statements is false? (a) The two gases have dif-
ferent temperatures. (b) The temperature of cylinder 
B is less than the temperature of cylinder A. (c) The 
temperature of cylinder B is greater than the tempera-
ture of cylinder A. (d) The average kinetic energy of 
the nitrogen molecules is less than the average kinetic 
energy of the oxygen molecules.

	 2.	 An ideal gas is maintained at constant pressure. If 
the temperature of the gas is increased from 200 K  
to 600 K, what happens to the rms speed of the mol-
ecules? (a) It increases by a factor of 3. (b) It remains 
the same. (c) It is one-third the original speed. (d) It is 

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 Problems	 645

(f) of this account are correct statements necessary 
for a clear and complete explanation? (ii) Which are 
correct statements that are not necessary to account 
for the higher thermometer reading? (iii)  Which are 
incorrect statements?

	 8.	 An ideal gas is contained in a vessel at 300 K. The tem-
perature of the gas is then increased to 900 K. (i) By 
what factor does the average kinetic energy of the mol-
ecules change, (a) a factor of 9, (b) a factor of 3, (c) a 
factor of !3, (d) a factor of 1, or (e) a factor of 1

3? Using 
the same choices as in part (i), by what factor does each 
of the following change: (ii) the rms molecular speed 
of the molecules, (iii) the average momentum change 
that one molecule undergoes in a collision with one 
particular wall, (iv) the rate of collisions of molecules 
with walls, and (v) the pressure of the gas.

	 9.	 Which of the assumptions below is not made in the 
kinetic theory of gases? (a) The number of molecules 
is very large. (b) The molecules obey Newton’s laws 
of motion. (c) The forces between molecules are long 
range. (d) The gas is a pure substance. (e) The aver-
age separation between molecules is large compared 
to their dimensions.

	 5.	 A gas is at 200 K. If we wish to double the rms speed of 
the molecules of the gas, to what value must we raise its 
temperature? (a) 283 K (b) 400 K (c) 566 K (d) 800 K 
(e) 1130 K

	 6.	 Rank the following from largest to smallest, noting any 
cases of equality. (a) the average speed of molecules in 
a particular sample of ideal gas (b) the most probable 
speed (c) the root-mean-square speed (d) the average 
vector velocity of the molecules

	 7.	 A sample of gas with a thermometer immersed in the 
gas is held over a hot plate. A student is asked to give 
a step-by-step account of what makes our observation 
of the temperature of the gas increase. His response 
includes the following steps. (a) The molecules speed 
up. (b) Then the molecules collide with one another 
more often. (c) Internal friction makes the colli-
sions inelastic. (d) Heat is produced in the collisions.  
(e) The molecules of the gas transfer more energy to 
the thermometer when they strike it, so we observe 
that the temperature has gone up. (f) The same pro-
cess can take place without the use of a hot plate if 
you quickly push in the piston in an insulated cylinder 
containing the gas. (i) Which of the parts (a) through  

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Hot air rises, so why does it generally become cooler 
as you climb a mountain? Note: Air has low thermal 
conductivity.

	 2.	 Why does a diatomic gas have a greater energy con-
tent per mole than a monatomic gas at the same 
temperature?

	 3.	 When alcohol is rubbed on your body, it lowers your 
skin temperature. Explain this effect.

	 4.	 What happens to a helium-filled latex balloon released 
into the air? Does it expand or contract? Does it stop 
rising at some height?

	 5.	 Which is denser, dry air or air saturated with water 
vapor? Explain.

	 6.	 One container is filled with helium gas and another 
with argon gas. Both containers are at the same tem-
perature. Which molecules have the higher rms speed? 
Explain.

	 7.	 Dalton’s law of partial pressures states that the total 
pressure of a mixture of gases is equal to the sum of 
the pressures that each gas in the mixture would exert 
if it were alone in the container. Give a convincing 
argument for this law based on the kinetic theory of 
gases.

atoms? (c) What is the rms speed of the helium  
atoms?

	 2.	 A cylinder contains a mixture of helium and argon gas 
in equilibrium at 1508C. (a) What is the average kinetic 
energy for each type of gas molecule? (b) What is the 
rms speed of each type of molecule?

M

Section 21.1 ​ Molecular Model of an Ideal Gas
Problem 30 in Chapter 19 can be assigned with this 
section.

	 1.	 (a) How many atoms of helium gas fill a spherical 
balloon of diameter 30.0 cm at 20.08C and 1.00 atm? 
(b) What is the average kinetic energy of the helium 

M

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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646	C hapter 21 T he Kinetic Theory of Gases

	 3.	 In a 30.0-s interval, 500 hailstones strike a glass win-
dow of area 0.600 m2 at an angle of 45.08 to the win-
dow surface. Each hailstone has a mass of 5.00 g and a 
speed of 8.00 m/s. Assuming the collisions are elastic, 
find (a) the average force and (b) the average pressure 
on the window during this interval.

	 4.	 In an ultrahigh vacuum system (with typical pressures 
lower than 1027 pascal), the pressure is measured to 
be 1.00 3 10210 torr (where 1 torr 5 133 Pa). Assum-
ing the temperature is 300 K, find the number of mol-
ecules in a volume of 1.00 m3.

	 5.	 A spherical balloon of volume 4.00 3 103 cm3 contains 
helium at a pressure of 1.20 3 105 Pa. How many moles 
of helium are in the balloon if the average kinetic 
energy of the helium atoms is 3.60 3 10222 J?

	 6.	 A spherical balloon of volume V contains helium at a 
pressure P. How many moles of helium are in the bal-
loon if the average kinetic energy of the helium atoms 
is K ?

	 7.	 A 2.00-mol sample of oxygen gas is confined to a 5.00-L 
vessel at a pressure of 8.00 atm. Find the average trans-
lational kinetic energy of the oxygen molecules under 
these conditions.

	 8.	 Oxygen, modeled as an ideal gas, is in a container and 
has a temperature of 77.08C. What is the rms-average 
magnitude of the momentum of the gas molecules in 
the container?

	 9.	 Calculate the mass of an atom of (a) helium, (b) iron, 
and (c) lead. Give your answers in kilograms. The 
atomic masses of these atoms are 4.00 u, 55.9 u, and 
207 u, respectively.

	10.	The rms speed of an oxygen molecule (O2) in a con-
tainer of oxygen gas is 625 m/s. What is the tempera-
ture of the gas?

	11.	 A 5.00-L vessel contains nitrogen gas at 27.0°C and  
3.00 atm. Find (a) the total translational kinetic energy 
of the gas molecules and (b) the average kinetic energy 
per molecule.

	12.	A 7.00-L vessel contains 3.50 moles of gas at a pres-
sure of 1.60 3 106 Pa. Find (a) the temperature of the 
gas and (b) the average kinetic energy of the gas mol-
ecules in the vessel. (c) What additional information 
would you need if you were asked to find the average 
speed of the gas molecules?

	13.	In a period of 1.00 s, 5.00 3 1023 nitrogen molecules 
strike a wall with an area of 8.00 cm2. Assume the mol-
ecules move with a speed of 300 m/s and strike the 
wall head-on in elastic collisions. What is the pressure 
exerted on the wall? Note: The mass of one N2 molecule 
is 4.65 3 10226 kg.

Section 21.2 ​ Molar Specific Heat of an Ideal Gas

Note: You may use data in Table 21.2 about particular 
gases. Here we define a “monatomic ideal gas” to have 
molar specific heats CV 5 3

2R  and CP 5 5
2R , and a 

“diatomic ideal gas” to have CV 5 5
2R  and CP 5 7

2R .

W
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	14.	 In a constant-volume process, 209 J of energy is trans-
ferred by heat to 1.00 mol of an ideal monatomic gas 
initially at 300 K. Find (a) the work done on the gas, 
(b) the increase in internal energy of the gas, and  
(c) its final temperature.

	15.	A sample of a diatomic ideal gas has pressure P and 
volume V. When the gas is warmed, its pressure triples 
and its volume doubles. This warming process includes 
two steps, the first at constant pressure and the second 
at constant volume. Determine the amount of energy 
transferred to the gas by heat.

	16.	Review. A house has well-insulated walls. It contains 
a volume of 100 m3 of air at 300 K. (a) Calculate 
the energy required to increase the temperature of 
this diatomic ideal gas by 1.008C. (b) What If? If all 
this energy could be used to lift an object of mass m 
through a height of 2.00 m, what is the value of m?

	17.	 A 1.00-mol sample of hydrogen gas is heated at con-
stant pressure from 300 K to 420 K. Calculate (a) the 
energy transferred to the gas by heat, (b) the increase 
in its internal energy, and (c) the work done on the gas.

	18.	A vertical cylinder with a heavy piston contains air 
at 300 K. The initial pressure is 2.00 3 105 Pa, and 
the initial volume is 0.350 m3. Take the molar mass 
of air as 28.9 g/mol and assume CV 5 5

2R . (a) Find 
the specific heat of air at constant volume in units of  
J/kg ? 8C. (b) Calculate the mass of the air in the cyl-
inder. (c) Suppose the piston is held fixed. Find the 
energy input required to raise the temperature of the 
air to 700 K. (d) What If? Assume again the conditions 
of the initial state and assume the heavy piston is free 
to move. Find the energy input required to raise the 
temperature to 700 K.

	19.	 Calculate the change in internal energy of 3.00 mol of 
helium gas when its temperature is increased by 2.00 K.

	20.	A 1.00-L insulated bottle is full of tea at 90.08C. You pour 
out one cup of tea and immediately screw the stopper 
back on the bottle. Make an order-of-magnitude esti-
mate of the change in temperature of the tea remaining 
in the bottle that results from the admission of air at 
room temperature. State the quantities you take as data 
and the values you measure or estimate for them.

	21.	 Review. This problem is a continuation of Problem 39 
in Chapter 19. A hot-air balloon consists of an enve-
lope of constant volume 400 m3. Not including the air 
inside, the balloon and cargo have mass 200 kg. The 
air outside and originally inside is a diatomic ideal 
gas at 10.0°C and 101 kPa, with density 1.25 kg/m3. 
A propane burner at the center of the spherical enve-
lope injects energy into the air inside. The air inside 
stays at constant pressure. Hot air, at just the tempera-
ture required to make the balloon lift off, starts to fill 
the envelope at its closed top, rapidly enough so that 
negligible energy flows by heat to the cool air below 
it or out through the wall of the balloon. Air at 10°C 
leaves through an opening at the bottom of the enve-
lope until the whole balloon is filled with hot air at 
uniform temperature. Then the burner is shut off and 
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How much work is required to produce the same com-
pression in an adiabatic process? (c) What is the final 
pressure in part (a)? (d) What is the final pressure in 
part (b)?

	29.	Air in a thundercloud expands as it rises. If its initial 
temperature is 300 K and no energy is lost by ther-
mal conduction on expansion, what is its temperature 
when the initial volume has doubled?

	30.	Why is the following situation impossible? A new die-
sel engine that increases fuel economy over previ-
ous models is designed. Automobiles fitted with this 
design become incredible best sellers. Two design fea-
tures are responsible for the increased fuel economy:  
(1) the engine is made entirely of aluminum to reduce 
the weight of the automobile, and (2) the exhaust of 
the engine is used to prewarm the air to 508C before 
it enters the cylinder to increase the final temperature 
of the compressed gas. The engine has a compression 
ratio—that is, the ratio of the initial volume of the air 
to its final volume after compression—of 14.5. The 
compression process is adiabatic, and the air behaves 
as a diatomic ideal gas with g 5 1.40.

	31.	 During the power stroke in a four-stroke automo-
bile engine, the piston is forced down as the mixture 
of combustion products and air undergoes an adia-
batic expansion. Assume (1) the engine is running at  
2 500 cycles/min; (2) the gauge pressure immediately 
before the expansion is 20.0 atm; (3) the volumes of the 
mixture immediately before and after the expansion 
are 50.0 cm3 and 400  cm3, respectively (Fig. P21.31); 
(4) the time interval for the expansion is one-fourth 
that of the total cycle; and (5) the mixture behaves like 
an ideal gas with specific heat ratio 1.40. Find the aver-
age power generated during the power stroke.

Before After

50.0 cm3

400.0 cm3

Figure P21.31

	32.	Air (a diatomic ideal gas) at 27.08C and atmospheric 
pressure is drawn into a bicycle pump (see the chapter-
opening photo on page 626) that has a cylinder with 
an inner diameter of 2.50 cm and length 50.0 cm.  
The downstroke adiabatically compresses the air, 
which reaches a gauge pressure of 8.00 3 105 Pa before 
entering the tire. We wish to investigate the tempera-
ture increase of the pump. (a) What is the initial vol-
ume of the air in the pump? (b) What is the number 
of moles of air in the pump? (c) What is the absolute 

M

GP

the balloon rises from the ground. (a) Evaluate the 
quantity of energy the burner must transfer to the air 
in the balloon. (b) The “heat value” of propane—the 
internal energy released by burning each kilogram—is  
50.3 MJ/kg. What mass of propane must be burned?

Section 21.3 ​ The Equipartition of Energy

	22.	A certain molecule has f degrees of freedom. Show 
that an ideal gas consisting of such molecules has the 
following properties: (a) its total internal energy is 
fnRT/2, (b) its molar specific heat at constant volume 
is fR/2, (c) its molar specific heat at constant pres-
sure is ( f 1 2)R/2, and (d) its specific heat ratio is g 5  
CP/CV 5 ( f 1 2)/f.

	23.	In a crude model (Fig. P21.23) of a rotating diatomic 
chlorine molecule (Cl2), the two Cl atoms are 2.00 3 
10210 m apart and rotate about their center of mass 
with angular speed v 5 2.00 3 1012 rad/s. What is the 
rotational kinetic energy of one molecule of Cl2, which 
has a molar mass of 70.0 g/mol?

Cl

Cl

Figure P21.23

	24.	Why is the following situation impossible? A team of 
researchers discovers a new gas, which has a value of  
g 5 CP/CV of 1.75.

	25.	The relationship between the heat capacity of a sam-
ple and the specific heat of the sample material is dis-
cussed in Section 20.2. Consider a sample containing 
2.00 mol of an ideal diatomic gas. Assuming the mol-
ecules rotate but do not vibrate, find (a) the total heat 
capacity of the sample at constant volume and (b) the 
total heat capacity at constant pressure. (c) What If? 
Repeat parts (a) and (b), assuming the molecules both 
rotate and vibrate.

Section 21.4 ​ Adiabatic Processes for an Ideal Gas

	26.	A 2.00-mol sample of a diatomic ideal gas expands 
slowly and adiabatically from a pressure of 5.00 atm 
and a volume of 12.0 L to a final volume of 30.0 L.  
(a) What is the final pressure of the gas? (b) What are 
the initial and final temperatures? Find (c) Q , (d) DE int,  
and (e) W  for the gas during this process.

	27.	During the compression stroke of a certain gasoline 
engine, the pressure increases from 1.00 atm to 20.0 atm.  
If the process is adiabatic and the air–fuel mixture 
behaves as a diatomic ideal gas, (a) by what factor does 
the volume change and (b) by what factor does the 
temperature change? Assuming the compression starts 
with 0.016 0 mol of gas at 27.08C, find the values of (c) Q ,  
(d) DE int, and (e) W  that characterize the process.

	28.	How much work is required to compress 5.00 mol of 
air at 20.08C and 1.00 atm to one-tenth of the origi-
nal volume (a) by an isothermal process? (b) What If?  
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648	C hapter 21 T he Kinetic Theory of Gases

speeds for the two isotopes of chlorine, 35Cl and 37Cl, 
as they diffuse through the air. (b) Which isotope 
moves faster?

	39.	Review. At what temperature would the average speed 
of helium atoms equal (a) the escape speed from the 
Earth, 1.12 3 104 m/s, and (b) the escape speed from 
the Moon, 2.37 3 103 m/s? Note: The mass of a helium 
atom is 6.64 3 10227 kg.

	40.	Consider a container of nitrogen gas molecules at 
900 K. Calculate (a) the most probable speed, (b) the 
average speed, and (c) the rms speed for the molecules. 
(d) State how your results compare with the values dis-
played in Figure 21.11.

	41.	Assume the Earth’s atmosphere has a uniform tem-
perature of 20.08C and uniform composition, with 
an effective molar mass of 28.9 g/mol. (a) Show that 
the number density of molecules depends on height y 
above sea level according to

nV 1 y 2 5 n 0e
2m0g y/k BT

		  where n 0 is the number density at sea level (where y 5 0). 
This result is called the law of atmospheres. (b) Commer-
cial jetliners typically cruise at an altitude of 11.0 km.  
Find the ratio of the atmospheric density there to the 
density at sea level.

	42.	From the Maxwell–Boltzmann speed distribution, 
show that the most probable speed of a gas molecule 
is given by Equation 21.44. Note: The most probable 
speed corresponds to the point at which the slope of 
the speed distribution curve dNv/dv is zero.

	43.	The law of atmospheres states that the number density 
of molecules in the atmosphere depends on height y 
above sea level according to

nV 1y 2 5 n 0e
2m0g y/k BT

		  where n0 is the number density at sea level (where y 5  
0). The average height of a molecule in the Earth’s 
atmosphere is given by

yavg 5

3
`

0
 ynV 1y 2  dy

3
`

0
 nV 1y 2  dy

5

3
`

0
 ye2m0gy/kBT dy

3
`

0
 e2m0gy/kBT dy

		  (a) Prove that this average height is equal to kBT/m0g. 
(b) Evaluate the average height, assuming the temper-
ature is 10.08C and the molecular mass is 28.9 u, both 
uniform throughout the atmosphere.

Additional Problems

	44.	Eight molecules have speeds of 3.00 km/s, 4.00 km/s, 
5.80 km/s, 2.50 km/s, 3.60 km/s, 1.90 km/s, 3.80 km/s, 
and 6.60 km/s. Find (a) the average speed of the mol-
ecules and (b) the rms speed of the molecules.

	45.	A small oxygen tank at a gauge pressure of 125 atm has 
a volume of 6.88 L at 21.08C. (a) If an athlete breathes 
oxygen from this tank at the rate of 8.50 L/min when 
measured at atmospheric pressure and the tempera-
ture remains at 21.08C, how long will the tank last 
before it is empty? (b) At a particular moment during 

Q/C
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pressure of the compressed air? (d) What is the volume 
of the compressed air? (e) What is the temperature of 
the compressed air? (f) What is the increase in inter-
nal energy of the gas during the compression? What 
If? The pump is made of steel that is 2.00 mm thick. 
Assume 4.00 cm of the cylinder’s length is allowed to 
come to thermal equilibrium with the air. (g) What is 
the volume of steel in this 4.00-cm length? (h) What is 
the mass of steel in this 4.00-cm length? (i) Assume the 
pump is compressed once. After the adiabatic expan-
sion, conduction results in the energy increase in part 
(f) being shared between the gas and the 4.00-cm 
length of steel. What will be the increase in tempera-
ture of the steel after one compression?

	33.	A 4.00-L sample of a diatomic ideal gas with spe-
cific heat ratio 1.40, confined to a cylinder, is carried 
through a closed cycle. The gas is initially at 1.00 atm 
and 300 K. First, its pressure is tripled under constant 
volume. Then, it expands adiabatically to its original 
pressure. Finally, the gas is compressed isobarically to 
its original volume. (a) Draw a PV diagram of this cycle. 
(b) Determine the volume of the gas at the end of the 
adiabatic expansion. (c) Find the temperature of the 
gas at the start of the adiabatic expansion. (d) Find  
the temperature at the end of the cycle. (e) What was 
the net work done on the gas for this cycle?

	34.	An ideal gas with specific heat ratio g confined to a cyl-
inder is put through a closed cycle. Initially, the gas is 
at Pi , Vi , and Ti . First, its pressure is tripled under con-
stant volume. It then expands adiabatically to its origi-
nal pressure and finally is compressed isobarically to 
its original volume. (a) Draw a PV diagram of this cycle. 
(b) Determine the volume at the end of the adiabatic 
expansion. Find (c) the temperature of the gas at the 
start of the adiabatic expansion and (d) the tempera-
ture at the end of the cycle. (e) What was the net work 
done on the gas for this cycle?

Section 21.5 ​ Distribution of Molecular Speeds
	35.	Helium gas is in thermal equilibrium with liquid 

helium at 4.20 K. Even though it is on the point of con-
densation, model the gas as ideal and determine the 
most probable speed of a helium atom (mass 5 6.64 3 
10–27 kg) in it.

	36.	Fifteen identical particles have various speeds: one has 
a speed of 2.00 m/s, two have speeds of 3.00 m/s, three 
have speeds of 5.00 m/s, four have speeds of 7.00 m/s, 
three have speeds of 9.00 m/s, and two have speeds of 
12.0 m/s. Find (a) the average speed, (b) the rms speed, 
and (c) the most probable speed of these particles.

	37.	 One cubic meter of atomic hydrogen at 08C at atmo-
spheric pressure contains approximately 2.70 3 1025 
atoms. The first excited state of the hydrogen atom 
has an energy of 10.2 eV above that of the lowest state, 
called the ground state. Use the Boltzmann factor 
to find the number of atoms in the first excited state  
(a) at 08C and at (b) (1.00 3 104)8C.

	38.	Two gases in a mixture diffuse through a filter at rates 
proportional to their rms speeds. (a) Find the ratio of 
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y, and z directions plus elastic potential energy associ-
ated with the Hooke’s law forces exerted by neighbor-
ing atoms on it in the x, y, and z directions. According 
to the theorem of equipartition of energy, assume the 
average energy of each atom is 1

2kBT  for each degree of 
freedom. (a) Prove that the molar specific heat of the 
solid is 3R. The Dulong–Petit law states that this result 
generally describes pure solids at sufficiently high tem-
peratures. (You may ignore the difference between the 
specific heat at constant pressure and the specific heat 
at constant volume.) (b) Evaluate the specific heat c of 
iron. Explain how it compares with the value listed in 
Table 20.1. (c) Repeat the evaluation and comparison 
for gold.

	51.	 A certain ideal gas has a molar specific heat of CV 5 7
2R . 

A 2.00-mol sample of the gas always starts at pressure 
1.00 3 105 Pa and temperature 300 K. For each of the 
following processes, determine (a) the final pressure, 
(b) the final volume, (c) the final temperature, (d) the 
change in internal energy of the gas, (e) the energy 
added to the gas by heat, and (f) the work done on the 
gas. (i) The gas is heated at constant pressure to 400 K.  
(ii) The gas is heated at constant volume to 400 K.  
(iii) The gas is compressed at constant temperature to 
1.20 3 105 Pa. (iv) The gas is compressed adiabatically 
to 1.20 3 105 Pa.

	52.	The compressibility k of a substance is defined as the 
fractional change in volume of that substance for a 
given change in pressure:

k 5 2
1
V

  
dV
dP

		  (a) Explain why the negative sign in this expression 
ensures k is always positive. (b) Show that if an ideal 
gas is compressed isothermally, its compressibility is 
given by k1 5 1/P. (c) What If? Show that if an ideal gas 
is compressed adiabatically, its compressibility is given 
by k2 5 1/(gP). Determine values for (d) k1 and (e) k2 
for a monatomic ideal gas at a pressure of 2.00 atm.

	53.	Review. Oxygen at pressures much greater than 1 atm 
is toxic to lung cells. Assume a deep-sea diver breathes 
a mixture of oxygen (O2) and helium (He). By weight, 
what ratio of helium to oxygen must be used if the 
diver is at an ocean depth of 50.0 m?

	54.	Examine the data for polyatomic gases in Table 21.2 
and give a reason why sulfur dioxide has a higher spe-
cific heat at constant volume than the other polyatomic 
gases at 300 K.

	55.	Model air as a diatomic ideal gas with M 5 28.9 g/mol.  
A cylinder with a piston contains 1.20 kg of air at 
25.08C and 2.00 3 105 Pa. Energy is transferred by 
heat into the system as it is permitted to expand, with 
the pressure rising to 4.00 3 105 Pa. Throughout the 
expansion, the relationship between pressure and vol-
ume is given by

P 5 CV 1/2

		  where C is a constant. Find (a) the initial volume, (b) the  
final volume, (c) the final temperature, (d) the work 
done on the air, and (e) the energy transferred by heat.

BIO
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this process, what is the ratio of the rms speed of the 
molecules remaining in the tank to the rms speed of 
those being released at atmospheric pressure?

	46.	The dimensions of a classroom are 4.20 m 3 3.00 m 3 
2.50 m. (a) Find the number of molecules of air in 
the classroom at atmospheric pressure and 20.08C.  
(b) Find the mass of this air, assuming the air consists 
of diatomic molecules with molar mass 28.9 g/mol.  
(c) Find the average kinetic energy of the molecules. 
(d) Find the rms molecular speed. (e) What If? 
Assume the molar specific heat of the air is inde-
pendent of temperature. Find the change in internal 
energy of the air in the room as the temperature is 
raised to 25.08C. (f) Explain how you could convince 
a fellow student that your answer to part (e) is correct, 
even though it sounds surprising.

	47.	 The Earth’s atmosphere consists primarily of oxygen 
(21%) and nitrogen (78%). The rms speed of oxygen 
molecules (O2) in the atmosphere at a certain loca-
tion is 535  m/s. (a) What is the temperature of the 
atmosphere at this location? (b) Would the rms speed 
of nitrogen molecules (N2) at this location be higher, 
equal to, or lower than 535 m/s? Explain. (c) Deter-
mine the rms speed of N2 at his location.

	48.	The mean free path , of a molecule is the average dis-
tance that a molecule travels before colliding with 
another molecule. It is given by

, 5
1

!2pd 2NV

		  where d is the diameter of the molecule and NV is the 
number of molecules per unit volume. The number of 
collisions that a molecule makes with other molecules 
per unit time, or collision frequency f, is given by

f 5
vavg

,

		  (a) If the diameter of an oxygen molecule is 2.00 3 
10210  m, find the mean free path of the molecules 
in a scuba tank that has a volume of 12.0 L and is 
filled with oxygen at a gauge pressure of 100 atm at a 
temperature of 25.08C. (b) What is the average time 
interval between molecular collisions for a molecule 
of this gas?

	49.	An air rifle shoots a lead pellet by allowing high- 
pressure air to expand, propelling the pellet down the 
rifle barrel. Because this process happens very quickly, 
no appreciable thermal conduction occurs and the 
expansion is essentially adiabatic. Suppose the rifle 
starts with 12.0 cm3 of compressed air, which behaves 
as an ideal gas with g 5 1.40. The expanding air 
pushes a 1.10-g pellet as a piston with cross-sectional 
area 0.030 0 cm2 along the 50.0-cm-long gun barrel. 
What initial pressure is required to eject the pellet 
with a muzzle speed of 120 m/s? Ignore the effects 
of the air in front of the bullet and friction with the 
inside walls of the barrel.

	50.	In a sample of a solid metal, each atom is free to 
vibrate about some equilibrium position. The atom’s 
energy consists of kinetic energy for motion in the x, 

Q/C

Q/C

Q/C
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650	C hapter 21 T he Kinetic Theory of Gases

as that of a molecule in an ideal gas. Consider a spheri-
cal particle of density 1.00 3 103 kg/m3 in water at 
20.08C. (a) For a particle of diameter d, evaluate the 
rms speed. (b) The particle’s actual motion is a ran-
dom walk, but imagine that it moves with constant 
velocity equal in magnitude to its rms speed. In what 
time interval would it move by a distance equal to its 
own diameter? (c) Evaluate the rms speed and the time 
interval for a particle of diameter 3.00 mm. (d) Evalu-
ate the rms speed and the time interval for a sphere of 
mass 70.0 kg, modeling your own body.

	62.	A vessel contains 1.00 3 104 oxygen molecules at 500 K.  
(a) Make an accurate graph of the Maxwell speed distri-
bution function versus speed with points at speed inter-
vals of 100 m/s. (b) Determine the most probable speed 
from this graph. (c) Calculate the average and rms 
speeds for the molecules and label these points on your 
graph. (d) From the graph, estimate the fraction of mol-
ecules with speeds in the range 300 m/s to 600 m/s.

	63.	A pitcher throws a 0.142-kg baseball at 47.2 m/s. As it 
travels 16.8 m to home plate, the ball slows down to 
42.5 m/s because of air resistance. Find the change 
in temperature of the air through which it passes. To 
find the greatest possible temperature change, you 
may make the following assumptions. Air has a molar 
specific heat of CP 5 7

2R  and an equivalent molar mass 
of 28.9 g/mol. The process is so rapid that the cover 
of the baseball acts as thermal insulation and the tem-
perature of the ball itself does not change. A change 
in temperature happens initially only for the air in a 
cylinder 16.8 m in length and 3.70 cm in radius. This 
air is initially at 20.08C.

	64.	The latent heat of vaporization for water at room tem-
perature is 2 430 J/g. Consider one particular molecule 
at the surface of a glass of liquid water, moving upward 
with sufficiently high speed that it will be the next 
molecule to join the vapor. (a) Find its translational 
kinetic energy. (b) Find its speed. Now consider a thin 
gas made only of molecules like that one. (c) What is 
its temperature? (d) Why are you not burned by water 
evaporating from a vessel at room temperature?

	65.	A sample of a monatomic ideal gas occupies 5.00 L at 
atmospheric pressure and 300 K (point A in Fig. P21.65). 
It is warmed at constant volume to 3.00 atm (point B). 
Then it is allowed to expand isothermally to 1.00 atm 
(point C) and at last compressed isobarically to its origi-
nal state. (a) Find the number of moles in the sample. 

AMT

Q/C

Q/C

	56.	Review.  As a sound wave passes through a gas, the 
compressions are either so rapid or so far apart that 
thermal conduction is prevented by a negligible time 
interval or by effective thickness of insulation. The 
compressions and rarefactions are adiabatic. (a) Show 
that the speed of sound in an ideal gas is

v 5 Å
gRT

M

		  where M is the molar mass. The speed of sound in a 
gas is given by Equation 17.8; use that equation and 
the definition of the bulk modulus from Section 12.4. 
(b) Compute the theoretical speed of sound in air at 
20.08C and state how it compares with the value in 
Table 17.1. Take M  5 28.9 g/mol. (c) Show that the 
speed of sound in an ideal gas is

v 5 Å
gkBT
m 0

		  where m0 is the mass of one molecule. (d) State how 
the result in part (c) compares with the most probable, 
average, and rms molecular speeds.

	57.	 Twenty particles, each of mass m0 and confined to a 
volume V, have various speeds: two have speed v, three 
have speed 2v, five have speed 3v, four have speed 
4v, three have speed 5v, two have speed 6v, and one 
has speed 7v. Find (a) the average speed, (b) the rms 
speed, (c) the most probable speed, (d) the average 
pressure the particles exert on the walls of the vessel, 
and (e) the average kinetic energy per particle.

	58.	In a cylinder, a sample of an ideal gas with number of 
moles n undergoes an adiabatic process. (a) Starting 
with the expression W 5 2e P dV  and using the condi-
tion PV g 5 constant, show that the work done on the 
gas is

W 5 a 1
g 2 1

b 1PfVf 2 PiVi 2

		  (b) Starting with the first law of thermodynamics, show 
that the work done on the gas is equal to nCV(Tf 2 Ti). 
(c)  Are these two results consistent with each other? 
Explain.

	59.	As a 1.00-mol sample of a monatomic ideal gas expands 
adiabatically, the work done on it is 22.50 3 103 J. The 
initial temperature and pressure of the gas are 500 K 
and 3.60 atm. Calculate (a) the final temperature and 
(b) the final pressure.

	60.	A sample consists of an amount n in moles of a mona-
tomic ideal gas. The gas expands adiabatically, with 
work W done on it. (Work W is a negative number.) 
The initial temperature and pressure of the gas are Ti 
and Pi. Calculate (a) the final temperature and (b) the 
final pressure.

	61.	 When a small particle is suspended in a fluid, bom-
bardment by molecules makes the particle jitter about 
at random. Robert Brown discovered this motion in 
1827 while studying plant fertilization, and the motion 
has become known as Brownian motion. The particle’s 
average kinetic energy can be taken as 3

2kBT , the same 
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	70.	On the PV diagram for an ideal gas, one isothermal 
curve and one adiabatic curve pass through each point 
as shown in Figure P21.70. Prove that the slope of the 
adiabatic curve is steeper than the slope of the iso-
therm at that point by the factor g.

V

Adiabatic
process

P

Isothermal
process

Figure P21.70

	71.	 In Beijing, a restaurant keeps a pot of chicken broth 
simmering continuously. Every morning, it is topped 
up to contain 10.0 L of water along with a fresh 
chicken, vegetables, and spices. The molar mass of 
water is 18.0 g/mol. (a) Find the number of molecules 
of water in the pot. (b) During a certain month, 90.0% 
of the broth was served each day to people who then 
emigrated immediately. Of the water molecules in the 
pot on the first day of the month, when was the last 
one likely to have been ladled out of the pot? (c) The 
broth has been simmering for centuries, through wars, 
earthquakes, and stove repairs. Suppose the water that 
was in the pot long ago has thoroughly mixed into the 
Earth’s hydrosphere, of mass 1.32 3 1021 kg. How many 
of the water molecules originally in the pot are likely to 
be present in it again today?

	72.	Review. (a) If it has enough kinetic energy, a molecule 
at the surface of the Earth can “escape the Earth’s grav-
itation” in the sense that it can continue to move away 
from the Earth forever as discussed in Section 13.6. 
Using the principle of conservation of energy, show 
that the minimum kinetic energy needed for “escape” 
is m0gRE , where m0 is the mass of the molecule, g is 
the free-fall acceleration at the surface, and RE is the 
radius of the Earth. (b) Calculate the temperature for 
which the minimum escape kinetic energy is ten times 
the average kinetic energy of an oxygen molecule.

	73.	Using multiple laser beams, physicists have been able 
to cool and trap sodium atoms in a small region. In 
one experiment, the temperature of the atoms was 
reduced to 0.240 mK. (a) Determine the rms speed 
of the sodium atoms at this temperature. The atoms 
can be trapped for about 1.00 s. The trap has a linear 
dimension of roughly 1.00 cm. (b) Over what approxi-
mate time interval would an atom wander out of the 
trap region if there were no trapping action?

Challenge Problems

	74.	Equations 21.42 and 21.43 show that vrms . vavg for a 
collection of gas particles, which turns out to be true 
whenever the particles have a distribution of speeds. 
Let us explore this inequality for a two-particle gas.  

S

Q/C
S

Find (b) the temperature at point B, (c) the temperature 
at point C, and (d) the volume at point C. (e) Now con-
sider the processes A S B, B S C, and C S A. Describe 
how to carry out each process experimentally. (f) Find 
Q , W, and DE int for each of the processes. (g) For the 
whole cycle A S B S C S A, find Q , W, and DE int.

	66.	Consider the particles in a gas centrifuge, a device 
used to separate particles of different mass by whirling 
them in a circular path of radius r at angular speed v. 
The force acting on a gas molecule toward the center 
of the centrifuge is m0v2r. (a) Discuss how a gas centri-
fuge can be used to separate particles of different mass.  
(b) Suppose the centrifuge contains a gas of particles 
of identical mass. Show that the density of the particles 
as a function of r is

n 1r 2 5 n 0e
m0r

2v2/2kBT

	67.	 For a Maxwellian gas, use a computer or programma-
ble calculator to find the numerical value of the ratio 
Nv(v)/Nv(vmp) for the following values of v : (a) v 5  
(vmp/50.0), (b)  (vmp/10.0), (c) (vmp/2.00), (d) vmp, 
(e)  2.00vmp, (f)  10.0vmp, and (g) 50.0vmp. Give your 
results to three significant figures.

	68.	A triatomic molecule can have a linear configuration, 
as does CO2 (Fig. P21.68a), or it can be nonlinear, like 
H2O (Fig. P21.68b). Suppose the temperature of a gas 
of triatomic molecules is sufficiently low that vibrational 
motion is negligible. What is the molar specific heat 
at constant volume, expressed as a multiple of the uni-
versal gas constant, (a) if the molecules are linear and  
(b) if the molecules are nonlinear? At high tempera-
tures, a triatomic molecule has two modes of vibration, 
and each contributes 1

2R  to the molar specific heat for its 
kinetic energy and another 1

2R  for its potential energy. 
Identify the high-temperature molar specific heat at 
constant volume for a triatomic ideal gas of (c) linear 
molecules and (d) nonlinear molecules. (e) Explain how 
specific heat data can be used to determine whether a 
triatomic molecule is linear or nonlinear. Are the data 
in Table 21.2 sufficient to make this determination?

O

H H

O

O

C

a

b

Figure P21.68

	69.	Using the Maxwell–Boltzmann speed distribution 
function, verify Equations 21.42 and 21.43 for (a) the 
rms speed and (b) the average speed of the molecules 
of a gas at a temperature T. The average value of vn is

vn 5
1
N

  3
`

0
vnNv dv

		  Use the table of integrals B.6 in Appendix B.
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652	C hapter 21 T he Kinetic Theory of Gases

parallel to the axis of the cylinder until it comes to 
rest at an equilibrium position (Fig. P21.75b). Find the 
final temperatures in the two compartments.

T1i � 550 K T2i � 250 K

T1f T2f 

a

b

Figure P21.75

Let the speed of one particle be v1 5 avavg and the other 
particle have speed v2 5 (2 2 a)vavg. (a) Show that the 
average of these two speeds is vavg. (b) Show that

v 2
rms 5 v2

avg (2 2 2a 1 a2)

		  (c) Argue that the equation in part (b) proves that, in 
general, vrms . vavg. (d) Under what special condition 
will vrms 5 vavg for the two-particle gas?

	75.	A cylinder is closed at both ends and has insulating 
walls. It is divided into two compartments by an insu-
lating piston that is perpendicular to the axis of the 
cylinder as shown in Figure P21.75a. Each compart-
ment contains 1.00 mol of oxygen that behaves as an 
ideal gas with g 5 1.40. Initially, the two compartments 
have equal volumes and their temperatures are 550 K 
and 250 K. The piston is then allowed to move slowly 
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A Stirling engine from the early 
nineteenth century. Air is heated in the 
lower cylinder using an external source. 
As this happens, the air expands and 
pushes against a piston, causing it to 
move. The air is then cooled, allowing the 
cycle to begin again. This is one example 
of a heat engine, which we study in this 
chapter. (© SSPL/The Image Works)

22.1	 Heat Engines and the Second 
Law of Thermodynamics

22.2	 Heat Pumps and Refrigerators

22.3	 Reversible and  
Irreversible Processes

22.4	 The Carnot Engine

22.5	 Gasoline and Diesel Engines

22.6	 Entropy

22.7	 Changes in Entropy for 
Thermodynamic Systems

22.8	 Entropy and the Second Law

c h a p t e r 

22

The first law of thermodynamics, which we studied in Chapter 20, is a statement of 
conservation of energy and is a special-case reduction of Equation 8.2. This law states 
that a change in internal energy in a system can occur as a result of energy transfer by 
heat, by work, or by both. Although the first law of thermodynamics is very important, 
it makes no distinction between processes that occur spontaneously and those that do 
not. Only certain types of energy transformation and energy transfer processes actually 
take place in nature, however. The second law of thermodynamics, the major topic in this 
chapter, establishes which processes do and do not occur. The following are examples 

Heat Engines, Entropy, 
and the Second Law of 
Thermodynamics
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654	C hapter 22 H eat Engines, Entropy, and the Second Law of Thermodynamics

of processes that do not violate the first law of thermodynamics if they proceed in either 
direction, but are observed in reality to proceed in only one direction:

• � When two objects at different temperatures are placed in thermal contact with each 
other, the net transfer of energy by heat is always from the warmer object to the cooler 
object, never from the cooler to the warmer.

• � A rubber ball dropped to the ground bounces several times and eventually comes to rest, 
but a ball lying on the ground never gathers internal energy from the ground and begins 
bouncing on its own.

• � An oscillating pendulum eventually comes to rest because of collisions with air molecules 
and friction at the point of suspension. The mechanical energy of the system is converted 
to internal energy in the air, the pendulum, and the suspension; the reverse conversion of 
energy never occurs.

	 All these processes are irreversible; that is, they are processes that occur naturally in one 
direction only. No irreversible process has ever been observed to run backward. If it were to 
do so, it would violate the second law of thermodynamics.1

22.1	 �Heat Engines and the Second Law  
of Thermodynamics

A heat engine is a device that takes in energy by heat2 and, operating in a cyclic 
process, expels a fraction of that energy by means of work. For instance, in a typical 
process by which a power plant produces electricity, a fuel such as coal is burned 
and the high-temperature gases produced are used to convert liquid water to 
steam. This steam is directed at the blades of a turbine, setting it into rotation. The 
mechanical energy associated with this rotation is used to drive an electric genera-
tor. Another device that can be modeled as a heat engine is the internal combustion 
engine in an automobile. This device uses energy from a burning fuel to perform 
work on pistons that results in the motion of the automobile.
	 Let us consider the operation of a heat engine in more detail. A heat engine car-
ries some working substance through a cyclic process during which (1) the working 
substance absorbs energy by heat from a high-temperature energy reservoir, (2) work 
is done by the engine, and (3) energy is expelled by heat to a lower-temperature 
reservoir. As an example, consider the operation of a steam engine (Fig. 22.1), which 
uses water as the working substance. The water in a boiler absorbs energy from burn-
ing fuel and evaporates to steam, which then does work by expanding against a pis-
ton. After the steam cools and condenses, the liquid water produced returns to the 
boiler and the cycle repeats.
	 It is useful to represent a heat engine schematically as in Figure 22.2. The engine 
absorbs a quantity of energy |Q h | from the hot reservoir. For the mathematical 
discussion of heat engines, we use absolute values to make all energy transfers by 
heat positive, and the direction of transfer is indicated with an explicit positive or 
negative sign. The engine does work Weng (so that negative work W 5 2Weng is done 
on the engine) and then gives up a quantity of energy |Q c | to the cold reservoir. 

Lord Kelvin
British physicist and mathematician 
(1824–1907)
Born William Thomson in Belfast, Kel-
vin was the first to propose the use of 
an absolute scale of temperature. The 
Kelvin temperature scale is named in 
his honor. Kelvin’s work in thermody-
namics led to the idea that energy can-
not pass spontaneously from a colder 
object to a hotter object.
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1Although a process occurring in the time-reversed sense has never been observed, it is possible for it to occur. As we 
shall see later in this chapter, however, the probability of such a process occurring is infinitesimally small. From this 
viewpoint, processes occur with a vastly greater probability in one direction than in the opposite direction.
2We use heat as our model for energy transfer into a heat engine. Other methods of energy transfer are possible in 
the model of a heat engine, however. For example, the Earth’s atmosphere can be modeled as a heat engine in which 
the input energy transfer is by means of electromagnetic radiation from the Sun. The output of the atmospheric heat 
engine causes the wind structure in the atmosphere.

Figure 22.1  ​A steam-driven 
locomotive obtains its energy 
by burning wood or coal. The 
generated energy vaporizes water 
into steam, which powers the 
locomotive. Modern locomotives 
use diesel fuel instead of wood or 
coal. Whether old-fashioned or 
modern, such locomotives can be 
modeled as heat engines, which 
extract energy from a burning 
fuel and convert a fraction of it to 
mechanical energy.
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	 22.1  Heat Engines and the Second Law of Thermodynamics	 655

Because the working substance goes through a cycle, its initial and final internal 
energies are equal: DE int 5 0. Hence, from the first law of thermodynamics, DE int 5 
Q 1 W 5 Q 2 Weng 5 0, and the net work Weng done by a heat engine is equal 
to the net energy Q net transferred to it. As you can see from Figure 22.2, Q net 5  
|Q h | 2 |Q c |; therefore,

	 Weng 5 |Q h| 2 |Q c|	 (22.1)

The thermal efficiency e of a heat engine is defined as the ratio of the net work 
done by the engine during one cycle to the energy input at the higher temperature 
during the cycle:

	 e ;
Weng

0Q h 0
5

0Q h 0 2 0Q c 0
0Q h 0

5 1 2
0Q c 0
0Q h 0

	 (22.2)

You can think of the efficiency as the ratio of what you gain (work) to what you give 
(energy transfer at the higher temperature). In practice, all heat engines expel 
only a fraction of the input energy Q h by mechanical work; consequently, their 
efficiency is always less than 100%. For example, a good automobile engine has an 
efficiency of about 20%, and diesel engines have efficiencies ranging from 35% to 
40%.
	 Equation 22.2 shows that a heat engine has 100% efficiency (e 5 1) only if |Q c| 5 
0, that is, if no energy is expelled to the cold reservoir. In other words, a heat engine 
with perfect efficiency would have to expel all the input energy by work. Because 
efficiencies of real engines are well below 100%, the Kelvin–Planck form of the 
second law of thermodynamics states the following:

It is impossible to construct a heat engine that, operating in a cycle, produces 
no effect other than the input of energy by heat from a reservoir and the per-
formance of an equal amount of work.

This statement of the second law means that during the operation of a heat engine, 
Weng can never be equal to |Q h | or, alternatively, that some energy |Q c | must be 
rejected to the environment. Figure 22.3 is a schematic diagram of the impossible 
“perfect” heat engine.

Q	 uick Quiz 22.1 ​ The energy input to an engine is 4.00 times greater than the 
work it performs. (i) What is its thermal efficiency? (a) 4.00 (b) 1.00 (c) 0.250 
(d) impossible to determine (ii) What fraction of the energy input is expelled to 
the cold reservoir? (a) 0.250 (b) 0.750 (c) 1.00 (d) impossible to determine

WW �Thermal efficiency of  
a heat engine

Pitfall Prevention 22.1
The First and Second Laws  Notice 
the distinction between the first 
and second laws of thermodynam-
ics. If a gas undergoes a one-time 
isothermal process, then DE int 5 Q 1 
W 5 0 and W 5 2Q. Therefore, 
the first law allows all energy input 
by heat to be expelled by work. In 
a heat engine, however, in which a 
substance undergoes a cyclic pro-
cess, only a portion of the energy 
input by heat can be expelled by 
work according to the second law.

Qh

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
engine

t 

Weng

Energy �Qh� 
enters the 
engine. 

Energy �Q c� 
leaves the 
engine. 

The engine does 
work Weng.

Figure 22.2  Schematic repre-
sentation of a heat engine.

Q h

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
engine

t 

Weng

An impossible heat engine
Figure 22.3  ​Schematic diagram 
of a heat engine that takes in energy 
from a hot reservoir and does an 
equivalent amount of work. It is 
impossible to construct such a per-
fect engine.
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Example 22.1	     The Efficiency of an Engine

An engine transfers 2.00 3 103 J of energy from a hot reservoir during a cycle and transfers 1.50 3 103 J as exhaust to 
a cold reservoir.

(A)  ​Find the efficiency of the engine.

Conceptualize  ​Review Figure 22.2; think about energy going into the engine from the hot reservoir and splitting, with 
part coming out by work and part by heat into the cold reservoir.

Categorize  ​This example involves evaluation of quantities from the equations introduced in this section, so we catego-
rize it as a substitution problem.

S o l u t i o n

Find the efficiency of the engine from Equation 22.2: e 5 1 2
0Q c 0
0Q h 0

5 1 2
1.50 3 103 J

2.00 3 103 J
5  0.250, or 25.0%

Find the work done by the engine by taking the differ-
ence between the input and output energies:

Weng 5 |Q h| 2 |Q c| 5 2.00 3 103 J 2 1.50 3 103 J

5   5.0 3 102 J

(B)  ​How much work does this engine do in one cycle?

S o l u t i o n

Suppose you were asked for the power output of this engine. Do you have sufficient information to answer 
this question?

Answer  ​No, you do not have enough information. The power of an engine is the rate at which work is done by the 
engine. You know how much work is done per cycle, but you have no information about the time interval associated 
with one cycle. If you were told that the engine operates at 2 000 rpm (revolutions per minute), however, you could 
relate this rate to the period of rotation T of the mechanism of the engine. Assuming there is one thermodynamic 
cycle per revolution, the power is

P 5
Weng

T
5

5.0 3 102 J

1 1
2 000 min 2 a1 min

60 s
b 5 1.7 3 104 W

What If ?

22.2	 Heat Pumps and Refrigerators
In a heat engine, the direction of energy transfer is from the hot reservoir to the 
cold reservoir, which is the natural direction. The role of the heat engine is to pro-
cess the energy from the hot reservoir so as to do useful work. What if we wanted to 
transfer energy from the cold reservoir to the hot reservoir? Because that is not the 
natural direction of energy transfer, we must put some energy into a device to be 
successful. Devices that perform this task are called heat pumps and refrigerators. 
For example, homes in summer are cooled using heat pumps called air conditioners. 
The air conditioner transfers energy from the cool room in the home to the warm 
air outside.
	 In a refrigerator or a heat pump, the engine takes in energy |Q c | from a cold 
reservoir and expels energy |Q h | to a hot reservoir (Fig. 22.4), which can be accom-
plished only if work is done on the engine. From the first law, we know that the 
energy given up to the hot reservoir must equal the sum of the work done and the 
energy taken in from the cold reservoir. Therefore, the refrigerator or heat pump 
transfers energy from a colder body (for example, the contents of a kitchen refrig-
erator or the winter air outside a building) to a hotter body (the air in the kitchen 
or a room in the building). In practice, it is desirable to carry out this process with 
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	 22.2  Heat Pumps and Refrigerators	 657

a minimum of work. If the process could be accomplished without doing any work, 
the refrigerator or heat pump would be “perfect” (Fig. 22.5). Again, the existence 
of such a device would be in violation of the second law of thermodynamics, which 
in the form of the Clausius statement3 states:

It is impossible to construct a cyclical machine whose sole effect is to transfer 
energy continuously by heat from one object to another object at a higher 
temperature without the input of energy by work.

In simpler terms, energy does not transfer spontaneously by heat from a cold object 
to a hot object. Work input is required to run a refrigerator.
	 The Clausius and Kelvin–Planck statements of the second law of thermodynam-
ics appear at first sight to be unrelated, but in fact they are equivalent in all respects. 
Although we do not prove so here, if either statement is false, so is the other.4

	 In practice, a heat pump includes a circulating fluid that passes through two sets 
of metal coils that can exchange energy with the surroundings. The fluid is cold 
and at low pressure when it is in the coils located in a cool environment, where it 
absorbs energy by heat. The resulting warm fluid is then compressed and enters 
the other coils as a hot, high-pressure fluid. There it releases its stored energy to 
the warm surroundings. In an air conditioner, energy is absorbed into the fluid in 
coils located in a building’s interior; after the fluid is compressed, energy leaves the 
fluid through coils located outdoors. In a refrigerator, the external coils are behind 
the unit (Fig. 22.6) or underneath the unit. The internal coils are in the walls of the 
refrigerator and absorb energy from the food.
	 The effectiveness of a heat pump is described in terms of a number called the 
coefficient of performance (COP). The COP is similar to the thermal efficiency for 
a heat engine in that it is a ratio of what you gain (energy transferred to or from a 
reservoir) to what you give (work input). For a heat pump operating in the cooling 
mode, “what you gain” is energy removed from the cold reservoir. The most effective 
refrigerator or air conditioner is one that removes the greatest amount of energy 

3First expressed by Rudolf Clausius (1822–1888).
4See an advanced textbook on thermodynamics for this proof.

Q h

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
pump

W

Energy �Q h� 
is expelled 
to the hot 
reservoir.

Energy �Q c� 
is drawn 
from the 
cold 
reservoir.

Work W is done on 
the heat pump.

Figure 22.4  Schematic repre-
sentation of a heat pump.

Q h � Q c

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
pump

An impossible heat pump

Figure 22.5  ​Schematic diagram 
of an impossible heat pump or 
refrigerator, that is, one that takes 
in energy from a cold reservoir 
and expels an equivalent amount 
of energy to a hot reservoir with-
out the input of energy by work.

The coils on the back of
a refrigerator transfer 
energy by heat to the air.

Figure 22.6  ​The back of a 
household refrigerator. The air 
surrounding the coils is the hot 
reservoir.
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