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		  (b) Show that the potential energy of the system is

U 1x 2 5 kx 2 1 2kL 1L 2 "x 2 1 L2 2
		 (c) Make a plot of U(x) 

versus x and identify 
all equilibrium points. 
Assume L 5 1.20 m and 
k 5 40.0 N/m. (d) If  
the particle is pulled 
0.500 m to the right 
and then released, 
what is its speed when 
it reaches x 5 0?

	67.	 Review. A light spring 
has unstressed length 
15.5  cm. It is described by Hooke’s law with spring 
constant 4.30 N/m. One end of the horizontal spring 
is held on a fixed vertical axle, and the other end is 
attached to a puck of mass m that can move without 
friction over a horizontal surface. The puck is set into 
motion in a circle with a period of 1.30 s. (a) Find the 
extension of the spring x as it depends on m. Evaluate  
x for (b) m 5 0.070 0 kg, (c) m 5 0.140 kg, (d) m 5 
0.180 kg, and (e) m 5 0.190 kg. (f) Describe the pattern 
of variation of x as it depends on m.

Overhead view

L

L

x

k

k

x

x � 0

m

Figure P7.66
Q/C

spring is parallel to the surface. A block of mass m is 
placed on the plane at a distance d from the spring. 
From this position, the block is projected downward 
toward the spring with speed v as shown in Figure 
P7.63. By what distance is the spring compressed when 
the block momentarily comes to rest?

	65.	(a) Take U 5 5 for a system with a particle at position x 5  
0 and calculate the potential energy of the system as 
a function of the particle position x. The force on the 
particle is given by (8e22x) î. (b) Explain whether the 
force is conservative or nonconservative and how you 
can tell.

Challenge Problems

	66.	A particle of mass m 5 1.18  kg is attached between 
two identical springs on a frictionless, horizontal 
tabletop. Both springs have spring constant k and 
are initially unstressed, and the particle is at x 5 0. 
(a) The particle is pulled a distance x along a direc-
tion perpendicular to the initial configuration of the 
springs as shown in Figure P7.66. Show that the force 
exerted by the springs on the particle is

F
S

5 22kx a1 2
L

"x 2 1 L2
b  î

Q/C
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c h a p t e r 

8
8.1	 Analysis Model: 

Nonisolated System 
(Energy)

8.2	 Analysis Model: Isolated 
System (Energy)

8.3	 Situations Involving 
Kinetic Friction

8.4	 Changes in 
Mechanical Energy for 
Nonconservative Forces

8.5	 Power

In Chapter 7, we introduced three methods for storing energy in a system: kinetic energy, 
associated with movement of members of the system; potential energy, determined by the con-
figuration of the system; and internal energy, which is related to the temperature of the system.
	 We now consider analyzing physical situations using the energy approach for two types of 
systems: nonisolated and isolated systems. For nonisolated systems, we shall investigate ways 
that energy can cross the boundary of the system, resulting in a change in the system’s total 
energy. This analysis leads to a critically important principle called conservation of energy. The 
conservation of energy principle extends well beyond physics and can be applied to biological 
organisms, technological systems, and engineering situations.
	 In isolated systems, energy does not cross the boundary of the system. For these systems, 
the total energy of the system is constant. If no nonconservative forces act within the system, 
we can use conservation of mechanical energy to solve a variety of problems.

Conservation of Energy

Three youngsters enjoy the 
transformation of potential energy 
to kinetic energy on a waterslide. 
We can analyze processes such 
as these with the techniques 
developed in this chapter.  
(Jade Lee/Asia Images/Getty Images)
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Energy transfers to 
the handle of the 
spoon by heat.
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Energy leaves the radio 
from the speaker by 
mechanical waves.
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Energy is transferred 
to the block by work.
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Energy leaves the light- 
bulb by electromagnetic 
radiation.
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Energy enters the 
hair dryer by 
electrical transmission.
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Energy enters the 
automobile gas tank 
by matter transfer.
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Figure 8.1  ​Energy trans-
fer mechanisms. In each 
case, the system into which 
or from which energy is 
transferred is indicated.

	 Situations involving the transformation of mechanical energy to internal energy due to 
nonconservative forces require special handling. We investigate the procedures for these 
types of problems.
	 Finally, we recognize that energy can cross the boundary of a system at different rates. 
We describe the rate of energy transfer with the quantity power.

8.1	 Analysis Model: Nonisolated System (Energy)
As we have seen, an object, modeled as a particle, can be acted on by various 
forces, resulting in a change in its kinetic energy according to the work–kinetic 
energy theorem from Chapter 7. If we choose the object as the system, this very 
simple situation is the first example of a nonisolated system, for which energy crosses 
the boundary of the system during some time interval due to an interaction with 
the environment. This scenario is common in physics problems. If a system does 
not interact with its environment, it is an isolated system, which we will study in Sec-
tion 8.2.
	 The work–kinetic energy theorem is our first example of an energy equation 
appropriate for a nonisolated system. In the case of that theorem, the interaction 
of the system with its environment is the work done by the external force, and the 
quantity in the system that changes is the kinetic energy.
	 So far, we have seen only one way to transfer energy into a system: work. We men-
tion below a few other ways to transfer energy into or out of a system. The details of 
these processes will be studied in other sections of the book. We illustrate mecha-
nisms to transfer energy in Figure 8.1 and summarize them as follows.
	 Work, as we have learned in Chapter 7, is a method of transferring energy to a 
system by applying a force to the system such that the point of application of the 
force undergoes a displacement (Fig. 8.1a).
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	 8.1  Analysis Model: Nonisolated System (Energy)	 213

	 Mechanical waves (Chapters 16–18) are a means of transferring energy by allow-
ing a disturbance to propagate through air or another medium. It is the method 
by which energy (which you detect as sound) leaves the system of your clock radio 
through the loudspeaker and enters your ears to stimulate the hearing process 
(Fig. 8.1b). Other examples of mechanical waves are seismic waves and ocean waves.
	 Heat (Chapter 20) is a mechanism of energy transfer that is driven by a tem-
perature difference between a system and its environment. For example, imagine 
dividing a metal spoon into two parts: the handle, which we identify as the system, 
and the portion submerged in a cup of coffee, which is part of the environment 
(Fig. 8.1c). The handle of the spoon becomes hot because fast-moving electrons 
and atoms in the submerged portion bump into slower ones in the nearby part of 
the handle. These particles move faster because of the collisions and bump into the 
next group of slow particles. Therefore, the internal energy of the spoon handle 
rises from energy transfer due to this collision process.
	 Matter transfer (Chapter 20) involves situations in which matter physically 
crosses the boundary of a system, carrying energy with it. Examples include filling 
your automobile tank with gasoline (Fig. 8.1d) and carrying energy to the rooms of 
your home by circulating warm air from the furnace, a process called convection.
	 Electrical transmission (Chapters 27 and 28) involves energy transfer into or 
out of a system by means of electric currents. It is how energy transfers into your 
hair dryer (Fig. 8.1e), home theater system, or any other electrical device.
	 Electromagnetic radiation (Chapter 34) refers to electromagnetic waves such 
as light (Fig. 8.1f), microwaves, and radio waves crossing the boundary of a system. 
Examples of this method of transfer include cooking a baked potato in your micro-
wave oven and energy traveling from the Sun to the Earth by light through space.1

	 A central feature of the energy approach is the notion that we can neither cre-
ate nor destroy energy, that energy is always conserved. This feature has been tested 
in countless experiments, and no experiment has ever shown this statement to be 
incorrect. Therefore, if the total amount of energy in a system changes, it can only 
be because energy has crossed the boundary of the system by a transfer mecha-
nism such as one of the methods listed above. 
	 Energy is one of several quantities in physics that are conserved. We will see 
other conserved quantities in subsequent chapters. There are many physical quanti-
ties that do not obey a conservation principle. For example, there is no conserva-
tion of force principle or conservation of velocity principle. Similarly, in areas other 
than physical quantities, such as in everyday life, some quantities are conserved and 
some are not. For example, the money in the system of your bank account is a con-
served quantity. The only way the account balance changes is if money crosses the 
boundary of the system by deposits or withdrawals. On the other hand, the num-
ber of people in the system of a country is not conserved. Although people indeed 
cross the boundary of the system, which changes the total population, the popula-
tion can also change by people dying and by giving birth to new babies. Even if no 
people cross the system boundary, the births and deaths will change the number 
of people in the system. There is no equivalent in the concept of energy to dying or 
giving birth. The general statement of the principle of conservation of energy can 
be described mathematically with the conservation of energy equation as follows:

	 DEsystem 5 o T	 (8.1)

where Esystem is the total energy of the system, including all methods of energy stor-
age (kinetic, potential, and internal), and T (for transfer) is the amount of energy 
transferred across the system boundary by some mechanism. Two of our transfer 
mechanisms have well-established symbolic notations. For work, Twork 5 W as dis-
cussed in Chapter 7, and for heat, Theat 5 Q as defined in Chapter 20. (Now that we 

WW Conservation of energy

Pitfall Prevention 8.1
Heat Is Not a Form of Energy   
The word heat is one of the most 
misused words in our popular lan-
guage. Heat is a method of transfer-
ring energy, not a form of storing 
energy. Therefore, phrases such 
as “heat content,” “the heat of the 
summer,” and “the heat escaped” 
all represent uses of this word that 
are inconsistent with our physics 
definition. See Chapter 20.

1Electromagnetic radiation and work done by field forces are the only energy transfer mechanisms that do not 
require molecules of the environment to be available at the system boundary. Therefore, systems surrounded by a 
vacuum (such as planets) can only exchange energy with the environment by means of these two possibilities.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



214	C hapter 8 C onservation of Energy

are familiar with work, we can simplify the appearance of equations by letting the 
simple symbol W represent the external work Wext on a system. For internal work, we 
will always use Wint to differentiate it from W.) The other four members of our list 
do not have established symbols, so we will call them TMW (mechanical waves), TMT 
(matter transfer), TET (electrical transmission), and TER (electromagnetic radiation).
	 The full expansion of Equation 8.1 is

	 DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT 1 TET 1 TER	 (8.2)

which is the primary mathematical representation of the energy version of the anal-
ysis model of the nonisolated system. (We will see other versions of the nonisolated 
system model, involving linear momentum and angular momentum, in later chap-
ters.) In most cases, Equation 8.2 reduces to a much simpler one because some of 
the terms are zero for the specific situation. If, for a given system, all terms on the 
right side of the conservation of energy equation are zero, the system is an isolated 
system, which we study in the next section.
	 The conservation of energy equation is no more complicated in theory than the 
process of balancing your checking account statement. If your account is the sys-
tem, the change in the account balance for a given month is the sum of all the 
transfers: deposits, withdrawals, fees, interest, and checks written. You may find it 
useful to think of energy as the currency of nature!
	 Suppose a force is applied to a nonisolated system and the point of application 
of the force moves through a displacement. Then suppose the only effect on the 
system is to change its speed. In this case, the only transfer mechanism is work (so 
that the right side of Eq. 8.2 reduces to just W) and the only kind of energy in the 
system that changes is the kinetic energy (so that the left side of Eq. 8.2 reduces to 
just DK). Equation 8.2 then becomes

DK 5 W

which is the work–kinetic energy theorem. This theorem is a special case of the 
more general principle of conservation of energy. We shall see several more special 
cases in future chapters.

Q	 uick Quiz 8.1  ​By what transfer mechanisms does energy enter and leave (a) your 
television set? (b) Your gasoline-powered lawn mower? (c) Your hand-cranked 
pencil sharpener?

Q	 uick Quiz 8.2 ​ Consider a block sliding over a horizontal surface with friction. 
Ignore any sound the sliding might make. (i) If the system is the block, this sys-
tem is (a) isolated (b) nonisolated (c) impossible to determine (ii) If the system 
is the surface, describe the system from the same set of choices. (iii) If the system 
is the block and the surface, describe the system from the same set of choices.

Analysis Model	    Nonisolated System (Energy)
Imagine you have identified a system to be analyzed 
and have defined a system boundary.  Energy can 
exist in the system in three forms: kinetic, potential, 
and internal. The total of that energy can be changed 
when energy crosses the system boundary by any of six 
transfer methods shown in the diagram here. The total 
change in the energy in the system is equal to the total 
amount of energy that has crossed the system bound-
ary. The mathematical statement of that concept is 
expressed in the conservation of energy equation:

	 DEsystem 5 o T	 (8.1)

Work Heat Mechanical
waves

Matter
transfer

Electrical
transmission

Electromagnetic
radiation

Kinetic energy
Potential energy
Internal energy

System
boundary

The change in the total 
amount of energy in 
the system is equal to 
the total amount of 
energy that crosses the 
boundary of the system.
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8.2	 Analysis Model: Isolated System (Energy)
In this section, we study another very common scenario in physics problems: a sys-
tem is chosen such that no energy crosses the system boundary by any method. We 
begin by considering a gravitational situation. Think about the book–Earth system 
in Figure 7.15 in the preceding chapter. After we have lifted the book, there is grav-
itational potential energy stored in the system, which can be calculated from the 
work done by the external agent on the system, using W 5 DUg. (Check to see that 
this equation, which we’ve seen before, is contained within Eq. 8.2 above.) 
	 Let us now shift our focus to the work done on the book alone by the gravitational 
force (Fig. 8.2) as the book falls back to its original height. As the book falls from yi 
to yf , the work done by the gravitational force on the book is

	 Won book 5 1mgS 2 ? D rS 5 12mg  ĵ 2 ? 3 1yf 2 yi 2 ĵ 4 5 mgyi 2 mgyf 	 (8.3)

From the work–kinetic energy theorem of Chapter 7, the work done on the book is 
equal to the change in the kinetic energy of the book:

Won book 5 DKbook

We can equate these two expressions for the work done on the book:

	 DKbook 5 mgyi 2 mgyf	 (8.4)

Let us now relate each side of this equation to the system of the book and the Earth. 
For the right-hand side,

mgyi 2 mgyf 5 2(mgyf 2 mgyi) 5 2DUg

where Ug 5 mgy is the gravitational potential energy of the system. For the left-hand 
side of Equation 8.4, because the book is the only part of the system that is moving, 
we see that DKbook 5 DK, where K is the kinetic energy of the system. Therefore, 
with each side of Equation 8.4 replaced with its system equivalent, the equation 
becomes

	 DK 5 2DUg	 (8.5)

This equation can be manipulated to provide a very important general result for 
solving problems. First, we move the change in potential energy to the left side of 
the equation:

DK 1 DUg 5 0

The book is held at rest 
here and then released.

At a lower position, the 
book is moving and has 
kinetic energy K.

Physics

Physics

yf

yi

�rS

Figure 8.2  ​A book is released 
from rest and falls due to work 
done by the gravitational force on 
the book.

Analysis Model	    Nonisolated System (Energy) (continued)

The full expansion of Equation 8.1 shows the specific types of energy storage and transfer: 

	 DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT 1 TET 1 TER	 (8.2)

For a specific problem, this equation is generally reduced to a smaller number of terms by eliminating the terms that 
are equal to zero because they are not appropriate to the situation.

Examples: 

•	 a force does work on a system of a single object, changing its speed: the work–kinetic energy theorem, W 5 DK
•	 a gas contained in a vessel has work done on it and experiences a transfer of energy by heat, resulting in a change 

in its temperature: the first law of thermodynamics, DEint 5 W 1 Q (Chapter 20)
•	 an incandescent light bulb is turned on, with energy entering the filament by electricity, causing its temperature 

to increase, and leaving by light: DEint 5 TET 1 TER (Chapter 27)
•	 a photon enters a metal, causing an electron to be ejected from the metal: the photoelectric effect, DK 1 DU 5 

TER (Chapter 40)
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216	C hapter 8 C onservation of Energy

The left side represents a sum of changes of the energy stored in the system. The 
right-hand side is zero because there are no transfers of energy across the bound-
ary of the system; the book–Earth system is isolated from the environment. We devel-
oped this equation for a gravitational system, but it can be shown to be valid for a 
system with any type of potential energy. Therefore, for an isolated system,

	 DK 1 DU 5 0	 (8.6)

(Check to see that this equation is contained within Eq. 8.2.)
	 We defined in Chapter 7 the sum of the kinetic and potential energies of a sys-
tem as its mechanical energy:

	 Emech ; K  1 U	 (8.7)

where U represents the total of all types of potential energy. Because the system 
under consideration is isolated, Equations 8.6 and 8.7 tell us that the mechanical 
energy of the system is conserved:

	 DEmech 5 0	 (8.8)

Equation 8.8 is a statement of conservation of mechanical energy for an iso-
lated system with no nonconservative forces acting. The mechanical energy in 
such a system is conserved: the sum of the kinetic and potential energies remains 
constant: 
	 Let us now write the changes in energy in Equation 8.6 explicitly:

(Kf 2 Ki) 1 (Uf 2 Ui) 5 0

	 Kf 1 Uf 5 Ki 1 Ui	 (8.9)

For the gravitational situation of the falling book, Equation 8.9 can be written as

1
2mvf

2 1 mgyf 5 1
2mvi

2 1 mgyi

As the book falls to the Earth, the book–Earth system loses potential energy and 
gains kinetic energy such that the total of the two types of energy always remains 
constant: Etotal,i 5 Etotal, f .
	 If there are nonconservative forces acting within the system, mechanical energy 
is transformed to internal energy as discussed in Section 7.7. If nonconservative 
forces act in an isolated system, the total energy of the system is conserved although 
the mechanical energy is not. In that case, we can express the conservation of 
energy of the system as

	 DEsystem 5 0	 (8.10)

where Esystem includes all kinetic, potential, and internal energies. This equation is 
the most general statement of the energy version of the isolated system model. It is 
equivalent to Equation 8.2 with all terms on the right-hand side equal to zero.

Q	 uick Quiz 8.3  ​A rock of mass m is dropped to the ground from a height h. A 
second rock, with mass 2m, is dropped from the same height. When the second 
rock strikes the ground, what is its kinetic energy? (a) twice that of the first rock 
(b) four times that of the first rock (c) the same as that of the first rock (d) half 
as much as that of the first rock (e) impossible to determine

Q	 uick Quiz 8.4 ​ Three identical balls are thrown from the top of a building, all 
with the same initial speed. As shown in Figure 8.3, the first is thrown hori-
zontally, the second at some angle above the horizontal, and the third at some 
angle below the horizontal. Neglecting air resistance, rank the speeds of the 
balls at the instant each hits the ground.

Mechanical energy 
of a system

� The mechanical energy of 
an isolated system with  

no nonconservative forces 
acting is conserved.

� The total energy of an 
isolated system is conserved.

Figure 8.3  (Quick Quiz 8.4) 
Three identical balls are thrown 
with the same initial speed from 
the top of a building.

2
1

3

Pitfall Prevention 8.2
Conditions on Equation 8.6  Equa-
tion 8.6 is only true for a system in 
which conservative forces act. We 
will see how to handle nonconserva-
tive forces in Sections 8.3 and 8.4.
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Analysis Model	    Isolated System (Energy)

Imagine you have 
identified a system 
to be analyzed and 
have defined a system 
boundary.  Energy can 
exist in the system in 
three forms: kinetic, 
potential, and inter-
nal. Imagine also a 
situation in which no 
energy crosses the 
boundary of the sys-
tem by any method. Then, the system is isolated; energy transforms 
from one form to another and Equation 8.2 becomes

	 DEsystem 5 0	 (8.10)

If no nonconservative forces act within the isolated system, the 
mechanical energy of the system is conserved, so

	 DEmech 5 0	 (8.8)

Examples: 

•	 an object is in free-fall; gravitational 
potential energy transforms to kinetic 
energy: DK 1 DU 5 0

•	 a basketball rolling across a gym  
floor comes to rest; kinetic energy 
transforms to internal energy: DK 1 
DEint 5 0

•	 a pendulum is raised and released 
with an initial speed; its motion even-
tually stops due to air resistance; gravi-
tational potential energy and kinetic 
energy transform to internal energy, 
DK 1 DU 1 DEint 5 0 (Chapter 15)

•	 a battery is connected to a resistor; 
chemical potential energy in the bat-
tery transforms to internal energy  
in the resistor: DU 1 DEint 5 0 (Chap-
ter 27)

Kinetic energy
Potential energy
Internal energy

System
boundary

The total amount of energy 
in the system is constant. 
Energy transforms among 
the three possible types.

Problem-Solving Strategy	    Isolated and Nonisolated Systems with  
No Nonconservative Forces: Conservation of Energy

Many problems in physics can be solved using the principle of conservation of 
energy. The following procedure should be used when you apply this principle:

1. Conceptualize. ​ Study the physical situation carefully and form a mental representa-
tion of what is happening. As you become more proficient working energy problems, 
you will begin to be comfortable imagining the types of energy that are changing in 
the system and the types of energy transfers occurring across the system boundary.

2.	Categorize. ​ Define your system, which may consist of more than one object and 
may or may not include springs or other possibilities for storing potential energy. 
Identify the time interval over which you will analyze the energy changes in the prob-
lem. Determine if any energy transfers occur across the boundary of your system 
during this time interval. If so, use the nonisolated system model, DEsystem 5 o T, 
from Section 8.1. If not, use the isolated system model, DEsystem 5 0.
	 Determine whether any nonconservative forces are present within the system. If 
so, use the techniques of Sections 8.3 and 8.4. If not, use the principle of conserva-
tion of energy as outlined below.

3. Analyze. ​ Choose configurations to represent the initial and final conditions of 
the system based on your choice of time interval. For each object that changes eleva-
tion, select a reference position for the object that defines the zero configuration 
of gravitational potential energy for the system. For an object on a spring, the zero 
configuration for elastic potential energy is when the object is at its equilibrium posi-
tion. If there is more than one conservative force, write an expression for the poten-
tial energy associated with each force.
	 Begin with Equation 8.2 and retain only those terms in the equation that are appro-
priate for the situation in the problem. Express each change of energy stored in the 
system as the final value minus the initial value. Substitute appropriate expressions for 
each initial and final value of energy storage on the left side of the equation and for 
the energy transfers on the right side of the equation. Solve for the unknown quantity.

continued
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218	 Chapter 8  Conservation of Energy

▸ Problem-Solving Strategy c o n t i n u e d

4. Finalize. Make sure your results are consistent with your mental representation. 
Also make sure the values of your results are reasonable and consistent with connec-
tions to everyday experience.

Example 8.1	     Ball in Free Fall 

A ball of mass m is dropped from a height h above the ground as shown in  
Figure 8.4.

(A)  ​Neglecting air resistance, determine the speed of the ball when it is at a 
height y above the ground. Choose the system as the ball and the Earth.

Conceptualize  ​Figure 8.4 and our everyday experience with falling objects 
allow us to conceptualize the situation. Although we can readily solve this prob-
lem with the techniques of Chapter 2, let us practice an energy approach.

Categorize  As suggested in the problem, we identify the system as the ball and 
the Earth. Because there is neither air resistance nor any other interaction 
between the system and the environment, the system is isolated and we use 
the isolated system model. The only force between members of the system is the 
gravitational force, which is conservative.

Analyze  ​Because the system is isolated and there are no nonconservative forces 
acting within the system, we apply the principle of conservation of mechanical 
energy to the ball–Earth system. At the instant the ball is released, its kinetic 
energy is Ki 5 0 and the gravitational potential energy of the system is Ugi 5 
mgh. When the ball is at a position y above the ground, its kinetic energy is 
Kf 5 1

2mvf
2 and the potential energy relative to the ground is Ugf 5 mgy.

AM

S o l u t i o n

Figure 8.4  (Example 8.1) A ball is 
dropped from a height h above the 
ground. Initially, the total energy of 
the ball–Earth system is gravitational 
potential energy, equal to mgh relative to 
the ground. At the position y, the total 
energy is the sum of the kinetic and 
potential energies.

y

h

f

Ugi � mgh
Ki � 0

y � 0
Ug � 0

yf � y
Ugf � mgy

Kf � mvf
2

yi � h

2
1

vS

Write the appropriate reduction of Equation 8.2, noting 
that the only types of energy in the system that change 
are kinetic energy and gravitational potential energy:

DK 1 DUg 5 0

Solve for vf : vf
2 5 2g 1h 2 y 2   S   vf 5 "2g 1h 2 y 2

The speed is always positive. If you had been asked to find the ball’s velocity, you would use the negative value of the 
square root as the y component to indicate the downward motion.

(B)  ​Find the speed of the ball again at height y by choosing the ball as the system.

Categorize  In this case, the only type of energy in the system that changes is kinetic energy. A single object that can be 
modeled as a particle cannot possess potential energy. The effect of gravity is to do work on the ball across the bound-
ary of the system. We use the nonisolated system model.

S o l u t i o n

Analyze  Write the appropriate reduction of Equation 8.2: DK 5 W

Substitute for the initial and final kinetic energies and 
the work:

11
2mvf

2 2 0 2 5 F
S

g ? D rS 5 2mg ĵ ? Dy ĵ
5 2mgDy 5 2mg(y 2 h) 5 mg(h 2 y)

Substitute for the energies: 11
2mvf

2 2 0 2 1 1mgy 2 mgh 2 5 0

Solve for vf : vf
2 5 2g 1h 2 y 2   S   vf 5 "2g 1h 2 y 2
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Example 8.2	     A Grand Entrance 

You are designing an apparatus to support an actor of mass 65.0 kg 
who is to “fly” down to the stage during the performance of a play. 
You attach the actor’s harness to a 130-kg sandbag by means of 
a lightweight steel cable running smoothly over two frictionless 
pulleys as in Figure 8.5a. You need 3.00 m of cable between the 
harness and the nearest pulley so that the pulley can be hidden 
behind a curtain. For the apparatus to work successfully, the sand-
bag must never lift above the floor as the actor swings from above 
the stage to the floor. Let us call the initial angle that the actor’s 
cable makes with the vertical u. What is the maximum value u can 
have before the sandbag lifts off the floor?

Conceptualize  ​We must use several concepts to solve this problem. 
Imagine what happens as the actor approaches the bottom of the 
swing. At the bottom, the cable is vertical and must support his 
weight as well as provide centripetal acceleration of his body in the 
upward direction. At this point in his swing, the tension in the cable 
is the highest and the sandbag is most likely to lift off the floor.

Categorize  ​Looking first at the swinging of the actor from the ini-
tial point to the lowest point, we model the actor and the Earth 
as an isolated system. We ignore air resistance, so there are no non-
conservative forces acting. You might initially be tempted to model 
the system as nonisolated because of the interaction of the system 
with the cable, which is in the environment. The force applied to 
the actor by the cable, however, is always perpendicular to each 
element of the displacement of the actor and hence does no work. 
Therefore, in terms of energy transfers across the boundary, the 
system is isolated.

Analyze  ​We first find the actor’s speed as he arrives at the floor as a function of the initial angle u and the radius R of 
the circular path through which he swings.

AM

S o l u ti  o n

R

Actor Sandbag
yi

u

mactor mbag

T
S

T
S

gS 
gS 

b c

mactor
mbag

a

Figure 8.5  ​(Example 8.2) (a) An actor uses some 
clever staging to make his entrance. (b) The free-body 
diagram for the actor at the bottom of the circular 
path. (c) The free-body diagram for the sandbag if the 
normal force from the floor goes to zero.

From the isolated system model, make the appropriate 
reduction of Equation 8.2 for the actor–Earth system:

DK 1 DUg 5 0

Finalize  ​The final result is the same, regardless of the choice of system. In your future problem solving, keep in mind 
that the choice of system is yours to make. Sometimes the problem is much easier to solve if a judicious choice is made 
as to the system to analyze.

What if the ball were thrown downward from its highest position with a speed vi? What would its speed be 
at height y?

Answer  If the ball is thrown downward initially, we would expect its speed at height y to be larger than if simply 
dropped. Make your choice of system, either the ball alone or the ball and the Earth. You should find that either 
choice gives you the following result:

vf 5 "vi
2 1 2g 1h 2 y 2

What If ?

	

▸ 8.1 c o n t i n u e d

continued
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Analyze  ​Apply Newton’s second law from the particle under 
a net force model to the actor at the bottom of his path, 
using the free-body diagram in Figure 8.5b as a guide, and 
recognizing the acceleration as centripetal:

a  Fy 5 T 2 mactorg 5 mactor 
vf

2

R

(3)   T 5 mactorg 1 mactor 
vf

2

R

Solve for cos u and substitute the given parameters:	 cos u 5
3mactor 2 mbag

2mactor 
5

3 165.0 kg 2 2 130 kg

2 165.0 kg 2 5 0.500	

u 5   60.08

Categorize  ​Finally, notice that the sandbag lifts off the floor when the upward force exerted on it by the cable exceeds 
the gravitational force acting on it; the normal force from the floor is zero when that happens. We do not, however, 
want the sandbag to lift off the floor. The sandbag must remain at rest, so we model it as a particle in equilibrium.

Analyze  ​A force T of the magnitude given by Equation (3) is transmitted by the cable to the sandbag. If the sandbag 
remains at rest but is just ready to be lifted off the floor if any more force were applied by the cable, the normal force 
on it becomes zero and the particle in equilibrium model tells us that T 5 mbagg as in Figure 8.5c.

Finalize  ​Here we had to combine several analysis models from different areas of our study. Notice that the length R of 
the cable from the actor’s harness to the leftmost pulley did not appear in the final algebraic equation for cos u. There-
fore, the final answer is independent of R.

Substitute this condition and Equation (2) into Equa-
tion (3):	

m bagg 5 m actor g 1 m actor  
2gR 11 2 cos u 2

R

Let yi be the initial height of the actor above the floor and 
vf  be his speed at the instant before he lands. (Notice that 
Ki 5 0 because the actor starts from rest and that Uf 5 0 
because we define the configuration of the actor at the 
floor as having a gravitational potential energy of zero.)

(1)   11
2mactorvf

2 2 0 2 1 10 2 mactor gyi 2 5 0

From the geometry in Figure 8.5a, notice that yf 5 0, so 
yi 5 R 2 R cos u 5 R(1 2 cos u). Use this relationship in 
Equation (1) and solve for vf

2:

(2)   vf
2 5 2gR 11 2 cos u 2

Categorize  ​Next, focus on the instant the actor is at the lowest point. Because the tension in the cable is transferred as 
a force applied to the sandbag, we model the actor at this instant as a particle under a net force. Because the actor moves 
along a circular arc, he experiences at the bottom of the swing a centripetal acceleration of vf

2/r directed upward.

	

▸ 8.2 c o n t i n u e d

Example 8.3	     The Spring-Loaded Popgun 

The launching mechanism of a popgun consists of a trigger-released spring (Fig. 8.6a). The spring is compressed to a 
position yA, and the trigger is fired. The projectile of mass m rises to a position yC above the position at which it leaves 
the spring, indicated in Figure 8.6b as position yB 5 0. Consider a firing of the gun for which m 5 35.0 g, yA 5 20.120 m,  
and yC 5 20.0 m.

(A)  ​Neglecting all resistive forces, determine the spring constant.

Conceptualize  ​Imagine the process illustrated in parts (a) and (b) of Figure 8.6. The projectile starts from rest at A, 
speeds up as the spring pushes upward on it, leaves the spring at B, and then slows down as the gravitational force 
pulls downward on it, eventually coming to rest at point C.

AM

S o l u ti  o n
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yC

B

C

y  � 0B

vS

A yA

a b

%

0
50

100

Elastic
pot.

energy

Kinetic
energy

Grav.
pot.

energy

Total
energy

%

0
50

100

Elastic
pot.

energy

Kinetic
energy

Grav.
pot.

energy

Total
energy

%

0
50

100

Elastic
pot.

energy

Kinetic
energy

Grav.
pot.

energy

Total
energy

c

d

e

%

0
50

100

Elastic
pot.

energy

Kinetic
energy

Grav.
pot.

energy

Total
energy

f

Isolated 
system: 

total 
energy 

constant

Nonisolated 
system: total 

energy 
changes

Figure 8.6  (Example 8.3)  
A spring-loaded popgun (a) before 
firing and (b) when the spring 
extends to its relaxed length. 
(c) An energy bar chart for the 
popgun–projectile–Earth system 
before the popgun is loaded.  
The energy in the system is zero. 
(d) The popgun is loaded by 
means of an external agent doing 
work on the system to push the 
spring downward. Therefore 
the system is nonisolated during 
this process. After the popgun is 
loaded, elastic potential energy is 
stored in the spring and the gravi-
tational potential energy of the 
system is lower because the pro-
jectile is below point B. (e) as the 
projectile passes through point 
B, all of the energy of the isolated 
system is kinetic. (f) When the 
projectile reaches point C, all of 
the energy of the isolated system is 
gravitational potential.

continued

Substitute numerical values:
k 5

2 10.035 0 kg 2 19.80 m/s2 2 320.0 m 2 120.120 m 2 4
10.120 m 22 5 958 N/m

From the isolated system model, write a con-
servation of mechanical energy equation for 
the system between configurations when the 
projectile is at points A and C:

(1)   DK 1 DUg 1 DUs 5 0

Substitute for the initial and final energies: 10 2 0 2 1 1mgyC 2 mgyA 2 1 10 2 1
2kx2 2 5 0

Solve for k: k 5
2mg 1yC 2 yA 2

x2

Categorize  ​We identify the system as the projectile, the spring, and the Earth. We ignore both air resistance on the 
projectile and friction in the gun, so we model the system as isolated with no nonconservative forces acting.

Analyze  ​Because the projectile starts from rest, its initial kinetic energy is zero. We choose the zero configuration for 
the gravitational potential energy of the system to be when the projectile leaves the spring at B. For this configuration, 
the elastic potential energy is also zero.
	 After the gun is fired, the projectile rises to a maximum height yC. The final kinetic energy of the projectile is zero.

(B)  ​Find the speed of the projectile as it moves through the equilibrium position B of the spring as shown in  
Figure 8.6b.

Analyze  ​The energy of the system as the projectile moves through the equilibrium position of the spring includes only the 
kinetic energy of the projectile 12mvB

2. Both types of potential energy are equal to zero for this configuration of the system.

S o l u ti  o n

▸ 8.3 c o n t i n u e d
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8.3	 Situations Involving Kinetic Friction
Consider again the book in Figure 7.18a sliding to the right on the surface of a heavy 
table and slowing down due to the friction force. Work is done by the friction force 
on the book because there is a force and a displacement. Keep in mind, however, 
that our equations for work involve the displacement of the point of application of the 
force. A simple model of the friction force between the book and the surface is shown 
in Figure 8.7a. We have represented the entire friction force between the book and 
surface as being due to two identical teeth that have been spot-welded together.2 
One tooth projects upward from the surface, the other downward from the book, 
and they are welded at the points where they touch. The friction force acts at the 
junction of the two teeth. Imagine that the book slides a small distance d to the right 
as in Figure 8.7b. Because the teeth are modeled as identical, the junction of the 
teeth moves to the right by a distance d/2. Therefore, the displacement of the point 
of application of the friction force is d/2, but the displacement of the book is d!
	 In reality, the friction force is spread out over the entire contact area of an object 
sliding on a surface, so the force is not localized at a point. In addition, because the 
magnitudes of the friction forces at various points are constantly changing as indi-
vidual spot welds occur, the surface and the book deform locally, and so on, the dis-
placement of the point of application of the friction force is not at all the same as the 
displacement of the book. In fact, the displacement of the point of application of the 
friction force is not calculable and so neither is the work done by the friction force.
	 The work–kinetic energy theorem is valid for a particle or an object that can be 
modeled as a particle. When a friction force acts, however, we cannot calculate the 
work done by friction. For such situations, Newton’s second law is still valid for the 
system even though the work–kinetic energy theorem is not. The case of a nonde-
formable object like our book sliding on the surface3 can be handled in a relatively 
straightforward way.
	 Starting from a situation in which forces, including friction, are applied to the 
book, we can follow a similar procedure to that done in developing Equation 7.17. 
Let us start by writing Equation 7.8 for all forces on an object other than friction:

	 a  Wother forces 5 3
  
1a  F

S

other forces 2 ? d rS	 (8.11)

d
2

Book
Surface

d

The entire friction force is 
modeled to be applied at the 
interface between two identical 
teeth projecting from the book 
and the surface.

The point of application of the 
friction force moves through a 
displacement of magnitude d/2.

a

b

Figure 8.7  ​(a) A simplified 
model of friction between a book 
and a surface. (b) The book is 
moved to the right by a distance d.

2Figure 8.7 and its discussion are inspired by a classic article on friction: B. A. Sherwood and W. H. Bernard, “Work 
and heat transfer in the presence of sliding friction,” American Journal of Physics, 52:1001, 1984.
3The overall shape of the book remains the same, which is why we say it is nondeformable. On a microscopic level, 
however, there is deformation of the book’s face as it slides over the surface.

▸ 8.3 c o n t i n u e d

Write Equation (1) again for the system between points 
A and B:

DK 1 DUg 1 DUs 5 0

Substitute for the initial and final energies: 1  1
2mvB

2 2 0 2 1 10 2 mgyA 2 1 10 2  1
2kx2 2 5 0

Solve for vB: vB 5 Å
kx2

m
1 2gyA

Substitute numerical values: vB 5 Å
1958 N/m 2 10.120 m 22

10.035 0 kg 2 1 2 19.80 m/s2 2 120.120 m 2 5 19.8 m/s

Finalize  ​This example is the first one we have seen in which we must include two different types of potential energy. 
Notice in part (A) that we never needed to consider anything about the speed of the ball between points A and C, 
which is part of the power of the energy approach: changes in kinetic and potential energy depend only on the initial 
and final values, not on what happens between the configurations corresponding to these values.
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The d rS in this equation is the displacement of the object because for forces other 
than friction, under the assumption that these forces do not deform the object, 
this displacement is the same as the displacement of the point of application of the 
forces. To each side of Equation 8.11 let us add the integral of the scalar product of 
the force of kinetic friction and d rS. In doing so, we are not defining this quantity 
as work! We are simply saying that it is a quantity that can be calculated mathemati-
cally and will turn out to be useful to us in what follows.

a  Wother forces 1 3  f
S

k ? d rS 5 3  1 a  F
S

other forces 2 ? d rS 1 3  f
S

k ? d rS

5 3  1 a  F
S

other forces 1 f
S

k 2 ? d rS

The integrand on the right side of this equation is the net force g  F
S

 on the object, so

a  Wother forces 1 3  f
S

k ? d rS 5 3a  F
S

? d rS

Incorporating Newton’s second law g  F
S

5 maS gives

	 aWother forces 1 3  f
S

k ? d rS 5 3
 

 maS ? d rS 5 3
 

m 
d vS

dt
? d rS 5 3

tf

ti
 m 

d vS

dt
? vS dt	 (8.12)

where we have used Equation 4.3 to rewrite d rS  as vS dt. The scalar product obeys 
the product rule for differentiation (See Eq. B.30 in Appendix B.6), so the deriva-
tive of the scalar product of vS  with itself can be written

d
dt

1 vS ? vS 2 5
d vS

dt
? vS 1 vS ?

d vS

dt
5 2 

d vS

dt
? vS

We used the commutative property of the scalar product to justify the final expres-
sion in this equation. Consequently,

d vS

dt
? vS 5 1

2 
d
dt

1 vS ? vS 2 5 1
2 

dv 2

dt

Substituting this result into Equation 8.12 gives

aWother forces 1 3 f
S

k ? d rS 5 3
tf

ti
 m a1

2 
dv 2

dt
b dt 5 1

2m 3
vf

vi

 d 1v 2 2 5 1
2mvf

2 2 1
2mvi

2 5 DK

Looking at the left side of this equation, notice that in the inertial frame of the 
surface, f

S

k and d rS  will be in opposite directions for every increment d rS  of the 
path followed by the object. Therefore, f

S

k ? d rS 5 2fk dr. The previous expression 
now becomes

	 aWother forces 2 3  fk dr 5 DK 	

In our model for friction, the magnitude of the kinetic friction force is constant, so 
fk can be brought out of the integral. The remaining integral e dr is simply the sum 
of increments of length along the path, which is the total path length d. Therefore,

	 o Wother forces 2 fkd 5 DK	 (8.13)

Equation 8.13 can be used when a friction force acts on an object. The change in 
kinetic energy is equal to the work done by all forces other than friction minus a 
term fkd associated with the friction force.
	 Considering the sliding book situation again, let’s identify the larger system of the 
book and the surface as the book slows down under the influence of a friction force 
alone. There is no work done across the boundary of this system by other forces 
because the system does not interact with the environment. There are no other types 
of energy transfer occurring across the boundary of the system, assuming we ignore 
the inevitable sound the sliding book makes! In this case, Equation 8.2 becomes

	 DEsystem 5 DK 1 DEint 5 0	
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224	C hapter 8 C onservation of Energy

The change in kinetic energy of this book–surface system is the same as the change 
in kinetic energy of the book alone because the book is the only part of the system 
that is moving. Therefore, incorporating Equation 8.13 with no work done by other 
forces gives

	 2fkd 1 DEint 5 0	

	 DEint 5 fkd	 (8.14)

Equation 8.14 tells us that the increase in internal energy of the system is equal 
to the product of the friction force and the path length through which the block 
moves. In summary, a friction force transforms kinetic energy in a system to inter-
nal energy. If work is done on the system by forces other than friction, Equation 
8.13, with the help of Equation 8.14, can be written as

	 o Wother forces 5 W 5 DK 1 DEint	 (8.15)

which is a reduced form of Equation 8.2 and represents the nonisolated system 
model for a system within which a nonconservative force acts.

Q	 uick Quiz 8.5 ​ You are traveling along a freeway at 65 mi/h. Your car has kinetic 
energy. You suddenly skid to a stop because of congestion in traffic. Where is 
the kinetic energy your car once had? (a) It is all in internal energy in the road. 
(b) It is all in internal energy in the tires. (c) Some of it has transformed to 
internal energy and some of it transferred away by mechanical waves. (d) It is all 
transferred away from your car by various mechanisms.

Change in internal energy   
due to a constant friction 

force within the system

Example 8.4	     A Block Pulled on a Rough Surface 

A 6.0-kg block initially at rest is pulled to the right along a horizontal surface by a 
constant horizontal force of 12 N.

(A)  ​Find the speed of the block after it has moved 3.0 m if the surfaces in contact 
have a coefficient of kinetic friction of 0.15.

Conceptualize  ​This example is similar to Example 
7.6 (page 190), but modified so that the surface is no 
longer frictionless. The rough surface applies a fric-
tion force on the block opposite to the applied force. 
As a result, we expect the speed to be lower than that 
found in Example 7.6.

Categorize  ​The block is pulled by a force and the 
surface is rough, so the block and the surface are 
modeled as a nonisolated system with a nonconservative force acting.

Analyze  ​Figure 8.8a illustrates this situation. Neither the normal force nor the gravitational force does work on the 
system because their points of application are displaced horizontally.

AM

S o l u ti  o n

Figure 8.8  (Example 8.4) 
(a) A block pulled to the right 
on a rough surface by a con-
stant horizontal force. (b) The 
applied force is at an angle u 
to the horizontal.

x

x

�

�

u

a

b

F
S

mgS 

fk
S

nS

vf
S

F
S

mgS 

fk
S

nS
vf
S

Find the work done on the system by the applied force 
just as in Example 7.6:

o Wother forces 5 WF 5 F Dx	

Apply the particle in equilibrium model to the block in the 
vertical direction:

o Fy 5 0   S   n 2 mg 5 0   S   n 5 mg	

Find the magnitude of the friction force: fk 5 mkn 5 mkmg  5 (0.15)(6.0 kg)(9.80 m/s2) 5 8.82 N
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Substitute the energies into Equation 8.15 and solve for 
the final speed of the block:

FDx 5 DK 1 DEint 5 11
2mvf

2 2 0 2 1 fkd

vf 5 Å
2
m

12fkd 1 F Dx 2

Substitute numerical values: vf 5 Å
2

6.0 kg
32 18.82 N 2 13.0 m 2 1 112 N 2 13.0 m 2 4 5 1.8 m/s

Finalize  ​As expected, this value is less than the 3.5 m/s found in the case of the block sliding on a frictionless surface 
(see Example 7.6). The difference in kinetic energies between the block in Example 7.6 and the block in this example 
is equal to the increase in internal energy of the block–surface system in this example.

(B)  ​Suppose the force F
S

 is applied at an angle u as shown in Figure 8.8b. At what angle should the force be applied 
to achieve the largest possible speed after the block has moved 3.0 m to the right?

Conceptualize  ​You might guess that u 5 0 would give the largest speed because the force would have the largest com-
ponent possible in the direction parallel to the surface. Think about F

S
 applied at an arbitrary nonzero angle, however. 

Although the horizontal component of the force would be reduced, the vertical component of the force would reduce 
the normal force, in turn reducing the force of friction, which suggests that the speed could be maximized by pulling 
at an angle other than u 5 0.

Categorize  ​As in part (A), we model the block and the surface as a nonisolated system with a nonconservative force acting.

S o l u ti  o n

Analyze  ​Find the work done by the applied force, noting 
that Dx 5 d because the path followed by the block is a 
straight line:

(1)   o Wother forces 5 WF 5 F Dx cos u 5 Fd cos u	

Apply the particle in equilibrium model to the block in 
the vertical direction:

o Fy 5 n 1 F sin u 2 mg 5 0

Solve for n: (2)   n 5 mg 2 F sin u	

Use Equation 8.15 to find the final kinetic energy for 
this situation:

WF 5 DK 1 D Eint 5 (Kf 2 0) 1 fkd   S   Kf 5 WF 2 fkd

Maximizing the speed is equivalent to maximizing the 
final kinetic energy. Consequently, differentiate Kf with 
respect to u and set the result equal to zero:

dKf

du
 5 2Fd sin u 2 mk(0 2 F  cos u)d 5 0

2 sin u 1 mk cos u 5 0

tan u 5 mk

Evaluate u for mk 5 0.15: u 5 tan21(mk) 5 tan21(0.15) 5   8.58

Finalize  ​Notice that the angle at which the speed of the block is a maximum is indeed not u 5 0. When the angle 
exceeds 8.58, the horizontal component of the applied force is too small to be compensated by the reduced friction 
force and the speed of the block begins to decrease from its maximum value.

Substitute the results in Equations (1) and (2): Kf 5 Fd cos u 2 mknd 5 Fd cos u 2 mk(mg 2 F sin u)d

	

▸ 8.4 c o n t i n u e d

Conceptual Example 8.5	     Useful Physics for Safer Driving

A car traveling at an initial speed v slides a distance d to a halt after its brakes lock. If the car’s initial speed is instead 
2v at the moment the brakes lock, estimate the distance it slides.

continued
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226	C hapter 8 C onservation of Energy

Let us assume the force of kinetic friction between the car and the road surface is constant and the same for both 
speeds. According to Equation 8.13, the friction force multiplied by the distance d is equal to the initial kinetic energy 
of the car (because Kf 5 0 and there is no work done by other forces). If the speed is doubled, as it is in this example, 
the kinetic energy is quadrupled. For a given friction force, the distance traveled is four times as great when the initial 
speed is doubled, and so the estimated distance the car slides is 4d.

S o l u ti  o n

Work is done on the block, and its speed changes. 
The conservation of energy equation, Equation 8.2, 
reduces to the work–kinetic energy theorem. Use that 
theorem to find the speed at x 5 0:

Ws 5 1
2mvf

2 2 1
2mvi

2

vf 5 Åvi
2 1

2
m

 Ws 5 Åvi
2 1

2
m

 11
2kxmax

2 2

Finalize  ​Although this problem could have been solved in Chapter 7, it is presented here to provide contrast with the 
following part (B), which requires the techniques of this chapter.

(B)  ​Calculate the speed of the block as it passes through the equilibrium position if a constant friction force of 4.0 N 
retards its motion from the moment it is released.

Conceptualize  ​The correct answer must be less than that found in part (A) because the friction force retards the 
motion.

Categorize  ​We identify the system as the block and the surface, a nonisolated system because of the work done by the 
spring. There is a nonconservative force acting within the system: the friction between the block and the surface.

S o l u ti  o n

Use Equation 7.11 to find the work done by the spring 
on the system with xmax 5 xi :

Ws 5 1
2kx2

max

Substitute numerical values: vf 5 Å0 1
2

1.6 kg
312 11 000 N/m 2 10.020 m 22 4 5  0.50 m/s

Example 8.6	     A Block–Spring System 

A block of mass 1.6 kg is attached to a horizontal spring that has a force constant 
of 1 000 N/m as shown in Figure 8.9a. The spring is compressed 2.0 cm and is then 
released from rest as in Figure 8.9b.

(A)  ​Calculate the speed of the block as it passes through the equilibrium posi-
tion x 5 0 if the surface is frictionless.

Conceptualize  ​This situation has been discussed 
before, and it is easy to visualize the block being pushed 
to the right by the spring and moving with some speed 
at x 5 0.

Categorize  ​We identify the system as the block and 
model the block as a nonisolated system.

Analyze  ​In this situation, the block starts with vi 5 0 
at xi 5 22.0 cm, and we want to find vf at xf 5 0.

AM

S o l u ti  o n

	

▸ 8.5 c o n t i n u e d

x

s

a

b

x � 0

x � 0

x

x

F
S

Figure 8.9  ​(Example 8.6) 
(a) A block attached to a 
spring is pushed inward  
from an initial position  
x 5 0 by an external agent. 
(b) At position x, the block 
is released from rest and the 
spring pushes it to the right.
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Analyze  ​Write Equation 8.15: Ws 5 DK 1 DE int 5 11
2mvf

2 2 0 2 1 fkd

Substitute for the work done by the 
spring:

vf 5 Å
2
m

 11
2kx max

2 2 fkd 2

Finalize  ​As expected, this value is less than the 0.50 m/s found in part (A).

 What if the friction force were increased to 10.0 N? What is the block’s speed at x 5 0?What If ?

Substitute numerical values: vf 5 Å
2

1.6 kg
3 12 11 000 N/m 2 10.020 m 22 2 14.0 N 2 10.020 m 2 4 5 0.39 m/s

8.4	 Changes in Mechanical Energy  
for Nonconservative Forces

Consider the book sliding across the surface in the preceding section. As the book 
moves through a distance d, the only force in the horizontal direction is the force 
of kinetic friction. This force causes a change 2fkd in the kinetic energy of the book 
as described by Equation 8.13.
	 Now, however, suppose the book is part of a system that also exhibits a change in 
potential energy. In this case, 2fkd is the amount by which the mechanical energy of 
the system changes because of the force of kinetic friction. For example, if the book 
moves on an incline that is not frictionless, there is a change in both the kinetic energy 
and the gravitational potential energy of the book–Earth system. Consequently,

	 DEmech 5 DK 1 DUg 5 2fkd 5 2DEint	

In general, if a nonconservative force acts within an isolated system,

	 DK 1 DU 1 DEint 5 0	 (8.16)

where DU is the change in all forms of potential energy. We recognize Equation 
8.16 as Equation 8.2 with no transfers of energy across the boundary of the system.
	 If the system in which nonconservative forces act is nonisolated and the external 
influence on the system is by means of work, the generalization of Equation 8.13 is

	 o Wother forces 2 fkd 5 DEmech	

This equation, with the help of Equations 8.7 and 8.14, can be written as

	 o Wother forces 5 W  5 DK 1 DU 1 DEint	 (8.17)

This reduced form of Equation 8.2 represents the nonisolated system model for a sys-
tem that possesses potential energy and within which a nonconservative force acts. 

Answer  ​In this case, the value of fkd as the block moves 
to x 5 0 is

fkd 5 (10.0 N)(0.020 m) 5 0.20 J

which is equal in magnitude to the kinetic energy at x 5 
0 for the frictionless case. (Verify it!). Therefore, all the 

kinetic energy has been transformed to internal energy 
by friction when the block arrives at x 5 0, and its speed 
at this point is v 5 0.
	 In this situation as well as that in part (B), the speed 
of the block reaches a maximum at some position other 
than x 5 0. Problem 53 asks you to locate these positions.

Solve for vf : vf 5 Å
2
m

 1Ws 2 fkd 2

	

▸ 8.6 c o n t i n u e d
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228	C hapter 8 C onservation of Energy

Example 8.7	     Crate Sliding Down a Ramp 

A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in length and 
inclined at an angle of 30.08 as shown in Figure 8.10. The crate starts from 
rest at the top, experiences a constant friction force of magnitude 5.00 N,  
and continues to move a short distance on the horizontal floor after it 
leaves the ramp.

(A)  ​Use energy methods to determine the speed of the crate at the bot-
tom of the ramp.

Conceptualize  ​Imagine the crate sliding down the ramp in Figure 8.10. 
The larger the friction force, the more slowly the crate will slide.

Categorize  ​We identify the crate, the surface, and the Earth as an isolated 
system with a nonconservative force acting.

Analyze  ​Because vi 5 0, the initial kinetic energy of the system when the crate is at the top of the ramp is zero. If the y 
coordinate is measured from the bottom of the ramp (the final position of the crate, for which we choose the gravita-
tional potential energy of the system to be zero) with the upward direction being positive, then yi 5 0.500 m.

AM

S o l u ti  o n

0.500 m

d � 1.00 m

30.0�

 � 0vi
S

vf
S

Figure 8.10  ​(Example 8.7) A crate slides 
down a ramp under the influence of gravity. 
The potential energy of the system decreases, 
whereas the kinetic energy increases.

Write the conservation of energy equation (Eq. 8.2) for 
this system:

DK 1 DU 1 DEint 5 0

Substitute for the energies: 11
2mvf

2 2 0 2 1 10 2 mgyi 2 1 fkd 5 0

Solve for vf :
(1)   vf 5 Å

2
m
1mgyi 2 fkd 2

Substitute numerical values:
vf 5 Å

2
3.00 kg

 3 13.00 kg 2 19.80 m/s2 2 10.500 m 2 2 15.00 N 2 11.00 m 2 4 5 2.54 m/s

Write the conservation of energy equation for this 
situation:

DK 1 DE int 5 0

Substitute for the energies: 10 2 1
2mvi

2 2 1 fkd 5 0

Solve for the distance d and substitute numerical values: d 5
mvi

2

2fk
5

13.00 kg 2 12.54 m/s 22

2 15.00 N 2 5 1.94 m

Finalize  ​For comparison, you may want to calculate the speed of the crate at the bottom of the ramp in the case in 
which the ramp is frictionless. Also notice that the increase in internal energy of the system as the crate slides down 
the ramp is fkd 5 (5.00 N)(1.00 m) 5 5.00 J. This energy is shared between the crate and the surface, each of which is 
a bit warmer than before.
	 Also notice that the distance d the object slides on the horizontal surface is infinite if the surface is frictionless. Is 
that consistent with your conceptualization of the situation?

​A cautious worker decides that the speed of the crate when it arrives at the bottom of the ramp may 
be so large that its contents may be damaged. Therefore, he replaces the ramp with a longer one such that the new 
What If ?

(B)  ​How far does the crate slide on the horizontal floor if it continues to experience a friction force of magnitude 
5.00 N?

Analyze  ​This part of the problem is handled in exactly the same way as part (A), but in this case we can consider the 
mechanical energy of the system to consist only of kinetic energy because the potential energy of the system remains 
fixed.

S o l u ti  o n
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continued

Find the length d of the new ramp: sin 25.08 5
0.500 m

d
   S   d 5

0.500 m
sin 25.08

5 1.18 m	

Find vf from Equation (1) in 
part (A):

vf 5 Å
2

3.00 kg
 3 13.00 kg 2 19.80 m/s2 2 10.500 m 2 2 15.00 N 2 11.18 m 2 4 5 2.42 m/s

The final speed is indeed lower than in the higher-angle case.

ramp makes an angle of 25.08 with the ground. Does this new ramp reduce the speed of the crate as it reaches the 
ground?

Answer  ​Because the ramp is longer, the friction force acts over a longer distance and transforms more of the mechani-
cal energy into internal energy. The result is a reduction in the kinetic energy of the crate, and we expect a lower speed 
as it reaches the ground.

	

▸ 8.7 c o n t i n u e d

Example 8.8	     Block–Spring Collision 

A block having a mass of 0.80 kg is given an initial velocity vA 5 1.2 m/s to the right and collides with a spring whose 
mass is negligible and whose force constant is k 5 50 N/m as shown in Figure 8.11.

(A)  ​Assuming the surface to be frictionless, calculate the maximum compression of the spring after the collision.

Conceptualize  ​The various parts 
of Figure 8.11 help us imagine what 
the block will do in this situation. 
All motion takes place in a hori-
zontal plane, so we do not need to 
consider changes in gravitational 
potential energy.

Categorize  ​We identify the system 
to be the block and the spring and 
model it as an isolated system with no 
nonconservative forces acting.

Analyze  ​Before the collision, when 
the block is at A, it has kinetic 
energy and the spring is uncom-
pressed, so the elastic potential 
energy stored in the system is zero. Therefore, the total mechanical energy of the system before the collision is just 12mvA

2. 
After the collision, when the block is at C, the spring is fully compressed; now the block is at rest and so has zero kinetic 
energy. The elastic potential energy stored in the system, however, has its maximum value 12kx2 5 1

2kx2
max, where the origin 

of coordinates x 5 0 is chosen to be the equilibrium position of the spring and xmax is the maximum compression of the 
spring, which in this case happens to be xC. The total mechanical energy of the system is conserved because no noncon-
servative forces act on objects within the isolated system.

AM

S o l u ti  o n
vS

vS

vS

vS

E � � mvA
21

2

x � 0

C � 0

xmax

B

C

D

E � � mvB
2 � � kxB

21
2

1
2

E � � mvD
2 � � mvA

21
2

1
2

E � � kxmax
1
2

A

B

xB

D � � vSA

2

A

b

c

d

a

Figure 8.11  ​(Example 
8.8) A block sliding on a 
frictionless, horizontal 
surface collides with a 
light spring. (a) Initially, 
the mechanical energy is 
all kinetic energy. (b) The 
mechanical energy is the 
sum of the kinetic energy 
of the block and the elas-
tic potential energy in the 
spring. (c) The energy is 
entirely potential energy. 
(d) The energy is trans-
formed back to the kinetic 
energy of the block. 
The total energy of the 
system remains constant 
throughout the motion.

Write the conservation of energy equation for this situation: DK 1 DU 5 0	

Substitute for the energies: 10 2 1
2mvA

2 2 1 11
2kx 2

max 2 0 2 5 0

Solve for xmax and evaluate: xmax 5 Å
m
k

 vA 5 Å
0.80 kg

50 N/m
11.2 m/s 2 5 0.15 m
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230	C hapter 8 C onservation of Energy

(B)  ​Suppose a constant force of kinetic friction acts between the block and the surface, with mk 5 0.50. If the speed of 
the block at the moment it collides with the spring is vA 5 1.2 m/s, what is the maximum compression xC in the spring?

Conceptualize  ​Because of the friction force, we expect the compression of the spring to be smaller than in part (A) 
because some of the block’s kinetic energy is transformed to internal energy in the block and the surface.

Categorize  ​We identify the system as the block, the surface, and the spring. This is an isolated system but now involves a 
nonconservative force.

Analyze  ​In this case, the mechanical energy Emech 5 K 1 Us of the system is not conserved because a friction force acts 
on the block. From the particle in equilibrium model in the vertical direction, we see that n 5 mg.

S o l u ti  o n

Substitute the initial and final energies: 10 2 1
2mvA

2 2 1 11
2kx 2

C 2 0 2 1 mkmgx C 5 0

Substitute numerical values: 50xC
2 1 2 10.50 2 10.80 2 19.80 2x C 2 10.80 2 11.2 22 5 0

50xC
2 1 7.84xC 2 1.15 5 0	

Write the conservation of energy equation for this 
situation:

DK 1 DU 1 DEint 5 0

Evaluate the magnitude of the friction force: fk 5 mkn 5 mkmg	

Solving the quadratic equation for xC gives xC 5 0.092 m and xC 5 20.25 m. The physically meaningful root is  
xC 5   0.092 m.

Finalize  ​The negative root does not apply to this situation because the block must be to the right of the origin (positive 
value of x) when it comes to rest. Notice that the value of 0.092 m is less than the distance obtained in the frictionless 
case of part (A) as we expected.

	

▸ 8.8 c o n t i n u e d

Rearrange the terms into a qaudratic equation: kxC
2 1 2mkmgx C 2 mvA

2 5 0

Example 8.9	     Connected Blocks in Motion 

Two blocks are connected by a light string that passes over a frictionless pulley 
as shown in Figure 8.12. The block of mass m1 lies on a horizontal surface and is 
connected to a spring of force constant k. The system is released from rest when 
the spring is unstretched. If the hanging block of mass m2 falls a distance h before 
coming to rest, calculate the coefficient of kinetic friction between the block of 
mass m1 and the surface.

Conceptualize  ​The key word rest appears twice in the problem statement. This 
word suggests that the configurations of the system associated with rest are good 
candidates for the initial and final configurations because the kinetic energy of 
the system is zero for these configurations.

Categorize  ​In this situation, the system consists of the two blocks, the spring, the 
surface, and the Earth. This is an isolated system with a nonconservative force act-
ing. We also model the sliding block as a particle in equilibrium in the vertical direc-
tion, leading to n 5 m1g.

Analyze  ​We need to consider two forms of potential energy for the system, gravitational and elastic: DUg 5 Ugf 2 Ugi is 
the change in the system’s gravitational potential energy, and DUs 5 Usf 2 Usi is the change in the system’s elastic poten-
tial energy. The change in the gravitational potential energy of the system is associated with only the falling block 

AM

S o l u ti  o n

k

h

m1

m2

Figure 8.12  ​(Example 8.9) As the 
hanging block moves from its high-
est elevation to its lowest, the system 
loses gravitational potential energy 
but gains elastic potential energy in 
the spring. Some mechanical energy 
is transformed to internal energy 
because of friction between the slid-
ing block and the surface.
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Write the appropriate reduction of Equation 8.2: (1)   DUg 1 DUs 1 DEint 5 0	

Substitute for the energies, noting that as the hanging block falls a 
distance h, the horizontally moving block moves the same distance h 
to the right, and the spring stretches by a distance h:

10 2 m2gh 2 1 11
2kh2 2 0 2 1 fkh 5 0	

Substitute for the friction force: 2m2gh 1 1
2kh2 1 mkm1gh 5 0	

Solve for mk: mk 5
m2g 2 1

2kh
m1g

	

Finalize  ​This setup represents a method of measuring the coefficient of kinetic friction between an object and some 
surface. Notice how we have solved the examples in this chapter using the energy approach. We begin with Equation 
8.2 and then tailor it to the physical situation. This process may include deleting terms, such as the kinetic energy term 
and all terms on the right-hand side of Equation 8.2 in this example. It can also include expanding terms, such as 
rewriting DU due to two types of potential energy in this example.

	

▸ 8.9 c o n t i n u e d

Conceptual Example 8.10 	     Interpreting the Energy Bars

The energy bar charts in Figure 8.13 show three instants in 
the motion of the system in Figure 8.12 and described in 
Example 8.9. For each bar chart, identify the configuration 
of the system that corresponds to the chart.

In Figure 8.13a, there is no kinetic energy in the system. 
Therefore, nothing in the system is moving. The bar chart 
shows that the system contains only gravitational potential 
energy and no internal energy yet, which corresponds to the 
configuration with the darker blocks in Figure 8.12 and rep-
resents the instant just after the system is released.
	 In Figure 8.13b, the system contains four types of energy. 
The height of the gravitational potential energy bar is at 
50%, which tells us that the hanging block has moved half-
way between its position corresponding to Figure 8.13a and 
the position defined as y 5 0. Therefore, in this configura-
tion, the hanging block is between the dark and light images 
of the hanging block in Figure 8.12. The system has gained 
kinetic energy because the blocks are moving, elastic poten-
tial energy because the spring is stretching, and internal 
energy because of friction between the block of mass m1 and 
the surface.
	 In Figure 8.13c, the height of the gravitational potential energy bar is zero, telling us that the hanging block is at y 5 
0. In addition, the height of the kinetic energy bar is zero, indicating that the blocks have stopped moving momentarily. 
Therefore, the configuration of the system is that shown by the light images of the blocks in Figure 8.12. The height of 
the elastic potential energy bar is high because the spring is stretched its maximum amount. The height of the internal 
energy bar is higher than in Figure 8.13b because the block of mass m1 has continued to slide over the surface after the 
configuration shown in Figure 8.13b.

S o l u ti  o n
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Figure 8.13  (Conceptual Example 8.10) Three energy bar 
charts are shown for the system in Figure 8.12.

	

because the vertical coordinate of the horizontally sliding block does not change. The initial and final kinetic energies 
of the system are zero, so DK 5 0.
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8.5	 Power
Consider Conceptual Example 7.7 again, which involved rolling a refrigerator up a 
ramp into a truck. Suppose the man is not convinced the work is the same regard-
less of the ramp’s length and sets up a long ramp with a gentle rise. Although he 
does the same amount of work as someone using a shorter ramp, he takes longer 
to do the work because he has to move the refrigerator over a greater distance. 
Although the work done on both ramps is the same, there is something different 
about the tasks: the time interval during which the work is done.
	 The time rate of energy transfer is called the instantaneous power P and is 
defined as

	 P ;
dE
dt

	 (8.18)

	 We will focus on work as the energy transfer method in this discussion, but keep 
in mind that the notion of power is valid for any means of energy transfer discussed 
in Section 8.1. If an external force is applied to an object (which we model as a par-
ticle) and if the work done by this force on the object in the time interval Dt is W, 
the average power during this interval is

	 Pavg 5
W
Dt

	

Therefore, in Conceptual Example 7.7, although the same work is done in rolling 
the refrigerator up both ramps, less power is required for the longer ramp.
	 In a manner similar to the way we approached the definition of velocity and 
acceleration, the instantaneous power is the limiting value of the average power as 
Dt approaches zero:

	 P 5 lim
Dt S 0

 W
Dt

5
dW
dt

 	

where we have represented the infinitesimal value of the work done by dW. We find 
from Equation 7.3 that dW 5 F

S
? d rS . Therefore, the instantaneous power can be 

written

	 P 5
dW
dt

5 F
S

?
d rS

dt
5 F

S
? vS 	 (8.19)

where vS 5 d rS/dt.
	 The SI unit of power is joules per second (J/s), also called the watt (W) after 
James Watt:

	 1 W 5 1 J/s 5 1 kg ? m2/s3	

	 A unit of power in the U.S. customary system is the horsepower (hp):

	 1 hp 5 746 W	

	 A unit of energy (or work) can now be defined in terms of the unit of power. One 
kilowatt-hour (kWh) is the energy transferred in 1 h at the constant rate of 1 kW 5 
1 000 J/s. The amount of energy represented by 1 kWh is

	 1 kWh 5 (103 W)(3 600 s) 5 3.60 3 106 J	

A kilowatt-hour is a unit of energy, not power. When you pay your electric bill, you 
are buying energy, and the amount of energy transferred by electrical transmission 
into a home during the period represented by the electric bill is usually expressed 
in kilowatt-hours. For example, your bill may state that you used 900 kWh of energy 
during a month and that you are being charged at the rate of 10¢ per kilowatt-hour. 
Your obligation is then $90 for this amount of energy. As another example, sup-
pose an electric bulb is rated at 100 W. In 1.00 h of operation, it would have energy 
transferred to it by electrical transmission in the amount of (0.100 kW)(1.00 h) 5  
0.100 kWh 5 3.60 3 105 J.

Definition of power  

The watt  

Pitfall Prevention 8.3
W, W, and watts  Do not confuse 
the symbol W for the watt with 
the italic symbol W for work. Also, 
remember that the watt already 
represents a rate of energy trans-
fer, so “watts per second” does not 
make sense. The watt is the same as 
a joule per second.
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T
S

gS 

f
S

 

�

Motor

M

a b

Figure 8.14  ​(Example 
8.11) (a) The motor exerts 
an upward force T

S
 on the 

elevator car. The magnitude 
of this force is the total ten-
sion T in the cables connect-
ing the car and motor. The 
downward forces acting on 
the car are a friction force f

S
 

and the gravitational force 
F
S

g 5 M gS. (b) The free-body 
diagram for the elevator car.

Example 8.11	     Power Delivered by an Elevator Motor 

An elevator car (Fig. 8.14a) has a mass of 1 600 kg and is carrying passengers having 
a combined mass of 200 kg. A constant friction force of 4 000 N retards its motion.

(A)  ​How much power must a motor deliver to lift the elevator car and its passengers 
at a constant speed of 3.00 m/s?

Conceptualize  ​The motor must supply the force of mag-
nitude T that pulls the elevator car upward.

Categorize  ​The friction force increases the power neces-
sary to lift the elevator. The problem states that the speed 
of the elevator is constant, which tells us that a 5 0. We 
model the elevator as a particle in equilibrium.

Analyze  ​The free-body diagram in Figure 8.14b specifies 
the upward direction as positive. The total mass M of the 
system (car plus passengers) is equal to 1 800 kg.

AM

S o l u ti  o n

Using the particle in equilibrium model, 
apply Newton’s second law to the car:

o Fy 5 T 2 f 2 Mg 5 0

Solve for T : T 5 Mg 1 f

Use Equation 8.19 and that T
S

 is in the same 
direction as vS to find the power:

P 5 T
S

? vS 5 Tv 5 1Mg 1 f 2v

Substitute numerical values: P 5 [(1 800 kg)(9.80 m/s2) 1 (4 000 N)](3.00 m/s) 5   6.49 3 104 W

(B)  ​What power must the motor deliver at the instant the speed of the elevator is v if the motor is designed to provide 
the elevator car with an upward acceleration of 1.00 m/s2?

Conceptualize  ​In this case, the motor must supply the force of magnitude T that pulls the elevator car upward with an 
increasing speed. We expect that more power will be required to do that than in part (A) because the motor must now 
perform the additional task of accelerating the car.

Categorize  ​In this case, we model the elevator car as a particle under a net force because it is accelerating.

S o l u ti  o n

Analyze  ​Using the particle under a net force model, 
apply Newton’s second law to the car:

o Fy 5 T 2 f 2 Mg 5 Ma	

Solve for T : T 5 M(a 1 g) 1 f	

Use Equation 8.19 to obtain the required power: P 5 Tv 5 [M(a 1 g) 1 f ]v	

Substitute numerical values: P 5 [(1 800 kg)(1.00 m/s2 1 9.80 m/s2) 1 4 000 N]v

5   (2.34 3 104)v

where v is the instantaneous speed of the car in meters per second and P is in watts.

Finalize  ​To compare with part (A), let v 5 3.00 m/s, giving a power of

	 P 5 (2.34 3 104 N)(3.00 m/s) 5 7.02 3 104 W

which is larger than the power found in part (A), as expected.
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234	C hapter 8 C onservation of Energy

Summary

Definitions

  A nonisolated system is one for which 
energy crosses the boundary of the system. 
An isolated system is one for which no energy 
crosses the boundary of the system.

  The instantaneous power P is defined as the time rate of 
energy transfer:

	 P ;
dE
dt

	 (8.18)

Concepts and Principles

  If a friction force of magnitude fk acts over a dis-
tance d within a system, the change in internal energy 
of the system is  

	 DEint 5 fkd	 (8.14)

  For a nonisolated system, we can equate the change 
in the total energy stored in the system to the sum of 
all the transfers of energy across the system boundary, 
which is a statement of conservation of energy. For an 
isolated system, the total energy is constant.

Analysis Models for Problem Solving 

  Isolated System (Energy). ​ The total energy 
of an isolated system is conserved, so

	 DEsystem 5 0	 (8.10)

which can be written as 

	 DK 1 DU 1 DEint 5 0	 (8.16)

If no nonconservative forces act within the 
isolated system, the mechanical energy of the 
system is conserved, so

	 DEmech 5 0	 (8.8)

which can be written as

	 DK 1 DU 5 0	 (8.6)

  Nonisolated System (Energy). ​ The most general statement 
describing the behavior of a nonisolated system is the conser-
vation of energy equation:

	 DEsystem 5 o T	 (8.1)

Including the types of energy storage and energy transfer that 
we have discussed gives

	 DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT 1 TET 1 TER	 (8.2)

For a specific problem, this equation is generally reduced to a 
smaller number of terms by eliminating the terms that are not 
appropriate to the situation.

Work Heat Mechanical
waves

Matter
transfer

Electrical
transmission

Electromagnetic
radiation

Kinetic energy
Potential energy
Internal energy

System
boundary

The change in the total 
amount of energy in 
the system is equal to 
the total amount of 
energy that crosses the 
boundary of the system.

Kinetic energy
Potential energy
Internal energy

System
boundary

The total amount of energy 
in the system is constant. 
Energy transforms among 
the three possible types.
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	 1.	 You hold a slingshot at arm’s length, pull the light elastic 
band back to your chin, and release it to launch a pebble 
horizontally with speed 200 cm/s. With the same proce-
dure, you fire a bean with speed 600 cm/s. What is the 
ratio of the mass of the bean to the mass of the pebble?  
(a) 19 (b) 13 (c) 1 (d) 3 (e) 9

	 2.	 Two children stand on a platform at the top of a curving 
slide next to a backyard swimming pool. At the same 
moment the smaller child hops off to jump straight 
down into the pool, the bigger child releases herself 
at the top of the frictionless slide. (i) Upon reaching 
the water, the kinetic energy of the smaller child com-
pared with that of the larger child is (a) greater (b) less  
(c) equal. (ii) Upon reaching the water, the speed of 
the smaller child compared with that of the larger 
child is (a) greater (b) less (c) equal. (iii) During their 
motions from the platform to the water, the average 
acceleration of the smaller child compared with that of 
the larger child is (a) greater (b) less (c) equal.

	 3.	 At the bottom of an air track tilted at angle u, a glider 
of mass m is given a push to make it coast a distance d 
up the slope as it slows down and stops. Then the glider 
comes back down the track to its starting point. Now the 
experiment is repeated with the same original speed but 
with a second identical glider set on top of the first. The 
airflow from the track is strong enough to support the 
stacked pair of gliders so that the combination moves 
over the track with negligible friction. Static friction 
holds the second glider stationary relative to the first 
glider throughout the motion. The coefficient of static 
friction between the two gliders is ms. What is the change 
in mechanical energy of the two-glider–Earth system in 
the up- and down-slope motion after the pair of gliders 
is released? Choose one. (a)  22msmg (b) 22mgd cos u  
(c) 22msmgd cos u (d) 0 (e) 12msmgd cos u

	 4.	 An athlete jumping vertically on a trampoline leaves 
the surface with a velocity of 8.5 m/s upward. What 
maximum height does she reach? (a) 13 m (b) 2.3 m 
(c) 3.7 m (d)  0.27  m (e) The answer can’t be deter-
mined because the mass of the athlete isn’t given.

	 5.	 Answer yes or no to each of the following questions. 
(a)  Can an object–Earth system have kinetic energy 
and not gravitational potential energy? (b) Can it have 
gravitational potential energy and not kinetic energy? 
(c) Can it have both types of energy at the same 
moment? (d) Can it have neither?

	 6.	 In a laboratory model of cars skidding to a stop, data 
are measured for four trials using two blocks. The 
blocks have identical masses but different coefficients 
of kinetic friction with a table: mk 5 0.2 and 0.8. Each 
block is launched with speed vi 5 1 m/s and slides 
across the level table as the block comes to rest. This 
process represents the first two trials. For the next two 
trials, the procedure is repeated but the blocks are 
launched with speed vi 5 2 m/s. Rank the four trials 
(a) through (d) according to the stopping distance 
from largest to smallest. If the stopping distance is 
the same in two cases, give them equal rank. (a) vi 5  
1 m/s, mk 5 0.2 (b) vi 5 1 m/s, mk 5 0.8 (c) vi 5 2 m/s, 
mk 5 0.2 (d) vi 5 2 m/s, mk 5 0.8

	 7.	 What average power is generated by a 70.0-kg moun-
tain climber who climbs a summit of height 325 m in 
95.0 min? (a) 39.1 W (b) 54.6 W (c) 25.5 W (d) 67.0 W 
(e) 88.4 W

	 8.	 A ball of clay falls freely to the hard floor. It does not 
bounce noticeably, and it very quickly comes to rest. 
What, then, has happened to the energy the ball had 
while it was falling? (a) It has been used up in produc-
ing the downward motion. (b) It has been transformed 
back into potential energy. (c) It has been transferred 
into the ball by heat. (d) It is in the ball and floor (and 
walls) as energy of invisible molecular motion. (e) Most 
of it went into sound.

	 9.	 A pile driver drives posts into the ground by repeatedly 
dropping a heavy object on them. Assume the object is 
dropped from the same height each time. By what factor 
does the energy of the pile driver–Earth system change 
when the mass of the object being dropped is doubled?  
(a) 12 (b) 1; the energy is the same (c) 2 (d) 4

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 One person drops a ball from the top of a building 
while another person at the bottom observes its 
motion. Will these two people agree (a) on the value 
of the gravitational potential energy of the ball–
Earth system? (b) On the change in potential energy? ​
(c) On the kinetic energy of the ball at some point in 
its motion?

	 2.	 A car salesperson claims that a 300-hp engine is a nec-
essary option in a compact car, in place of the conven-
tional 130-hp engine. Suppose you intend to drive the 

car within speed limits (# 65 mi/h) on flat terrain. 
How would you counter this sales pitch?

	 3.	 Does everything have energy? Give the reasoning for 
your answer.

	 4.	 You ride a bicycle. In what sense is your bicycle 
solar-powered?

	 5.	 A bowling ball is suspended from the ceiling of a lec-
ture hall by a strong cord. The ball is drawn away from 
its equilibrium position and released from rest at the 
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236	C hapter 8 C onservation of Energy

and, (ii) whenever possible, describe a natural pro-
cess in which the energy transfer or transformation 
occurs. Give details to defend your choices, such as 
identifying the system and identifying other output 
energy if the device or natural process has limited 
efficiency. (a) Chemical potential energy transforms 
into internal energy. (b) Energy transferred by elec-
trical transmission becomes gravitational potential 
energy. (c) Elastic potential energy transfers out of 
a system by heat. (d) Energy transferred by mechani-
cal waves does work on a system. (e) Energy carried 
by electromagnetic waves becomes kinetic energy in a 
system.

	 9.	 A block is connected to a spring that is suspended 
from the ceiling. Assuming air resistance is ignored, 
describe the energy transformations that occur within 
the system consisting of the block, the Earth, and the 
spring when the block is set into vertical motion.

	10.	 In Chapter 7, the work–kinetic energy theorem, W 5 DK,  
was introduced. This equation states that work done on 
a system appears as a change in kinetic energy. It is a 
special-case equation, valid if there are no changes in 
any other type of energy such as potential or internal. 
Give two or three examples in which work is done on a 
system but the change in energy of the system is not a 
change in kinetic energy.

tip of the demonstrator’s nose as 
shown in Figure CQ8.5. The dem-
onstrator remains stationary. (a) Ex- 
plain why the ball does not strike 
her on its return swing. (b) Would 
this demonstrator be safe if the ball 
were given a push from its starting 
position at her nose?

	 6.	 Can a force of static friction do 
work? If not, why not? If so, give an 
example.

	 7.	 In the general conservation of 
energy equation, state which terms 
predominate in describing each of the following 
devices and processes. For a process going on continu-
ously, you may consider what happens in a 10-s time 
interval. State which terms in the equation represent 
original and final forms of energy, which would be 
inputs, and which outputs. (a) a slingshot firing a peb-
ble (b) a fire burning (c) a portable radio operating 
(d) a car braking to a stop (e) the surface of the Sun 
shining visibly (f) a person jumping up onto a chair

	 8.	 Consider the energy transfers and transformations 
listed below in parts (a) through (e). For each part, 
(i) describe human-made devices designed to pro-
duce each of the energy transfers or transformations 

Section 8.1 Analysis Model: Nonisolated System (Energy)

	 1.	 For each of the following systems and time intervals, 
write the appropriate version of Equation 8.2, the 
conservation of energy equation. (a) the heating coils 
in your toaster during the first five seconds after you 
turn the toaster on (b) your automobile from just 
before you fill it with gasoline until you pull away 
from the gas station at speed v (c) your body while 
you sit quietly and eat a peanut butter and jelly sand-
wich for lunch (d) your home during five minutes of 
a sunny afternoon while the temperature in the home 
remains fixed

	 2.	 A ball of mass m falls from a height h to the floor. 
(a) Write the appropriate version of Equation 8.2 for 
the system of the ball and the Earth and use it to cal-
culate the speed of the ball just before it strikes the 
Earth. (b) Write the appropriate version of Equation 
8.2 for the system of the ball and use it to calculate the 
speed of the ball just before it strikes the Earth.

S

S

Section 8.2 Analysis Model: Isolated System (Energy)

	 3.	 A block of mass 0.250 kg is placed on top of a light, ver-
tical spring of force constant 5 000 N/m and pushed 
downward so that the spring is compressed by 0.100 m. 
After the block is released from rest, it travels upward 
and then leaves the spring. To what maximum height 
above the point of release does it rise?

	 4.	 A 20.0-kg cannonball is fired from a cannon with muz-
zle speed of 1 000 m/s at an angle of 37.08 with the hor-
izontal. A second ball is fired at an angle of 90.08. Use 
the isolated system model to find (a) the maximum 
height reached by each ball and (b) the total mechani-
cal energy of the ball–Earth sys-
tem at the maximum height for 
each ball. Let y 5 0 at the cannon.

	 5.	 Review. A bead slides without fric-
tion around a loop-the-loop (Fig. 
P8.5). The bead is released from 
rest at a height h 5 3.50R. (a) What 

W

W

AMT
M

Figure CQ8.5

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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duced high-frequency “microtremor” vibrations that 
were rapidly damped and did not travel far. Assume 
0.01% of the total energy was carried away by long-
range seismic waves. The magnitude of an earthquake 
on the Richter scale is given by

M 5
log E 2 4.8

1.5
		  where E is the seismic wave energy in joules. According 

to this model, what was the magnitude of the demon-
stration quake?

	11.	 Review. The system shown in Figure 
P8.11 consists of a light, inextensible 
cord, light, frictionless pulleys, and 
blocks of equal mass. Notice that 
block B is attached to one of the pul-
leys. The system is initially held at 
rest so that the blocks are at the same 
height above the ground. The blocks 
are then released. Find the speed of 
block A at the moment the vertical 
separation of the blocks is h.

Section 8.3 Situations Involving Kinetic Friction

	12.	A sled of mass m is given a kick on a frozen pond. The 
kick imparts to the sled an initial speed of 2.00 m/s. 
The coefficient of kinetic friction between sled and ice 
is 0.100. Use energy considerations to find the distance 
the sled moves before it stops.

	13.	A sled of mass m is given a kick on a frozen pond. The 
kick imparts to the sled an initial speed of v. The coef-
ficient of kinetic friction between sled and ice is mk. 
Use energy considerations to find the distance the sled 
moves before it stops.

	14.	A crate of mass 10.0 kg is pulled up a rough incline with 
an initial speed of 1.50 m/s. The pulling force is 100 N 
parallel to the incline, which makes an angle of 20.08 
with the horizontal. The coefficient of kinetic friction 
is 0.400, and the crate is pulled 5.00 m. (a) How much 
work is done by the gravitational force on the crate?  
(b) Determine the increase in internal energy of the 
crate–incline system owing to friction. (c) How much 
work is done by the 100-N force on the crate? (d) What 
is the change in kinetic energy of the crate? (e) What is 
the speed of the crate after being pulled 5.00 m?

	15.	A block of mass m 5 2.00 kg 
is attached to a spring of 
force constant k 5 500 N/m 
as shown in Figure P8.15. 
The block is pulled to a posi-
tion xi 5 5.00 cm to the right 
of equilibrium and released 
from rest. Find the speed 
the block has as it passes 
through equilibrium if (a) the horizontal surface is 
frictionless and (b) the coefficient of friction between 
block and surface is mk 5 0.350.

	16.	A 40.0-kg box initially at rest is pushed 5.00 m along 
a rough, horizontal floor with a constant applied 
horizontal force of 130 N. The coefficient of friction 

BA

Figure P8.11

S

S
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x � xi

k
m

x � 0

Figure P8.15

W

is its speed at point A? (b) How large is the normal 
force on the bead at point A if its mass is 5.00 g?

	 6.	 A block of mass m 5 5.00 kg is released from point A 
and slides on the frictionless track shown in Figure 
P8.6. Determine (a) the block’s speed at points B and 
C and (b) the net work done by the gravitational force 
on the block as it moves from point A to point C.

2.00 m

5.00 m
3.20 m

m
A

B

C

Figure P8.6

	 7.	 Two objects are connected 
by a light string passing over 
a light, frictionless pulley as 
shown in Figure P8.7. The 
object of mass m1 5 5.00 kg 
is released from rest at a 
height h 5 4.00 m above the 
table. Using the isolated sys-
tem model, (a) determine 
the speed of the object of 
mass m2 5 3.00  kg just as 
the 5.00-kg object hits the 
table and (b) find the maxi-
mum height above the table 
to which the 3.00-kg object 
rises.

	 8.	 Two objects are connected by a light string passing 
over a light, frictionless pulley as shown in Figure P8.7. 
The object of mass m1 is released from rest at height 
h above the table. Using the isolated system model,  
(a) determine the speed of m2 just as m1 hits the table 
and (b) find the maximum height above the table to 
which m2 rises.

	 9.	 A light, rigid rod is 77.0 cm long. Its top end is piv-
oted on a frictionless, horizontal axle. The rod hangs 
straight down at rest with a small, massive ball attached 
to its bottom end. You strike the ball, suddenly giving 
it a horizontal velocity so that it swings around in a full 
circle. What minimum speed at the bottom is required 
to make the ball go over the top of the circle?

	10.	At 11:00 a.m. on September 7, 2001, more than one 
million British schoolchildren jumped up and down 
for one minute to simulate an earthquake. (a) Find 
the energy stored in the children’s bodies that was con-
verted into internal energy in the ground and their 
bodies and propagated into the ground by seismic 
waves during the experiment. Assume 1 050 000 chil-
dren of average mass 36.0 kg jumped 12 times each, 
raising their centers of mass by 25.0 cm each time and 
briefly resting between one jump and the next. (b) Of 
the energy that propagated into the ground, most pro-

W
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m1

m2

Figure P8.7   
Problems 7 and 8.
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238	C hapter 8 C onservation of Energy

of the cannon? (b) At what point does the ball have 
maximum speed? (c) What is this maximum speed?

	22.	The coefficient of friction 
between the block of mass 
m1 5 3.00 kg and the surface 
in Figure P8.22 is mk 5 0.400. 
The system starts from rest. 
What is the speed of the ball 
of mass m2 5 5.00 kg when it 
has fallen a distance h 5 
1.50 m?

	23.	A 5.00-kg block is set into 
motion up an inclined plane 
with an initial speed of vi 5 
8.00 m/s (Fig. P8.23). The 
block comes to rest after trav-
eling d 5 3.00 m along the 
plane, which is inclined at 
an angle of u 5 30.08 to the 
horizontal. For this motion, 
determine (a) the change in the block’s kinetic energy,  
(b) the change in the potential energy of the block–
Earth system, and (c) the friction force exerted on the 
block (assumed to be constant). (d) What is the coef-
ficient of kinetic friction?

	24.	A 1.50-kg object is held 1.20 m above a relaxed mass-
less, vertical spring with a force constant of 320 N/m. 
The object is dropped onto the spring. (a) How far does 
the object compress the spring? (b) What If? Repeat 
part (a), but this time assume a constant air-resistance 
force of 0.700 N acts on the object during its motion.  
(c) What If? How far does the object compress the spring 
if the same experiment is performed on the Moon, 
where g 5 1.63 m/s2 and air resistance is neglected?

	25.	A 200-g block is pressed against a spring of force 
constant 1.40 kN/m until the block compresses the 
spring 10.0  cm. The spring rests at the bottom of a 
ramp inclined at 60.08 to the horizontal. Using energy 
considerations, determine how far up the incline the 
block moves from its initial position before it stops  
(a) if the ramp exerts no friction force on the block 
and (b) if the coefficient of kinetic friction is 0.400.

	26.	An 80.0-kg skydiver jumps out of a balloon at an alti-
tude of 1 000 m and opens his parachute at an altitude 
of 200 m. (a) Assuming the total retarding force on the 
skydiver is constant at 50.0 N with the parachute closed 
and constant at 3 600 N with the parachute open, find 
the speed of the skydiver when he lands on the ground. 
(b) Do you think the skydiver will be injured? Explain. 
(c) At what height should the parachute be opened so 
that the final speed of the skydiver when he hits the 
ground is 5.00 m/s? (d) How realistic is the assumption 
that the total retarding force is constant? Explain.

	27.	A child of mass m starts from rest and slides without 
friction from a height h along a slide next to a pool 
(Fig.  P8.27). She is launched from a height h/5 into 
the air over the pool. We wish to find the maximum 
height she reaches above the water in her projec-
tile motion. (a) Is the child–Earth system isolated or 

m1

m2

Figure P8.22
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between box and floor is 0.300. Find (a) the work done 
by the applied force, (b) the increase in internal energy 
in the box–floor system as a result of friction, (c) the 
work done by the normal force, (d) the work done by 
the gravitational force, (e) the change in kinetic energy 
of the box, and (f) the final speed of the box.

	17.	 A smooth circular hoop with a radius of 0.500 m is 
placed flat on the floor. A 0.400-kg particle slides 
around the inside edge of the hoop. The particle is 
given an initial speed of 8.00  m/s. After one revolu-
tion, its speed has dropped to 6.00 m/s because of fric-
tion with the floor. (a)  Find the energy transformed 
from mechanical to internal in the particle–hoop–
floor system as a result of friction in one revolution. 
(b) What is the total number of revolutions the particle 
makes before stopping? Assume the friction force 
remains constant during the entire motion.

Section 8.4 Changes in Mechanical Energy  
for Nonconservative Forces

	18.	At time ti, the kinetic energy of a particle is 30.0 J and 
the potential energy of the system to which it belongs 
is 10.0 J. At some later time tf , the kinetic energy of 
the particle is 18.0 J. (a) If only conservative forces act 
on the particle, what are the potential energy and the 
total energy of the system at time tf ? (b) If the poten-
tial energy of the system at time tf is 5.00 J, are any non-
conservative forces acting on the particle? (c) Explain 
your answer to part (b).

	19.	A boy in a wheelchair (total mass 47.0 kg) has speed 
1.40 m/s at the crest of a slope 2.60 m high and 12.4 m 
long. At the bottom of the slope his speed is 6.20 m/s. 
Assume air resistance and rolling resistance can be 
modeled as a constant friction force of 41.0 N. Find the 
work he did in pushing forward on his wheels during 
the downhill ride.

	20.	As shown in Figure 
P8.20, a green bead of 
mass 25 g slides along a 
straight wire. The length 
of the wire from point 
A to point B is 0.600 m,  
and point A is 0.200 m 
higher than point B. A 
constant friction force 
of magnitude 0.025 0 N acts on the bead. (a) If the 
bead is released from rest at point A, what is its speed 
at point B? (b) A red bead of mass 25 g slides along a 
curved wire, subject to a friction force with the same 
constant magnitude as that on the green bead. If the 
green and red beads are released simultaneously from 
rest at point A, which bead reaches point B with a 
higher speed? Explain.

	21.	 A toy cannon uses a spring to project a 5.30-g soft rub-
ber ball. The spring is originally compressed by  
5.00 cm and has a force constant of 8.00 N/m. When 
the cannon is fired, the ball moves 15.0 cm through 
the horizontal barrel of the cannon, and the barrel 
exerts a constant friction force of 0.032 0 N on the ball. 
(a) With what speed does the projectile leave the barrel 
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lifetime of the energy-efficient bulb is 10 000 h and its 
purchase price is $4.50, whereas the conventional bulb 
has a lifetime of 750 h and costs $0.42. Determine the 
total savings obtained by using one energy-efficient 
bulb over its lifetime as opposed to using conventional 
bulbs over the same time interval. Assume an energy 
cost of $0.200 per kilowatt-hour.

	34.	An electric scooter has a battery capable of supplying 
120  Wh of energy. If friction forces and other losses 
account for 60.0% of the energy usage, what altitude 
change can a rider achieve when driving in hilly ter-
rain if the rider and scooter have a combined weight of 
890 N?

	35.	Make an order-of-magnitude estimate of the power a 
car engine contributes to speeding the car up to high-
way speed. In your solution, state the physical quanti-
ties you take as data and the values you measure or esti-
mate for them. The mass of a vehicle is often given in 
the owner’s manual.

	36.	An older-model car accelerates from 0 to speed v in 
a time interval of Dt. A newer, more powerful sports 
car accelerates from 0 to 2v in the same time period. 
Assuming the energy coming from the engine appears 
only as kinetic energy of the cars, compare the power 
of the two cars.

	37.	 For saving energy, bicycling and walking are far more 
efficient means of transportation than is travel by 
automobile. For example, when riding at 10.0 mi/h, a 
cyclist uses food energy at a rate of about 400 kcal/h 
above what he would use if merely sitting still. (In exer-
cise physiology, power is often measured in kcal/h 
rather than in watts. Here 1 kcal 5 1 nutritionist’s Cal-
orie = 4 186 J.) Walking at 3.00 mi/h requires about 
220 kcal/h. It is interesting to compare these values 
with the energy consumption required for travel by car. 
Gasoline yields about 1.30 3 108 J/gal. Find the fuel 
economy in equivalent miles per gallon for a person  
(a) walking and (b) bicycling.

	38.	A 650-kg elevator starts from rest. It moves upward 
for 3.00 s with constant acceleration until it reaches 
its cruising speed of 1.75 m/s. (a) What is the average 
power of the elevator motor during this time inter-
val? (b) How does this power compare with the motor 
power when the elevator moves at its cruising speed?

	39.	A 3.50-kN piano is lifted by three workers at constant 
speed to an apartment 25.0 m above the street using a 
pulley system fastened to the roof of the building. Each 
worker is able to deliver 165 W of power, and the pulley 
system is 75.0% efficient (so that 25.0% of the mechan-
ical energy is transformed to other forms due to fric-
tion in the pulley). Neglecting the mass of the pulley, 
find the time required to lift the piano from the street 
to the apartment.

	40.	Energy is conventionally measured in Calories as well 
as in joules. One Calorie in nutrition is one kilocalo-
rie, defined as 1 kcal 5 4 186 J. Metabolizing 1 g of fat 
can release 9.00 kcal. A student decides to try to lose 
weight by exercising. He plans to run up and down 
the stairs in a football stadium as fast as he can and 
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nonisolated? Why? (b)  Is there a nonconservative 
force acting within the system? (c) Define the con-
figuration of the system when the child is at the water 
level as having zero gravitational potential energy. 
Express the total energy of the system when the child 
is at the top of the waterslide. (d) Express the total 
energy of the system when the child is at the launch-
ing point. (e)  Express the total energy of the system 
when the child is at the highest point in her projectile 
motion. (f) From parts (c) and (d), determine her ini-
tial speed vi at the launch point in terms of g and h.  
(g) From parts (d), (e), and (f), determine her maxi-
mum airborne height ymax in terms of h and the launch 
angle u. (h) Would your answers be the same if the 
waterslide were not frictionless? Explain.

h

/5
ymax

h

u

Figure P8.27

Section 8.5 Power

	28.	Sewage at a certain pumping station is raised vertically 
by 5.49 m at the rate of 1 890 000 liters each day. The 
sewage, of density 1 050 kg/m3, enters and leaves the 
pump at atmospheric pressure and through pipes of 
equal diameter. (a) Find the output mechanical power 
of the lift station. (b) Assume an electric motor con-
tinuously operating with average power 5.90 kW runs 
the pump. Find its efficiency.

	29.	An 820-N Marine in basic training climbs a 12.0-m 
vertical rope at a constant speed in 8.00 s. What is his 
power output?

	30.	The electric motor of a model train accelerates the 
train from rest to 0.620 m/s in 21.0 ms. The total mass 
of the train is 875 g. (a) Find the minimum power 
delivered to the train by electrical transmission from 
the metal rails during the acceleration. (b) Why is it 
the minimum power?

	31.	 When an automobile moves with constant speed down 
a highway, most of the power developed by the engine 
is used to compensate for the energy transformations 
due to friction forces exerted on the car by the air 
and the road. If the power developed by an engine is  
175 hp, estimate the total friction force acting on the 
car when it is moving at a speed of 29 m/s. One horse-
power equals 746 W.

	32.	A certain rain cloud at an altitude of 1.75 km contains 
3.20 3 107 kg of water vapor. How long would it take a 
2.70-kW pump to raise the same amount of water from 
the Earth’s surface to the cloud’s position?

	33.	An energy-efficient lightbulb, taking in 28.0 W of 
power, can produce the same level of brightness as a 
conventional lightbulb operating at power 100 W. The 
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	45.	Review. A boy starts at rest and slides down a friction-
less slide as in Figure P8.45. The bottom of the track is 
a height h above the ground. The boy then leaves the 
track horizontally, striking the ground at a distance d 
as shown. Using energy methods, determine the initial 
height H of the boy above the ground in terms of h 
and d.

0 d

H

h

Figure P8.45

	46.	Review. As shown in Fig-
ure P8.46, a light string 
that does not stretch 
changes from horizon-
tal to vertical as it passes 
over the edge of a table. 
The string connects m1, a  
3.50-kg block originally 
at rest on the horizontal 
table at a height h 5 1.20 m  
above the floor, to m2, a 
hanging 1.90-kg block originally a distance d 5 0.900 m 
above the floor. Neither the surface of the table nor its 
edge exerts a force of kinetic friction. The blocks start 
to move from rest. The sliding block m1 is projected hor-
izontally after reaching the edge of the table. The hang-
ing block m2 stops without bouncing when it strikes the 
floor. Consider the two blocks plus the Earth as the sys-
tem. (a) Find the speed at which m1 leaves the edge of 
the table. (b) Find the impact speed of m1 on the floor. 
(c) What is the shortest length of the string so that it 
does not go taut while m1 is in flight? (d) Is the energy 
of the system when it is released from rest equal to the 
energy of the system just before m1 strikes the ground? 
(e) Why or why not?

	47.	 A 4.00-kg particle moves along the x axis. Its position 
varies with time according to x 5 t 1 2.0t 3, where x 
is in meters and t is in seconds. Find (a) the kinetic 
energy of the particle at any time t, (b) the accelera-
tion of the particle and the force acting on it at time t, 
(c) the power being delivered to the particle at time t, 
and (d) the work done on the particle in the interval  
t 5 0 to t 5 2.00 s.

	48.	Why is the following situation impossible? A softball pitcher 
has a strange technique: she begins with her hand at 
rest at the highest point she can reach and then quickly 
rotates her arm backward so that the ball moves 
through a half-circle path. She releases the ball when 
her hand reaches the bottom of the path. The pitcher 
maintains a component of force on the 0.180-kg  
ball of constant magnitude 12.0 N in the direction of 
motion around the complete path. As the ball arrives 
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as many times as necessary. To evaluate the program, 
suppose he runs up a flight of 80 steps, each 0.150 m 
high, in 65.0 s. For simplicity, ignore the energy he 
uses in coming down (which is small). Assume a typi-
cal efficiency for human muscles is 20.0%. This state-
ment means that when your body converts 100 J from 
metabolizing fat, 20 J goes into doing mechanical work 
(here, climbing stairs). The remainder goes into extra 
internal energy. Assume the student’s mass is 75.0 kg. 
(a) How many times must the student run the flight 
of stairs to lose 1.00 kg of fat? (b) What is his average 
power output, in watts and in horsepower, as he runs 
up the stairs? (c) Is this activity in itself a practical way 
to lose weight?

	41.	A loaded ore car has a mass of 950 kg and rolls on rails 
with negligible friction. It starts from rest and is pulled 
up a mine shaft by a cable connected to a winch. The 
shaft is inclined at 30.08 above the horizontal. The car 
accelerates uniformly to a speed of 2.20 m/s in 12.0 s  
and then continues at constant speed. (a) What power 
must the winch motor provide when the car is mov-
ing at constant speed? (b) What maximum power must 
the winch motor provide? (c) What total energy has 
transferred out of the motor by work by the time the 
car moves off the end of the track, which is of length 
1 250 m?

Additional Problems

	42.	Make an order-of-magnitude estimate of your power 
output as you climb stairs. In your solution, state the 
physical quantities you take as data and the values you 
measure or estimate for them. Do you consider your 
peak power or your sustainable power?

	43.	A small block of mass m 5 200 g is released from rest 
at point A along the horizontal diameter on the inside 
of a frictionless, hemispherical bowl of radius R 5  
30.0 cm (Fig.  P8.43). Calculate (a) the gravitational 
potential energy of the block–Earth system when the 
block is at point A relative to point B, (b) the kinetic 
energy of the block at point B, (c) its speed at point 
B, and (d) its kinetic energy and the potential energy 
when the block is at point C.

2R/3

R

A

B
C

Figure P8.43  Problems 43 and 44.

	44.	What If? The block of mass m 5 200 g described in 
Problem 43 (Fig. P8.43) is released from rest at point 
A, and the surface of the bowl is rough. The block’s 
speed at point B is 1.50 m/s. (a) What is its kinetic 
energy at point B? (b) How much mechanical energy 
is transformed into internal energy as the block moves 
from point A to point B? (c) Is it possible to determine 
the coefficient of friction from these results in any sim-
ple manner? (d) Explain your answer to part (c).
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Jonathan do on the bicycle pedals within the Jona-
than–bicycle–Earth system during this process?

	52.	Jonathan is riding a bicycle and encounters a hill 
of height h. At the base of the hill, he is traveling at 
a speed vi. When he reaches the top of the hill, he 
is traveling at a speed vf . Jonathan and his bicycle 
together have a mass m. Ignore friction in the bicycle 
mechanism and between the bicycle tires and the road.  
(a) What is the total external work done on the system 
of Jonathan and the bicycle between the time he starts 
up the hill and the time he reaches the top? (b) What 
is the change in potential energy stored in Jonathan’s 
body during this process? (c) How much work does  
Jonathan do on the bicycle pedals within the Jonathan– 
bicycle–Earth system during this process?

	53.	Consider the block–spring–surface system in part (B) 
of Example 8.6. (a) Using an energy approach, find the 
position x of the block at which its speed is a maxi-
mum. (b) In the What If? section of this example, we 
explored the effects of an increased friction force of 
10.0 N. At what position of the block does its maximum 
speed occur in this situation?

	54.	As it plows a parking lot, a 
snowplow pushes an ever-
growing pile of snow in 
front of it. Suppose a car 
moving through the air 
is similarly modeled as a 
cylinder of area A push-
ing a growing disk of air 
in front of it. The origi-
nally stationary air is set into motion at the constant 
speed v of the cylinder as shown in Figure P8.54. In a 
time interval Dt, a new disk of air of mass Dm must be 
moved a distance v Dt and hence must be given a kinetic 
energy 1

2 1Dm 2v2. Using this model, show that the car’s 
power loss owing to air resistance is 1

2rAv3 and that the 
resistive force acting on the car is 1

2rAv2, where r is the 
density of air. Compare this result with the empirical 
expression 12DrAv2 for the resistive force.

	55.	A wind turbine on a wind farm turns in response to 
a force of high-speed air resistance, R 5 1

2DrAv2. The 
power available is P 5 Rv 5 1

2Drpr 2v3, where v is the 
wind speed and we have assumed a circular face for  
the wind turbine of radius r. Take the drag coefficient 
as D 5 1.00 and the density of air from the front end-
paper. For a wind turbine having r 5 1.50 m, calculate 
the power available with (a) v 5 8.00 m/s and (b) v 5  
24.0 m/s. The power delivered to the generator is lim-
ited by the efficiency of the system, about 25%. For 
comparison, a large American home uses about 2 kW 
of electric power.

	56.	Consider the popgun in Example 8.3. Suppose the 
projectile mass, compression distance, and spring con-
stant remain the same as given or calculated in the 
example. Suppose, however, there is a friction force of 
magnitude 2.00 N acting on the projectile as it rubs 
against the interior of the barrel. The vertical length 
from point A to the end of the barrel is 0.600 m.  

S

A

v t�

vS

Figure P8.54
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at the bottom of the path, it leaves her hand with a 
speed of 25.0 m/s.

	49.	A skateboarder with his board can be modeled as a 
particle of mass 76.0 kg, located at his center of mass 
(which we will study in Chapter 9). As shown in Figure 
P8.49, the skateboarder starts from rest in a crouch-
ing position at one lip of a half-pipe (point A). The 
half-pipe is one half of a cylinder of radius 6.80 m with 
its axis horizontal. On his descent, the skateboarder 
moves without friction so that his center of mass moves 
through one quarter of a circle of radius 6.30 m.  
(a) Find his speed at the bottom of the half-pipe (point 
B). (b) Immediately after passing point B, he stands 
up and raises his arms, lifting his center of mass from 
0.500 m to 0.950 m above the concrete (point C). 
Next, the skateboarder glides upward with his center 
of mass moving in a quarter circle of radius 5.85 m. 
His body is horizontal when he passes point D, the 
far lip of the half-pipe. As he passes through point D, 
the speed of the skateboarder is 5.14 m/s. How much 
chemical potential energy in the body of the skate-
boarder was converted to mechanical energy in the 
skateboarder–Earth system when he stood up at point 
B? (c) How high above point D does he rise? Caution: 
Do not try this stunt yourself without the required skill 
and protective equipment.

A

B C

D

Figure P8.49

	50.	Heedless of danger, a child leaps onto a pile of old 
mattresses to use them as a trampoline. His motion 
between two particular points is described by the 
energy conservation equation

1
2 146.0 kg 2 12.40 m/s 22 1 146.0 kg 2 19.80 m/s2 2 12.80 m 1 x 2 5

1
2 11.94 3 104 N/m 2x 2

		  (a) Solve the equation for x. (b) Compose the state-
ment of a problem, including data, for which this 
equation gives the solution. (c) Add the two values of 
x obtained in part (a) and divide by 2. (d) What is the 
significance of the resulting value in part (c)?

	51.	 Jonathan is riding a bicycle and encounters a hill of 
height 7.30 m. At the base of the hill, he is traveling 
at 6.00 m/s. When he reaches the top of the hill, he is 
traveling at 1.00 m/s. Jonathan and his bicycle together 
have a mass of 85.0 kg. Ignore friction in the bicycle 
mechanism and between the bicycle tires and the road. 
(a) What is the total external work done on the system 
of Jonathan and the bicycle between the time he starts 
up the hill and the time he reaches the top? (b) What 
is the change in potential energy stored in Jonathan’s 
body during this process? (c) How much work does 
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load w a distance d/2 in time interval Dt/2, then 
(4) P/2 will move w/2 the given distance d in the 
given time interval Dt.

		  (a) Show that Aristotle’s proportions are included in 
the equation P  Dt 5 bwd, where b is a proportionality 
constant. (b) Show that our theory of motion includes 
this part of Aristotle’s theory as one special case. In 
particular, describe a situation in which it is true, 
derive the equation representing Aristotle’s propor-
tions, and determine the proportionality constant.

	61.	 A child’s pogo stick (Fig. P8.61) 
stores energy in a spring with a 
force constant of 2.50 3   
104 N/m. At position A (xA 5 
20.100  m), the spring com-
pression is a maximum and the 
child is momentarily at rest. At 
position B (xB 5 0), the spring 
is relaxed and the child is mov-
ing upward. At position C, the 
child is again momentarily at 
rest at the top of the jump. The 
combined mass of child and 
pogo stick is 25.0 kg. Although 
the boy must lean forward to 
remain balanced, the angle is small, so let’s assume the 
pogo stick is vertical. Also assume the boy does not 
bend his legs during the motion. (a) Calculate the total 
energy of the child–stick–Earth system, taking both 
gravitational and elastic potential energies as zero for  
x 5 0. (b) Determine xC. (c) Calculate the speed of the 
child at x 5 0. (d) Determine the value of x for which 
the kinetic energy of the system is a maximum. (e) Cal-
culate the child’s maximum upward speed.

	62.	A 1.00-kg object slides 
to the right on a sur-
face having a coeffi-
cient of kinetic friction 
0.250 (Fig. P8.62a). 
The object has a speed 
of vi 5 3.00 m/s when 
it makes contact with 
a light spring (Fig. 
P8.62b) that has a force 
constant of 50.0  N/m. 
The object comes to 
rest after the spring 
has been compressed 
a distance d (Fig. 
P8.62c). The object is 
then forced toward the 
left by the spring (Fig. 
P8.62d) and continues 
to move in that direc-
tion beyond the spring’s unstretched position. Finally, 
the object comes to rest a distance D to the left of the 
unstretched spring (Fig. P8.62e). Find (a) the distance of 
compression d, (b) the speed v at the unstretched posi-
tion when the object is moving to the left (Fig. P8.62d), 
and (c) the distance D where the object comes to rest.

A
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C
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Figure P8.61
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(a) After the spring is compressed and the popgun 
fired, to what height does the projectile rise above 
point B? (b) Draw four energy bar charts for this situa-
tion, analogous to those in Figures 8.6c–d.

	57.	 As the driver steps on the gas pedal, a car of mass  
1 160 kg accelerates from rest. During the first few sec-
onds of motion, the car’s acceleration increases with 
time according to the expression

a 5 1.16t 2 0.210t 2 1 0.240t 3

		  where t is in seconds and a is in m/s2. (a) What is the 
change in kinetic energy of the car during the interval 
from t 5 0 to t 5 2.50 s? (b) What is the minimum aver-
age power output of the engine over this time interval? 
(c) Why is the value in part (b) described as the mini-
mum value?

	58.	Review. Why is the following situation impossible? A new 
high-speed roller coaster is claimed to be so safe that 
the passengers do not need to wear seat belts or any 
other restraining device. The coaster is designed with 
a vertical circular section over which the coaster trav-
els on the inside of the circle so that the passengers 
are upside down for a short time interval. The radius 
of the circular section is 12.0 m, and the coaster 
enters the bottom of the circular section at a speed of  
22.0 m/s. Assume the coaster moves without friction 
on the track and model the coaster as a particle.

	59.	A horizontal spring attached to a wall has a force con-
stant of k 5 850 N/m. A block of mass m 5 1.00 kg 
is attached to the spring and rests on a frictionless, 
horizontal surface as in Figure P8.59. (a) The block 
is pulled to a position xi 5 6.00 cm from equilibrium 
and released. Find the elastic potential energy stored 
in the spring when the block is 6.00 cm from equilib-
rium and when the block passes through equilibrium. 
(b) Find the speed of the block as it passes through the 
equilibrium point. (c) What is the speed of the block 
when it is at a position xi/2 5 3.00 cm? (d) Why isn’t 
the answer to part (c) half the answer to part (b)?

x � xix � xi/2

k
m

x � 0

Figure P8.59

	60.	More than 2 300 years ago, the Greek teacher Aristo-
tle wrote the first book called Physics. Put into more 
precise terminology, this passage is from the end of its 
Section Eta:

Let P be the power of an agent causing motion; 
w, the load moved; d, the distance covered; and 
Dt, the time interval required. Then (1) a power 
equal to P will in an interval of time equal to Dt 
move w/2 a distance 2d; or (2) it will move w/2 
the given distance d in the time interval Dt/2. 
Also, if (3) the given power P moves the given 
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The line from the center of curvature of the cap to 
the pumpkin makes an angle ui 5 08 with the vertical. 
While you happen to be standing nearby in the middle 
of a rainy night, a breath of wind makes the pumpkin 
start sliding downward from rest. It loses contact with 
the cap when the line from the center of the hemi-
sphere to the pumpkin makes a certain angle with the 
vertical. What is this angle?

	67.	 Review. The mass of a car is 1 500 kg. The shape of the 
car’s body is such that its aerodynamic drag coefficient 
is D 5 0.330 and its frontal area is 2.50 m2. Assuming 
the drag force is proportional to v2 and ignoring other 
sources of friction, calculate the power required to 
maintain a speed of 100 km/h as the car climbs a long 
hill sloping at 3.208.

	68.	A pendulum, comprising a light 
string of length L and a small 
sphere, swings in the vertical 
plane. The string hits a peg located 
a distance d below the point of 
suspension (Fig. P8.68). (a) Show 
that if the sphere is released from 
a height below that of the peg, it 
will return to this height after the 
string strikes the peg. (b) Show that if the pendulum is 
released from rest at the horizontal position (u 5 908) 
and is to swing in a complete circle centered on the peg, 
the minimum value of d must be 3L/5.

	69.	A block of mass M rests on a table. It is fastened to the 
lower end of a light, vertical spring. The upper end of 
the spring is fastened to a block of mass m. The upper 
block is pushed down by an additional force 3mg, so 
the spring compression is 4mg/k. In this configuration,  
the upper block is released from rest. The spring lifts the  
lower block off the table. In terms of m, what is the 
greatest possible value for M?

	70.	Review. Why is the follow-
ing situation impossible? 
An athlete tests her hand 
strength by having an 
assistant hang weights 
from her belt as she hangs 
onto a horizontal bar 
with her hands. When 
the weights hanging on 
her belt have increased 
to 80% of her body 
weight, her hands can 
no longer support her 
and she drops to the floor. Frustrated at not meeting 
her hand-strength goal, she decides to swing on a tra-
peze. The trapeze consists of a bar suspended by two 
parallel ropes, each of length ,, allowing performers to 
swing in a vertical circular arc (Fig. P8.70). The athlete 
holds the bar and steps off an elevated platform, start-
ing from rest with the ropes at an angle ui 5 60.08 with 
respect to the vertical. As she swings several times back 
and forth in a circular arc, she forgets her frustration 
related to the hand-strength test. Assume the size of the 
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	63.	A 10.0-kg block is released from rest at point A in Fig-
ure P8.63. The track is frictionless except for the por-
tion between points B and C, which has a length of 
6.00 m. The block travels down the track, hits a spring 
of force constant 2 250 N/m, and compresses the 
spring 0.300 m from its equilibrium position before 
coming to rest momentarily. Determine the coefficient 
of kinetic friction between the block and the rough 
surface between points B and C.

3.00 m
6.00 m

A

B C

Figure P8.63

	64.	A block of mass m1 5 20.0 kg is 
connected to a block of mass 
m2  5 30.0 kg by a massless 
string that passes over a light, 
frictionless pulley. The 30.0-kg 
block is connected to a spring 
that has negligible mass and a 
force constant of k 5 250 N/m 
as shown in Figure P8.64. The 
spring is unstretched when 
the system is as shown in the figure, and the incline 
is frictionless. The 20.0-kg block is pulled a distance 
h 5 20.0 cm down the incline of angle u 5 40.08 and 
released from rest. Find the speed of each block when 
the spring is again unstretched.

	65.	A block of mass 0.500 kg is pushed against a horizon-
tal spring of negligible mass until the spring is com-
pressed a distance x (Fig. P8.65). The force constant of 
the spring is 450 N/m. When it is released, the block 
travels along a frictionless, horizontal surface to point 
A, the bottom of a vertical circular track of radius R 5 
1.00 m, and continues to move up the track. The block’s 
speed at the bottom of the track is vA 5 12.0 m/s, 
and the block experiences an average friction force of  
7.00 N while sliding up the track. (a) What is x? (b) If 
the block were to reach the top of the track, what would 
be its speed at that point? (c) Does the block actually 
reach the top of the track, or does it fall off before 
reaching the top?

k
m

x

A

R
AvS

Figure P8.65

	66.	Review. As a prank, someone has balanced a pumpkin 
at the highest point of a grain silo. The silo is topped 
with a hemispherical cap that is frictionless when wet. 
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M
AMT

Q/C

www.as
warp

hy
sic

s.w
ee

bly
.co

m



244	C hapter 8 C onservation of Energy

the maximum value of the coefficient of friction that 
would allow the block to return to x 5 0?

	76.	In bicycling for aerobic exercise, a woman wants her 
heart rate to be between 136 and 166 beats per min-
ute. Assume that her heart rate is directly proportional 
to her mechanical power output within the range rel-
evant here. Ignore all forces on the woman–bicycle 
system except for static friction forward on the drive 
wheel of the bicycle and an air resistance force propor-
tional to the square of her speed. When her speed is 
22.0 km/h, her heart rate is 90.0 beats per minute. In 
what range should her speed be so that her heart rate 
will be in the range she wants?

	77.	 Review. In 1887 in Bridgeport, Connecticut, C. J. 
Belknap built the water slide shown in Figure P8.77. A 
rider on a small sled, of total mass 80.0 kg, pushed off 
to start at the top of the slide (point A) with a speed 
of 2.50 m/s. The chute was 9.76 m high at the top and  
54.3 m long. Along its length, 725 small wheels made 
friction negligible. Upon leaving the chute horizon-
tally at its bottom end (point C), the rider skimmed 
across the water of Long Island Sound for as much 
as 50 m, “skipping along like a flat pebble,” before at 
last coming to rest and swimming ashore, pulling his 
sled after him. (a) Find the speed of the sled and rider 
at point C. (b) Model the force of water friction as a 
constant retarding force acting on a particle. Find the 
magnitude of the friction force the water exerts on 
the sled. (c) Find the magnitude of the force the chute 
exerts on the sled at point B. (d) At point C, the chute 
is horizontal but curving in the vertical plane. Assume 
its radius of curvature is 20.0 m. Find the force the 
chute exerts on the sled at point C.

a

Figure P8.77
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	78.	In a needle biopsy, a narrow strip of tissue is extracted 
from a patient using a hollow needle. Rather than 
being pushed by hand, to ensure a clean cut the needle 
can be fired into the patient’s body by a spring. Assume 
that the needle has mass 5.60 g, the light spring has 

BIO

BIO

performer’s body is small compared to the length , and 
air resistance is negligible.

	71.	While running, a person transforms about 0.600 J of 
chemical energy to mechanical energy per step per 
kilogram of body mass. If a 60.0-kg runner trans-
forms energy at a rate of 70.0 W during a race, how 
fast is the person running? Assume that a running 
step is 1.50 m long.

	72.	A roller-coaster car shown in Figure P8.72 is released 
from rest from a height h and then moves freely with 
negligible friction. The roller-coaster track includes a 
circular loop of radius R in a vertical plane. (a) First 
suppose the car barely makes it around the loop; at the 
top of the loop, the riders are upside down and feel 
weightless. Find the required height h of the release 
point above the bottom of the loop in terms of R.  
(b) Now assume the release point is at or above the 
minimum required height. Show that the normal force 
on the car at the bottom of the loop exceeds the nor-
mal force at the top of the loop by six times the car’s 
weight. The normal force on each rider follows the 
same rule. Such a large normal force is dangerous 
and very uncomfortable for the riders. Roller coasters 
are therefore not built with circular loops in vertical 
planes. Figure P6.17 (page 170) shows an actual design.

Rh

Figure P8.72

	73.	A ball whirls around in a vertical circle at the end of a 
string. The other end of the string is fixed at the cen-
ter of the circle. Assuming the total energy of the ball– 
Earth system remains constant, show that the tension 
in the string at the bottom is greater than the tension 
at the top by six times the ball’s weight.

	74.	An airplane of mass 1.50 3 104 kg is in level flight, ini-
tially moving at 60.0 m/s. The resistive force exerted 
by air on the airplane has a magnitude of 4.0 3 104 N. 
By Newton’s third law, if the engines exert a force on 
the exhaust gases to expel them out of the back of the 
engine, the exhaust gases exert a force on the engines 
in the direction of the airplane’s travel. This force is 
called thrust, and the value of the thrust in this situa-
tion is 7.50 3 104 N. (a) Is the work done by the exhaust 
gases on the airplane during some time interval equal 
to the change in the airplane’s kinetic energy? Explain. 
(b) Find the speed of the airplane after it has traveled 
5.0 3 102 m.

	75.	Consider the block–spring collision discussed in 
Example 8.8. (a) For the situation in part (B), in which 
the surface exerts a friction force on the block, show 
that the block never arrives back at x 5 0. (b) What is 
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a wind exerting constant horizontal force  F
S

, on a vine 
having length L and initially making an angle u with 
the vertical (Fig. P8.81). Take D 5 50.0 m, F 5 110 N, 
L 5 40.0 m, and u 5 50.08. (a) With what minimum 
speed must Jane begin her swing to just make it to the 
other side? (b) Once the rescue is complete, Tarzan 
and Jane must swing back across the river. With what 
minimum speed must they begin their swing? Assume 
Tarzan has a mass of 80.0 kg.

Wind L

D

Jane

u

f
F
S

TarzanTarzan

Figure P8.81

	82.	A ball of mass m 5 300 g is connected by a strong 
string of length L 5 80.0 cm to a pivot and held in 
place with the string vertical. A wind exerts constant 
force F to the right on the ball as shown in Figure 
P8.82. The ball is released from rest. The wind makes 
it swing up to attain maximum height H above its 
starting point before it swings down again. (a) Find H 
as a function of F. Evaluate H for (b) F 5 1.00 N and 
(c) F 5 10.0 N. How does H behave (d) as F approaches 
zero and (e) as F approaches infinity? (f) Now con-
sider the equilibrium height of the ball with the wind 
blowing. Determine it as a function of F. Evaluate the 
equilibrium height for (g) F 5 10 N and (h) F going 
to infinity.

a b

L

m

L

Pivot Pivot

H
m

F
S
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Figure P8.82

	83.	What If? Consider the roller coaster described in Prob-
lem 58. Because of some friction between the coaster 
and the track, the coaster enters the circular section at 
a speed of 15.0 m/s rather than the 22.0 m/s in Prob-
lem 58. Is this situation more or less dangerous for the 
passengers than that in Problem 58? Assume the circu-
lar section is still frictionless.

Q/C

force constant 375 N/m, and the spring is originally 
compressed 8.10 cm to project the needle horizontally 
without friction. After the needle leaves the spring, 
the tip of the needle moves through 2.40 cm of skin 
and soft tissue, which exerts on it a resistive force of  
7.60 N. Next, the needle cuts 3.50 cm into an organ, 
which exerts on it a backward force of 9.20 N. Find  
(a) the maximum speed of the needle and (b) the 
speed at which the flange on the back end of the nee-
dle runs into a stop that is set to limit the penetration 
to 5.90 cm.

Challenge Problems

	79.	Review. A uniform board of length L is sliding along a 
smooth, frictionless, horizontal plane as shown in Fig-
ure P8.79a. The board then slides across the bound-
ary with a rough horizontal surface. The coefficient of 
kinetic friction between the board and the second sur-
face is mk. (a) Find the acceleration of the board at the 
moment its front end has traveled a distance x beyond 
the boundary. (b) The board stops at the moment its 
back end reaches the boundary as shown in Figure 
P8.79b. Find the initial speed v of the board.

BoundaryvS

a

b

L

v � 0

Figure P8.79

	80.	Starting from rest, a 64.0-kg person bungee jumps 
from a tethered hot-air balloon 65.0 m above the 
ground. The bungee cord has negligible mass and 
unstretched length 25.8 m. One end is tied to the 
basket of the balloon and the other end to a har-
ness around the person’s body. The cord is modeled 
as a spring that obeys Hooke’s law with a spring con-
stant of 81.0 N/m, and the person’s body is modeled 
as a particle. The hot-air balloon does not move.  
(a) Express the gravitational potential energy of the 
person–Earth system as a function of the person’s 
variable height y above the ground. (b) Express the 
elastic potential energy of the cord as a function of 
y. (c) Express the total potential energy of the per-
son–cord–Earth system as a function of y. (d) Plot a 
graph of the gravitational, elastic, and total potential 
energies as functions of y. (e) Assume air resistance 
is negligible. Determine the minimum height of the 
person above the ground during his plunge. (f) Does 
the potential energy graph show any equilibrium posi-
tion or positions? If so, at what elevations? Are they 
stable or unstable? (g) Determine the jumper’s maxi-
mum speed.

	81.	 Jane, whose mass is 50.0 kg, needs to swing across a 
river (having width D) filled with person-eating croco-
diles to save Tarzan from danger. She must swing into 

S

Q/C
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246	C hapter 8 C onservation of Energy

cord, tied to a harness around his body, to stop his fall 
at a point 10.0 m above the ground. Model his body as 
a particle and the cord as having negligible mass and 
obeying Hooke’s law. In a preliminary test he finds that 
when hanging at rest from a 5.00-m length of the cord, 
his body weight stretches it by 1.50 m. He will drop 
from rest at the point where the top end of a longer 
section of the cord is attached to the stationary bal-
loon. (a) What length of cord should he use? (b) What 
maximum acceleration will he experience?

	84.	A uniform chain of length 8.00 m initially lies stretched 
out on a horizontal table. (a) Assuming the coefficient 
of static friction between chain and table is 0.600, 
show that the chain will begin to slide off the table if 
at least 3.00 m of it hangs over the edge of the table.  
(b) Determine the speed of the chain as its last link 
leaves the table, given that the coefficient of kinetic 
friction between the chain and the table is 0.400.

	85.	A daredevil plans to bungee jump from a balloon  
65.0 m above the ground. He will use a uniform elastic 
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9.1	 Linear Momentum

9.2	 Analysis Model: Isolated 
System (Momentum)

9.3	 Analysis Model: Nonisolated 
System (Momentum)

9.4	 Collisions in One Dimension

9.5	 Collisions in Two Dimensions

9.6	 The Center of Mass

9.7	 Systems of Many Particles

9.8	 Deformable Systems

9.9	 Rocket Propulsion

Linear Momentum  
and Collisions

The concept of momentum allows 
the analysis of car collisions even 
without detailed knowledge of the 
forces involved. Such analysis can 
determine the relative velocity  
of the cars before the collision, 
and in addition aid engineers in 
designing safer vehicles. (The 
English translation of the German 
text on the side of the trailer in  
the background is: “Pit stop for 
your vehicle.”) (AP Photos/Keystone/

Regina Kuehne)

c h a p t e r 

9

Consider what happens when two cars collide as in the opening photograph for this 
chapter. Both cars change their motion from having a very large velocity to being at rest 
because of the collision. Because each car experiences a large change in velocity over a very 
short time interval, the average force on it is very large. By Newton’s third law, each of the 
cars experiences a force of the same magnitude. By Newton’s second law, the results of 
those forces on the motion of the car depends on the mass of the car.
	 One of the main objectives of this chapter is to enable you to understand and analyze 
such events in a simple way. First, we introduce the concept of momentum, which is useful 
for describing objects in motion. The momentum of an object is related to both its mass 
and its velocity. The concept of momentum leads us to a second conservation law, that 
of conservation of momentum. In turn, we identify new momentum versions of analysis 
models for isolated and nonisolated system. These models are especially useful for treating 
problems that involve collisions between objects and for analyzing rocket propulsion.  
This chapter also introduces the concept of the center of mass of a system of particles.  
We find that the motion of a system of particles can be described by the motion of one 
particle located at the center of mass that represents the entire system.

9.1	 Linear Momentum
In Chapter 8, we studied situations that are difficult to analyze with Newton’s laws. 
We were able to solve problems involving these situations by identifying a system and 
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248	 Chapter 9  Linear Momentum and Collisions

applying a conservation principle, conservation of energy. Let us consider another 
situation and see if we can solve it with the models we have developed so far:

A 60-kg archer stands at rest on frictionless ice and fires a 0.030-kg arrow 
horizontally at 85 m/s. With what velocity does the archer move across the ice 
after firing the arrow?

From Newton’s third law, we know that the force that the bow exerts on the arrow 
is paired with a force in the opposite direction on the bow (and the archer). This 
force causes the archer to slide backward on the ice with the speed requested in the 
problem. We cannot determine this speed using motion models such as the particle 
under constant acceleration because we don’t have any information about the accel-
eration of the archer. We cannot use force models such as the particle under a net 
force because we don’t know anything about forces in this situation. Energy models 
are of no help because we know nothing about the work done in pulling the bow-
string back or the elastic potential energy in the system related to the taut bowstring.
	 Despite our inability to solve the archer problem using models learned so far, 
this problem is very simple to solve if we introduce a new quantity that describes 
motion, linear momentum. To generate this new quantity, consider an isolated system 
of two particles (Fig. 9.1) with masses m1 and m2 moving with velocities vS1 and vS2 at 
an instant of time. Because the system is isolated, the only force on one particle is 
that from the other particle. If a force from particle 1 (for example, a gravitational 
force) acts on particle 2, there must be a second force—equal in magnitude but 
opposite in direction—that particle 2 exerts on particle 1. That is, the forces on the 
particles form a Newton’s third law action–reaction pair, and F

S

12 5 2 F
S

21. We can 
express this condition as

F
S

21 1 F
S

12 5 0

From a system point of view, this equation says that if we add up the forces on the 
particles in an isolated system, the sum is zero.
	 Let us further analyze this situation by incorporating Newton’s second law. At 
the instant shown in Figure 9.1, the interacting particles in the system have accel-
erations corresponding to the forces on them. Therefore, replacing the force on 
each particle with maS for the particle gives

m1 aS1 1 m2 aS2 5 0

Now we replace each acceleration with its definition from Equation 4.5:

m1 
d vS1

dt
1 m2 

d vS2

dt
5 0

If the masses m1 and m2 are constant, we can bring them inside the derivative oper-
ation, which gives

d 1m1 vS1 2
dt

1
d 1m2 vS2 2

dt
5 0

	
d
dt
1m1 vS1 1 m2 vS2 2 5 0	 (9.1)

Notice that the derivative of the sum m1 vS1 1 m2 vS2 with respect to time is zero. 
Consequently, this sum must be constant. We learn from this discussion that the 
quantity mvS for a particle is important in that the sum of these quantities for an 
isolated system of particles is conserved. We call this quantity linear momentum:

The linear momentum of a particle or an object that can be modeled as a 
particle of mass m moving with a velocity vS is defined to be the product of the 
mass and velocity of the particle:

	 pS ; mvS	 (9.2)

Definition of linear  
momentum of a particle

m2

m1

F21
S

F12
S

v1
S

v2
S

Figure 9.1  ​Two particles inter-
act with each other. According to 
Newton’s third law, we must have 
F
S

12 5 2 F
S

21.
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	 9.1  Linear Momentum	 249

Linear momentum is a vector quantity because it equals the product of a scalar 
quantity m and a vector quantity vS. Its direction is along vS, it has dimensions 
ML/T, and its SI unit is kg ? m/s.
	 If a particle is moving in an arbitrary direction, pS has three components, and 
Equation 9.2 is equivalent to the component equations

px 5 mvx  py 5 mvy  pz 5 mvz

As you can see from its definition, the concept of momentum1 provides a quantita-
tive distinction between heavy and light particles moving at the same velocity. For 
example, the momentum of a bowling ball is much greater than that of a tennis ball 
moving at the same speed. Newton called the product mvS quantity of motion; this 
term is perhaps a more graphic description than our present-day word momentum, 
which comes from the Latin word for movement.
	 We have seen another quantity, kinetic energy, that is a combination of mass 
and speed. It would be a legitimate question to ask why we need another quan-
tity, momentum, based on mass and velocity. There are clear differences between 
kinetic energy and momentum. First, kinetic energy is a scalar, whereas momen-
tum is a vector. Consider a system of two equal-mass particles heading toward each 
other along a line with equal speeds. There is kinetic energy associated with this 
system because members of the system are moving. Because of the vector nature 
of momentum, however, the momentum of this system is zero. A second major 
difference is that kinetic energy can transform to other types of energy, such as 
potential energy or internal energy. There is only one type of linear momentum, 
so we see no such transformations when using a momentum approach to a prob-
lem. These differences are sufficient to make models based on momentum sepa-
rate from those based on energy, providing an independent tool to use in solving 
problems.
	 Using Newton’s second law of motion, we can relate the linear momentum of a 
particle to the resultant force acting on the particle. We start with Newton’s second 
law and substitute the definition of acceleration:

	 a F
S

5 maS 5 m 
d vS

dt
	

In Newton’s second law, the mass m is assumed to be constant. Therefore, we can 
bring m inside the derivative operation to give us

	 a F
S

5
d 1mvS 2

dt
5

d pS

dt
	 (9.3)

This equation shows that the time rate of change of the linear momentum of a 
particle is equal to the net force acting on the particle. In Chapter 5, we identified 
force as that which causes a change in the motion of an object (Section 5.2). In 
Newton’s second law (Eq. 5.2), we used acceleration aS to represent the change in 
motion. We see now in Equation 9.3 that we can use the derivative of momentum pS 
with respect to time to represent the change in motion.
	 This alternative form of Newton’s second law is the form in which Newton pre-
sented the law, and it is actually more general than the form introduced in Chapter 
5. In addition to situations in which the velocity vector varies with time, we can use 
Equation 9.3 to study phenomena in which the mass changes. For example, the 
mass of a rocket changes as fuel is burned and ejected from the rocket. We cannot 
use g F

S
5 maS to analyze rocket propulsion; we must use a momentum approach, 

as we will show in Section 9.9.

WW �Newton’s second law  
for a particle

1In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter 11, we shall use 
the term angular momentum for a different quantity when dealing with rotational motion.
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250	 Chapter 9  Linear Momentum and Collisions

Q	 uick Quiz 9.1  ​Two objects have equal kinetic energies. How do the magnitudes 
of their momenta compare? (a) p1 , p2 (b) p1 5 p2 (c) p1 . p2 (d) not enough 
information to tell

Q	 uick Quiz 9.2  ​ Your physical education teacher throws a baseball to you at a cer-
tain speed and you catch it. The teacher is next going to throw you a medicine 
ball whose mass is ten times the mass of the baseball. You are given the follow-
ing choices: You can have the medicine ball thrown with (a) the same speed 
as the baseball, (b) the same momentum, or (c) the same kinetic energy. Rank 
these choices from easiest to hardest to catch.

Pitfall Prevention 9.1
Momentum of an Isolated System  
Is Conserved  Although the 
momentum of an isolated system is 
conserved, the momentum of one 
particle within an isolated system is 
not necessarily conserved because 
other particles in the system may 
be interacting with it. Avoid apply-
ing conservation of momentum to 
a single particle.

9.2	 Analysis Model: Isolated System (Momentum)
Using the definition of momentum, Equation 9.1 can be written

d
dt
1pS1 1 pS2 2 5 0

Because the time derivative of the total momentum pStot 5 pS1 1 pS2 is zero, we con-
clude that the total momentum of the isolated system of the two particles in Figure 
9.1 must remain constant:

	 pStot 5 constant	 (9.4)

or, equivalently, over some time interval,

	 DpStot 5 0	 (9.5)

Equation 9.5 can be written as

	 pS1i 1 pS2i 5 pS1f 1 pS2f 	

where pS1i and pS2i are the initial values and pS1f  and pS2f  are the final values of the 
momenta for the two particles for the time interval during which the particles 
interact. This equation in component form demonstrates that the total momenta in 
the x, y, and z directions are all independently conserved:

	 p1ix 1 p2ix 5 p1fx 1 p2fx    p1iy 1 p2iy 5 p1fy 1 p2fy    p1iz 1 p2iz 5 p1fz 1 p2fz	 (9.6)

	 Equation 9.5 is the mathematical statement of a new analysis model, the isolated 
system (momentum). It can be extended to any number of particles in an isolated 
system as we show in Section 9.7. We studied the energy version of the isolated sys-
tem model in Chapter 8 (DE system 5 0) and now we have a momentum version. In 
general, Equation 9.5 can be stated in words as follows:

Whenever two or more particles in an isolated system interact, the total 
momentum of the system does not change.

This statement tells us that the total momentum of an isolated system at all times 
equals its initial momentum.
	 Notice that we have made no statement concerning the type of forces acting on 
the particles of the system. Furthermore, we have not specified whether the forces 
are conservative or nonconservative. We have also not indicated whether or not 
the forces are constant. The only requirement is that the forces must be internal to 
the system. This single requirement should give you a hint about the power of this 
new model.

The momentum version of the 
isolated system modelwww.as
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Example 9.1	     The Archer 

Let us consider the situation proposed at the beginning of Section 9.1. A 60-kg archer 
stands at rest on frictionless ice and fires a 0.030-kg arrow horizontally at 85 m/s (Fig. 
9.2). With what velocity does the archer move across the ice after firing the arrow?

Conceptualize  ​You may have conceptualized this problem already when it was 
introduced at the beginning of Section 9.1. Imagine the arrow being fired one way 
and the archer recoiling in the opposite direction.

Categorize  ​As discussed in Section 9.1, we cannot solve this problem with models 
based on motion, force, or energy. Nonetheless, we can solve this problem very eas-
ily with an approach involving momentum.
	 Let us take the system to consist of the archer (including the bow) and the arrow. 
The system is not isolated because the gravitational force and the normal force from 
the ice act on the system. These forces, however, are vertical and perpendicular to 
the motion of the system. There are no external forces in the horizontal direction, 
and we can apply the isolated system (momentum) model in terms of momentum com-
ponents in this direction.

Analyze  ​The total horizontal momentum of the system before the arrow is fired is zero because nothing in the sys-
tem is moving. Therefore, the total horizontal momentum of the system after the arrow is fired must also be zero. We 
choose the direction of firing of the arrow as the positive x direction. Identifying the archer as particle 1 and the arrow 
as particle 2, we have m1 5 60 kg, m2 5 0.030 kg, and vS2f 5 85 î m/s.

AM

S o l u ti  o n

Figure 9.2  ​(Example 9.1) An 
archer fires an arrow horizontally 
to the right. Because he is standing 
on frictionless ice, he will begin to 
slide to the left across the ice.

Using the isolated system (momentum) model, 
begin with Equation 9.5:

DpS 5 0    S    pSf  2 pSi 5 0    S    pSf  5 pSi    S    m1 vS1f 1 m2 vS2f 5 0

Solve this equation for vS1f  and substitute 
numerical values:

vS1f 5 2
m 2

m1
 vS2f 5 2a0.030 kg

60 kg
b 185 î m/s 2 5 20.042 î m/s

Analysis Model	    Isolated System (Momentum)
Imagine you have identified a system to be analyzed and have defined a 
system boundary. If there are no external forces on the system, the system 
is isolated. In that case, the total momentum of the system, which is the 
vector sum of the momenta of all members of the system, is conserved: 

	￼ DpStot 5 0	 (9.5)

Examples: 

•	 a cue ball strikes another ball on a pool table
•	 a spacecraft fires its rockets and moves faster through space
•	 molecules in a gas at a specific temperature move about and strike 

each other (Chapter 21)
•	 an incoming particle strikes a nucleus, creating a new nucleus and a different outgoing particle (Chapter 44)
•	 an electron and a positron annihilate to form two outgoing photons (Chapter 46)

Momentum

System
boundary

If no external forces act on the 
system, the total momentum of 
the system is constant.

continued

Finalize  ​The negative sign for vS1f  indicates that the archer is moving to the left in Figure 9.2 after the arrow is fired, in 
the direction opposite the direction of motion of the arrow, in accordance with Newton’s third law. Because the archer 
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252	 Chapter 9  Linear Momentum and Collisions

Example 9.2	     Can We Really Ignore the Kinetic Energy of the Earth? 

In Section 7.6, we claimed that we can ignore the kinetic energy of the Earth when considering the energy of a system 
consisting of the Earth and a dropped ball. Verify this claim.

Conceptualize  Imagine dropping a ball at the surface of the Earth. From your point of view, the ball falls while the 
Earth remains stationary. By Newton’s third law, however, the Earth experiences an upward force and therefore an 
upward acceleration while the ball falls. In the calculation below, we will show that this motion is extremely small and 
can be ignored.

Categorize  ​We identify the system as the ball and the Earth. We assume there are no forces on the system from outer 
space, so the system is isolated. Let’s use the momentum version of the isolated system model.

Analyze  ​We begin by setting up a ratio of the kinetic energy of the Earth to that of the ball. We identify vE and vb as the 
speeds of the Earth and the ball, respectively, after the ball has fallen through some distance.

AM

S o l u ti  o n

Use the definition of kinetic energy to set up this ratio: (1)   
KE

Kb
5

1
2mEvE

2

1
2mbvb

2 5 amE

mb
b avE

vb
b

2

Apply the isolated system (momentum) model, recogniz-
ing that the initial momentum of the system is zero:

DpS5 0    S    pi 5 pf     S    0 5 mbvb 1 mEvE

Solve the equation for the ratio of speeds:
vE

vb
5 2

mb

mE

Substitute this expression for vE/vb in Equation (1):
KE

Kb
5 amE

mb
b a2mb

mE
b

2

5
mb

mE

Finalize  The kinetic energy of the Earth is a very small fraction of the kinetic energy of the ball, so we are justified in 
ignoring it in the kinetic energy of the system.

Substitute order-of-magnitude numbers for the masses:
KE

Kb
5

mb

mE
,

1 kg

1025 kg
, 10225

	

▸ 9.1 c o n t i n u e d

is much more massive than the arrow, his acceleration and consequent velocity are much smaller than the acceleration 
and velocity of the arrow. Notice that this problem sounds very simple, but we could not solve it with models based on 
motion, force, or energy. Our new momentum model, however, shows us that it not only sounds simple, it is simple!

What if the arrow were fired in a direction 
that makes an angle u with the horizontal? How will that 
change the recoil velocity of the archer?

Answer  ​The recoil velocity should decrease in magni-
tude because only a component of the velocity of the 
arrow is in the x direction. Conservation of momentum 
in the x direction gives

m1v1f 1 m2v2f  cos u 5 0

What If ? leading to

v1f 5 2
m2

m1
 v2f  cos u

For u 5 0, cos u 5 1 and the final velocity of the archer 
reduces to the value when the arrow is fired horizontally. 
For nonzero values of u, the cosine function is less than 1 
and the recoil velocity is less than the value calculated for 
u 5 0. If u 5 908, then cos u 5 0 and v1f 5 0, so there is no 
recoil velocity. In this case, the archer is simply pushed 
downward harder against the ice as the arrow is fired.

	

9.3	 Analysis Model: Nonisolated System (Momentum)
According to Equation 9.3, the momentum of a particle changes if a net force acts 
on the particle. The same can be said about a net force applied to a system as we 
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2Here we are integrating force with respect to time. Compare this strategy with our efforts in Chapter 7, where we 
integrated force with respect to position to find the work done by the force.

will show explicitly in Section 9.7: the momentum of a system changes if a net force 
from the environment acts on the system. This may sound similar to our discus-
sion of energy in Chapter 8: the energy of a system changes if energy crosses the 
boundary of the system to or from the environment. In this section, we consider a 
nonisolated system. For energy considerations, a system is nonisolated if energy trans-
fers across the boundary of the system by any of the means listed in Section 8.1. For 
momentum considerations, a system is nonisolated if a net force acts on the system 
for a time interval. In this case, we can imagine momentum being transferred to 
the system from the environment by means of the net force. Knowing the change in 
momentum caused by a force is useful in solving some types of problems. To build 
a better understanding of this important concept, let us assume a net force g F

S
 

acts on a particle and this force may vary with time. According to Newton’s second 
law, in the form expressed in Equation 9.3, g F

S
5 d pS/dt, we can write

	 d pS 5 a F
S

 dt	 (9.7)

We can integrate2 this expression to find the change in the momentum of a par-
ticle when the force acts over some time interval. If the momentum of the particle 
changes from pSi at time ti to pSf  at time tf , integrating Equation 9.7 gives

	 DpS 5 pSf 2 pSi 5 3
tf

ti
a F

S
 dt	 (9.8)

To evaluate the integral, we need to know how the net force varies with time. The 
quantity on the right side of this equation is a vector called the impulse of the net 
force g F

S
 acting on a particle over the time interval Dt 5 tf 2 ti:

	  I
S

; 3
tf

ti

 a F
S

 dt	 (9.9)

From its definition, we see that impulse   I
S

 is a vector quantity having a magni-
tude equal to the area under the force–time curve as described in Figure 9.3a. It is 
assumed the force varies in time in the general manner shown in the figure and is 
nonzero in the time interval Dt 5 tf 2 ti . The direction of the impulse vector is the 
same as the direction of the change in momentum. Impulse has the dimensions of 
momentum, that is, ML/T. Impulse is not a property of a particle; rather, it is a mea-
sure of the degree to which an external force changes the particle’s momentum.
	 Because the net force imparting an impulse to a particle can generally vary in 
time, it is convenient to define a time-averaged net force:

	 1 a F
S 2 avg ;

1
Dt

 3
tf

ti
a  F

S
 dt	 (9.10)

WW Impulse of a force

t i t f

t i

F

t f
t

F

t

F )avg

�

�

(�

a

b

The time-averaged net force 
gives the same impulse to a 
particle as does the time-
varying force in (a).

The impulse imparted to the 
particle by the force is the 
area under the curve.

t i t f

t i

F

t f
t

F

t

F )avg

�

�

(�

a

b

The time-averaged net force 
gives the same impulse to a 
particle as does the time-
varying force in (a).

The impulse imparted to the 
particle by the force is the 
area under the curve.

Figure 9.3  ​ (a) A net force act-
ing on a particle may vary in time. 
(b) The value of the constant 
force (o F  )avg (horizontal dashed 
line) is chosen so that the area 
(o F  )avg Dt of the rectangle is the 
same as the area under the curve 
in (a).
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254	 Chapter 9  Linear Momentum and Collisions

where Dt 5 tf 2 ti. (This equation is an application of the mean value theorem of 
calculus.) Therefore, we can express Equation 9.9 as

	  I
S

5 1 a  F
S 2 avg Dt	 (9.11)

This time-averaged force, shown in Figure 9.3b, can be interpreted as the constant 
force that would give to the particle in the time interval Dt the same impulse that 
the time-varying force gives over this same interval.
	 In principle, if g F

S
 is known as a function of time, the impulse can be calcu-

lated from Equation 9.9. The calculation becomes especially simple if the force 
acting on the particle is constant. In this case, 1g F

S 2 avg 5 g F
S

, where g F
S

 is the 
constant net force, and Equation 9.11 becomes

	  I
S

5 a F
S

 Dt	 (9.12)

	 Combining Equations 9.8 and 9.9 gives us an important statement known as the 
impulse–momentum theorem:

The change in the momentum of a particle is equal to the impulse of the net 
force acting on the particle:

	 DpS 5  I
S

	 (9.13)

This statement is equivalent to Newton’s second law. When we say that an impulse is 
given to a particle, we mean that momentum is transferred from an external agent 
to that particle. Equation 9.13 is identical in form to the conservation of energy 
equation, Equation 8.1, and its full expansion, Equation 8.2. Equation 9.13 is the 
most general statement of the principle of conservation of momentum and is called 
the conservation of momentum equation. In the case of a momentum approach, 
isolated systems tend to appear in problems more often than nonisolated systems, 
so, in practice, the conservation of momentum equation is often identified as the 
special case of Equation 9.5.
	 The left side of Equation 9.13 represents the change in the momentum of the 
system, which in this case is a single particle. The right side is a measure of how 
much momentum crosses the boundary of the system due to the net force being 
applied to the system. Equation 9.13 is the mathematical statement of a new analy-
sis model, the nonisolated system (momentum) model. Although this equation is 
similar in form to Equation 8.1, there are several differences in its application to 
problems. First, Equation 9.13 is a vector equation, whereas Equation 8.1 is a scalar 
equation. Therefore, directions are important for Equation 9.13. Second, there is 
only one type of momentum and therefore only one way to store momentum in 
a system. In contrast, as we see from Equation 8.2, there are three ways to store 
energy in a system: kinetic, potential, and internal. Third, there is only one way 
to transfer momentum into a system: by the application of a force on the system 
over a time interval. Equation 8.2 shows six ways we have identified as transferring 
energy into a system. Therefore, there is no expansion of Equation 9.13 analogous 
to Equation 8.2.
	 In many physical situations, we shall use what is called the impulse approxima-
tion, in which we assume one of the forces exerted on a particle acts for a short 
time but is much greater than any other force present. In this case, the net force 
g F

S
 in Equation 9.9 is replaced with a single force F

S
 to find the impulse on the 

particle. This approximation is especially useful in treating collisions in which the 
duration of the collision is very short. When this approximation is made, the single 
force is referred to as an impulsive force. For example, when a baseball is struck with 
a bat, the time of the collision is about 0.01 s and the average force that the bat 
exerts on the ball in this time is typically several thousand newtons. Because this 
contact force is much greater than the magnitude of the gravitational force, the 
impulse approximation justifies our ignoring the gravitational forces exerted on 

�Impulse–momentum theorem 
 for a particle

Air bags in automobiles have 
saved countless lives in accidents. 
The air bag increases the time 
interval during which the pas-
senger is brought to rest, thereby 
decreasing the force on (and 
resultant injury to) the passenger.
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continued

the ball and bat during the collision. When we use this approximation, it is impor-
tant to remember that pSi and pSf  represent the momenta immediately before and 
after the collision, respectively. Therefore, in any situation in which it is proper to 
use the impulse approximation, the particle moves very little during the collision.

Q	 uick Quiz 9.3  ​Two objects are at rest on a frictionless surface. Object 1 has a 
greater mass than object 2. (i) When a constant force is applied to object 1, it 
accelerates through a distance d in a straight line. The force is removed from 
object 1 and is applied to object 2. At the moment when object 2 has accelerated 
through the same distance d, which statements are true? (a) p1 , p2 (b) p1 5 p2 
(c) p1 . p2 (d) K1 , K2 (e) K1 5 K2 (f) K1 . K2 (ii) When a force is applied to 
object 1, it accelerates for a time interval Dt. The force is removed from object 1  
and is applied to object 2. From the same list of choices, which statements are 
true after object 2 has accelerated for the same time interval Dt?

Q	 uick Quiz 9.4 ​ Rank an automobile dashboard, seat belt, and air bag, each used 
alone in separate collisions from the same speed, in terms of (a) the impulse and 
(b) the average force each delivers to a front-seat passenger, from greatest to least.

Analysis Model	    Nonisolated System (Momentum)

Imagine you have identified a system to be analyzed and have defined a system 
boundary. If external forces are applied on the system, the system is nonisolated. 
In that case, the change in the total momentum of the system is equal to the 
impulse on the system, a statement known as the impulse–momentum theorem: 

	￼ DpS 5 I
S

	 (9.13)

Examples: 

•	 a baseball is struck by a bat
•	 a spool sitting on a table is pulled by a string (Example 10.14 in Chapter 10)
•	 a gas molecule strikes the wall of the container holding the gas (Chapter 21)
•	 photons strike an absorbing surface and exert pressure on the surface 

(Chapter 34)

Momentum

System
boundary

Impulse

The change in the total 
momentum of the system 
is equal to the total 
impulse on the system.

Example 9.3	     How Good Are the Bumpers? 

In a particular crash test, a car of mass 1 500 kg col-
lides with a wall as shown in Figure 9.4. The initial 
and final velocities of the car are vSi 5 215.0 î m/s 
and vSf 5 2.60 î m/s, respectively. If the collision lasts 
0.150 s, find the impulse caused by the collision and 
the average net force exerted on the car.

Conceptualize  ​The collision time is short, so we can 
imagine the car being brought to rest very rapidly 
and then moving back in the opposite direction with 
a reduced speed.

Categorize  ​Let us assume the net force exerted on 
the car by the wall and friction from the ground is 
large compared with other forces on the car (such as 

AM

S o l u ti  o n
+2.60 m/s

–15.0 m/s

Before

After

a b

Figure 9.4  ​(Example 9.3) (a) This car’s momentum changes as a 
result of its collision with the wall. (b) In a crash test, much of the 
car’s initial kinetic energy is transformed into energy associated 
with the damage to the car.
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256	 Chapter 9  Linear Momentum and Collisions

9.4	 Collisions in One Dimension
In this section, we use the isolated system (momentum) model to describe what 
happens when two particles collide. The term collision represents an event during 
which two particles come close to each other and interact by means of forces. The 
interaction forces are assumed to be much greater than any external forces present, 
so we can use the impulse approximation.
	 A collision may involve physical contact between two macroscopic objects as 
described in Figure 9.5a, but the notion of what is meant by a collision must be 
generalized because “physical contact” on a submicroscopic scale is ill-defined and 
hence meaningless. To understand this concept, consider a collision on an atomic 
scale (Fig. 9.5b) such as the collision of a proton with an alpha particle (the nucleus 
of a helium atom). Because the particles are both positively charged, they repel 
each other due to the strong electrostatic force between them at close separations 
and never come into “physical contact.”
	 When two particles of masses m1 and m2 collide as shown in Figure 9.5, the 
impulsive forces may vary in time in complicated ways, such as that shown in Figure 
9.3. Regardless of the complexity of the time behavior of the impulsive force, how-
ever, this force is internal to the system of two particles. Therefore, the two particles 
form an isolated system and the momentum of the system must be conserved in any 
collision.

Figure 9.5  (a) The collision 
between two objects as the result of 
direct contact. (b) The “collision” 
between two charged particles.

+ +

He

m2
m1

4

p�

a

b

F21
S

F12
S

	

▸ 9.3 c o n t i n u e d

air resistance). Furthermore, the gravitational force and the normal force exerted by the road on the car are perpen-
dicular to the motion and therefore do not affect the horizontal momentum. Therefore, we categorize the problem as 
one in which we can apply the impulse approximation in the horizontal direction. We also see that the car’s momentum 
changes due to an impulse from the environment. Therefore, we can apply the nonisolated system (momentum) model.

Analyze

Use Equation 9.13 to find the impulse 
on the car:

I
S

5 DpS 5 pSf 2 pSi 5 mvSf 2 mvSi 5 m 1 vSf 2 vSi 2
5 11 500 kg 2 32.60 î m/s 2 1215.0 î m/s 2 4 5 2.64 3 104

 î kg # m/s

Use Equation 9.11 to evaluate the aver-
age net force exerted on the car:

1 a F
S 2 avg 5

 I
S

Dt
5

2.64 3 104
 î kg # m/s

0.150 s
5 1.76 3 105

 î N

Finalize  ​The net force found above is a combination of the normal force on the car from the wall and any friction 
force between the tires and the ground as the front of the car crumples. If the brakes are not operating while the crash 
occurs and the crumpling metal does not interfere with the free rotation of the tires, this friction force could be rela-
tively small due to the freely rotating wheels. Notice that the signs of the velocities in this example indicate the reversal 
of directions. What would the mathematics be describing if both the initial and final velocities had the same sign?

What if the car did not rebound from the wall? Suppose the final velocity of the car is zero and the time 
interval of the collision remains at 0.150 s. Would that represent a larger or a smaller net force on the car?

Answer  In the original situation in which the car rebounds, the net force on the car does two things during the time 
interval: (1) it stops the car, and (2) it causes the car to move away from the wall at 2.60 m/s after the collision. If the car 
does not rebound, the net force is only doing the first of these steps—stopping the car—which requires a smaller force.
	 Mathematically, in the case of the car that does not rebound, the impulse is

	  I
S

5 DpS 5 pSf 2 pSi 5 0 2 11 500 kg 2 1215.0 î m/s 2 5 2.25 3 104
 î kg # m/s

The average net force exerted on the car is

1 a F
S 2 avg 5

I
S

Dt
5

2.25 3 104
 î kg # m/s

0.150 s
5 1.50 3 105

 î N

which is indeed smaller than the previously calculated value, as was argued conceptually.

What If ?
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	 In contrast, the total kinetic energy of the system of particles may or may not be con-
served, depending on the type of collision. In fact, collisions are categorized as being 
either elastic or inelastic depending on whether or not kinetic energy is conserved.
	 An elastic collision between two objects is one in which the total kinetic energy 
(as well as total momentum) of the system is the same before and after the collision. 
Collisions between certain objects in the macroscopic world, such as billiard balls, 
are only approximately elastic because some deformation and loss of kinetic energy 
take place. For example, you can hear a billiard ball collision, so you know that 
some of the energy is being transferred away from the system by sound. An elastic 
collision must be perfectly silent! Truly elastic collisions occur between atomic and 
subatomic particles. These collisions are described by the isolated system model for 
both energy and momentum. Furthermore, there must be no transformation of 
kinetic energy into other types of energy within the system.
	 An inelastic collision is one in which the total kinetic energy of the system is not 
the same before and after the collision (even though the momentum of the system 
is conserved). Inelastic collisions are of two types. When the objects stick together 
after they collide, as happens when a meteorite collides with the Earth, the collision 
is called perfectly inelastic. When the colliding objects do not stick together but 
some kinetic energy is transformed or transferred away, as in the case of a rubber 
ball colliding with a hard surface, the collision is called inelastic (with no modify-
ing adverb). When the rubber ball collides with the hard surface, some of the ball’s 
kinetic energy is transformed when the ball is deformed while it is in contact with 
the surface. Inelastic collisions are described by the momentum version of the iso-
lated system model. The system could be isolated for energy, with kinetic energy 
transformed to potential or internal energy. If the system is nonisolated, there could 
be energy leaving the system by some means. In this latter case, there could also 
be some transformation of energy within the system. In either of these cases, the 
kinetic energy of the system changes.
	 In the remainder of this section, we investigate the mathematical details for col-
lisions in one dimension and consider the two extreme cases, perfectly inelastic 
and elastic collisions.

Perfectly Inelastic Collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and vS2i 
along the same straight line as shown in Figure 9.6. The two particles collide head-
on, stick together, and then move with some common velocity vSf  after the collision. 
Because the momentum of an isolated system is conserved in any collision, we can 
say that the total momentum before the collision equals the total momentum of the 
composite system after the collision:

	 DpS 5 0    S    pSi 5 pSf     S    m1 vS1i 1 m2 vS2i 5 1m1 1 m2 2 vSf 	 (9.14)

Solving for the final velocity gives

	 vSf 5
m1 vS1i 1 m2 vS2i

m1 1 m2
	 (9.15)

Elastic Collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and vS2i 
along the same straight line as shown in Figure 9.7 on page 258. The two particles 
collide head-on and then leave the collision site with different velocities, vS1f  and 
vS2f . In an elastic collision, both the momentum and kinetic energy of the system 
are conserved. Therefore, considering velocities along the horizontal direction in 
Figure 9.7, we have

	 pi 5 pf    S    m1v1i 1 m2v2i 5 m1v1f 1 m2v2f	 (9.16)

	 Ki 5 Kf    S    12m1v1i 2 1 1
2m2v2i 2 5 1

2m1v1f 2 1 1
2m2v2f 2	 (9.17)

Pitfall Prevention 9.2
Inelastic Collisions  Generally, 
inelastic collisions are hard to 
analyze without additional infor-
mation. Lack of this information 
appears in the mathematical 
representation as having more 
unknowns than equations.

Figure 9.6  Schematic repre-
sentation of a perfectly inelastic 
head-on collision between two 
particles.

m1 m2

m1 m2

vf
S

v1i
S v2i

S

Before the collision, the 
particles move separately.

After the collision, the 
particles move together.
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258	 Chapter 9  Linear Momentum and Collisions

Because all velocities in Figure 9.7 are either to the left or the right, they can be 
represented by the corresponding speeds along with algebraic signs indicating 
direction. We shall indicate v as positive if a particle moves to the right and nega-
tive if it moves to the left.
	 In a typical problem involving elastic collisions, there are two unknown quanti-
ties, and Equations 9.16 and 9.17 can be solved simultaneously to find them. An 
alternative approach, however—one that involves a little mathematical manipula-
tion of Equation 9.17—often simplifies this process. To see how, let us cancel the 
factor 1

2 in Equation 9.17 and rewrite it by gathering terms with subscript 1 on the 
left and 2 on the right:

	 m1(v1i
2 2 v1f

2) 5 m2(v2f
2 2 v2i

2)	

Factoring both sides of this equation gives

	 m1(v1i 2 v1f) (v1i 1 v1f) 5 m2(v2f 2 v2i)(v2f 1 v2i)	 (9.18)

	 Next, let us separate the terms containing m1 and m2 in Equation 9.16 in a simi-
lar way to obtain

	 m1(v1i 2 v1f) 5 m2(v2f 2 v2i)	 (9.19)

To obtain our final result, we divide Equation 9.18 by Equation 9.19 and obtain

	 v1i 1 v1f 5 v2f 1 v2i	

Now rearrange terms once again so as to have initial quantities on the left and final 
quantities on the right:
	 v1i 2 v2i 5 2(v1f

 2 v2f)	 (9.20)

This equation, in combination with Equation 9.16, can be used to solve problems 
dealing with elastic collisions. This pair of equations (Eqs. 9.16 and 9.20) is easier 
to handle than the pair of Equations 9.16 and 9.17 because there are no quadratic 
terms like there are in Equation 9.17. According to Equation 9.20, the relative veloc-
ity of the two particles before the collision, v1i 2 v2i, equals the negative of their 
relative velocity after the collision, 2(v1f 2 v2f).
	 Suppose the masses and initial velocities of both particles are known. Equations 
9.16 and 9.20 can be solved for the final velocities in terms of the initial velocities 
because there are two equations and two unknowns:

	 v1f 5 am1 2 m2

m1 1 m2
bv1i 1 a 2m2

m1 1 m2
bv2i	 (9.21)

	 v2f 5 a 2m1

m1 1 m2
bv1i 1 am2 2 m1

m1 1 m2
bv2i	 (9.22)

It is important to use the appropriate signs for v1i and v2i in Equations 9.21 and 9.22.
	 Let us consider some special cases. If m1 5 m2, Equations 9.21 and 9.22 show that 
v1f 5 v2i and v2f 5 v1i , which means that the particles exchange velocities if they 
have equal masses. That is approximately what one observes in head-on billiard ball 
collisions: the cue ball stops and the struck ball moves away from the collision with 
the same velocity the cue ball had.
	 If particle 2 is initially at rest, then v2i 5 0, and Equations 9.21 and 9.22 become

	 v1f 5 am1 2 m2

m1 1 m2
bv1i	 (9.23)

	 v2f 5 a 2m1

m1 1 m2
bv1i	 (9.24)

If m1 is much greater than m2 and v2i 5 0, we see from Equations 9.23 and 9.24 that 
v1f < v1i and v2f < 2v1i. That is, when a very heavy particle collides head-on with a 

Elastic collision: particle 2 
initially at rest

1i 2i

1f 2f

m1 m2

Before the collision, the 
particles move separately.

After the collision, the 
particles continue to move 
separately with new velocities.

a

b

vS vS

vS vS

Figure 9.7  Schematic represen-
tation of an elastic head-on colli-
sion between two particles.

Pitfall Prevention 9.3
Not a General Equation  Equation 
9.20 can only be used in a very spe-
cific situation, a one-dimensional, 
elastic collision between two 
objects. The general concept is 
conservation of momentum (and 
conservation of kinetic energy if 
the collision is elastic) for an iso-
lated system.
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very light one that is initially at rest, the heavy particle continues its motion unal-
tered after the collision and the light particle rebounds with a speed equal to about 
twice the initial speed of the heavy particle. An example of such a collision is that 
of a moving heavy atom, such as uranium, striking a light atom, such as hydrogen.
	 If m2 is much greater than m1 and particle 2 is initially at rest, then v1f < –v1i and 
v2f < 0. That is, when a very light particle collides head-on with a very heavy particle 
that is initially at rest, the light particle has its velocity reversed and the heavy one 
remains approximately at rest. For example, imagine what happens when you throw 
a table tennis ball at a bowling ball as in Quick Quiz 9.6 below.

Q	 uick Quiz 9.5  ​In a perfectly inelastic one-dimensional collision between two 
moving objects, what condition alone is necessary so that the final kinetic 
energy of the system is zero after the collision? (a) The objects must have initial 
momenta with the same magnitude but opposite directions. (b) The objects 
must have the same mass. (c) The objects must have the same initial velocity.  
(d) The objects must have the same initial speed, with velocity vectors in oppo-
site directions.

Q	 uick Quiz 9.6 ​ A table-tennis ball is thrown at a stationary bowling ball. The 
table-tennis ball makes a one-dimensional elastic collision and bounces back 
along the same line. Compared with the bowling ball after the collision, does 
the table-tennis ball have (a) a larger magnitude of momentum and more 
kinetic energy, (b) a smaller magnitude of momentum and more kinetic energy, 
(c) a larger magnitude of momentum and less kinetic energy, (d) a smaller 
magnitude of momentum and less kinetic energy, or (e) the same magnitude of 
momentum and the same kinetic energy?

Problem-Solving Strategy	    One-Dimensional Collisions

You should use the following approach when solving collision problems in one 
dimension:

1. Conceptualize. Imagine the collision occurring in your mind. Draw simple dia-
grams of the particles before and after the collision and include appropriate velocity 
vectors. At first, you may have to guess at the directions of the final velocity vectors.

2. Categorize. Is the system of particles isolated? If so, use the isolated system 
(momentum) model. Further categorize the collision as elastic, inelastic, or perfectly 
inelastic.

3. Analyze. Set up the appropriate mathematical representation for the problem. 
If the collision is perfectly inelastic, use Equation 9.15. If the collision is elastic, use 
Equations 9.16 and 9.20. If the collision is inelastic, use Equation 9.16. To find the 
final velocities in this case, you will need some additional information.

4. Finalize. Once you have determined your result, check to see if your answers are 
consistent with the mental and pictorial representations and that your results are 
realistic.

Example 9.4	     The Executive Stress Reliever 

An ingenious device that illustrates conservation of momentum and kinetic energy is shown in Figure 9.8 on page 260. 
It consists of five identical hard balls supported by strings of equal lengths. When ball 1 is pulled out and released, 
after the almost-elastic collision between it and ball 2, ball 1 stops and ball 5 moves out as shown in Figure 9.8b. If balls 
1 and 2 are pulled out and released, they stop after the collision and balls 4 and 5 swing out, and so forth. Is it ever 
possible that when ball 1 is released, it stops after the collision and balls 4 and 5 will swing out on the opposite side and 
travel with half the speed of ball 1 as in Figure 9.8c?

AM
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260	 Chapter 9  Linear Momentum and Collisions

Conceptualize  ​With the help of Figure 
9.8c, imagine one ball coming in from 
the left and two balls exiting the colli-
sion on the right. That is the phenom-
enon we want to test to see if it could 
ever happen.

Categorize  ​​Because of the very short 
time interval between the arrival of the 
ball from the left and the departure  
of the ball(s) from the right, we can use 
the impulse approximation to ignore 
the gravitational forces on the balls and 
model the five balls as an isolated system 
in terms of both momentum and energy. 
Because the balls are hard, we can cat-
egorize the collisions between them as 
elastic for purposes of calculation.

Analyze  ​Let’s consider the situation 
shown in Figure 9.8c. The momentum 
of the system before the collision is mv, where m is the mass of ball 1 and v is its speed immediately before the collision. 
After the collision, we imagine that ball 1 stops and balls 4 and 5 swing out, each moving with speed v/2. The total 
momentum of the system after the collision would be m(v/2) 1 m(v/2) 5 mv. Therefore, the momentum of the system 
is conserved in the situation shown in Figure 9.8c! 
	 The kinetic energy of the system immediately before the collision is Ki 5 1

2mv2 and that after the collision is 
Kf 5 1

2m 1v/2 22 1 1
2m 1v/2 22 5 1

4mv2. That shows that the kinetic energy of the system is not conserved, which is inconsis-
tent with our assumption that the collisions are elastic.

Finalize  ​Our analysis shows that it is not possible for balls 4 and 5 to swing out when only ball 1 is released. The only 
way to conserve both momentum and kinetic energy of the system is for one ball to move out when one ball is released, 
two balls to move out when two are released, and so on.

Consider what would happen if balls 4 and 5 are glued together. Now what happens when ball 1 is pulled 
out and released?

Answer  ​In this situation, balls 4 and 5 must move together as a single object after the collision. We have argued that 
both momentum and energy of the system cannot be conserved in this case. We assumed, however, ball 1 stopped after 
striking ball 2. What if we do not make this assumption? Consider the conservation equations with the assumption that 
ball 1 moves after the collision. For conservation of momentum,

pi 5 pf

mv1i 5 mv1f 1 2mv4,5

where v4,5 refers to the final speed of the ball 4–ball 5 combination. Conservation of kinetic energy gives us

Ki 5 Kf

1
2mv1i

2 5 1
2mv1f

2 1 1
2 12m 2v4,5

2

Combining these equations gives

v4,5 5 2
3v1i  v1f 5 21

3v1i

Therefore, balls 4 and 5 move together as one object after the collision while ball 1 bounces back from the collision 
with one third of its original speed.

S o l u ti  o n

What If ?

This can happen

This cannot happen
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Figure 9.8  ​(Example 9.4) (a) An executive stress reliever. (b) If one ball swings 
down, we see one ball swing out at the other end. (c) Is it possible for one ball to swing 
down and two balls to leave the other end with half the speed of the first ball? In (b) 
and (c), the velocity vectors shown represent those of the balls immediately before and 
immediately after the collision.
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continued

Example 9.5	     Carry Collision Insurance! 

An 1 800-kg car stopped at a traffic light is struck from the rear by a 900-kg car. The two cars become entangled, mov-
ing along the same path as that of the originally moving car. If the smaller car were moving at 20.0 m/s before the col-
lision, what is the velocity of the entangled cars after the collision?

Conceptualize  ​This kind of collision is easily visualized, and one can predict that after the collision both cars will be 
moving in the same direction as that of the initially moving car. Because the initially moving car has only half the mass 
of the stationary car, we expect the final velocity of the cars to be relatively small.

Categorize  ​We identify the two cars as an isolated system in terms of momentum in the horizontal direction and apply 
the impulse approximation during the short time interval of the collision. The phrase “become entangled” tells us to 
categorize the collision as perfectly inelastic.

Analyze  ​The magnitude of the total momentum of the system before the collision is equal to that of the smaller car 
because the larger car is initially at rest.

AM

S o l u ti  o n

Use the isolated system model for momentum: DpS5 0    S   pi 5 pf    S   m1vi 5 (m1 1 m2)vf

Solve for vf  and substitute numerical values: vf 5
m1vi

m1 1 m2
5

1900 kg 2 120.0 m/s 2
900 kg 1 1 800 kg

5 6.67 m/s

Finalize  ​Because the final velocity is positive, the direction of the final velocity of the combination is the same as the 
velocity of the initially moving car as predicted. The speed of the combination is also much lower than the initial speed 
of the moving car.

Suppose we reverse the masses of the cars. What if a stationary 900-kg car is struck by a moving 1 800-kg 
car? Is the final speed the same as before?

Answer  ​Intuitively, we can guess that the final speed of the combination is higher than 6.67 m/s if the initially moving 
car is the more massive car. Mathematically, that should be the case because the system has a larger momentum if the 
initially moving car is the more massive one. Solving for the new final velocity, we find

vf 5
m1vi

m1 1 m2
5

11 800 kg 2 120.0 m/s 2
1 800 kg 1 900 kg

5 13.3 m/s

which is two times greater than the previous final velocity.

What If ?

	

Example 9.6	     The Ballistic Pendulum 

The ballistic pendulum (Fig. 9.9, page 262) is an apparatus used to measure the speed of a fast-moving projectile such 
as a bullet. A projectile of mass m1 is fired into a large block of wood of mass m2 suspended from some light wires. The 
projectile embeds in the block, and the entire system swings through a height h. How can we determine the speed of 
the projectile from a measurement of h?

Conceptualize  ​Figure 9.9a helps conceptualize the situation. Run the animation in your mind: the projectile enters 
the pendulum, which swings up to some height at which it momentarily comes to rest.

Categorize  ​The projectile and the block form an isolated system in terms of momentum if we identify configuration A as 
immediately before the collision and configuration B as immediately after the collision. Because the projectile imbeds 
in the block, we can categorize the collision between them as perfectly inelastic.

Analyze  ​To analyze the collision, we use Equation 9.15, which gives the speed of the system immediately after the col-
lision when we assume the impulse approximation.
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262	 Chapter 9  Linear Momentum and Collisions

m2m1
1A B

m1 � m2

h
vS vS

a

Figure 9.9  ​(Example 9.6) (a) Diagram of a ballistic pendulum. Notice that vS1A is the velocity of the projectile imme-
diately before the collision and vSB is the velocity of the projectile–block system immediately after the perfectly inelas-
tic collision. (b) Multiflash photograph of a ballistic pendulum used in the laboratory.

©
 C

en
ga

ge
 L

ea
rn

in
g/

Ch
ar

le
s 

D.
 W

in
te

rs

b

Finalize  ​​We had to solve this problem in two steps. Each step involved a different system and a different analysis model: 
isolated system (momentum) for the first step and isolated system (energy) for the second. Because the collision was 
assumed to be perfectly inelastic, some mechanical energy was transformed to internal energy during the collision. 
Therefore, it would have been incorrect to apply the isolated system (energy) model to the entire process by equating 
the initial kinetic energy of the incoming projectile with the final gravitational potential energy of the projectile–
block–Earth combination.

	

▸ 9.6 c o n t i n u e d

Noting that v2A 5 0, solve Equation 9.15 for vB: (1)   vB 5
m1v1A

m1 1 m2

Analyze  ​​Write an expression for the total kinetic energy of 
the system immediately after the collision:

(2)   KB 5 1
2 1m1 1 m2 2vB

2

Substitute the value of vB from Equation (1) into Equation (2): KB 5
m1

2v1A
2

2 1m1 1 m2 2

Apply the isolated system model to the system: DK 1 DU 5 0    S   (KC 2 KB) 1 (UC 2 UB) 5 0

Solve for v1A: v1A 5 am1 1 m2

m1
b"2gh

Categorize  ​​For the process during which the projectile–block combination swings upward to height h (ending at a 
configuration we’ll call C), we focus on a different system, that of the projectile, the block, and the Earth. We categorize 
this part of the problem as one involving an isolated system for energy with no nonconservative forces acting.

This kinetic energy of the system immediately after the collision is less than the initial kinetic energy of the projectile 
as is expected in an inelastic collision.
	 We define the gravitational potential energy of the system for configuration B to be zero. Therefore, UB 5 0, whereas 
UC 5 (m1 1 m2)gh.

Substitute the energies: a0 2
m1

2v1A
2

2 1m1 1 m2 2 b
1 3 1m1 1 m2 2gh 2 0 4 5 0

Example 9.7	     A Two-Body Collision with a Spring 

A block of mass m1 5 1.60 kg initially moving to the right with a speed of 4.00 m/s on a frictionless, horizontal track 
collides with a light spring attached to a second block of mass m2 5 2.10 kg initially moving to the left with a speed of 
2.50 m/s as shown in Figure 9.10a. The spring constant is 600 N/m.

AM

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 9.4  Collisions in One Dimension	 263

(A)  Find the velocities of the two blocks after the collision.

Conceptualize  ​​With the help of Figure 9.10a, run an 
animation of the collision in your mind. Figure 9.10b 
shows an instant during the collision when the spring 
is compressed. Eventually, block 1 and the spring will 
again separate, so the system will look like Figure 9.10a 
again but with different velocity vectors for the two 
blocks.

Categorize  ​​Because the spring force is conservative, 
kinetic energy in the system of two blocks and the 
spring is not transformed to internal energy during the 
compression of the spring. Ignoring any sound made when the block hits the spring, we can categorize the collision as 
being elastic and the two blocks and the spring as an isolated system for both energy and momentum.

S o l u ti  o n
1i  4.00î m/s 1f  3.00 î m/s 2f2i  –2.50î m/svS vS vS vS

x

k
m1

m
k

2m1 m2

a

b

� � �

Figure 9.10  ​(Example 9.7) A moving block approaches a second 
moving block that is attached to a spring.

continued

Analyze  ​​Because momentum of 
the system is conserved, apply 
Equation 9.16:

(1)   m1v1i 1 m2v2i 5 m1v1f 1 m2v2f

Because the collision is elastic, 
apply Equation 9.20:

(2)   v1i 2 v2i 5 2(v1f 2 v2f)

Multiply Equation (2) by m1: (3)   m1v1i 2 m1v2i 5 2m1v1f 1 m1v2f

Add Equations (1) and (3): 2m1v1i 1 (m2 2 m1)v2i 5 (m1 1 m2)v2f

Solve for v2f : v2f 5
2m1v1i 1 1m2 2 m1 2v2i

m1 1 m2

Substitute numerical values: v2f 5
2 11.60 kg 2 14.00 m/s 2 1 12.10 kg 2 1.60 kg 2 122.50 m/s 2

1.60 kg 1 2.10 kg
5 3.12 m/s

Solve Equation (2) for v1f and  
substitute numerical values:

v1f 5 v2f 2 v1i 1 v2i 5 3.12 m/s 2 4.00 m/s 1 (22.50 m/s) 5   2 3.38 m/s

(B)  ​Determine the velocity of block 2 during the collision, at the instant block 1 is moving to the right with a velocity 
of 13.00 m/s as in Figure 9.10b.

Conceptualize  ​​​Focus your attention now on Figure 9.10b, which represents the final configuration of the system for 
the time interval of interest.

Categorize  ​Because the momentum and mechanical energy of the isolated system of two blocks and the spring are 
conserved throughout the collision, the collision can be categorized as elastic for any final instant of time. Let us now 
choose the final instant to be when block 1 is moving with a velocity of 13.00 m/s.

S o l u ti  o n

▸ 9.7 c o n t i n u e d

Analyze  ​Apply Equation 9.16: m1v1i 1 m2v2i 5 m1v1f 1 m2v2f

Solve for v2f : v2f 5
m1v1i 1 m2v2i 2 m1v1f

m2
	

Substitute numerical values: v2f 5
11.60 kg 2 14.00 m/s 2 1 12.10 kg 2 122.50 m/s 2 2 11.60 kg 2 13.00 m/s 2

2.10 kg
 

5  21.74 m/s
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264	 Chapter 9  Linear Momentum and Collisions

Finalize  ​The negative value for v2f means that block 2 is still moving to the left at the instant we are considering.

(C)  Determine the distance the spring is compressed at that instant.

Conceptualize  ​Once again, focus on the configuration of the system shown in Figure 9.10b.

Categorize  ​For the system of the spring and two blocks, no friction or other nonconservative forces act within the sys-
tem. Therefore, we categorize the system as an isolated system in terms of energy with no nonconservative forces acting. 
The system also remains an isolated system in terms of momentum.

Analyze  ​​We choose the initial configuration of the system to be that existing immediately before block 1 strikes the 
spring and the final configuration to be that when block 1 is moving to the right at 3.00 m/s.

S o l u ti  o n

Write the appropriate reduction of  
Equation 8.2:

DK 1 DU 5 0

Evaluate the energies, recognizing that two 
objects in the system have kinetic energy 
and that the potential energy is elastic:

3 11
2m1v1f

2 1 1
2m2v2f

2 2 2 11
2m1v1i

2 1 1
2m2v2i

2 2 4 1 11
2kx2 2 0 2 5 0

Solve for x 2: x2 5 1
k 3m1 1v1i

2 2 v1f
2 2 1 m2 1v2i

2 2 v2f
2 2 4

Substitute  
numerical values:

x2 5 a 1
600 N/m

b5 11.60 kg 2 3 14.00 m/s 22 2 13.00 m/s 22 4 1 12.10 kg 2 3 12.50 m/s 22 2 11.74 m/s 22 4 6

S   x 5   0.173 m

Finalize  This answer is not the maximum compression of the spring because the two blocks are still moving toward 
each other at the instant shown in Figure 9.10b. Can you determine the maximum compression of the spring?

9.5	 Collisions in Two Dimensions
In Section 9.2, we showed that the momentum of a system of two particles is con-
served when the system is isolated. For any collision of two particles, this result 
implies that the momentum in each of the directions x, y, and z is conserved. An 
important subset of collisions takes place in a plane. The game of billiards is a famil-
iar example involving multiple collisions of objects moving on a two-dimensional 
surface. For such two-dimensional collisions, we obtain two component equations 
for conservation of momentum:

m1v1ix 1 m2v2ix 5 m1v1fx 1 m2v2fx

m1v1iy 1 m2v2iy 5 m1v1fy 1 m2v2fy

where the three subscripts on the velocity components in these equations repre-
sent, respectively, the identification of the object (1, 2), initial and final values (i, f ), 
and the velocity component (x, y).
	 Let us consider a specific two-dimensional problem in which particle 1 of mass m1 
collides with particle 2 of mass m2 initially at rest as in Figure 9.11. After the collision 
(Fig. 9.11b), particle 1 moves at an angle u with respect to the horizontal and particle 2 
moves at an angle f with respect to the horizontal. This event is called a glancing colli-
sion. Applying the law of conservation of momentum in component form and noting 
that the initial y component of the momentum of the two-particle system is zero gives

	 Dpx 5 0    S    pix 5 pfx    S    m1v1i 5 m1v1f cos u 1 m2v2f cos f	 (9.25)

	 Dpy 5 0    S    piy 5 pfy    S           0 5 m1v1f sin u 2 m2v2f sin f	 (9.26)

	

▸ 9.7 c o n t i n u e d

m1

m2

Before the collision

After the collision

v2f  cos

v1f  cos

v1f  sin

2f  sin

θ

φ
φ

φ

θ

θ

v

a

b

v1i
S

v1f
S

v2f
S

Figure 9.11  An elastic, glancing 
collision between two particles.
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	 9.5  Collisions in Two Dimensions	 265

where the minus sign in Equation 9.26 is included because after the collision par-
ticle 2 has a y component of velocity that is downward. (The symbols v in these 
particular equations are speeds, not velocity components. The direction of the 
component vector is indicated explicitly with plus or minus signs.) We now have 
two independent equations. As long as no more than two of the seven quantities in 
Equations 9.25 and 9.26 are unknown, we can solve the problem.
	 If the collision is elastic, we can also use Equation 9.17 (conservation of kinetic 
energy) with v2i 5 0:

	 Ki 5 Kf    S    12m1v1i
2 5 1

2m1v1f
2 1 1

2m2v2f
2	 (9.27)

Knowing the initial speed of particle 1 and both masses, we are left with four 
unknowns (v1f , v2f , u, and f). Because we have only three equations, one of the four 
remaining quantities must be given to determine the motion after the elastic colli-
sion from conservation principles alone.
	 If the collision is inelastic, kinetic energy is not conserved and Equation 9.27 
does not apply.

Problem-Solving Strategy	    Two-Dimensional Collisions

The following procedure is recommended when dealing with problems involving col-
lisions between two particles in two dimensions.

1. Conceptualize. Imagine the collisions occurring and predict the approximate 
directions in which the particles will move after the collision. Set up a coordinate 
system and define your velocities in terms of that system. It is convenient to have the 
x axis coincide with one of the initial velocities. Sketch the coordinate system, draw 
and label all velocity vectors, and include all the given information.

2. Categorize. Is the system of particles truly isolated? If so, categorize the collision 
as elastic, inelastic, or perfectly inelastic.

3. Analyze. Write expressions for the x and y components of the momentum of each 
object before and after the collision. Remember to include the appropriate signs for 
the components of the velocity vectors and pay careful attention to signs throughout 
the calculation.
	 Apply the isolated system model for momentum DpS 5 0. When applied in each 
direction, this equation will generally reduce to pix 5 pfx and piy 5 pf y, where each 
of these terms refer to the sum of the momenta of all objects in the system. Write 
expressions for the total momentum in the x direction before and after the collision and 
equate the two. Repeat this procedure for the total momentum in the y direction.
	 Proceed to solve the momentum equations for the unknown quantities. If the 
collision is inelastic, kinetic energy is not conserved and additional information is 
probably required. If the collision is perfectly inelastic, the final velocities of the two 
objects are equal.
	 If the collision is elastic, kinetic energy is conserved and you can equate the total 
kinetic energy of the system before the collision to the total kinetic energy after the 
collision, providing an additional relationship between the velocity magnitudes.

4. Finalize. Once you have determined your result, check to see if your answers are 
consistent with the mental and pictorial representations and that your results are 
realistic.

Example 9.8	     Collision at an Intersection 

A 1 500-kg car traveling east with a speed of 25.0 m/s collides at an intersection with a 2 500-kg truck traveling north 
at a speed of 20.0 m/s as shown in Figure 9.12 on page 266. Find the direction and magnitude of the velocity of the 
wreckage after the collision, assuming the vehicles stick together after the collision.

AM

continued

Pitfall Prevention 9.4
Don’t Use Equation 9.20  Equa-
tion 9.20, relating the initial and 
final relative velocities of two 
colliding objects, is only valid 
for one-dimensional elastic col-
lisions. Do not use this equation 
when analyzing two-dimensional 
collisions.
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266	 Chapter 9  Linear Momentum and Collisions

Conceptualize  ​Figure 9.12 should help you conceptualize the situation before 
and after the collision. Let us choose east to be along the positive x direction and 
north to be along the positive y direction.

Categorize  ​Because we consider moments immediately before and immediately 
after the collision as defining our time interval, we ignore the small effect that 
friction would have on the wheels of the vehicles and model the two vehicles as an 
isolated system in terms of momentum. We also ignore the vehicles’ sizes and model 
them as particles. The collision is perfectly inelastic because the car and the truck 
stick together after the collision.

Analyze  ​​Before the collision, the only object having momentum in the x direction 
is the car. Therefore, the magnitude of the total initial momentum of the system 
(car plus truck) in the x direction is that of only the car. Similarly, the total initial 
momentum of the system in the y direction is that of the truck. After the collision, let 
us assume the wreckage moves at an angle u with respect to the x axis with speed vf .

S o l u ti  o n

25.0i m/sˆ

20.0j m/sˆ

y

xu

vf
S

Figure 9.12  ​(Example 9.8) An 
eastbound car colliding with a north-
bound truck.

Apply the isolated system model for momen-
tum in the x direction:

Dpx 5 0    S   o pxi 5 o pxf    S   (1)   m1v1i 5 (m1 1 m2)vf  cos u

Apply the isolated system model for momen-
tum in the y direction:

Dpy 5 0    S   o pyi 5 o pyf    S   (2)   m2v2i 5 (m1 1 m2)vf  sin u

Divide Equation (2) by Equation (1):
m2v2i

m1v1i
5

sin u
cos u

5 tan u

Solve for u and substitute numerical values: u 5 tan21am2v2i

m1v1i
b 5 tan21 c

12 500 kg 2 120.0 m/s 2
11 500 kg 2 125.0 m/s 2 d 5 53.18

Use Equation (2) to find the value of vf  and 
substitute numerical values:

vf 5
m2v2i

1m1 1 m2 2  sin u
5

12 500 kg 2 120.0 m/s 2
11 500 kg 1 2 500 kg 2  sin 53.18

5 15.6 m/s

Finalize  Notice that the angle u is qualitatively in agreement with Figure 9.12. Also notice that the final speed of the 
combination is less than the initial speeds of the two cars. This result is consistent with the kinetic energy of the system 
being reduced in an inelastic collision. It might help if you draw the momentum vectors of each vehicle before the col-
lision and the two vehicles together after the collision.

	

▸ 9.8 c o n t i n u e d

Example 9.9	     Proton–Proton Collision 

A proton collides elastically with another proton that is initially at rest. The incoming proton has an initial speed of  
3.50 3 105 m/s and makes a glancing collision with the second proton as in Figure 9.11. (At close separations, the pro-
tons exert a repulsive electrostatic force on each other.) After the collision, one proton moves off at an angle of 37.08 to 
the original direction of motion and the second deflects at an angle of f to the same axis. Find the final speeds of the 
two protons and the angle f.

Conceptualize  ​This collision is like that shown in Figure 9.11, which will help you conceptualize the behavior of the 
system. We define the x axis to be along the direction of the velocity vector of the initially moving proton.

Categorize  The pair of protons form an isolated system. Both momentum and kinetic energy of the system are con-
served in this glancing elastic collision.
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Analyze  Using the isolated system model for both 
momentum and energy for a two-dimensional 
elastic collision, set up the mathematical represen-
tation with Equations 9.25 through 9.27:

(1)   v1i	 5 v1f  cos u 1 v2f  cos f

(2)   0	 5 v1f  sin u 2 v2f  sin f

(3)   v1i
2	 5 v1f

2 1 v2f
2

Rearrange Equations (1) and (2): v2f  cos f 5 v1i 2 v1f  cos u

v2f  sin f 5 v1f  sin u

Square these two equations and add them: v2f
2 cos2 f 1 v2f

2 sin2 f 5

  v1i
2 2 2v1iv1f  cos u 1 v1f

2 cos2 u 1 v1f
2 sin2 u

Incorporate that the sum of the squares of sine 
and cosine for any angle is equal to 1:

(4)   v2f
2	 5 v1i

2 2 2v1iv1f  cos u 1 v1f
2

Substitute Equation (4) into Equation (3): v1f
2 1 (v1i

2 2 2v1iv1f  cos u 1 v1f
2) 5 v1i

2

(5)   v1f
2 2 v1iv1f  cos u 5 0

One possible solution of Equation (5) is v1f 5 0, which corresponds to a head-on, one-dimensional collision in which the 
first proton stops and the second continues with the same speed in the same direction. That is not the solution we want.

Divide both sides of Equation (5) by v1f  and solve 
for the remaining factor of v1f :

v1f 5 v1i cos u 5 (3.50 3 105 m/s) cos 37.08 5   2.80 3 105 m/s

Use Equation (3) to find v2f : v2f 5 "v1i
2 2 v1f

2 5 "13.50 3 105 m/s 22 2 12.80 3 105 m/s 22

5 2.11 3 105 m/s

Use Equation (2) to find f: (2)   f 5 sin21a
v1f sin u

v2f
b 5 sin21B

12.80 3 105 m/s 2  sin 37.08

12.11 3 105 m/s 2 R

5 53.08

Finalize  It is interesting that u 1 f 5 908. This result is not accidental. Whenever two objects of equal mass collide elas-
tically in a glancing collision and one of them is initially at rest, their final velocities are perpendicular to each other.

9.6	 The Center of Mass
In this section, we describe the overall motion of a system in terms of a special 
point called the center of mass of the system. The system can be either a small 
number of particles or an extended, continuous object, such as a gymnast leaping 
through the air. We shall see that the translational motion of the center of mass 
of the system is the same as if all the mass of the system were concentrated at that 
point. That is, the system moves as if the net external force were applied to a single 
particle located at the center of mass. This model, the particle model, was introduced 
in Chapter 2. This behavior is independent of other motion, such as rotation or 
vibration of the system or deformation of the system (for instance, when a gymnast 
folds her body). 
	 Consider a system consisting of a pair of particles that have different masses 
and are connected by a light, rigid rod (Fig. 9.13 on page 268). The position of 
the center of mass of a system can be described as being the average position of the 
system’s mass. The center of mass of the system is located somewhere on the line 
joining the two particles and is closer to the particle having the larger mass. If a 
single force is applied at a point on the rod above the center of mass, the system 
rotates clockwise (see Fig. 9.13a). If the force is applied at a point on the rod below 
the center of mass, the system rotates counterclockwise (see Fig. 9.13b). If the force 

	

▸ 9.9 c o n t i n u e d
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268	 Chapter 9  Linear Momentum and Collisions

is applied at the center of mass, the system moves in the direction of the force with-
out rotating (see Fig. 9.13c). The center of mass of an object can be located with 
this procedure.
	 The center of mass of the pair of particles described in Figure 9.14 is located on 
the x axis and lies somewhere between the particles. Its x coordinate is given by

	 xCM ;
m1x1 1 m2x2

m1 1 m2
	 (9.28)

For example, if x1 5 0, x2 5 d, and m2 5 2m1, we find that xCM 5 2
3d. That is, the 

center of mass lies closer to the more massive particle. If the two masses are equal, 
the center of mass lies midway between the particles.
	 We can extend this concept to a system of many particles with masses mi in three 
dimensions. The x coordinate of the center of mass of n particles is defined to be

	 xCM ;
m1x1 1 m2x2 1 m3x3 1 c1 mnxn

m1 1 m2 1 m3 1 c1 mn
5

a
i

mixi

a
i

mi

5
a

i
mixi

M
5

1
M a

i
mixi	

		  (9.29)

where xi is the x coordinate of the ith particle and the total mass is M ; oi mi where 
the sum runs over all n particles. The y and z coordinates of the center of mass are 
similarly defined by the equations

	 yCM ;
1
M a

i
miyi and zCM ;

1
M a

i
mizi	 (9.30)

	 The center of mass can be located in three dimensions by its position vector rSCM. 
The components of this vector are xCM, yCM, and zCM, defined in Equations 9.29 and 
9.30. Therefore,

	 rSCM 5 xCM î 1 yCM  ĵ 1 zCM k̂ 5
1
M a

i
mixi î 1

1
M a

i
miyi  ĵ 1

1
M a

i
mizi k̂

	 rSCM ;
1
M a

i
mi r

S
i	 (9.31)

where rSi is the position vector of the ith particle, defined by

rSi ; xi î 1 yi  ĵ 1 zi k̂

	 Although locating the center of mass for an extended, continuous object is some-
what more cumbersome than locating the center of mass of a small number of par-
ticles, the basic ideas we have discussed still apply. Think of an extended object as a 
system containing a large number of small mass elements such as the cube in Figure 
9.15. Because the separation between elements is very small, the object can be con-
sidered to have a continuous mass distribution. By dividing the object into elements 
of mass Dmi with coordinates xi, yi, zi, we see that the x coordinate of the center of 
mass is approximately

xCM <
1
M

 a
i

xi Dmi

with similar expressions for yCM and zCM. If we let the number of elements n 
approach infinity, the size of each element approaches zero and xCM is given pre-
cisely. In this limit, we replace the sum by an integral and Dmi by the differential 
element dm:

	 xCM 5 lim
Dmi S 0

 
1
M

 a
i

xi Dmi 5
1
M

 3  x dm	 (9.32)

Likewise, for yCM and zCM we obtain

	 yCM 5
1
M

 3  y dm and zCM 5
1
M

 3  z dm	 (9.33)

CM

CM

CM

a

b

c

The system rotates clockwise 
when a force is applied 
above the center of mass. 

The system rotates counter-
clockwise when a force is applied 
below the center of mass. 

The system moves in the 
direction of the force without 
rotating when a force is applied 
at the center of mass.

Figure 9.13  A force is applied 
to a system of two particles of 
unequal mass connected by a 
light, rigid rod.

Figure 9.14  The center of mass 
of two particles of unequal mass 
on the x axis is located at xCM, a 
point between the particles, closer 
to the one having the larger mass.

y

m1

x1

x 2

CM

m 2

x
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Example 9.10	     The Center of Mass of Three Particles

A system consists of three particles located as shown in Figure 9.18. Find the cen-
ter of mass of the system. The masses of the particles are m1 5 m2 5 1.0 kg and 
m3 5 2.0 kg.

Conceptualize  ​Figure 9.18 shows the three 
masses. Your intuition should tell you that the 
center of mass is located somewhere in the 
region between the blue particle and the pair 
of tan particles as shown in the figure.

Categorize  ​We categorize this example as a 
substitution problem because we will be using the equations for the center of mass developed in this section.

S o l u ti  o n

We can express the vector position of the center of mass of an extended object in 
the form

	 rSCM 5
1
M

 3 rS dm	 (9.34)

which is equivalent to the three expressions given by Equations 9.32 and 9.33.
	 The center of mass of any symmetric object of uniform density lies on an axis of 
symmetry and on any plane of symmetry. For example, the center of mass of a uni-
form rod lies in the rod, midway between its ends. The center of mass of a sphere or 
a cube lies at its geometric center.
	 Because an extended object is a continuous distribution of mass, each small mass 
element is acted upon by the gravitational force. The net effect of all these forces is 
equivalent to the effect of a single force M gS acting through a special point, called 
the center of gravity. If gS is constant over the mass distribution, the center of grav-
ity coincides with the center of mass. If an extended object is pivoted at its center of 
gravity, it balances in any orientation.
	 The center of gravity of an irregularly shaped object such as a wrench can be 
determined by suspending the object first from one point and then from another. 
In Figure 9.16, a wrench is hung from point A and a vertical line AB (which can be 
established with a plumb bob) is drawn when the wrench has stopped swinging. 
The wrench is then hung from point C, and a second vertical line CD is drawn. The 
center of gravity is halfway through the thickness of the wrench, under the intersec-
tion of these two lines. In general, if the wrench is hung freely from any point, the 
vertical line through this point must pass through the center of gravity.

Q	 uick Quiz 9.7 ​ A baseball bat of uniform density is cut at the location of its cen-
ter of mass as shown in Figure 9.17. Which piece has the smaller mass? (a) the 
piece on the right (b) the piece on the left (c) both pieces have the same mass 
(d) impossible to determine

Figure 9.17  ​(Quick 
Quiz 9.7) A baseball bat 
cut at the location of its 
center of mass.

rCM
S 

2

0
21

1

3

y (m)

x (m)
3

m1 m2

m3

Figure 9.18  ​(Example 9.10) Two 
particles are located on the x axis, 
and a single particle is located on 
the y axis as shown. The vector indi-
cates the location of the system’s 
center of mass.

continued

y

x

z

ri
S

rCM
S

CM
�mi

An extended object can be 
considered to be a distribution 
of small elements of mass �mi .

Figure 9.15  ​The center of mass 
is located at the vector position 
r
S

CM, which has coordinates xCM, 
yCM, and zCM.

A
B

C

D

The wrench is hung 
freely first from point A 
and then from point C.

The intersection of 
the two lines AB 
and CD locates the 
center of gravity.

A

B

Figure 9.16  ​An experimental 
technique for determining the 
center of gravity of a wrench.
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270	 Chapter 9  Linear Momentum and Collisions

Use the defining equations for 
the coordinates of the center of 
mass and notice that zCM 5 0:

xCM 5
1
M a

i
mixi 5

m1x1 1 m2x2 1 m3x3

m1 1 m2 1 m3

5
11.0 kg 2 11.0 m 2 1 11.0 kg 2 12.0 m 2 1 12.0 kg 2 10 2

1.0 kg 1 1.0 kg 1 2.0 kg
5

3.0 kg # m

4.0 kg
5 0.75 m

yCM 5
1
M a

i
mi yi 5

m1y1 1 m2y2 1 m3y3

m1 1 m2 1 m3

5
11.0 kg 2 10 2 1 11.0 kg 2 10 2 1 12.0 kg 2 12.0 m 2

4.0 kg
5

4.0 kg # m

4.0 kg
5 1.0 m

Write the position vector of the 
center of mass:

rSCM ; xCM î 1 yCM  ĵ 5 10.75 î 1 1.0 ĵ 2  m

Example 9.11	     The Center of Mass of a Rod

(A)  Show that the center of mass of a rod of mass M and length L lies midway 
between its ends, assuming the rod has a uniform mass per unit length.

Conceptualize  The rod is shown aligned along the x axis in Figure 9.19, so yCM 5  
zCM 5 0. What is your prediction of the value of xCM?

Categorize  ​We categorize this example as an analysis problem because we need 
to divide the rod into small mass elements to perform the integration in Equa-
tion 9.32.

Analyze  ​The mass per unit length (this quantity is called the linear mass density) can be written as l 5 M/L for the uni-
form rod. If the rod is divided into elements of length dx, the mass of each element is dm 5 l dx.

S o l u ti  o n

x

dm = l dx
y

dx

x

L

Figure 9.19  ​(Example 9.11) The 
geometry used to find the center 
of mass of a uniform rod.

Use Equation 9.32 to find an expression for xCM: xCM 5
1
M

  3 x dm 5
1
M

  3
L

0
 xl dx 5

l

M
  

x2

2
`
L

0
5

lL2

2M

Substitute l 5 M/L: xCM 5
L2

2M
aM

L
b 5 1

2 L

One can also use symmetry arguments to obtain the same result.

(B)  ​Suppose a rod is nonuniform such that its mass per unit length varies linearly with x according to the expression  
l 5 ax, where a is a constant. Find the x coordinate of the center of mass as a fraction of L.

Conceptualize  Because the mass per unit length is not constant in this case but is proportional to x, elements of the 
rod to the right are more massive than elements near the left end of the rod.

Categorize  This problem is categorized similarly to part (A), with the added twist that the linear mass density is not 
constant.

Analyze  ​In this case, we replace dm in Equation 9.32 by l dx, where l 5 ax.

S o l u ti  o n

Use Equation 9.32 to find an expression for xCM: xCM 5
1
M

  3 x dm 5
1
M

  3
L

0
  xl dx 5

1
M

  3
L

0
  xax dx

5
a

M
  3

L

0
 x

2 dx 5
aL3

3M

	

▸ 9.10 c o n t i n u e d
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Example 9.12	     The Center of Mass of a Right Triangle

You have been asked to hang a metal sign from a single vertical string. The sign has 
the triangular shape shown in Figure 9.20a. The bottom of the sign is to be parallel 
to the ground. At what distance from the left end of the sign should you attach the 
support string?

Conceptualize  Figure 9.20a shows the sign hanging from the string. The string must 
be attached at a point directly above the center of gravity of the sign, which is the 
same as its center of mass because it is in a uniform gravitational field.

Categorize  ​As in the case of Example 9.11, we categorize this example as an analysis 
problem because it is necessary to identify infinitesimal mass elements of the sign to 
perform the integration in Equation 9.32.

Analyze  ​We assume the triangular sign has a uniform density and total mass M. 
Because the sign is a continuous distribution of mass, we must use the integral 
expression in Equation 9.32 to find the x coordinate of the center of mass.
	 We divide the triangle into narrow strips of width dx and height y as shown in 
Figure 9.20b, where y is the height of the hypotenuse of the triangle above the x axis 
for a given value of x. The mass of each strip is the product of the volume of the strip 
and the density r of the material from which the sign is made: dm 5 ryt dx, where t 
is the thickness of the metal sign. The density of the material is the total mass of the 
sign divided by its total volume (area of the triangle times thickness).

S o l u ti  o n

Finalize  ​Notice that the center of mass in part (B) is farther to the right than that in part (A). That result is reasonable 
because the elements of the rod become more massive as one moves to the right along the rod in part (B).

Find the total mass of the rod: M 5 3 dm 5 3
L

0
 l dx 5 3

L

0
 ax dx 5

aL2

2

Substitute M into the expression for xCM: xCM 5
aL3

3aL2/2
5  2

3L

continued

Evaluate dm: dm 5 ryt dx 5 a M
1
2abt

byt dx 5
2My

ab
 dx

Use Equation 9.32 to find the x coordinate of the center 
of mass:

(1)   xCM 5
1
M

  3 x dm 5
1
M

  3
a

0
  x 

2My

ab
 dx 5

2
ab

  3
a

0
  xy dx

To proceed further and evaluate the integral, we must express y in terms of x. The line representing the hypotenuse 
of the triangle in Figure 9.20b has a slope of b/a and passes through the origin, so the equation of this line is y 5 
(b/a)x.

	

▸ 9.11 c o n t i n u e d

a

x
xO

y

c b
y

dx

dm

a

b

Joe’s
Cheese Shop

Figure 9.20  ​(Example 9.12) 
(a) A triangular sign to be hung 
from a single string. (b) Geomet-
ric construction for locating the 
center of mass.

Substitute for y in Equation (1):
xCM 5

2
ab

 3
a

0
 x a b

a
 xbdx 5

2
a2 3

a

0
 x2 dx 5

2
a2 c

x3

3
d

a

0

5 2
3a

Therefore, the string must be attached to the sign at a distance two-thirds of the length of the bottom edge from the 
left end.
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272	 Chapter 9  Linear Momentum and Collisions

Finalize  ​This answer is identical to that in part (B) of Example 9.11. For the triangular sign, the linear increase in 
height y with position x means that elements in the sign increase in mass linearly along the x axis, just like the linear 
increase in mass density in Example 9.11. We could also find the y coordinate of the center of mass of the sign, but that 
is not needed to determine where the string should be attached. You might try cutting a right triangle out of cardboard 
and hanging it from a string so that the long base is horizontal. Does the string need to be attached at 23a?

	

▸ 9.12 c o n t i n u e d

9.7	 Systems of Many Particles
Consider a system of two or more particles for which we have identified the center of 
mass. We can begin to understand the physical significance and utility of the center 
of mass concept by taking the time derivative of the position vector for the center of 
mass given by Equation 9.31. From Section 4.1, we know that the time derivative of 
a position vector is by definition the velocity vector. Assuming M remains constant 
for a system of particles—that is, no particles enter or leave the system—we obtain 
the following expression for the velocity of the center of mass of the system:

	 vSCM 5
d rSCM

dt
5

1
M a

i
mi 

d rSi

dt
5

1
M a

i
mi v

S
i	 (9.35)

where vSi is the velocity of the ith particle. Rearranging Equation 9.35 gives

	 M vSCM 5 a
i

mi v
S

i 5 a
i

pSi 5 pStot	 (9.36)

Therefore, the total linear momentum of the system equals the total mass multi-
plied by the velocity of the center of mass. In other words, the total linear momen-
tum of the system is equal to that of a single particle of mass M moving with a 
velocity vSCM.
	 Differentiating Equation 9.35 with respect to time, we obtain the acceleration of 
the center of mass of the system:

	 aSCM 5
d vSCM

dt
5

1
M a

i
mi 

d vSi

dt
5

1
M a

i
mi a

S
i	 (9.37)

Rearranging this expression and using Newton’s second law gives

	 M aSCM 5 a
i

mi a
S

i 5 a
i

F
S

i	 (9.38)

where F
S

i is the net force on particle i.
	 The forces on any particle in the system may include both external forces (from 
outside the system) and internal forces (from within the system). By Newton’s third 
law, however, the internal force exerted by particle 1 on particle 2, for example, is 
equal in magnitude and opposite in direction to the internal force exerted by par-
ticle 2 on particle 1. Therefore, when we sum over all internal force vectors in Equa-
tion 9.38, they cancel in pairs and we find that the net force on the system is caused 
only by external forces. We can then write Equation 9.38 in the form

	 a F
S

ext 5 M aSCM	 (9.39)

That is, the net external force on a system of particles equals the total mass of the 
system multiplied by the acceleration of the center of mass. Comparing Equation 
9.39 with Newton’s second law for a single particle, we see that the particle model 
we have used in several chapters can be described in terms of the center of mass:

The center of mass of a system of particles having combined mass M moves 
like an equivalent particle of mass M would move under the influence of the 
net external force on the system.

Velocity of the center of  
mass of a system of particles

Total momentum of a  
system of particles

Acceleration of the center of  
mass of a system of particles

Newton’s second law for  
a system of particles
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	 Let us integrate Equation 9.39 over a finite time interval:

3a F
S

ext dt 5 3  M aSCM dt 5 3  M 
d vSCM

dt
 dt 5 M  3  d vSCM 5 M DvSCM

Notice that this equation can be written as

	 DpStot 5  I
S

	 (9.40)

where  I
S

 is the impulse imparted to the system by external forces and pStot is the 
momentum of the system. Equation 9.40 is the generalization of the impulse–
momentum theorem for a particle (Eq. 9.13) to a system of many particles. It is also 
the mathematical representation of the nonisolated system (momentum) model for 
a system of many particles.
	 Finally, if the net external force on a system is zero so that the system is isolated, 
it follows from Equation 9.39 that

M aSCM 5 M 
d vSCM

dt
5 0

Therefore, the isolated system model for momentum for a system of many particles 
is described by

	 DpStot 5 0	 (9.41)
which can be rewritten as

	 M vSCM 5 pStot 5 constant 1when a F
S

ext 5 0 2 	 (9.42)

That is, the total linear momentum of a system of particles is conserved if no net 
external force is acting on the system. It follows that for an isolated system of par-
ticles, both the total momentum and the velocity of the center of mass are con-
stant in time. This statement is a generalization of the isolated system (momentum) 
model for a many-particle system.
	 Suppose the center of mass of an isolated system consisting of two or more mem-
bers is at rest. The center of mass of the system remains at rest if there is no net 
force on the system. For example, consider a system of a swimmer standing on a 
raft, with the system initially at rest. When the swimmer dives horizontally off the 
raft, the raft moves in the direction opposite that of the swimmer and the center of 
mass of the system remains at rest (if we neglect friction between raft and water). 
Furthermore, the linear momentum of the diver is equal in magnitude to that of 
the raft, but opposite in direction.

Q	 uick Quiz 9.8 ​ A cruise ship is moving at constant speed through the water. The  
vacationers on the ship are eager to arrive at their next destination. They decide 
to try to speed up the cruise ship by gathering at the bow (the front) and running 
together toward the stern (the back) of the ship. (i) While they are running toward 
the stern, is the speed of the ship (a) higher than it was before, (b) unchanged,  
(c) lower than it was before, or (d) impossible to determine? (ii) The vacationers 
stop running when they reach the stern of the ship. After they have all stopped 
running, is the speed of the ship (a) higher than it was before they started run-
ning, (b) unchanged from what it was before they started running, (c) lower than 
it was before they started running, or (d) impossible to determine?

WW �Impulse–momentum theorem 
for a system of particles

Conceptual Example 9.13	     Exploding Projectile

A projectile fired into the air suddenly explodes into several fragments (Fig. 9.21 on page 274).

(A)  ​What can be said about the motion of the center of mass of the system made up of all the fragments after the 
explosion?

continued
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274	 Chapter 9  Linear Momentum and Collisions

Neglecting air resistance, the only external force on the projectile is the gravi-
tational force. Therefore, if the projectile did not explode, it would continue 
to move along the parabolic path indicated by the dashed line in Figure 9.21. 
Because the forces caused by the explosion are internal, they do not affect the 
motion of the center of mass of the system (the fragments). Therefore, after the 
explosion, the center of mass of the fragments follows the same parabolic path 
the projectile would have followed if no explosion had occurred.

(B)  If the projectile did not explode, it would land at a distance R from its launch 
point. Suppose the projectile explodes and splits into two pieces of equal mass. 
One piece lands at a distance 2R to the right of the launch point. Where does the 
other piece land?

As discussed in part (A), the center of mass of the two-piece system lands at a dis-
tance R from the launch point. One of the pieces lands at a farther distance R from the landing point (or a distance 2R 
from the launch point), to the right in Figure 9.21. Because the two pieces have the same mass, the other piece must 
land a distance R to the left of the landing point in Figure 9.21, which places this piece right back at the launch point!

S o l u ti  o n

S o l u ti  o n

Figure 9.21  (Conceptual Example 
9.13) When a projectile explodes 
into several fragments, the center 
of mass of the system made up of all 
the fragments follows the same para-
bolic path the projectile would have 
taken had there been no explosion.

R

Example 9.14	     The Exploding Rocket 

A rocket is fired vertically upward. At the instant it reaches an altitude of 1 000 m and a speed of vi 5 300 m/s, it 
explodes into three fragments having equal mass. One fragment moves upward with a speed of v1 5 450 m/s following 
the explosion. The second fragment has a speed of v2 5 240 m/s and is moving east right after the explosion. What is 
the velocity of the third fragment immediately after the explosion?

Conceptualize  ​Picture the explosion in your mind, with one piece going upward and a second piece moving horizon-
tally toward the east. Do you have an intuitive feeling about the direction in which the third piece moves?

Categorize  ​This example is a two-dimensional problem because we have two fragments moving in perpendicular 
directions after the explosion as well as a third fragment moving in an unknown direction in the plane defined by the 
velocity vectors of the other two fragments. We assume the time interval of the explosion is very short, so we use the 
impulse approximation in which we ignore the gravitational force and air resistance. Because the forces of the explo-
sion are internal to the system (the rocket), the rocket is an isolated system in terms of momentum. Therefore, the total 
momentum pSi of the rocket immediately before the explosion must equal the total momentum pSf  of the fragments 
immediately after the explosion.

Analyze  Because the three fragments have equal mass, the mass of each fragment is M/3, where M is the total mass of 
the rocket. We will let vS3 represent the unknown velocity of the third fragment.

AM

S o l u ti  o n

Use the isolated system (momentum) model to equate 
the initial and final momenta of the system and 
express the momenta in terms of masses and velocities:

DpS 5 0    S    pSi 5 pSf     S    M vSi 5
M
3

 vS1 1
M
3

 vS2 1
M
3

 vS3

Solve for vS3: vS3 5 3vSi 2 vS1 2 vS2

Substitute the numerical values: vS3 5 3 1300 ĵ m/s 2 2 1450 ĵ m/s 2 2 1240 î m/s 2 5 12240 î 1 450 ĵ 2  m/s

Finalize  ​Notice that this event is the reverse of a perfectly inelastic collision. There is one object before the collision 
and three objects afterward. Imagine running a movie of the event backward: the three objects would come together 
and become a single object. In a perfectly inelastic collision, the kinetic energy of the system decreases. If you were 

	

▸ 9.13 c o n t i n u e d
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to calculate the kinetic energy before and after the event in this example, you would find that the kinetic energy of 
the system increases. (Try it!) This increase in kinetic energy comes from the potential energy stored in whatever fuel 
exploded to cause the breakup of the rocket.

	

▸ 9.14 c o n t i n u e d

9.8	 Deformable Systems
So far in our discussion of mechanics, we have analyzed the motion of particles or 
nondeformable systems that can be modeled as particles. The discussion in Section 
9.7 can be applied to an analysis of the motion of deformable systems. For example, 
suppose you stand on a skateboard and push off a wall, setting yourself in motion 
away from the wall. Your body has deformed during this event: your arms were bent 
before the event, and they straightened out while you pushed off the wall. How 
would we describe this event?
	 The force from the wall on your hands moves through no displacement; the 
force is always located at the interface between the wall and your hands. Therefore, 
the force does no work on the system, which is you and your skateboard. Pushing 
off the wall, however, does indeed result in a change in the kinetic energy of the 
system. If you try to use the work–kinetic energy theorem, W 5 DK, to describe this 
event, you will notice that the left side of the equation is zero but the right side is 
not zero. The work–kinetic energy theorem is not valid for this event and is often 
not valid for systems that are deformable. 
	 To analyze the motion of deformable systems, we appeal to Equation 8.2, the 
conservation of energy equation, and Equation 9.40, the impulse–momentum the-
orem. For the example of you pushing off the wall on your skateboard, identifying 
the system as you and the skateboard, Equation 8.2 gives

DEsystem 5 o T  S  DK 1 DU 5 0

where DK is the change in kinetic energy, which is related to the increased speed 
of the system, and DU is the decrease in potential energy stored in the body from 
previous meals. This equation tells us that the system transformed potential energy 
into kinetic energy by virtue of the muscular exertion necessary to push off the 
wall. Notice that the system is isolated in terms of energy but nonisolated in terms 
of momentum.
	 Applying Equation 9.40 to the system in this situation gives us

DpStot 5  I
S

  S  m DvS 5 3  F
S

wall dt

where  F
S

wall is the force exerted by the wall on your hands, m is the mass of you and 
the skateboard, and DvS is the change in the velocity of the system during the event. 
To evaluate the right side of this equation, we would need to know how the force 
from the wall varies in time. In general, this process might be complicated. In the 
case of constant forces, or well-behaved forces, however, the integral on the right 
side of the equation can be evaluated.

Example 9.15	     Pushing on a Spring3 

As shown in Figure 9.22a (page 276), two blocks are at rest on a frictionless, level table. Both blocks have the same 
mass m, and they are connected by a spring of negligible mass. The separation distance of the blocks when the spring 
is relaxed is L. During a time interval Dt, a constant force of magnitude F is applied horizontally to the left block,  

AM

3Example 9.15 was inspired in part by C. E. Mungan, “A primer on work–energy relationships for introductory physics,” The Physics Teacher 43:10, 2005.

continued
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276	 Chapter 9  Linear Momentum and Collisions

moving it through a distance x1 as shown in Figure 9.22b. During this time inter-
val, the right block moves through a distance x2. At the end of this time interval, 
the force F is removed.

(A)  ​Find the resulting speed vSCM of the center of mass of the system.

Conceptualize  Imagine what happens as you push on the left block. It begins to 
move to the right in Figure 9.22, and the spring begins to compress. As a result, the 
spring pushes to the right on the right block, which begins to move to the right. At 
any given time, the blocks are generally moving with different velocities. As the cen-
ter of mass of the system moves to the right with a constant speed after the force is 
removed, the two blocks oscillate back and forth with respect to the center of mass.

Categorize  ​We apply three analysis models in this problem: the deformable sys-
tem of two blocks and a spring is modeled as a nonisolated system in terms of energy 
because work is being done on it by the applied force. It is also modeled as a noniso-
lated system in terms of momentum because of the force acting on the system during 
a time interval. Because the applied force on the system is constant, the acceleration of its center of mass is constant 
and the center of mass is modeled as a particle under constant acceleration.

Analyze  ​Using the nonisolated system (momentum) model, we apply the impulse–momentum theorem to the system 
of two blocks, recognizing that the force F is constant during the time interval Dt while the force is applied.

S o l u ti  o n

Write Equation 9.40 for the system: Dpx 5 Ix  S   12m 2 1vCM 2 0 2 5  F Dt

(1)   2mvCM 5  F Dt

During the time interval Dt, the center of mass of the sys-
tem moves a distance 12 1x1 1 x2 2 . Use this fact to express 
the time interval in terms of vCM,avg:

Dt 5

1
2 1x1 1 x2 2

vCM,avg

Because the center of mass is modeled as a particle 
under constant acceleration, the average velocity of the 
center of mass is the average of the initial velocity, which 
is zero, and the final velocity vCM:

Dt 5

1
2 1x1 1 x2 2

1
2 10 1 vCM 2 5

1x1 1 x2 2
vCM

Substitute this expression into Equation (1): 2mvCM 5 F  
1x1 1 x2 2

vCM

Solve for vCM: vCM 5  ÅF  
1x1 1 x2 2

2m

(B)  Find the total energy of the system associated with vibration relative to its center of mass after the force F is 
removed.

Analyze  ​The vibrational energy is all the energy of the system other than the kinetic energy associated with transla-
tional motion of the center of mass. To find the vibrational energy, we apply the conservation of energy equation. The 
kinetic energy of the system can be expressed as K 5 KCM 1 K vib, where K vib is the kinetic energy of the blocks relative 
to the center of mass due to their vibration. The potential energy of the system is Uvib, which is the potential energy 
stored in the spring when the separation of the blocks is some value other than L.

S o l u ti  o n

From the nonisolated system (energy) model, express 
Equation 8.2 for this system:

(2)   DKCM 1 DK vib 1 DUvib 5 W

▸ 9.15 c o n t i n u e d

mm

L

F

x2x1

m m

a

b

Figure 9.22  (Example 9.15)  
(a) Two blocks of equal mass are 
connected by a spring. (b) The left 
block is pushed with a constant 
force of magnitude F and moves a 
distance x1 during some time inter-
val. During this same time interval, 
the right block moves through a 
distance x2.
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M � �m

M�m

vS

� �vSvS

a

b

pS vSi � (M � �m)

Figure 9.23  ​Rocket propul-
sion. (a) The initial mass of the 
rocket plus all its fuel is M 1 Dm 
at a time t, and its speed is v. 
(b) At a time t 1 Dt, the rocket’s 
mass has been reduced to M 
and an amount of fuel Dm has 
been ejected. The rocket’s speed 
increases by an amount Dv.

Express Equation (2) in an alternate form, noting that 
K vib 1 Uvib 5 Evib:

DKCM 1 DEvib 5 W

The initial values of the kinetic energy of the center of 
mass and the vibrational energy of the system are zero. 
Use this fact and substitute for the work done on the sys-
tem by the force F :

KCM 1 Evib 5 W 5 Fx1

Solve for the vibrational energy and use the result from 
part (A):

E vib 5 Fx1 2 K CM 5 Fx1 2 1
2 12m 2vCM 2 5 F  

1x1 2 x2 2
2

Finalize  ​Neither of the two answers in this example depends on the spring length, the spring constant, or the time 
interval. Notice also that the magnitude x1 of the displacement of the point of application of the applied force is differ-
ent from the magnitude 12 1x1 1 x2 2  of the displacement of the center of mass of the system. This difference reminds us 
that the displacement in the definition of work (Eq. 7.1) is that of the point of application of the force.

9.9	 Rocket Propulsion
When ordinary vehicles such as cars are propelled, the driving force for the motion 
is friction. In the case of the car, the driving force is the force exerted by the road 
on the car. We can model the car as a nonisolated system in terms of momentum. 
An impulse is applied to the car from the roadway, and the result is a change in the 
momentum of the car as described by Equation 9.40.
	 A rocket moving in space, however, has no road to push against. The rocket is an 
isolated system in terms of momentum. Therefore, the source of the propulsion of 
a rocket must be something other than an external force. The operation of a rocket 
depends on the law of conservation of linear momentum as applied to an isolated 
system, where the system is the rocket plus its ejected fuel.
	 Rocket propulsion can be understood by first considering our archer standing 
on frictionless ice in Example 9.1. Imagine the archer fires several arrows hori-
zontally. For each arrow fired, the archer receives a compensating momentum 
in the opposite direction. As more arrows are fired, the archer moves faster and 
faster across the ice. In addition to this analysis in terms of momentum, we can also 
understand this phenomenon in terms of Newton’s second and third laws. Every 
time the bow pushes an arrow forward, the arrow pushes the bow (and the archer) 
backward, and these forces result in an acceleration of the archer.
	 In a similar manner, as a rocket moves in free space, its linear momentum 
changes when some of its mass is ejected in the form of exhaust gases. Because 
the gases are given momentum when they are ejected out of the engine, the rocket 
receives a compensating momentum in the opposite direction. Therefore, the 
rocket is accelerated as a result of the “push,” or thrust, from the exhaust gases. In 
free space, the center of mass of the system (rocket plus expelled gases) moves uni-
formly, independent of the propulsion process.4

	 Suppose at some time t the magnitude of the momentum of a rocket plus its fuel 
is (M 1 Dm)v, where v is the speed of the rocket relative to the Earth (Fig. 9.23a). 
Over a short time interval Dt, the rocket ejects fuel of mass Dm. At the end of this 
interval, the rocket’s mass is M and its speed is v 1 Dv, where Dv is the change in 
speed of the rocket (Fig. 9.23b). If the fuel is ejected with a speed ve relative to 

4The rocket and the archer represent cases of the reverse of a perfectly inelastic collision: momentum is conserved, 
but the kinetic energy of the rocket–exhaust gas system increases (at the expense of chemical potential energy in 
the fuel), as does the kinetic energy of the archer–arrow system (at the expense of potential energy from the archer’s 
previous meals).

	

▸ 9.15 c o n t i n u e d

The force from a nitrogen-
propelled hand-controlled device 
allows an astronaut to move about 
freely in space without restrictive 
tethers, using the thrust force 
from the expelled nitrogen.
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278	 Chapter 9  Linear Momentum and Collisions

the rocket (the subscript e stands for exhaust, and ve is usually called the exhaust 
speed), the velocity of the fuel relative to the Earth is v 2 ve . Because the system of 
the rocket and the ejected fuel is isolated, we apply the isolated system model for 
momentum and obtain

	 Dp 5 0   S   pi 5 pf   S   1M 1 Dm 2v 5 M 1v 1 Dv 2 1 Dm 1v 2 ve 2 	
Simplifying this expression gives

	 M Dv 5 ve Dm	

	 If we now take the limit as Dt goes to zero, we let Dv S dv and Dm S dm. Fur-
thermore, the increase in the exhaust mass dm corresponds to an equal decrease in 
the rocket mass, so dm 5 2dM. Notice that dM is negative because it represents a 
decrease in mass, so 2dM is a positive number. Using this fact gives

	 M dv 5 ve dm 5 2ve dM	 (9.43)

Now divide the equation by M and integrate, taking the initial mass of the rocket 
plus fuel to be Mi and the final mass of the rocket plus its remaining fuel to be Mf . 
The result is

3
vf

vi

 dv 5 2ve 3
Mf

Mi

 
dM
M

	 vf 2 vi 5 ve lna
Mi

Mf
b	 (9.44)

which is the basic expression for rocket propulsion. First, Equation 9.44 tells us that 
the increase in rocket speed is proportional to the exhaust speed ve of the ejected 
gases. Therefore, the exhaust speed should be very high. Second, the increase in 
rocket speed is proportional to the natural logarithm of the ratio Mi/Mf . There-
fore, this ratio should be as large as possible; that is, the mass of the rocket without 
its fuel should be as small as possible and the rocket should carry as much fuel as 
possible.
	 The thrust on the rocket is the force exerted on it by the ejected exhaust gases. 
We obtain the following expression for the thrust from Newton’s second law and 
Equation 9.43:

	 Thrust 5 M 
dv
dt

5 `ve 
dM
dt

` 	 (9.45)

This expression shows that the thrust increases as the exhaust speed increases and 
as the rate of change of mass (called the burn rate) increases.

Expression for rocket  
propulsion

Example 9.16	     Fighting a Fire

Two firefighters must apply a total force of 600 N to steady a hose that is discharging water at the rate of 3 600 L/min. 
Estimate the speed of the water as it exits the nozzle.

Conceptualize  ​As the water leaves the hose, it acts in a way similar to the gases being ejected from a rocket engine. As a 
result, a force (thrust) acts on the firefighters in a direction opposite the direction of motion of the water. In this case, 
we want the end of the hose to be modeled as a particle in equilibrium rather than to accelerate as in the case of the 
rocket. Consequently, the firefighters must apply a force of magnitude equal to the thrust in the opposite direction to 
keep the end of the hose stationary.

Categorize  ​This example is a substitution problem in which we use given values in an equation derived in this section. 
The water exits at 3 600 L/min, which is 60 L/s. Knowing that 1 L of water has a mass of 1 kg, we estimate that about 
60 kg of water leaves the nozzle each second.

S o l u ti  o n
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Use Equation 9.45 for the thrust: Thrust 5 `ve 
dM
dt

 `

Solve for the exhaust speed: ve 5
Thrust
0 dM /dt 0

Substitute numerical values: ve 5
600 N

60 kg/s
5 10 m/s

Solve Equation 9.44 for the final velocity and substitute 
the known values:

vf 5 vi 1 ve lna
Mi

Mf
b

5 3.0 3 103 m/s 1 15.0 3 103 m/s 2 lna Mi

0.50Mi
b

5   6.5 3 103 m/s

(B)  ​What is the thrust on the rocket if it burns fuel at the rate of 50 kg/s?

Use Equation 9.45, noting that dM/dt 5 50 kg/s:

Thrust 5 `ve 
dM
dt

` 5 15.0 3 103 m/s 2 150 kg/s 2 5  2.5 3 105 N

S o l u ti  o n

continued

▸ 9.16 c o n t i n u e d

	

	

Example 9.17	     A Rocket in Space

A rocket moving in space, far from all other objects, has a speed of 3.0 3 103 m/s relative to the Earth. Its engines are 
turned on, and fuel is ejected in a direction opposite the rocket’s motion at a speed of 5.0 3 103 m/s relative to the 
rocket.

(A)  ​What is the speed of the rocket relative to the Earth once the rocket’s mass is reduced to half its mass before 
ignition?

Conceptualize  ​Figure 9.23 shows the situation in this problem. From the discussion in this section and scenes from sci-
ence fiction movies, we can easily imagine the rocket accelerating to a higher speed as the engine operates.

Categorize  ​This problem is a substitution problem in which we use given values in the equations derived in this section.

S o l u ti  o n

Summary

Definitions

  The linear momentum pS of a particle of mass m 
moving with a velocity vS is

	 pS ; mvS	 (9.2)

  The impulse imparted to a particle by a net force 
g F

S
 is equal to the time integral of the force:

	  I
S

; 3
tf

t i

 a F
S

 dt	 (9.9)
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280	 Chapter 9  Linear Momentum and Collisions

  An inelastic collision is one for which the 
total kinetic energy of the system of colliding 
particles is not conserved. A perfectly inelastic 
collision is one in which the colliding particles 
stick together after the collision. An elastic col-
lision is one in which the kinetic energy of the 
system is conserved.

  The position vector of the center of mass of a system of par-
ticles is defined as

	 rSCM ;
1
M

 a
i

mi r
S

i	 (9.31)

where M 5 Si mi is the total mass of the system and rSi is the 
position vector of the ith particle.

Concepts and Principles

  Newton’s second law applied to a system of 
particles is

	 a F
S

ext 5 M aSCM	 (9.39)

where aSCM is the acceleration of the center of 
mass and the sum is over all external forces. 
The center of mass moves like an imaginary 
particle of mass M under the influence of the 
resultant external force on the system.

  The position vector of the center of mass of an extended 
object can be obtained from the integral expression

	 rSCM 5
1
M

 3 rS dm	 (9.34)

The velocity of the center of mass for a system of particles is

	 vSCM 5
1
M a

i
mi v

S
i	 (9.35)

The total momentum of a system of particles equals the total 
mass multiplied by the velocity of the center of mass.

Analysis Models for Problem Solving

  Isolated System (Momentum). ​ The total momentum of an 
isolated system (no external forces) is conserved regardless of 
the nature of the forces between the members of the system:

	￼ DpStot 5 0	 (9.41)

The system may be isolated in terms of momentum but 
nonisolated in terms of energy, as in the case of inelastic 
collisions.

  Nonisolated System (Momentum). ​ If a sys-
tem interacts with its environment in the sense 
that there is an external force on the system, 
the behavior of the system is described by the 
impulse–momentum theorem:

	 DpStot 5 I
S

	 (9.40)

Momentum

System
boundary

Impulse

The change in the total 
momentum of the system 
is equal to the total 
impulse on the system.

Momentum

System
boundary

If no external forces act on the 
system, the total momentum of 
the system is constant.
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	 1.	 You are standing on a saucer-shaped sled at rest in the 
middle of a frictionless ice rink. Your lab partner throws 
you a heavy Frisbee. You take different actions in succes-
sive experimental trials. Rank the following situations 
according to your final speed from largest to smallest. 
If your final speed is the same in two cases, give them 
equal rank. (a) You catch the Frisbee and hold onto it. 
(b) You catch the Frisbee and throw it back to your part-
ner. (c) You bobble the catch, just touching the Frisbee 
so that it continues in its original direction more slowly. 
(d) You catch the Frisbee and throw it so that it moves 
vertically upward above your head. (e) You catch the Fris-
bee and set it down so that it remains at rest on the ice.

	 2.	 A boxcar at a rail yard is set into motion at the top of 
a hump. The car rolls down quietly and without fric-
tion onto a straight, level track where it couples with 
a flatcar of smaller mass, originally at rest, so that the 
two cars then roll together without friction. Consider 
the two cars as a system from the moment of release of 
the boxcar until both are rolling together. Answer the 
following questions yes or no. (a) Is mechanical energy 
of the system conserved? (b) Is momentum of the sys-
tem conserved? Next, consider only the process of the 
boxcar gaining speed as it rolls down the hump. For 
the boxcar and the Earth as a system, (c) is mechani-
cal energy conserved? (d) Is momentum conserved? 
Finally, consider the two cars as a system as the boxcar 
is slowing down in the coupling process. (e) Is mechan-
ical energy of this system conserved? (f) Is momentum 
of this system conserved?

	 3.	 A massive tractor is rolling down a country road. In 
a perfectly inelastic collision, a small sports car runs 
into the machine from behind. (i) Which vehicle expe-
riences a change in momentum of larger magnitude?  
(a) The car does. (b) The tractor does. (c) Their 
momentum changes are the same size. (d) It could be 
either vehicle. (ii) Which vehicle experiences a larger 
change in kinetic energy? (a)  The car does. (b) The 
tractor does. (c) Their kinetic energy changes are the 
same size. (d) It could be either vehicle.

	 4.	 A 2-kg object moving to the right with a speed of 4 m/s 
makes a head-on, elastic collision with a 1-kg object 
that is initially at rest. The velocity of the 1-kg object 
after the collision is (a) greater than 4 m/s, (b) less 
than 4 m/s, (c) equal to 4 m/s, (d) zero, or (e) impos-
sible to say based on the information provided.

	 5.	 A 5-kg cart moving to the right with a speed of 6 m/s 
collides with a concrete wall and rebounds with a speed 
of 2 m/s. What is the change in momentum of the cart? 
(a) 0 (b) 40 kg ? m/s (c) 240 kg ? m/s (d) 230 kg ? m/s  
(e) 210 kg ? m/s

	 6.	 A 57.0-g tennis ball is traveling straight at a player at 
21.0  m/s. The player volleys the ball straight back at 
25.0 m/s. If the ball remains in contact with the racket 
for 0.060 0 s, what average force acts on the ball?  
(a) 22.6 N (b) 32.5 N (c) 43.7 N (d) 72.1 N (e) 102 N

	 7.	 The momentum of an object is increased by a factor 
of 4 in magnitude. By what factor is its kinetic energy 
changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1

	 8.	 The kinetic energy of an object is increased by a factor 
of 4. By what factor is the magnitude of its momentum 
changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1

	 9.	 If two particles have equal momenta, are their kinetic 
energies equal? (a) yes, always (b) no, never (c) no, 
except when their speeds are the same (d) yes, as long 
as they move along parallel lines

	10.	 If two particles have equal kinetic energies, are their 
momenta equal? (a) yes, always (b) no, never (c) yes, 
as long as their masses are equal (d) yes, if both their 
masses and directions of motion are the same (e) yes, 
as long as they move along parallel lines

	11.	 A 10.0-g bullet is fired into a 200-g block of wood at rest 
on a horizontal surface. After impact, the block slides 
8.00 m before coming to rest. If the coefficient of fric-
tion between the block and the surface is 0.400, what 
is the speed of the bullet before impact? (a) 106 m/s  
(b) 166 m/s (c) 226 m/s (d) 286 m/s (e) none of those 
answers is correct

	12.	Two particles of different mass start from rest. The same 
net force acts on both of them as they move over equal 
distances. How do their final kinetic energies compare? 
(a) The particle of larger mass has more kinetic energy. 
(b)  The particle of smaller mass has more kinetic 
energy. (c) The particles have equal kinetic energies. 
(d) Either particle might have more kinetic energy.

	13.	Two particles of different mass start from rest. The 
same net force acts on both of them as they move over 
equal distances. How do the magnitudes of their final 
momenta compare? (a) The particle of larger mass 
has more momentum. (b) The particle of smaller 
mass has more momentum. (c) The particles have 
equal momenta. (d) Either particle might have more 
momentum.

	14.	A basketball is tossed up into the air, falls freely, and 
bounces from the wooden floor. From the moment 
after the player releases it until the ball reaches the 
top of its bounce, what is the smallest system for which 
momentum is conserved? (a) the ball (b) the ball plus 
player (c) the ball plus floor (d) the ball plus the Earth 
(e) momentum is not conserved for any system

	15.	A 3-kg object moving to the right on a frictionless, 
horizontal surface with a speed of 2 m/s collides head-
on and sticks to a 2-kg object that is initially moving 
to the left with a speed of 4 m/s. After the collision, 
which statement is true? (a) The kinetic energy of the 
system is 20 J. (b) The momentum of the system is  
14 kg ? m/s. (c) The kinetic energy of the system is 
greater than 5 J but less than 20 J. (d) The momentum 
of the system is 22 kg ? m/s. (e) The momentum of the 
system is less than the momentum of the system before 
the collision.

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

www.as
warp

hy
sic

s.w
ee

bly
.co

m



282	 Chapter 9  Linear Momentum and Collisions

what is the speed of the combined car and truck after 
the collision? (a) v (b) v/2 (c) v/3 (d) 2v (e) None of 
those answers is correct.

	18.	A head-on, elastic collision occurs between two billiard 
balls of equal mass. If a red ball is traveling to the right 
with speed v and a blue ball is traveling to the left with 
speed 3v before the collision, what statement is true 
concerning their velocities subsequent to the collision? 
Neglect any effects of spin. (a) The red ball travels to 
the left with speed v, while the blue ball travels to the 
right with speed 3v. (b) The red ball travels to the left 
with speed v, while the blue ball continues to move to 
the left with a speed 2v. (c) The red ball travels to the 
left with speed 3v, while the blue ball travels to the 
right with speed v. (d) Their final velocities cannot be 
determined because momentum is not conserved in 
the collision. (e) The velocities cannot be determined 
without knowing the mass of each ball.

	16.	A ball is suspended by a string 
that is tied to a fixed point 
above a wooden block stand-
ing on end. The ball is pulled 
back as shown in Figure 
OQ9.16 and released. In trial 
A, the ball rebounds elasti-
cally from the block. In trial B, 
two-sided tape causes the ball 
to stick to the block. In which 
case is the ball more likely to 
knock the block over? (a) It is 
more likely in trial A. (b) It is more likely in trial B.  
(c) It makes no difference. (d) It could be either case, 
depending on other factors.

	17.	 A car of mass m traveling at speed v crashes into the 
rear of a truck of mass 2m that is at rest and in neutral 
at an intersection. If the collision is perfectly inelastic, 

L

m

u

Figure OQ9.16

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 An airbag in an automobile inflates when a collision 
occurs, which protects the passenger from serious 
injury (see the photo on page 254). Why does the air-
bag soften the blow? Discuss the physics involved in 
this dramatic photograph.

	 2.	 In golf, novice players are often advised to be sure to 
“follow through” with their swing. Why does this advice 
make the ball travel a longer distance? If a shot is taken 
near the green, very little follow-through is required. 
Why?

	 3.	 An open box slides across a frictionless, icy surface of 
a frozen lake. What happens to the speed of the box as 
water from a rain shower falls vertically downward into 
the box? Explain.

	 4.	 While in motion, a pitched baseball carries kinetic 
energy and momentum. (a) Can we say that it carries a 
force that it can exert on any object it strikes? (b) Can  
the baseball deliver more kinetic energy to the bat 
and batter than the ball carries initially? (c) Can the 
baseball deliver to the bat and batter more momentum 
than the ball carries initially? Explain each of your 
answers.

	 5.	 You are standing perfectly still and then take a step for-
ward. Before the step, your momentum was zero, but 
afterward you have some momentum. Is the principle 
of conservation of momentum violated in this case? 
Explain your answer.

	 6.	 A sharpshooter fires a rifle while standing with the 
butt of the gun against her shoulder. If the forward 
momentum of a bullet is the same as the backward 
momentum of the gun, why isn’t it as dangerous to be 
hit by the gun as by the bullet?

	 7.	 Two students hold a large bed sheet vertically between 
them. A third student, who happens to be the star 
pitcher on the school baseball team, throws a raw egg 
at the center of the sheet. Explain why the egg does 
not break when it hits the sheet, regardless of its initial 
speed.

	 8.	 A juggler juggles three balls in a continuous cycle. Any 
one ball is in contact with one of his hands for one 
fifth of the time. (a) Describe the motion of the center 
of mass of the three balls. (b) What average force does 
the juggler exert on one ball while he is touching it?

	 9.	 (a) Does the center of mass of a rocket in free space 
accelerate? Explain. (b) Can the speed of a rocket 
exceed the exhaust speed of the fuel? Explain.

	10.	 On the subject of the following positions, state your 
own view and argue to support it. (a) The best theory 
of motion is that force causes acceleration. (b) The true 
measure of a force’s effectiveness is the work it does, and 
the best theory of motion is that work done on an object 
changes its energy. (c) The true measure of a force’s 
effect is impulse, and the best theory of motion is that 
impulse imparted to an object changes its momentum.

	11.	 Does a larger net force exerted on an object always pro-
duce a larger change in the momentum of the object 
compared with a smaller net force? Explain.

	12.	Does a larger net force always produce a larger change 
in kinetic energy than a smaller net force? Explain.

	13.	A bomb, initially at rest, explodes into several pieces. 
(a)  Is linear momentum of the system (the bomb 
before the explosion, the pieces after the explosion) 
conserved? Explain. (b) Is kinetic energy of the system 
conserved? Explain.
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energy of the boy–girl system? (c) Is the momentum 
of the boy–girl system conserved in the pushing-apart 
process? If so, explain how that is possible consider-
ing (d) there are large forces acting and (e) there is no 
motion beforehand and plenty of motion afterward.

	 9.	 In research in cardiology and exercise physiology, it is 
often important to know the mass of blood pumped by 
a person’s heart in one stroke. This information can be 
obtained by means of a ballistocardiograph. The instru-
ment works as follows. The subject lies on a horizontal 
pallet floating on a film of air. Friction on the pallet is 
negligible. Initially, the momentum of the system is zero. 
When the heart beats, it expels a mass m of blood into 
the aorta with speed v, and the body and platform move 
in the opposite direction with speed V. The blood veloc-
ity can be determined independently (e.g., by observ-
ing the Doppler shift of ultrasound). Assume that it is  
50.0 cm/s in one typical trial. The mass of the subject 
plus the pallet is 54.0 kg. The pallet moves 6.00 3 10–5 m  
in 0.160 s after one heartbeat. Calculate the mass of 
blood that leaves the heart. Assume that the mass of 
blood is negligible compared with the total mass of the 
person. (This simplified example illustrates the prin-
ciple of ballistocardiography, but in practice a more 
sophisticated model of heart function is used.)

	10.	When you jump straight up as high as you can, what is 
the order of magnitude of the maximum recoil speed 
that you give to the Earth? Model the Earth as a per-
fectly solid object. In your solution, state the physical 
quantities you take as data and the values you measure 
or estimate for them.

	11.	 Two blocks of masses m and 
3m are placed on a friction-
less, horizontal surface. A 
light spring is attached to the 
more massive block, and the 
blocks are pushed together 
with the spring between 
them (Fig. P9.11). A cord 
initially holding the blocks 
together is burned; after that 
happens, the block of mass 
3m moves to the right with a 
speed of 2.00 m/s. (a) What 
is the velocity of the block of 
mass m? (b) Find the system’s original elastic potential 
energy, taking m 5 0.350 kg. (c) Is the original energy 

BIO

Before

m 3m

a

After

2.00 m/s

m 3m

vS

b

Figure P9.11

Q/C
W

Section 9.1 Linear Momentum

	 1.	 A particle of mass m moves with momentum of magni-
tude p. (a) Show that the kinetic energy of the particle 
is K 5 p2/2m. (b) Express the magnitude of the parti-
cle’s momentum in terms of its kinetic energy and mass.

	 2.	 An object has a kinetic energy of 275 J and a momen-
tum of magnitude 25.0 kg ? m/s. Find the speed and 
mass of the object.

	 3.	 At one instant, a 17.5-kg sled is moving over a horizontal 
surface of snow at 3.50 m/s. After 8.75 s has elapsed, the 
sled stops. Use a momentum approach to find the aver-
age friction force acting on the sled while it was moving.

	 4.	 A 3.00-kg particle has a velocity of 13.00 î 2 4.00 ĵ 2  m/s. 
(a) Find its x and y components of momentum. (b) Find 
the magnitude and direction of its momentum.

	 5.	 A baseball approaches home plate at a speed of 45.0 m/s,  
moving horizontally just before being hit by a bat. The 
batter hits a pop-up such that after hitting the bat, the 
baseball is moving at 55.0 m/s straight up. The ball has 
a mass of 145 g and is in contact with the bat for 2.00 ms.  
What is the average vector force the ball exerts on the 
bat during their interaction?

Section 9.2 Analysis Model: Isolated System (Momentum)

	 6.	 A 45.0-kg girl is standing on a 150-kg plank. Both are 
originally at rest on a frozen lake that constitutes a fric-
tionless, flat surface. The girl begins to walk along the 
plank at a constant velocity of 1.50 î m/s relative to the 
plank. (a) What is the velocity of the plank relative to 
the ice surface? (b) What is the girl’s velocity relative to 
the ice surface?

	 7.	 A girl of mass mg is standing on a plank of mass mp. Both  
are originally at rest on a frozen lake that constitutes a 
frictionless, flat surface. The girl begins to walk along 
the plank at a constant velocity vgp to the right relative to  
the plank. (The subscript gp denotes the girl relative to 
plank.) (a) What is the velocity vpi of the plank relative 
to the surface of the ice? (b) What is the girl’s velocity 
vgi relative to the ice surface?

	 8.	 A 65.0-kg boy and his 40.0-kg sister, both wearing roller 
blades, face each other at rest. The girl pushes the boy 
hard, sending him backward with velocity 2.90 m/s  
toward the west. Ignore friction. (a) Describe the sub-
sequent motion of the girl. (b) How much potential 
energy in the girl’s body is converted into mechanical 

S

M

S

Q/C

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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284	 Chapter 9  Linear Momentum and Collisions

(c) what is the acceleration of the car? Express the accel-
eration as a multiple of the acceleration due to gravity.

	18.	A tennis player receives a shot with the ball (0.060 0 kg)  
traveling horizontally at 20.0 m/s and returns the shot 
with the ball traveling horizontally at 40.0 m/s in the 
opposite direction. (a) What is the impulse delivered 
to the ball by the tennis racket? (b) Some work is done 
on the system of the ball and some energy appears in 
the ball as an increase in internal energy during the 
collision between the ball and the racket. What is the 
sum W 2 DE int for the ball?

	19.	The magnitude of the net 
force exerted in the x direc-
tion on a 2.50-kg particle 
varies in time as shown in 
Figure P9.19. Find (a) the 
impulse of the force over 
the 5.00-s time interval, 
(b) the final velocity the 
particle attains if it is origi-
nally at rest, (c) its final 
velocity if its original veloc-
ity is 22.00 î m/s, and (d) the average force exerted on 
the particle for the time interval between 0 and 5.00 s.

	20.	Review. A force platform is a tool used to analyze the per-
formance of athletes by measuring the vertical force 
the athlete exerts on the ground as a function of time. 
Starting from rest, a 65.0-kg athlete jumps down onto 
the platform from a height of 0.600 m. While she is in 
contact with the platform during the time interval 0 , 
t , 0.800 s, the force she exerts on it is described by the 
function

F 5 9 200t 2 11 500t2

		  where F is in newtons and t is in seconds. (a) What im-
pulse did the athlete receive from the platform? (b) With  
what speed did she reach the platform? (c) With what 
speed did she leave it? (d) To what height did she jump 
upon leaving the platform?

	21.	 Water falls without splashing at a rate of 0.250 L/s from 
a height of 2.60 m into a 0.750-kg bucket on a scale. If 
the bucket is originally empty, what does the scale read 
in newtons 3.00 s after water starts to accumulate in it?

Section 9.4 Collisions in One Dimension

	22.	A 1 200-kg car traveling initially at vCi 5 25.0 m/s in an 
easterly direction crashes into the back of a 9 000-kg 
truck moving in the same direction at vTi 5 20.0 m/s 
(Fig. P9.22). The velocity of the car immediately after 
the collision is vCf 5 18.0 m/s to the east. (a) What is 
the velocity of the truck immediately after the colli-
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in the spring or in the cord? (d) Explain your answer 
to part (c). (e) Is the momentum of the system con-
served in the bursting-apart process? Explain how that 
is possible considering (f) there are large forces acting 
and (g) there is no motion beforehand and plenty of 
motion afterward?

Section 9.3 Analysis Model: Nonisolated System 
(Momentum)

	12.	A man claims that he can hold onto a 12.0-kg child in a 
head-on collision as long as he has his seat belt on. 
Consider this man in a collision in which he is in one 
of two identical cars each traveling toward the other at 
60.0 mi/h relative to the ground. The car in which he 
rides is brought to rest in 0.10 s. (a) Find the magni-
tude of the average force needed to hold onto the 
child. (b) Based on your result to part (a), is the man’s 
claim valid? (c) What does the answer to this problem 
say about laws requiring the use of proper safety 
devices such as seat belts and special toddler seats?

	13.	 An estimated force–
time curve for a baseball 
struck by a bat is shown 
in Figure P9.13. From 
this curve, determine 
(a) the magnitude of the 
impulse delivered to the 
ball and (b) the average 
force exerted on the ball.

	14.	Review. After a 0.300-kg rubber ball is dropped from 
a height of 1.75 m, it bounces off a concrete floor and 
rebounds to a height of 1.50 m. (a) Determine the 
magnitude and direction of the impulse delivered to 
the ball by the floor. (b) Estimate the time the ball is 
in contact with the floor and use this estimate to calcu-
late the average force the floor exerts on the ball.

	15.	A glider of mass m is free to slide along a horizontal 
air track. It is pushed against a launcher at one end 
of the track. Model the launcher as a light spring of 
force constant k compressed by a distance x. The glider 
is released from rest. (a) Show that the glider attains a 
speed of v 5 x(k/m)1/2. (b) Show that the magnitude 
of the impulse imparted to the glider is given by the 
expression I 5 x(km)1/2. (c) Is more work done on a cart 
with a large or a small mass?

	16.	In a slow-pitch softball game, a 0.200-kg softball crosses 
the plate at 15.0 m/s at an angle of 45.0° below the hor-
izontal. The batter hits the ball toward center field, giv-
ing it a velocity of 40.0 m/s at 30.0° above the horizontal.  
(a) Determine the impulse delivered to the ball. (b) If  
the force on the ball increases linearly for 4.00 ms, 
holds constant for 20.0 ms, and then decreases linearly 
to zero in another 4.00 ms, what is the maximum force 
on the ball? 

	17.	 The front 1.20 m of a 1 400-kg car is designed as a 
“crumple zone” that collapses to absorb the shock of a 
collision. If a car traveling 25.0 m/s stops uniformly in 
1.20 m, (a) how long does the collision last, (b) what 
is the magnitude of the average force on the car, and  
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	30.	As shown in Figure P9.30, a 
bullet of mass m and speed v 
passes completely through a 
pendulum bob of mass M. The 
bullet emerges with a speed 
of v/2. The pendulum bob is 
suspended by a stiff rod (not a 
string) of length , and negli-
gible mass. What is the mini-
mum value of v such that the pendulum bob will barely 
swing through a complete vertical circle?

	31.	 A 12.0-g wad of sticky clay is hurled horizontally at a 
100-g wooden block initially at rest on a horizontal sur-
face. The clay sticks to the block. After impact, the block 
slides 7.50 m before coming to rest. If the coefficient of 
friction between the block and the surface is 0.650, what 
was the speed of the clay immediately before impact?

	32.	A wad of sticky clay of mass m is hurled horizontally at a 
wooden block of mass M initially at rest on a horizontal 
surface. The clay sticks to the block. After impact, the 
block slides a distance d before coming to rest. If the 
coefficient of friction between the block and the sur-
face is m, what was the speed of the clay immediately 
before impact?

	33.	Two blocks are free to slide along the frictionless, 
wooden track shown in Figure P9.33. The block of 
mass m1 5 5.00 kg is released from the position shown, 
at height h 5 5.00 m above the flat part of the track. 
Protruding from its front end is the north pole of a 
strong magnet, which repels the north pole of an iden-
tical magnet embedded in the back end of the block 
of mass m2 5 10.0 kg, initially at rest. The two blocks 
never touch. Calculate the maximum height to which 
m1 rises after the elastic collision.

Figure P9.33

m1

m2

h

	34.	(a) Three carts of masses m1 5 4.00 kg, m2 5 10.0 kg, 
and m3 5 3.00 kg move on a frictionless, horizontal 
track with speeds of v1 5 5.00 m/s to the right, v2 5 
3.00 m/s to the right, and v3 5 4.00 m/s to the left as 
shown in Figure P9.34. Velcro couplers make the carts 
stick together after colliding. Find the final velocity of 
the train of three carts. (b) What If? Does your answer 
in part (a) require that all the carts collide and stick 
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M
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sion? (b) What is the change in mechanical energy of 
the car–truck system in the collision? (c) Account for 
this change in mechanical energy.

	23.	A 10.0-g bullet is fired into a stationary block of wood 
having mass m 5 5.00 kg. The bullet imbeds into the 
block. The speed of the bullet-plus-wood combination 
immediately after the collision is 0.600 m/s. What was 
the original speed of the bullet?

	24.	A car of mass m moving at a speed v1 collides and cou-
ples with the back of a truck of mass 2m moving ini-
tially in the same direction as the car at a lower speed 
v2. (a) What is the speed vf of the two vehicles imme-
diately after the collision? (b) What is the change in 
kinetic energy of the car–truck system in the collision?

	25.	A railroad car of mass 2.50 3 104 kg is moving with a 
speed of 4.00 m/s. It collides and couples with three 
other coupled railroad cars, each of the same mass as 
the single car and moving in the same direction with 
an initial speed of 2.00 m/s. (a) What is the speed 
of the four cars after the collision? (b) How much 
mechanical energy is lost in the collision?

	26.	Four railroad cars, each of mass 2.50 3 104 kg, are 
coupled together and coasting along horizontal tracks 
at speed vi toward the south. A very strong but fool-
ish movie actor, riding on the second car, uncouples 
the front car and gives it a big push, increasing its 
speed to 4.00 m/s southward. The remaining three 
cars continue moving south, now at 2.00 m/s. (a) Find 
the initial speed of the four cars. (b) By how much 
did the potential energy within the body of the actor 
change? (c) State the relationship between the process 
described here and the process in Problem 25.

	27.	 A neutron in a nuclear reactor makes an elastic, head-
on collision with the nucleus of a carbon atom initially 
at rest. (a) What fraction of the neutron’s kinetic energy 
is transferred to the carbon nucleus? (b) The initial 
kinetic energy of the neutron is 1.60 3 10213 J. Find its 
final kinetic energy and the kinetic energy of the car-
bon nucleus after the collision. (The mass of the carbon 
nucleus is nearly 12.0 times the mass of the neutron.)

	28.	A 7.00-g bullet, when fired from a gun into a 1.00-kg 
block of wood held in a vise, penetrates the block to a 
depth of 8.00 cm. This block of wood is next placed on 
a frictionless horizontal surface, and a second 7.00-g 
bullet is fired from the gun into the block. To what 
depth will the bullet penetrate the block in this case?

	29.	A tennis ball of mass 57.0 g is held 
just above a basketball of mass 590 g. 
With their centers vertically aligned, 
both balls are released from rest at 
the same time, to fall through a dis-
tance of 1.20 m, as shown in Figure 
P9.29. (a)  Find the magnitude of the 
downward velocity with which the 
basketball reaches the ground. (b) Assume that an elas-
tic collision with the ground instantaneously reverses 
the velocity of the basketball while the tennis ball is still 
moving down. Next, the two balls meet in an elastic col-
lision. To what height does the tennis ball rebound?
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286	 Chapter 9  Linear Momentum and Collisions

constitutes a perfectly inelastic collision. (b) Calculate 
the velocity of the players immediately after the tackle. 
(c) Determine the mechanical energy that disappears as 
a result of the collision. Account for the missing energy.

	43.	An unstable atomic nucleus of mass 17.0 3 10227 kg ini-
tially at rest disintegrates into three particles. One of 
the particles, of mass 5.00 3 10227 kg, moves in the y 
direction with a speed of 6.00 3 106 m/s. Another par-
ticle, of mass 8.40 3 10227 kg, moves in the x direction 
with a speed of 4.00 3 106 m/s. Find (a) the velocity of 
the third particle and (b) the total kinetic energy 
increase in the process.

	44.	The mass of the blue puck in 
Figure P9.44 is 20.0% greater 
than the mass of the green 
puck. Before colliding, the 
pucks approach each other 
with momenta of equal magni-
tudes and opposite directions, 
and the green puck has an 
initial speed of 10.0 m/s. Find 
the speeds the pucks have after the collision if half the 
kinetic energy of the system becomes internal energy 
during the collision.

Section 9.6 The Center of Mass

	45.	Four objects are situated along the y axis as follows: a  
2.00-kg object is at 13.00  m, a 3.00-kg object is at 
12.50 m, a 2.50-kg object is at the origin, and a 4.00-kg 
object is at 20.500 m. Where is the center of mass of 
these objects?

	46.	The mass of the Earth is 5.97 3 1024 kg, and the mass 
of the Moon is 7.35 3 1022 kg. The distance of separa-
tion, measured between their centers, is 3.84 3 108 m. 
Locate the center of mass of the Earth–Moon system as 
measured from the center of the Earth.

	47.	 Explorers in the jungle find an ancient monument in 
the shape of a large isosceles triangle as shown in Fig-
ure P9.47. The monument is made from tens of thou-
sands of small stone blocks of density 3 800 kg/m3. The 
monument is 15.7 m high and 64.8 m wide at its base 
and is everywhere 3.60 m thick from front to back. 
Before the monument was built many years ago, all the 
stone blocks lay on the ground. How much work did 
laborers do on the blocks to put them in position while 
building the entire monument? Note: The gravitational 
potential energy of an object–Earth system is given by 
Ug 5 MgyCM, where M is the total mass of the object 
and yCM is the elevation of its center of mass above the 
chosen reference level.
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together at the same moment? What if they collide in a 
different order?

Section 9.5 Collisions in Two Dimensions

	35.	A 0.300-kg puck, initially at rest on a horizontal, fric-
tionless surface, is struck by a 0.200-kg puck moving 
initially along the x axis with a speed of 2.00 m/s. After 
the collision, the 0.200-kg puck has a speed of 1.00 m/s 
at an angle of u 5 53.0° to the positive x axis (see Fig-
ure 9.11). (a) Determine the velocity of the 0.300-kg 
puck after the collision. (b) Find the fraction of kinetic 
energy transferred away or transformed to other forms 
of energy in the collision.

	36.	Two automobiles of equal mass approach an inter-
section. One vehicle is traveling with speed 13.0 m/s 
toward the east, and the other is traveling north with 
speed v2i. Neither driver sees the other. The vehicles 
collide in the intersection and stick together, leaving 
parallel skid marks at an angle of 55.08 north of east. 
The speed limit for both roads is 35 mi/h, and the 
driver of the northward-moving vehicle claims he was 
within the speed limit when the collision occurred. Is 
he telling the truth? Explain your reasoning.

	37.	 An object of mass 3.00 kg, moving with an initial veloc-
ity of 5.00 î m/s, collides with and sticks to an object 
of mass 2.00 kg with an initial velocity of 23.00 ĵ m/s. 
Find the final velocity of the composite object.

	38.	Two shuffleboard disks of equal mass, one orange and 
the other yellow, are involved in an elastic, glancing col-
lision. The yellow disk is initially at rest and is struck by 
the orange disk moving with a speed of 5.00 m/s. After 
the collision, the orange disk moves along a direction 
that makes an angle of 37.08 with its initial direction 
of motion. The velocities of the two disks are perpen-
dicular after the collision. Determine the final speed of 
each disk.

	39.	Two shuffleboard disks of equal mass, one orange and 
the other yellow, are involved in an elastic, glancing 
collision. The yellow disk is initially at rest and is struck 
by the orange disk moving with a speed vi. After the 
collision, the orange disk moves along a direction that 
makes an angle u with its initial direction of motion. 
The velocities of the two disks are perpendicular after 
the collision. Determine the final speed of each disk.

	40.	A proton, moving with a velocity of vi î, collides elas-
tically with another proton that is initially at rest. 
Assuming that the two protons have equal speeds after 
the collision, find (a) the speed of each proton after 
the collision in terms of vi and (b) the direction of the 
velocity vectors after the collision.

	41.	A billiard ball moving at 5.00 m/s strikes a stationary 
ball of the same mass. After the collision, the first ball 
moves at 4.33 m/s at an angle of 30.08 with respect to 
the original line of motion. Assuming an elastic col-
lision (and ignoring friction and rotational motion), 
find the struck ball’s velocity after the collision.

	42.	A 90.0-kg fullback running east with a speed of 5.00 m/s 
is tackled by a 95.0-kg opponent running north with a 
speed of 3.00 m/s. (a) Explain why the successful tackle 

W

W

S

S

M

Q/C
W

3.60 m
64.8 m

15.7 m

Figure P9.47

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 Problems	 287

constitutes a perfectly inelastic collision. (b) Calculate 
the velocity of the players immediately after the tackle. 
(c) Determine the mechanical energy that disappears as 
a result of the collision. Account for the missing energy.

	43.	An unstable atomic nucleus of mass 17.0 3 10227 kg ini-
tially at rest disintegrates into three particles. One of 
the particles, of mass 5.00 3 10227 kg, moves in the y 
direction with a speed of 6.00 3 106 m/s. Another par-
ticle, of mass 8.40 3 10227 kg, moves in the x direction 
with a speed of 4.00 3 106 m/s. Find (a) the velocity of 
the third particle and (b) the total kinetic energy 
increase in the process.

	44.	The mass of the blue puck in 
Figure P9.44 is 20.0% greater 
than the mass of the green 
puck. Before colliding, the 
pucks approach each other 
with momenta of equal magni-
tudes and opposite directions, 
and the green puck has an 
initial speed of 10.0 m/s. Find 
the speeds the pucks have after the collision if half the 
kinetic energy of the system becomes internal energy 
during the collision.

Section 9.6 The Center of Mass

	45.	Four objects are situated along the y axis as follows: a  
2.00-kg object is at 13.00  m, a 3.00-kg object is at 
12.50 m, a 2.50-kg object is at the origin, and a 4.00-kg 
object is at 20.500 m. Where is the center of mass of 
these objects?

	46.	The mass of the Earth is 5.97 3 1024 kg, and the mass 
of the Moon is 7.35 3 1022 kg. The distance of separa-
tion, measured between their centers, is 3.84 3 108 m. 
Locate the center of mass of the Earth–Moon system as 
measured from the center of the Earth.

	47.	 Explorers in the jungle find an ancient monument in 
the shape of a large isosceles triangle as shown in Fig-
ure P9.47. The monument is made from tens of thou-
sands of small stone blocks of density 3 800 kg/m3. The 
monument is 15.7 m high and 64.8 m wide at its base 
and is everywhere 3.60 m thick from front to back. 
Before the monument was built many years ago, all the 
stone blocks lay on the ground. How much work did 
laborers do on the blocks to put them in position while 
building the entire monument? Note: The gravitational 
potential energy of an object–Earth system is given by 
Ug 5 MgyCM, where M is the total mass of the object 
and yCM is the elevation of its center of mass above the 
chosen reference level.
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after the collision. (b) Find the velocity of their center 
of mass before and after the collision.

Section 9.8 Deformable Systems

	56.	For a technology project, a stu-
dent has built a vehicle, of total 
mass 6.00 kg, that moves itself. 
As shown in Figure  P9.56, it 
runs on four light wheels. A reel 
is attached to one of the axles, 
and a cord originally wound on 
the reel goes up over a pulley 
attached to the vehicle to sup-
port an elevated load. After the 
vehicle is released from rest, 
the load descends very slowly, 
unwinding the cord to turn 
the axle and make the vehicle 
move forward (to the left in 
Fig. P9.56). Friction is negligible in the pulley and axle 
bearings. The wheels do not slip on the floor. The reel 
has been constructed with a conical shape so that the 
load descends at a constant low speed while the vehi-
cle moves horizontally across the floor with constant 
acceleration, reaching a final velocity of 3.00 î m/s.  
(a) Does the floor impart impulse to the vehicle? If so, 
how much? (b) Does the floor do work on the vehicle? 
If so, how much? (c) Does it make sense to say that the 
final momentum of the vehicle came from the floor? 
If not, where did it come from? (d) Does it make sense 
to say that the final kinetic energy of the vehicle came 
from the floor? If not, where did it come from? (e) Can 
we say that one particular force causes the forward 
acceleration of the vehicle? What does cause it?

	57.	 A particle is suspended from a post on top of a cart by 
a light string of length L as shown in Figure P9.57a. 
The cart and particle are initially moving to the right 
at constant speed vi, with the string vertical. The cart 
suddenly comes to rest when it runs into and sticks to 
a bumper as shown in Figure P9.57b. The suspended 
particle swings through an angle u. (a) Show that 
the original speed of the cart can be computed from 
vi 5 !2gL 11 2 cos u 2 . (b) If the bumper is still exert-
ing a horizontal force on the cart when the hanging 
particle is at its maximum angle forward from the verti-
cal, at what moment does the bumper stop exerting a 
horizontal force?

u

vi
S

a b

L

Figure P9.57

	58.	A 60.0-kg person bends his knees and then jumps 
straight up. After his feet leave the floor, his motion is 

Figure P9.56
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	48.	A uniform piece of sheet 
metal is shaped as shown in 
Figure P9.48. Compute the 
x and y coordinates of the 
center of mass of the piece.

	49.	A rod of length 30.0 cm has 
linear density (mass per 
length) given by

l 5 50.0 1 20.0x

		  where x is the distance from one end, measured in 
meters, and l is in grams/meter. (a) What is the mass 
of the rod? (b) How far from the x 5 0 end is its center 
of mass?

	50.	A water molecule con- 
sists of an oxygen 
atom with two hydro-
gen atoms bound to it 
(Fig. P9.50). The angle 
between the two bonds 
is 106°. If the bonds are 
0.100 nm long, where 
is the center of mass of 
the molecule?

Section 9.7 Systems of Many Particles
	51.	 A 2.00-kg particle has a velocity 12.00 î 2 3.00 ĵ 2  m/s, 

and a 3.00-kg particle has a velocity 11.00 î 1 6.00 ĵ 2  m/s.  
Find (a) the velocity of the center of mass and (b) the 
total momentum of the system.

	52.	Consider a system of two particles in the xy plane: m1 5  
2.00 kg is at the location rS1 5 11.00î 1 2.00ĵ 2  m and 
has a velocity of 13.00î 1 0.500ĵ 2  m/s; m 2 5 3.00 kg  
is at rS2 5 124.00î 2 3.00ĵ 2  m and has velocity 13.00î 2
2.00ĵ 2  m/s. (a) Plot these particles on a grid or graph 
paper. Draw their position vectors and show their 
velocities. (b) Find the position of the center of mass 
of the system and mark it on the grid. (c) Determine 
the velocity of the center of mass and also show it on 
the diagram. (d) What is the total linear momentum 
of the system? 

	53.	Romeo (77.0 kg) entertains Juliet (55.0 kg) by play-
ing his guitar from the rear of their boat at rest in still 
water, 2.70 m away from Juliet, who is in the front of 
the boat. After the serenade, Juliet carefully moves to 
the rear of the boat (away from shore) to plant a kiss 
on Romeo’s cheek. How far does the 80.0-kg boat move 
toward the shore it is facing?

	54.	The vector position of a 3.50-g particle moving in the xy  
plane varies in time according to rS1 5 13 î 1 3 ĵ 2 t 1
2 ĵt 2, where t is in seconds and rS is in centimeters. At 
the same time, the vector position of a 5.50 g particle 
varies as rS2 5 3 î 2 2 ît 2 2 6 ĵt. At t 5 2.50 s, determine 
(a) the vector position of the center of mass, (b) the lin-
ear momentum of the system, (c) the velocity of the cen-
ter of mass, (d) the acceleration of the center of mass, 
and (e) the net force exerted on the two-particle system.

	55.	A ball of mass 0.200 kg with a velocity of 1.50 î m/s meets 
a ball of mass 0.300 kg with a velocity of 20.400 î m/s  
in a head-on, elastic collision. (a) Find their velocities 
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pad on the Earth, taking the vehicle’s initial mass as 
3.00 3 106 kg.

	63.	A rocket for use in deep space is to be capable of 
boosting a total load (payload plus rocket frame and 
engine) of 3.00 metric tons to a speed of 10 000 m/s. 
(a) It has an engine and fuel designed to produce an 
exhaust speed of 2 000 m/s. How much fuel plus oxi-
dizer is required? (b) If a different fuel and engine 
design could give an exhaust speed of 5 000 m/s, what 
amount of fuel and oxidizer would be required for the 
same task? (c) Noting that the exhaust speed in part 
(b) is 2.50 times higher than that in part (a), explain 
why the required fuel mass is not simply smaller by a 
factor of 2.50.

	64.	A rocket has total mass Mi 5 360 kg, including Mf 5  
330  kg of fuel and oxidizer. In interstellar space, 
it starts from rest at the position x 5 0, turns on its 
engine at time t 5 0, and puts out exhaust with rel-
ative speed ve 5 1 500 m/s at the constant rate k 5  
2.50 kg/s. The fuel will last for a burn time of Tb 5 
Mf /k 5 330 kg/(2.5 kg/s) 5 132 s. (a) Show that dur-
ing the burn the velocity of the rocket as a function of 
time is given by

v 1 t 2 5 2ve lna1 2
kt
Mi

b

		  (b) Make a graph of the velocity of the rocket as a func-
tion of time for times running from 0 to 132 s. (c) Show 
that the acceleration of the rocket is

a 1 t 2 5
kve

Mi 2 kt

		  (d) Graph the acceleration as a function of time.  
(e) Show that the position of the rocket is

x 1 t 2 5 ve a
Mi

k
2 tb ln a1 2

kt
Mi

b 1 vet

		  (f) Graph the position during the burn as a function of 
time.

Additional Problems
	65.	A ball of mass m is thrown straight up into the air with 

an initial speed vi. Find the momentum of the ball (a) at  
its maximum height and (b) halfway to its maximum 
height.

	66.	An amateur skater of mass M is trapped in the middle 
of an ice rink and is unable to return to the side where 
there is no ice. Every motion she makes causes her to 
slip on the ice and remain in the same spot. She decides 
to try to return to safety by throwing her gloves of mass 
m in the direction opposite the safe side. (a) She throws 
the gloves as hard as she can, and they leave her hand 
with a  horizontal velocity vSgloves. Explain whether or 
not she moves. If she does move, calculate her velocity 
vSgirl relative to the Earth after she throws the gloves. 
(b) Discuss her motion from the point of view of the 
forces acting on her.

	67.	 A 3.00-kg steel ball strikes a wall with a speed of 10.0 m/s 
at an angle of u  5 60.08 with the surface. It bounces 
off with the same speed and angle (Fig. P9.67). If the 

Q/C

S

S
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M

unaffected by air resistance and his center of mass rises 
by a maximum of 15.0 cm. Model the floor as com-
pletely solid and motionless. (a) Does the floor impart 
impulse to the person? (b) Does the floor do work on 
the person? (c) With what momentum does the person 
leave the floor? (d) Does it make sense to say that this 
momentum came from the floor? Explain. (e) With 
what kinetic energy does the person leave the floor?  
(f) Does it make sense to say that this energy came 
from the floor? Explain.

	59.	Figure P9.59a shows an overhead view of the initial 
configuration of two pucks of mass m on frictionless 
ice. The pucks are tied together with a string of length 
, and negligible mass. At time t 5 0, a constant force of 
magnitude F begins to pull to the right on the center 
point of the string. At time t, the moving pucks strike 
each other and stick together. At this time, the force 
has moved through a distance d, and the pucks have 
attained a speed v (Fig. P9.59b). (a) What is v in terms 
of F, d, ,, and m? (b) How much of the energy trans-
ferred into the system by work done by the force has 
been transformed to internal energy?

,

m

m

v

d
F F

dCM

t � 0 t � t

a b

Figure P9.59

Section 9.9 Rocket Propulsion

	60.	A model rocket engine has an average thrust of 5.26 N. 
It has an initial mass of 25.5 g, which includes fuel mass 
of 12.7 g. The duration of its burn is 1.90 s. (a) What is 
the average exhaust speed of the engine? (b) This 
engine is placed in a rocket body of mass 53.5 g. What 
is the final velocity of the rocket if it were to be fired 
from rest in outer space by an astronaut on a space-
walk? Assume the fuel burns at a constant rate.

	61.	 A garden hose is held as 
shown in Figure P9.61. 
The hose is originally 
full of motionless water. 
What additional force 
is necessary to hold the 
nozzle stationary after 
the water flow is turned 
on if the discharge rate 
is 0.600 kg/s with a 
speed of 25.0 m/s?

	62.	Review. The first stage of a Saturn V space vehicle con-
sumed fuel and oxidizer at the rate of 1.50 3 104 kg/s 
with an exhaust speed of 2.60 3 103 m/s. (a) Calculate 
the thrust produced by this engine. (b) Find the accel-
eration the vehicle had just as it lifted off the launch 

S

Figure P9.61
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ball is in contact with 
the wall for 0.200 s,  
what is the average 
force exerted by the 
wall on the ball?

	68.	(a) Figure P9.68 shows 
three points in the 
operation of the bal-
listic pendulum dis-
cussed in Example 
9.6 (and shown in Fig. 
9.9b). The projectile approaches the pendulum in 
Figure P9.68a. Figure P9.68b shows the situation just 
after the projectile is captured in the pendulum. In 
Figure P9.68c, the pendulum arm has swung upward 
and come to rest at a height h above its initial posi-
tion. Prove that the ratio of the kinetic energy of the 
projectile–pendulum system immediately after the 
collision to the kinetic energy immediately before is  
m1/(m1 1 m2). (b) What is the ratio of the momentum 
of the system immediately after the collision to the 
momentum immediately before? (c) A student believes 
that such a large decrease in mechanical energy must 
be accompanied by at least a small decrease in momen-
tum. How would you convince this student of the truth?

b

vf 

a

m1 m2

vi h

c

Figure P9.68  Problems 68 and 86. (a) A metal ball 
moves toward the pendulum. (b) The ball is captured 
by the pendulum. (c) The ball–pendulum combination 
swings up through a height h before coming to rest.

	69.	Review. A 60.0-kg person running at an initial speed of 
4.00 m/s jumps onto a 120-kg cart initially at rest (Fig. 
P9.69). The person slides on the cart’s top surface and 
finally comes to rest relative to the cart. The coeffi-
cient of kinetic friction between the person and the 
cart is 0.400. Friction between the cart and ground can 
be ignored. (a) Find the final velocity of the person 
and cart relative to the ground. (b) Find the friction 
force acting on the person while he is sliding across the 
top surface of the cart. (c) How long does the friction 
force act on the person? (d) Find the change in 
momentum of the person and the change in momen-
tum of the cart. (e) Determine the displacement of the 
person relative to the ground while he is sliding on the 
cart. (f) Determine the displacement of the cart rela-
tive to the ground while the person is sliding. (g) Find 
the change in kinetic energy of the person. (h) Find 
the change in kinetic energy of the cart. (i) Explain 
why the answers to (g) and (h) differ. (What kind of 
collision is this one, and what accounts for the loss of 
mechanical energy?)

S
Q/C

45.0°

Figure P9.70

	70.	A cannon is rigidly 
attached to a car-
riage, which can 
move along horizon-
tal rails but is con-
nected to a post by a 
large spring, initially 
unstretched and with  
force constant k 5 
2.00 3 104 N/m, as 
shown in Figure 
P9.70. The cannon fires a 200-kg projectile at a velocity 
of 125 m/s directed 45.0° above the horizontal.  
(a) Assuming that the mass of the cannon and its car-
riage is 5 000 kg, find the recoil speed of the cannon. 
(b) Determine the maximum extension of the spring. 
(c) Find the maximum force the spring exerts on the 
carriage. (d) Consider the system consisting of the can-
non, carriage, and projectile. Is the momentum of this 
system conserved during the firing? Why or why not? 

	71.	 A 1.25-kg wooden 
block rests on a table 
over a large hole as in 
Figure P9.71. A 5.00-g 
bullet with an ini-
tial velocity vi is fired 
upward into the bot-
tom of the block and 
remains in the block 
after the collision. The 
block and bullet rise 
to a maximum height of 22.0 cm. (a) Describe how you 
would find the initial velocity of the bullet using ideas 
you have learned in this chapter. (b) Calculate the ini-
tial velocity of the bullet from the information provided.

	72.	A wooden block of mass M rests on a table over a large 
hole as in Figure 9.71. A bullet of mass m with an ini-
tial velocity of vi is fired upward into the bottom of 
the block and remains in the block after the collision. 
The block and bullet rise to a maximum height of h. 
(a) Describe how you would find the initial velocity of 
the bullet using ideas you have learned in this chap-
ter. (b) Find an expression for the initial velocity of the 
bullet.

	73.	Two particles with masses m and 3m are moving toward 
each other along the x axis with the same initial speeds 
vi. The particle with mass m is traveling to the left, and 
particle with mass 3m is traveling to the right. They 

M

vi
S

m

Figure P9.71   
Problems 71 and 72.
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Figure P9.67

60.0 kg 4.00 m/s

120 kg

Figure P9.69
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290	 Chapter 9  Linear Momentum and Collisions

meet on the level portion of the track, they undergo 
a head-on, elastic collision. Determine the maximum 
heights to which m1 and m2 rise on the curved portion 
of the track after the collision.

	78.	Review. A metal cannonball of mass m rests next to a 
tree at the very edge of a cliff 36.0 m above the surface 
of the ocean. In an effort to knock the cannonball off 
the cliff, some children tie one end of a rope around a 
stone of mass 80.0 kg and the other end to a tree limb 
just above the cannonball. They tighten the rope so 
that the stone just clears the ground and hangs next to 
the cannonball. The children manage to swing the 
stone back until it is held at rest 1.80 m above the 
ground. The children release the stone, which then 
swings down and makes a head-on, elastic collision 
with the cannonball, projecting it horizontally off the 
cliff. The cannonball lands in the ocean a horizontal 
distance R away from its initial position. (a) Find the 
horizontal component R of the cannonball’s displace-
ment as it depends on m. (b) What is the maximum 
possible value for R, and (c) to what value of m does it 
correspond? (d) For the stone–cannonball–Earth sys-
tem, is mechanical energy conserved throughout the 
process? Is this principle sufficient to solve the entire 
problem? Explain. (e) What if? Show that R does not 
depend on the value of the gravitational acceleration. 
Is this result remarkable? State how one might make 
sense of it.

	79.	A 0.400-kg blue bead 
slides on a frictionless, 
curved wire, starting 
from rest at point A in 
Figure P9.79, where h 5  
1.50 m. At point B, the 
blue bead collides elas-
tically with a 0.600-kg  
green bead at rest. 
Find the maximum height the green bead rises as it 
moves up the wire.

	80.	A small block of mass m1 5 0.500 kg is released from 
rest at the top of a frictionless, curve-shaped wedge of 
mass m2 5 3.00 kg, which sits on a frictionless, hori-
zontal surface as shown in Figure P9.80a. When the 
block leaves the wedge, its velocity is measured to 
be 4.00 m/s to the right as shown in Figure P9.80b. 
(a) What is the velocity of the wedge after the block 
reaches the horizontal surface? (b) What is the height 
h of the wedge?

Q/C

h

A

B

Figure P9.79

W

undergo a head-on elastic collision, and each rebounds 
along the same line as it approached. Find the final 
speeds of the particles.

	74.	Pursued by ferocious wolves, you are in a sleigh with no 
horses, gliding without friction across an ice-covered 
lake. You take an action described by the equations
1270 kg 2 17.50 m/s 2  î 5 115.0 kg 2 12v1f  î 2 1 1255 kg 2 1v2f  î 2

v1f 1 v2f 5 8.00 m/s

		  (a) Complete the statement of the problem, giving the 
data and identifying the unknowns. (b) Find the val-
ues of v1f and v2f . (c) Find the amount of energy that 
has been transformed from potential energy stored in 
your body to kinetic energy of the system.

	75.	Two gliders are set in motion on a horizontal air track. 
A spring of force constant k is attached to the back end 
of the second glider. As shown in Figure P9.75, the first 
glider, of mass m1, moves to the right with speed v1, and 
the second glider, of mass m2, moves more slowly to the 
right with speed v2. When m1 collides with the spring 
attached to m2, the spring compresses by a distance 
xmax, and the gliders then move apart again. In terms 
of v1, v2, m1, m2, and k, find (a) the speed v at maxi-
mum compression, (b) the maximum compression 
xmax, and (c) the velocity of each glider after m1 has lost 
contact with the spring.

k

m2m1

21vS vS

Figure P9.75

	76.	Why is the following situation impossible? An astronaut, 
together with the equipment he carries, has a mass 
of 150 kg. He is taking a space walk outside his space-
craft, which is drifting through space with a constant 
velocity. The astronaut accidentally pushes against the 
spacecraft and begins moving away at 20.0 m/s, relative 
to the spacecraft, without a tether. To return, he takes 
equipment off his space suit and throws it in the direc-
tion away from the spacecraft. Because of his bulky 
space suit, he can throw equipment at a maximum 
speed of 5.00 m/s relative to himself. After throwing 
enough equipment, he starts moving back to the space-
craft and is able to grab onto it and climb inside.

	77.	 Two blocks of masses m1 5 2.00 kg and m2 5 4.00 kg 
are released from rest at a height of h 5 5.00 m on a 
frictionless track as shown in Figure P9.77. When they 

S

hh

m1 m2

Figure P9.77

h m2m2

m1

vf
S

v2
S

a b

Figure P9.80
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	81.	 Review. A bullet of mass m 5 8.00 g is fired into a block 
of mass M 5 250 g that is initially at rest at the edge 
of a table of height h 5 1.00 m (Fig. P9.81). The bullet 
remains in the block, and after the impact the block 
lands d 5 2.00 m from the bottom of the table. Deter-
mine the initial speed of the bullet.

h

d

m
M

Figure P9.81  Problems 81 and 82.

	82.	Review. A bullet of mass m is fired into a block of mass 
M initially at rest at the edge of a frictionless table of 
height h (Fig. P9.81). The bullet remains in the block, 
and after impact the block lands a distance d from the 
bottom of the table. Determine the initial speed of the 
bullet.

	83.	A 0.500-kg sphere moving with a velocity given by 
12.00 î 2 3.00 ĵ 1 1.00k̂ 2  m/s strikes another sphere 
of mass 1.50 kg moving with an initial velocity of 
121.00 î 1 2.00 ĵ 2 3.00k̂ 2  m/s. (a) The velocity of 
the 0.500-kg sphere after the collision is 121.00 î 1  
3.00 ĵ 2 8.00k̂ 2  m/s. Find the final velocity of the 1.50-kg  
sphere and identify the kind of collision (elastic, 
inelastic, or perfectly inelastic). (b)  Now assume the 
velocity of the 0.500-kg sphere after the collision is 
(20.250 î 1 0.750 ĵ 2 2.00k̂) m/s. Find the final velocity  
of the 1.50-kg sphere and identify the kind of col-
lision. (c) What If? Take the velocity of the 0.500-kg  
sphere after the collision as 121.00 î 1 3.00 ĵ 1 a k̂ 2  m/s.  
Find the value of a and the velocity of the 1.50-kg 
sphere after an elastic collision.

	84.	A 75.0-kg firefighter slides down a pole while a constant 
friction force of 300 N retards her motion. A horizontal 
20.0-kg platform is supported by a spring at the bottom 
of the pole to cushion the fall. The firefighter starts 
from rest 4.00 m above the platform, and the spring 
constant is 4 000 N/m. Find (a) the firefighter’s speed 
just before she collides with the platform and (b) the 
maximum distance the spring is compressed. Assume 
the friction force acts during the entire motion.

	85.	George of the Jungle, with mass m, swings on a light 
vine hanging from a stationary tree branch. A second 
vine of equal length hangs from the same point, and a 
gorilla of larger mass M swings in the opposite direc-
tion on it. Both vines are horizontal when the primates 
start from rest at the same moment. George and the 
gorilla meet at the lowest point of their swings. Each is 
afraid that one vine will break, so they grab each other 
and hang on. They swing upward together, reaching a 
point where the vines make an angle of 35.08 with the 
vertical. Find the value of the ratio m/M.

	86.	Review. A student performs a ballistic pendulum 
experiment using an apparatus similar to that dis-
cussed in Example 9.6 and shown in Figure P9.68. She 
obtains the following average data: h 5 8.68 cm, projec-

M

S

Q/C

tile mass m1 5 68.8 g, and pendulum mass m2 5 263 g.  
(a) Determine the initial speed v1A of the projectile.  
(b) The second part of her experiment is to obtain v1A 
by firing the same projectile horizontally (with the pen-
dulum removed from the path) and measuring its final 
horizontal position x and distance of fall y (Fig. P9.86). 
What numerical value does she obtain for v1A based on 
her measured values of x 5 257 cm and y 5 85.3 cm?  
(c) What factors might account for the difference in 
this value compared with that obtained in part (a)?

y

x

v1A
S

Figure P9.86

	87.	 Review. A light spring of force constant 3.85 N/m is 
compressed by 8.00 cm and held between a 0.250-kg 
block on the left and a 0.500-kg block on the right. 
Both blocks are at rest on a horizontal surface. The 
blocks are released simultaneously so that the spring 
tends to push them apart. Find the maximum velocity 
each block attains if the coefficient of kinetic friction 
between each block and the surface is (a) 0, (b) 0.100, 
and (c) 0.462. Assume the coefficient of static friction 
is greater than the coefficient of kinetic friction in 
every case.

	88.	Consider as a system the Sun with the Earth in a circu-
lar orbit around it. Find the magnitude of the change 
in the velocity of the Sun relative to the center of mass 
of the system over a six-month period. Ignore the influ-
ence of other celestial objects. You may obtain the nec-
essary astronomical data from the endpapers of the 
book.

	89.	A 5.00-g bullet mov-
ing with an initial 
speed of vi 5 400 m/s 
is fired into and passes 
through a 1.00-kg 
block as shown in Fig-
ure P9.89. The block, 
initially at rest on a 
frictionless, horizontal 
surface, is connected 
to a spring with force 
constant 900 N/m. 
The block moves d 5 5.00 cm to the right after impact 
before being brought to rest by the spring. Find (a) the 
speed at which the bullet emerges from the block and 
(b) the amount of initial kinetic energy of the bullet 
that is converted into internal energy in the bullet–
block system during the collision.

	90.	Review. There are (one can say) three coequal theo-
ries of motion for a single particle: Newton’s second 
law, stating that the total force on the particle causes its 

d vf 

vi 

Figure P9.89

M
AMT

GP
Q/C

www.as
warp

hy
sic

s.w
ee

bly
.co

m



292	 Chapter 9  Linear Momentum and Collisions

acceleration; the work–kinetic energy theorem, stating 
that the total work on the particle causes its change in 
kinetic energy; and the impulse–momentum theorem, 
stating that the total impulse on the particle causes its 
change in momentum. In this problem, you compare 
predictions of the three theories in one particular 
case. A 3.00-kg object has velocity 7.00 ĵ m/s. Then, a 
constant net force 12.0 î N acts on the object for 5.00 s.  
(a) Calculate the object’s final velocity, using the 
impulse–momentum theorem. (b) Calculate its acceler-
ation from aS 5 1 vSf 2 vSi 2/Dt. (c) Calculate its accel-
eration from aS 5 g  F

S
/m . (d) Find the object’s vector 

displacement from D rS 5 vSit 1 1
2 aSt 2. (e) Find the work  

done on the object from W 5 F
S

? D rS. (f) Find the  
final kinetic energy from 12mvf

2 5 1
2mvSf ? vSf . (g) Find the 

final kinetic energy from 12mvi
2 1 W. (h) State the result 

of comparing the answers to parts (b) and (c), and the 
answers to parts (f) and (g).

	91.	 A 2.00-g particle moving at 8.00 m/s makes a perfectly 
elastic head-on collision with a resting 1.00-g object. 
(a) Find the speed of each particle after the collision. 
(b) Find the speed of each particle after the collision 
if the stationary particle has a mass of 10.0 g. (c) Find 
the final kinetic energy of the incident 2.00-g particle 
in the situations described in parts (a) and (b). In 
which case does the incident particle lose more kinetic 
energy?

Challenge Problems

	92.	In the 1968 Olympic games, University of Oregon 
jumper Dick Fosbury introduced a new technique of 
high jumping called the “Fosbury flop.” It contributed 
to raising the world record by about 30 cm and is cur-
rently used by nearly every world-class jumper. In this 
technique, the jumper goes over the bar face-up while 
arching her back as much as possible as shown in Figure 
P9.92a. This action places her center of mass outside 
her body, below her back. As her body goes over the 
bar, her center of mass passes below the bar. Because 
a given energy input implies a certain elevation for her 
center of mass, the action of arching her back means 
that her body is higher than if her back were straight. 
As a model, consider the jumper as a thin uniform rod 
of length L. When the rod is straight, its center of mass 
is at its center. Now bend the rod in a circular arc so 
that it subtends an angle of 90.08 at the center of the 
arc as shown in Figure P9.92b. In this configuration, 
how far outside the rod is the center of mass?

u

b

Figure P9.92
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	93.	Two particles with masses m and 3m are moving toward 
each other along the x axis with the same initial speeds 

M

vi. Particle m is traveling to the left, and particle 3m is 
traveling to the right. They undergo an elastic glanc-
ing collision such that particle m is moving in the nega-
tive y direction after the collision at a right angle from 
its initial direction. (a) Find the final speeds of the two 
particles in terms of vi. (b) What is the angle u at which 
the particle 3m is scattered?

	94.	Sand from a stationary hopper falls onto a moving 
conveyor belt at the rate of 5.00 kg/s as shown in 
Figure P9.94. The conveyor belt is supported by fric-
tionless rollers and moves at a constant speed of v 5  
0.750 m/s under the action of a constant horizontal 
external force  F

S

ext supplied by the motor that drives 
the belt. Find (a) the sand’s rate of change of momen-
tum in the horizontal direction, (b) the force of fric-
tion exerted by the belt on the sand, (c) the external 
force  F

S

ext , (d) the work done by  F
S

ext in 1 s, and (e) the 
kinetic energy acquired by the falling sand each 
second due to the change in its horizontal motion.  
(f) Why are the answers to parts (d) and (e) different?

v
Fext
S

Figure P9.94

	95.	On a horizontal air track, a glider of mass m carries 
a G-shaped post. The post supports a small dense 
sphere, also of mass m, hanging just above the top 
of the glider on a cord of length L. The glider and 
sphere are initially at rest with the cord vertical. (Fig-
ure P9.57 shows a cart and a sphere similarly con-
nected.) A constant horizontal force of magnitude F 
is applied to the glider, moving it through displace-
ment x1; then the force is removed. During the time 
interval when the force is applied, the sphere moves 
through a displacement with horizontal component 
x2. (a) Find the horizontal component of the veloc-
ity of the center of mass of the glider–sphere system 
when the force is removed. (b) After the force is 
removed, the glider continues to move on the track 
and the sphere swings back and forth, both without 
friction. Find an expression for the largest angle the 
cord makes with the vertical.

	96.	Review. A chain of length L 
and total mass M is released 
from rest with its lower end just 
touching the top of a table as 
shown in Figure P9.96a. Find 
the force exerted by the table 
on the chain after the chain 
has fallen through a distance 
x as shown in Figure P9.96b. 
(Assume each link comes to 
rest the instant it reaches the 
table.)
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10.1	 Angular Position, 
Velocity, and 
Acceleration

10.2	 Analysis Model: Rigid 
Object Under Constant  
Angular Acceleration

10.3	 Angular and Translational 
Quantities

10.4	 Torque

10.5	 Analysis Model:  
Rigid Object Under  
a Net Torque

10.6	 Calculation of Moments  
of Inertia

10.7	 Rotational Kinetic Energy

10.8	 Energy Considerations in 
Rotational Motion

10.9	 Rolling Motion of  
a Rigid Object

Rotation of a Rigid Object 
About a Fixed Axis

The Malaysian pastime of gasing 
involves the spinning of tops 
that can have masses up to 5 kg. 
Professional spinners can spin their 
tops so that they might rotate for 
more than an hour before stopping. 
We will study the rotational motion 
of objects such as these tops in this 
chapter. (Courtesy Tourism Malaysia)

c h a p t e r 

10

When an extended object such as a wheel rotates about its axis, the motion cannot be 
analyzed by modeling the object as a particle because at any given time different parts of the 
object have different linear velocities and linear accelerations. We can, however, analyze the 
motion of an extended object by modeling it as a system of many particles, each of which has 
its own linear velocity and linear acceleration as discussed in Section 9.7.
	 In dealing with a rotating object, analysis is greatly simplified by assuming the object is 
rigid. A rigid object is one that is nondeformable; that is, the relative locations of all particles 
of which the object is composed remain constant. All real objects are deformable to some 
extent; our rigid-object model, however, is useful in many situations in which deformation is 
negligible. We have developed analysis models based on particles and systems. In this chapter, 
we introduce another class of analysis models based on the rigid-object model.

10.1	 Angular Position, Velocity, and Acceleration
We will develop our understanding of rotational motion in a manner parallel to 
that used for translational motion in previous chapters. We began in Chapter 2 by  
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294	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
	 Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The 
disc rotates about a fixed axis perpendicular to the plane of the figure and passing 
through the center of the disc at O. A small element of the disc modeled as a par-
ticle at P is at a fixed distance r from the origin and rotates about it in a circle of 
radius r. (In fact, every element of the disc undergoes circular motion about O.) It is 
convenient to represent the position of P with its polar coordinates (r, u), where r is 
the distance from the origin to P and u is measured counterclockwise from some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle u  
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle u 5 0, it moves through an arc of 
length s as in Figure 10.1b. The arc length s is related to the angle u through the 
relationship

	 s 5 r u	 (10.1a)

	 u 5
s
r
	 (10.1b)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1b that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

u 1rad 2 5
p

1808
 u 1deg 2

For example, 608 equals p/3 rad and 458 equals p/4 rad.
	 Because the disc in Figure 10.1 is a rigid object, as the particle moves through an 
angle u from the reference line, every other particle on the object rotates through 
the same angle u. Therefore, we can associate the angle u with the entire rigid 
object as well as with an individual particle, which allows us to define the angular 
position of a rigid object in its rotational motion. We choose a reference line on 
the object, such as a line connecting O and a chosen particle on the object. The 
angular position of the rigid object is the angle u between this reference line on 
the object and the fixed reference line in space, which is often chosen as the x axis. 
Such identification is similar to the way we define the position of an object in trans-
lational motion as the distance x between the object and the reference position, 
which is the origin, x 5 0. Therefore, the angle u plays the same role in rotational 
motion that the position x does in translational motion.
	 As the particle in question on our rigid object travels from position A to posi-
tion B in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular dis-
placement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:

	 vavg ;
uf 2 ui

tf 2 ti
5

Du

Dt
	 (10.2)Average angular speed 

Reference
line

O P
r

O

P

Reference
line

r s
u

To define angular position 
for the disc, a fixed reference 
line is chosen. A particle at P 
is located at a distance r from 
the rotation axis through O.

As the disc rotates, a particle at 
P moves through an arc length 
s on a circular path of radius r. 
The angular position of P is u.

a

b

Figure 10.1  ​A compact disc 
rotating about a fixed axis 
through O perpendicular to the 
plane of the figure.

Pitfall Prevention 10.1
Remember the Radian  In rota-
tional equations, you must use 
angles expressed in radians.  
Don’t fall into the trap of using 
angles measured in degrees in 
rotational equations.

x

y

B, t f

A, ti
r

i

O

fu

u

Figure 10.2  ​A particle on a rotat-
ing rigid object moves from A to 
B along the arc of a circle. In the 
time interval Dt 5 tf 2 ti , the radial 
line of length r moves through an 
angular displacement Du 5 uf 2 ui.
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	 In analogy to translational speed, the instantaneous angular speed v is defined 
as the limit of the average angular speed as Dt approaches zero:

	 v ; lim
Dt S 0

 
Du

Dt
5

du

dt
	 (10.3)

Angular speed has units of radians per second (rad/s), which can be written as s21 
because radians are not dimensional. We take v to be positive when u is increasing 
(counterclockwise motion in Fig. 10.2) and negative when u is decreasing (clock-
wise motion in Fig. 10.2).

Q	 uick Quiz 10.1 ​ A rigid object rotates in a counterclockwise sense around a fixed 
axis. Each of the following pairs of quantities represents an initial angular posi-
tion and a final angular position of the rigid object. (i) Which of the sets can 
only occur if the rigid object rotates through more than 1808? (a) 3 rad, 6 rad 
(b) 21 rad, 1 rad (c) 1 rad, 5 rad (ii) Suppose the change in angular position for 
each of these pairs of values occurs in 1 s. Which choice represents the lowest 
average angular speed?

	 If the instantaneous angular speed of an object changes from vi to vf in the time 
interval Dt, the object has an angular acceleration. The average angular acceleration  
aavg (Greek letter alpha) of a rotating rigid object is defined as the ratio of the 
change in the angular speed to the time interval Dt during which the change in the 
angular speed occurs:

	 aavg ;
vf 2 vi

tf 2 ti
5

Dv

Dt
	 (10.4)

	 In analogy to translational acceleration, the instantaneous angular acceleration 
is defined as the limit of the average angular acceleration as Dt approaches zero:

	 a ; lim
Dt S 0

 Dv

Dt
5

dv

dt
	 (10.5)

	 Angular acceleration has units of radians per second squared (rad/s2), or simply 
s22. Notice that a is positive when a rigid object rotating counterclockwise is speed-
ing up or when a rigid object rotating clockwise is slowing down during some time 
interval.
	 When a rigid object is rotating about a fixed axis, every particle on the object 
rotates through the same angle in a given time interval and has the same angular 
speed and the same angular acceleration. Therefore, like the angular position u, 
the quantities v and a characterize the rotational motion of the entire rigid object 
as well as individual particles in the object.
	 Angular position (u), angular speed (v), and angular acceleration (a) are analo-
gous to translational position (x), translational speed (v), and translational accel-
eration (a). The variables u, v, and a differ dimensionally from the variables x, v, 
and a only by a factor having the unit of length. (See Section 10.3.)
	 We have not specified any direction for angular speed and angular acceleration. 
Strictly speaking, v and a are the magnitudes of the angular velocity and the angu-
lar acceleration vectors1 vS and aS, respectively, and they should always be positive. 
Because we are considering rotation about a fixed axis, however, we can use non-
vector notation and indicate the vectors’ directions by assigning a positive or nega-
tive sign to v and a as discussed earlier with regard to Equations 10.3 and 10.5. For 
rotation about a fixed axis, the only direction that uniquely specifies the rotational 
motion is the direction along the axis of rotation. Therefore, the directions of vS 
and aS are along this axis. If a particle rotates in the xy plane as in Figure 10.2, the 

WW Instantaneous angular speed

WW Average angular acceleration

WW �Instantaneous angular 
acceleration

Pitfall Prevention 10.2
Specify Your Axis  In solving 
rotation problems, you must 
specify an axis of rotation. This 
new feature does not exist in our 
study of translational motion. The 
choice is arbitrary, but once you 
make it, you must maintain that 
choice consistently throughout 
the problem. In some problems, 
the physical situation suggests a 
natural axis, such as one along the 
axle of an automobile wheel. In 
other problems, there may not be 
an obvious choice, and you must 
exercise judgment.

1Although we do not verify it here, the instantaneous angular velocity and instantaneous angular acceleration are 
vector quantities, but the corresponding average values are not because angular displacements do not add as vector 
quantities for finite rotations.
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296	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

direction of vS for the particle is out of the plane of the diagram when the rotation 
is counterclockwise and into the plane of the diagram when the rotation is clock-
wise. To illustrate this convention, it is convenient to use the right-hand rule demon-
strated in Figure 10.3. When the four fingers of the right hand are wrapped in the 
direction of rotation, the extended right thumb points in the direction of vS . The 
direction of aS follows from its definition aS ; dvS  /dt. It is in the same direction as 
vS if the angular speed is increasing in time, and it is antiparallel to vS if the angular 
speed is decreasing in time.

10.2	 �Analysis Model: Rigid Object Under  
Constant Angular Acceleration

In our study of translational motion, after introducing the kinematic variables, we 
considered the special case of a particle under constant acceleration. We follow the 
same procedure here for a rigid object under constant angular acceleration. 
	 Imagine a rigid object such as the CD in Figure 10.1 rotates about a fixed axis 
and has a constant angular acceleration. In parallel with our analysis model of the 
particle under constant acceleration, we generate a new analysis model for rota-
tional motion called the rigid object under constant angular acceleration. We 
develop kinematic relationships for this model in this section. Writing Equation 
10.5 in the form dv 5 a dt and integrating from ti 5 0 to tf 5 t gives

	 vf 5 vi 1 at  (for constant a)	 (10.6)

where vi is the angular speed of the rigid object at time t 5 0. Equation 10.6 allows 
us to find the angular speed vf of the object at any later time t. Substituting Equa-
tion 10.6 into Equation 10.3 and integrating once more, we obtain

	 uf 5 ui 1 vit 1 1
2at 2 1 for constant a 2 	 (10.7)

where ui is the angular position of the rigid object at time t 5 0. Equation 10.7 
allows us to find the angular position uf of the object at any later time t. Eliminating 
t from Equations 10.6 and 10.7 gives

	 vf
2 5 vi

2 1 2a(uf 2 ui)  (for constant a)	 (10.8)

This equation allows us to find the angular speed vf of the rigid object for any value of  
its angular position uf . If we eliminate a between Equations 10.6 and 10.7, we obtain

	 uf 5 ui 1 1
2 1vi 1 vf 2 t 1 for constant a 2 	 (10.9)

	 Notice that these kinematic expressions for the rigid object under constant angu-
lar acceleration are of the same mathematical form as those for a particle under 
constant acceleration (Chapter 2). They can be generated from the equations for 
translational motion by making the substitutions x S u, v S v, and a S a. Table 
10.1 compares the kinematic equations for the rigid object under constant angular 
acceleration and particle under constant acceleration models.

Q	 uick Quiz 10.2 ​ Consider again the pairs of angular positions for the rigid 
object in Quick Quiz 10.1. If the object starts from rest at the initial angular 
position, moves counterclockwise with constant angular acceleration, and 
arrives at the final angular position with the same angular speed in all three 
cases, for which choice is the angular acceleration the highest?

Rotational kinematic  
equations

 

 v
S

v
S

Figure 10.3  ​The right-hand rule 
for determining the direction of the 
angular velocity vector.

Pitfall Prevention 10.3
Just Like Translation?  Equations 
10.6 to 10.9 and Table 10.1 might 
suggest that rotational kinematics 
is just like translational kinemat-
ics. That is almost true, with two 
key differences. (1) In rotational 
kinematics, you must specify a 
rotation axis (per Pitfall Pre-
vention 10.2). (2) In rotational 
motion, the object keeps return-
ing to its original orientation; 
therefore, you may be asked for 
the number of revolutions made 
by a rigid object. This concept has 
no analog in translational motion.

Table 10.1 Kinematic Equations for Rotational and Translational Motion
Rigid Object Under Constant Angular Acceleration	 Particle Under Constant Acceleration

	 vf 5 vi 1 at	 (10.6)	 vf 5 vi 1 at	 (2.13)
	 uf 5 ui 1 vit 1 12at2	 (10.7)	 xf 5 xi 1 vit 1 12at2	 (2.16)
	vf

2 5 vi
2 1 2a(uf 2 ui)	 (10.8)	 vf

2 5 vi
2 1 2a(xf 2 xi)	 (2.17)

	 uf 5 ui 1 12(vi 1 vf)t	 (10.9)	 xf 5 xi 1 12(vi 1 vf)t	 (2.15)
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Example 10.1	     Rotating Wheel 

A wheel rotates with a constant angular acceleration of 3.50 rad/s2.

(A)  ​If the angular speed of the wheel is 2.00 rad/s at ti 5 0, through what angular displacement does the wheel rotate 
in 2.00 s?

Conceptualize  ​Look again at Figure 10.1. Imagine that the compact disc rotates with its angular speed increasing at 
a constant rate. You start your stopwatch when the disc is rotating at 2.00 rad/s. This mental image is a model for the 
motion of the wheel in this example.

Categorize  ​The phrase “with a constant angular acceleration” tells us to apply the rigid object under constant angular 
acceleration model to the wheel.

AM

S o l u ti  o n

Analyze  From the rigid object under constant angular 
acceleration model, choose Equation 10.7 and rearrange it 
so that it expresses the angular displacement of the wheel:

Du 5 uf 2 ui 5 vit 1 1
2at 2

Substitute the known values to find the angular displace-
ment at t 5 2.00 s:

Du 5 (2.00 rad/s)(2.00 s) 1 12(3.50 rad/s2)(2.00 s)2

5  11.0 rad  5 (11.0 rad)(1808/p rad) 5  6308

(B)  ​Through how many revolutions has the wheel turned during this time interval?

S o l u ti  o n

Multiply the angular displacement found in part (A) by a 
conversion factor to find the number of revolutions:

Du 5 6308a1 rev
3608

b 5  1.75 rev

(C)  ​What is the angular speed of the wheel at t 5 2.00 s?

S o l u ti  o n

Use Equation 10.6 from the rigid object under constant 
angular acceleration model to find the angular speed at  
t 5 2.00 s:

vf 5 vi 1 at 5 2.00 rad/s 1 (3.50 rad/s2)(2.00 s)

5  9.00 rad/s

Finalize  ​We could also obtain this result using Equation 10.8 and the results of part (A). (Try it!)

​Suppose a particle moves along a straight line with a constant acceleration of 3.50 m/s2. If the velocity of 
the particle is 2.00 m/s at ti 5 0, through what displacement does the particle move in 2.00 s? What is the velocity of the 
particle at t 5 2.00 s?

What If ?

Analysis Model	    Rigid Object Under Constant Angular Acceleration

Imagine an object that undergoes a spin-
ning motion such that its angular accelera-
tion is constant. The equations describing 
its angular position and angular speed are 
analogous to those for the particle under 
constant acceleration model: 

	 vf 5 vi 1 at	 (10.6)

	 uf 5 ui 1 vit 1 1
2at 2	 (10.7)

	 vf
2 5 vi

2 1 2a(uf 2 ui)	 (10.8)

	 uf 5 ui 1 1
2 1vi 1 vf 2 t	 (10.9)

Examples: 

•	 during its spin cycle, the tub of a clothes 
washer begins from rest and accelerates up 
to its final spin speed

•	 a workshop grinding wheel is turned off 
and comes to rest under the action of a 
constant friction force in the bearings of 
the wheel

•	 a gyroscope is powered up and approaches 
its operating speed (Chapter 11)

•	 the crankshaft of a diesel engine changes 
to a higher angular speed (Chapter 22)

a� constant

continued
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298	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

10.3	 Angular and Translational Quantities
In this section, we derive some useful relationships between the angular speed and 
acceleration of a rotating rigid object and the translational speed and acceleration 
of a point in the object. To do so, we must keep in mind that when a rigid object 
rotates about a fixed axis as in Figure 10.4, every particle of the object moves in a 
circle whose center is on the axis of rotation.
	 Because point P in Figure 10.4 moves in a circle, the translational velocity vector vS 
is always tangent to the circular path and hence is called tangential velocity. The mag-
nitude of the tangential velocity of the point P is by definition the tangential speed 
v 5 ds/dt, where s is the distance traveled by this point measured along the circular 
path. Recalling that s 5 r u (Eq. 10.1a) and noting that r is constant, we obtain

v 5
ds
dt

5 r 
du

dt

Because d u/dt 5 v (see Eq. 10.3), it follows that

	 v 5 rv	 (10.10)

As we saw in Equation 4.17, the tangential speed of a point on a rotating rigid 
object equals the perpendicular distance of that point from the axis of rotation 
multiplied by the angular speed. Therefore, although every point on the rigid 
object has the same angular speed, not every point has the same tangential speed 
because r is not the same for all points on the object. Equation 10.10 shows that 
the tangential speed of a point on the rotating object increases as one moves 
outward from the center of rotation, as we would intuitively expect. For example, 
the outer end of a swinging golf club moves much faster than a point near the 
handle.
	 We can relate the angular acceleration of the rotating rigid object to the tangen-
tial acceleration of the point P by taking the time derivative of v :

at 5
dv
dt

5 r 
dv

dt
 

	 at 5 ra	 (10.11)

That is, the tangential component of the translational acceleration of a point on 
a rotating rigid object equals the point’s perpendicular distance from the axis of 
rotation multiplied by the angular acceleration.
	 In Section 4.4, we found that a point moving in a circular path undergoes a 
radial acceleration ar directed toward the center of rotation and whose magnitude 
is that of the centripetal acceleration v 2/r (Fig. 10.5). Because v 5 rv for a point 

Relation between tangential  
velocity and angular velocity

Relation between tangential  
acceleration and angular 

acceleration

Figure 10.4  As a rigid object 
rotates about the fixed axis (the  
z axis) through O, the point P 
has a tangential velocity vS that is 
always tangent to the circular path 
of radius r.

y

P

x
O

r s

u

vS

	

▸ 10.1 c o n t i n u e d

Answer  ​Notice that these questions are translational analogs to parts (A) and (C) of the original problem. The mathemat-
ical solution follows exactly the same form. For the displacement, from the particle under constant acceleration model,

Dx 5 xf 2 xi 5 vit 1 1
2at 2  

5 12.00 m/s 2 12.00 s 2 1 1
2 13.50 m/s2 2 12.00 s 22 5 11.0 m

and for the velocity,

vf 5 vi 1 at 5 2.00 m/s 1 (3.50 m/s2)(2.00 s) 5 9.00 m/s

There is no translational analog to part (B) because translational motion under constant acceleration is not repetitive.
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P on a rotating object, we can express the centripetal acceleration at that point in 
terms of angular speed as we did in Equation 4.18:

	 ac 5
v2

r
5 rv2	 (10.12)

	 The total acceleration vector at the point is aS 5 aSt 1 aSr , where the magnitude 
of aSr is the centripetal acceleration ac. Because aS is a vector having a radial and 
a tangential component, the magnitude of aS at the point P on the rotating rigid 
object is

	 a 5 "at
2 1 ar

2 5 "r 2 a2 1 r 2 v4 5 r"a2 1 v4	 (10.13)

Q	 uick Quiz 10.3 ​ Ethan and Joseph are riding on a merry-go-round. Ethan rides 
on a horse at the outer rim of the circular platform, twice as far from the cen-
ter of the circular platform as Joseph, who rides on an inner horse. (i) When 
the merry-go-round is rotating at a constant angular speed, what is Ethan’s 
angular speed? (a) twice Joseph’s (b) the same as Joseph’s (c) half of Joseph’s 
(d) impossible to determine (ii) When the merry-go-round is rotating at a con-
stant angular speed, describe Ethan’s tangential speed from the same list of 
choices.
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Example 10.2	     CD Player 

On a compact disc (Fig. 10.6), audio information is stored digitally in a series of pits and flat areas on the surface of 
the disc. The alternations between pits and flat areas on the surface represent binary ones and zeros to be read by the 
CD player and converted back to sound waves. The pits and flat areas are detected by a system consisting of a laser and 
lenses. The length of a string of ones and zeros representing one piece of information is the same everywhere on the 
disc, whether the information is near the center of the disc or near its outer edge. So that this length of ones and zeros 
always passes by the laser–lens system in the same time interval, the tangential speed of the disc surface at the location 
of the lens must be constant. According to Equation 10.10, the angular speed must therefore vary as the laser–lens 
system moves radially along the disc. In a typical CD player, the constant speed of the surface at the point of the laser–
lens system is 1.3 m/s.

(A)  ​Find the angular speed of the disc in revolutions per minute when information is being read from the innermost 
first track (r 5 23 mm) and the outermost final track (r 5 58 mm).

Conceptualize  ​Figure 10.6 shows a photograph of a compact disc. Trace your fin-
ger around the circle marked “23 mm” and mentally estimate the time interval 
to go around the circle once. Now trace your finger around the circle marked  
“58 mm,” moving your finger across the surface of the page at the same speed as 
you did when tracing the smaller circle. Notice how much longer in time it takes 
your finger to go around the larger circle. If your finger represents the laser read-
ing the disc, you can see that the disc rotates once in a longer time interval when 
the laser reads the information in the outer circle. Therefore, the disc must rotate 
more slowly when the laser is reading information from this part of the disc.

Categorize  ​This part of the example is categorized as a simple substitution prob-
lem. In later parts, we will need to identify analysis models.

AM

S o l u ti  o n

Use Equation 10.10 to find the angular speed that 
gives the required tangential speed at the position of 
the inner track:

vi 5
v
ri

5
1.3 m/s

2.3 3 1022 m
5 57 rad/s

5 157 rad/s 2 a 1 rev
2p rad

b a 60 s
1 min

b 5 5.4 3 102 rev/min

x

y

O

ar

at

P
aS

The total acceleration 
of point P is a � at � ar

S S S

Figure 10.5  ​As a rigid object 
rotates about a fixed axis (the z 
axis) through O, the point P expe-
riences a tangential component of 
translational acceleration at and a 
radial component of translational 
acceleration ar .

continued
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Figure 10.6  ​(Example 10.2) A 
compact disc.
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300	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

(C)  What is the angular acceleration of the compact disc over the 4 473-s time interval?

Categorize  ​We again model the disc as a rigid object under constant angular acceleration. In this case, Equation 10.6 gives 
the value of the constant angular acceleration. Another approach is to use Equation 10.4 to find the average angular 
acceleration. In this case, we are not assuming the angular acceleration is constant. The answer is the same from both 
equations; only the interpretation of the result is different.

S o l u ti  o n

Analyze  ​Use Equation 10.6 to find the angular 
acceleration: a 5

vf 2 vi

t
5

22 rad/s 2 57 rad/s
4 473 s

5 27.6 3 1023 rad/s2

Finalize  ​The disc experiences a very gradual decrease in its rotation rate, as expected from the long time interval 
required for the angular speed to change from the initial value to the final value. In reality, the angular acceleration of 
the disc is not constant. Problem 90 allows you to explore the actual time behavior of the angular acceleration.

Do the same for the outer track: vf 5
v
rf

5
1.3 m/s

5.8 3 1022 m
5 22 rad/s 5 2.1 3 102 rev/min

Use Equation 10.9 to find the angular displacement of 
the disc at t 5 4 473 s:

Du 5 uf 2 ui 5 1
2 1vi 1 vf 2 t 

5 1
2 157 rad/s 1 22 rad/s 2 14 473 s 2 5 1.8 3 105 rad

The CD player adjusts the angular speed v of the disc within this range so that information moves past the objective 
lens at a constant rate.

(B)  ​The maximum playing time of a standard music disc is 74 min and 33 s. How many revolutions does the disc 
make during that time?

Categorize  ​From part (A), the angular speed decreases as the disc plays. Let us assume it decreases steadily, with a 
constant. We can then apply the rigid object under constant angular acceleration model to the disc.

Analyze  ​If t 5 0 is the instant the disc begins rotating, with angular speed of 57 rad/s, the final value of the time t is 
(74 min)(60 s/min) 1 33 s 5 4 473 s. We are looking for the angular displacement Du during this time interval.

Convert this angular displacement to revolutions: Du 5 11.8 3 105 rad 2 a 1 rev
2p rad

b 5 2.8 3 104 rev

	

▸ 10.2 c o n t i n u e d

10.4	 Torque
In our study of translational motion, after investigating the description of motion, 
we studied the cause of changes in motion: force. We follow the same plan here: 
What is the cause of changes in rotational motion? 
	 Imagine trying to rotate a door by applying a force of magnitude F perpendic-
ular to the door surface near the hinges and then at various distances from the 
hinges. You will achieve a more rapid rate of rotation for the door by applying the 
force near the doorknob than by applying it near the hinges.
	 When a force is exerted on a rigid object pivoted about an axis, the object tends 
to rotate about that axis. The tendency of a force to rotate an object about some 
axis is measured by a quantity called torque tS(Greek letter tau). Torque is a vector, 
but we will consider only its magnitude here; we will explore its vector nature in 
Chapter 11.
	 Consider the wrench in Figure 10.7 that we wish to rotate around an axis that is 
perpendicular to the page and passes through the center of the bolt. The applied 

r

F sin f

 F cos f

d

O

Line of
action

f

The component F sin f 
tends to rotate the wrench 
about an axis through O.

f

F
S

rS

Figure 10.7  ​The force  F
S

 has a 
greater rotating tendency about an 
axis through O as F increases and 
as the moment arm d increases.

S o l u ti  o n
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Pitfall Prevention 10.4
Torque Depends on Your Choice  
of Axis  There is no unique value 
of the torque on an object. Its 
value depends on your choice of 
rotation axis.

O

d2

d1

F2
S

F1
S

Figure 10.8  The force F
S

 1 tends 
to rotate the object counterclock-
wise about an axis through O, and 
F
S

 2 tends to rotate it clockwise.

force F
S

 acts at an angle f to the horizontal. We define the magnitude of the torque 
associated with the force F

S
 around the axis passing through O by the expression

	 t ; rF sin f 5 Fd	 (10.14)

where r is the distance between the rotation axis and the point of application of F
S

, 
and d is the perpendicular distance from the rotation axis to the line of action of 
F
S

. (The line of action of a force is an imaginary line extending out both ends of the 
vector representing the force. The dashed line extending from the tail of F

S
 in Fig. 

10.7 is part of the line of action of F
S

.) From the right triangle in Figure 10.7 that 
has the wrench as its hypotenuse, we see that d 5 r sin f. The quantity d is called 
the moment arm (or lever arm) of F

S
.

	 In Figure 10.7, the only component of F
S

 that tends to cause rotation of the 
wrench around an axis through O is F sin f, the component perpendicular to a 
line drawn from the rotation axis to the point of application of the force. The hori-
zontal component F cos f, because its line of action passes through O, has no ten-
dency to produce rotation about an axis passing through O. From the definition 
of torque, the rotating tendency increases as F increases and as d increases, which 
explains why it is easier to rotate a door if we push at the doorknob rather than at a 
point close to the hinges. We also want to apply our push as closely perpendicular 
to the door as we can so that f is close to 908. Pushing sideways on the doorknob 
(f 5 0) will not cause the door to rotate.
	 If two or more forces act on a rigid object as in Figure 10.8, each tends to pro-
duce rotation about the axis through O. In this example, F

S

2 tends to rotate the 
object clockwise and F

S

1 tends to rotate it counterclockwise. We use the convention 
that the sign of the torque resulting from a force is positive if the turning tendency 
of the force is counterclockwise and negative if the turning tendency is clockwise. 
For Example, in Figure 10.8, the torque resulting from F

S

1, which has a moment arm 
d1, is positive and equal to 1F1d1; the torque from F

S

2 is negative and equal to 2F2d2. 
Hence, the net torque about an axis through O is

o t 5 t1 1 t2 5 F1d1 2 F2d2

	 Torque should not be confused with force. Forces can cause a change in transla-
tional motion as described by Newton’s second law. Forces can also cause a change 
in rotational motion, but the effectiveness of the forces in causing this change 
depends on both the magnitudes of the forces and the moment arms of the forces, 
in the combination we call torque. Torque has units of force times length—newton 
meters (N ? m) in SI units—and should be reported in these units. Do not confuse 
torque and work, which have the same units but are very different concepts.

Q	 uick Quiz 10.4  (i) If you are trying to loosen a stubborn screw from a piece of 
wood with a screwdriver and fail, should you find a screwdriver for which the 
handle is (a) longer or (b) fatter? (ii) If you are trying to loosen a stubborn 
bolt from a piece of metal with a wrench and fail, should you find a wrench for 
which the handle is (a) longer or (b) fatter?

WW Moment arm

Example 10.3	     The Net Torque on a Cylinder

A one-piece cylinder is shaped as shown in Figure 10.9, with a core section protrud-
ing from the larger drum. The cylinder is free to rotate about the central z axis 
shown in the drawing. A rope wrapped around the drum, which has radius R1, 
exerts a force T

S

1 to the right on the cylinder. A rope wrapped around the core, 
which has radius R2, exerts a force T

S

2 downward on the cylinder.

(A)  ​What is the net torque acting on the cylinder about the rotation axis (which is 
the z axis in Fig. 10.9)?

z

x

y

R 1

R 2

O

T1
S

T2
S

Figure 10.9  ​(Example 10.3) A 
solid cylinder pivoted about the z axis 
through O. The moment arm of T

S

1 is 
R1, and the moment arm of T

S

2 is R2.continued
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▸ 10.3 c o n t i n u e d

Conceptualize  ​Imagine that the cylinder in Figure 10.9 is a shaft in a machine. The force T
S

1 could be applied by a 
drive belt wrapped around the drum. The force T

S

2 could be applied by a friction brake at the surface of the core.

Categorize  ​This example is a substitution problem in which we evaluate the net torque using Equation 10.14.
	 The torque due to T

S

1 about the rotation axis is 2R1T1. (The sign is negative because the torque tends to produce 
clockwise rotation.) The torque due to T

S

2 is 1R2T2. (The sign is positive because the torque tends to produce counter-
clockwise rotation of the cylinder.)

S o l u ti  o n

Evaluate the net torque about the rotation axis: o t 5 t1 1 t2 5  R2T2 2 R1T1

Substitute the given values: o t 5 (0.50 m)(15 N) 2 (1.0 m)(5.0 N) 5  2.5 N ? m

As a quick check, notice that if the two forces are of equal magnitude, the net torque is negative because R1 . R2. Start-
ing from rest with both forces of equal magnitude acting on it, the cylinder would rotate clockwise because T

S

1 would 
be more effective at turning it than would T

S

2.

(B)  ​Suppose T1 5 5.0 N, R1 5 1.0 m, T2 5 15 N, and R2 5 0.50 m. What is the net torque about the rotation axis, and 
which way does the cylinder rotate starting from rest?

S o l u ti  o n

Because this net torque is positive, the cylinder begins to rotate in the counterclockwise direction.
	

10.5	 �Analysis Model: Rigid Object Under a Net Torque
In Chapter 5, we learned that a net force on an object causes an acceleration of the 
object and that the acceleration is proportional to the net force. These facts are the 
basis of the particle under a net force model whose mathematical representation 
is Newton’s second law. In this section, we show the rotational analog of Newton’s 
second law: the angular acceleration of a rigid object rotating about a fixed axis is 
proportional to the net torque acting about that axis. Before discussing the more 
complex case of rigid-object rotation, however, it is instructive first to discuss the 
case of a particle moving in a circular path about some fixed point under the influ-
ence of an external force.
	 Consider a particle of mass m rotating in a circle of radius r under the influence 
of a tangential net force g  F

S

t  and a radial net force g  F
S

r  as shown in Figure 10.10. 
The radial net force causes the particle to move in the circular path with a centrip-
etal acceleration. The tangential force provides a tangential acceleration aSt , and

o Ft 5 mat

The magnitude of the net torque due to g  F
S

t  on the particle about an axis perpen-
dicular to the page through the center of the circle is

o t 5 o Ftr 5 (mat)r

Because the tangential acceleration is related to the angular acceleration through 
the relationship at 5 ra (Eq. 10.11), the net torque can be expressed as

	 o t 5 (mra)r 5 (mr 2)a	 (10.15)

Let us denote the quantity mr 2 with the symbol I for now. We will say more about 
this quantity below. Using this notation, Equation 10.15 can be written as

 	 o t 5 Ia	 (10.16)

That is, the net torque acting on the particle is proportional to its angular accelera-
tion. Notice that o t 5 Ia has the same mathematical form as Newton’s second law 
of motion, o F 5 ma.

r

m

� Ft
S

� Fr
S

The tangential force on the 
particle results in a torque on the 
particle about an axis through 
the center of the circle.

Figure 10.10  ​A particle rotating  
in a circle under the influence of a  
tangential net force g  F

S

t . A radial 
net force g  F

S

r also must be present 
to maintain the circular motion.www.as
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	 Now let us extend this discussion to a rigid object of arbitrary shape rotating 
about a fixed axis passing through a point O as in Figure 10.11. The object can be 
regarded as a collection of particles of mass mi . If we impose a Cartesian coordi-
nate system on the object, each particle rotates in a circle about the origin and each 
has a tangential acceleration ai  produced by an external tangential force of magni-
tude Fi . For any given particle, we know from Newton’s second law that

Fi  5 mi ai

The external torque tSi associated with the force  F
S

i  acts about the origin and its 
magnitude is given by

ti 5 ri Fi 5 ri mi ai

Because ai 5 ri a, the expression for ti becomes

ti 5 mi ri
2a

	 Although each particle in the rigid object may have a different translational 
acceleration ai , they all have the same angular acceleration a. With that in mind, we 
can add the torques on all of the particles making up the rigid object to obtain the 
net torque on the object about an axis through O due to all external forces:

	 a text 5 a
i

ti 5 a
i

miri
2a 5 aa

i
miri

2ba	 (10.17)

where a can be taken outside the summation because it is common to all particles. 
Calling the quantity in parentheses I, the expression for o text becomes

	 o text 5 Ia	 (10.18)

This equation for a rigid object is the same as that found for a particle moving in 
a circular path (Eq. 10.16). The net torque about the rotation axis is proportional 
to the angular acceleration of the object, with the proportionality factor being I, 
a quantity that we have yet to describe fully. Equation 10.18 is the mathematical 
representation of the analysis model of a rigid object under a net torque, the rota-
tional analog to the particle under a net force. 
	 Let us now address the quantity I, defined as follows:

	 I 5 a
i

miri
2	 (10.19)

This quantity is called the moment of inertia of the object, and depends on the 
masses of the particles making up the object and their distances from the rotation 
axis. Notice that Equation 10.19 reduces to I 5 mr 2 for a single particle, consistent 
with our use of the notation I that we used in going from Equation 10.15 to Equa-
tion 10.16. Note that moment of inertia has units of kg · m2 in SI units.
	 Equation 10.18 has the same form as Newton’s second law for a system of par-
ticles as expressed in Equation 9.39:

	 aFext
S

5 M aSCM	

Consequently, the moment of inertia I must play the same role in rotational motion 
as the role that mass plays in translational motion: the moment of inertia is the 
resistance to changes in rotational motion. This resistance depends not only on the 
mass of the object, but also on how the mass is distributed around the rotation axis. 
Table 10.2 on page 304 gives the moments of inertia2 for a number of objects about 
specific axes. The moments of inertia of rigid objects with simple geometry (high 
symmetry) are relatively easy to calculate provided the rotation axis coincides with 
an axis of symmetry, as we show in the next section.

WW �Torque on a rigid object 
is proportional to angular 
acceleration

Fi
S

y

x
O

r

mi

The particle of mass mi of the 
rigid object experiences a 
torque in the same way that the 
particle in Figure 10.10 does.

Figure 10.11  ​A rigid object 
rotating about an axis through O. 
Each particle of mass mi rotates 
about the axis with the same 
angular acceleration a.

2Civil engineers use moment of inertia to characterize the elastic properties (rigidity) of such structures as loaded 
beams. Hence, it is often useful even in a nonrotational context.

Pitfall Prevention 10.5
No Single Moment of Inertia   
There is one major difference 
between mass and moment of 
inertia. Mass is an inherent prop-
erty of an object. The moment 
of inertia of an object depends 
on your choice of rotation axis. 
Therefore, there is no single value 
of the moment of inertia for an 
object. There is a minimum value 
of the moment of inertia, which is 
that calculated about an axis pass-
ing through the center of mass of 
the object.
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Table 10.2 Moments of Inertia of Homogeneous Rigid Objects  
with Different Geometries

Hoop or thin
cylindrical shell
ICM � MR 

2
R

Solid cylinder
or disk

R

Long, thin rod
with rotation axis
through center

Solid sphere

Hollow cylinder

R 2

Long, thin
rod with
rotation axis
through end

L

Thin spherical
shell

R1

R

Rectangular plate

b

a

L

I  1
2

ICM � M(R1
2 � R2

2)

MR 

21
2

ICM �
 1

12
ICM � M(a2 � b2)

 1
12

ICM � ML2

 2
5

ICM � MR 

2

 2
3

ICM � MR 

2

1
3

ML2I �

R

Q	 uick Quiz 10.5 ​ You turn off your electric drill and find that the time interval 
for the rotating bit to come to rest due to frictional torque in the drill is Dt. You 
replace the bit with a larger one that results in a doubling of the moment of 
inertia of the drill’s entire rotating mechanism. When this larger bit is rotated 
at the same angular speed as the first and the drill is turned off, the frictional 
torque remains the same as that for the previous situation. What is the time 
interval for this second bit to come to rest? (a) 4Dt (b) 2Dt (c) Dt (d) 0.5Dt  
(e) 0.25Dt (f) impossible to determine

Analysis Model	    Rigid Object Under a Net Torque
Imagine you are analyzing the motion of an object that is free to rotate about a fixed axis. The cause 
of changes in rotational motion of this object is torque applied to the object and, in parallel to New-
ton’s second law for translation motion, the torque is equal to the product of the moment of inertia of 
the object and the angular acceleration:

	 o text 5 Ia	 (10.18)

The torque, the moment of inertia, and the angular acceleration must all be evaluated around the 
same rotation axis. 

a
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Analysis Model	    Rigid Object Under a Net Torque (continued)

Example 10.4	     Rotating Rod 

A uniform rod of length L and mass M is attached at one end to a frictionless pivot 
and is free to rotate about the pivot in the vertical plane as in Figure 10.12. The 
rod is released from rest in the horizontal position. What are the initial angular 
acceleration of the rod and the initial translational acceleration of its right end?

Conceptualize  ​Imagine what happens to the rod in Figure 10.12 when it is released. 
It rotates clockwise around the pivot at the left end.

Categorize  ​The rod is categorized as a rigid object under a net torque. The torque is 
due only to the gravitational force on the rod if the rotation axis is chosen to pass 
through the pivot in Figure 10.12. We cannot categorize the rod as a rigid object 
under constant angular acceleration because the torque exerted on the rod and therefore the angular acceleration of 
the rod vary with its angular position.

Analyze  ​The only force contributing to the torque about an axis through the pivot is the gravitational force M gS 
exerted on the rod. (The force exerted by the pivot on the rod has zero torque about the pivot because its moment arm 
is zero.) To compute the torque on the rod, we assume the gravitational force acts at the center of mass of the rod as 
shown in Figure 10.12.

AM

S o l u ti  o n

L

Pivot

M gS 

Figure 10.12  (Example 10.4) A 
rod is free to rotate around a pivot at 
the left end. The gravitational force 
on the rod acts at its center of mass.

Write an expression for the magnitude of the net external 
torque due to the gravitational force about an axis through 
the pivot:

a  text 5 Mg aL
2
b

Use Equation 10.18 to obtain the angular acceleration of the 
rod, using the moment of inertia for the rod from Table 10.2:

(1)   a 5  a
text

I
5

Mg 1L/2 2
1
3ML2 5

3g

2L

Use Equation 10.11 with r 5 L to find the initial translational 
acceleration of the right end of the rod:

at 5 La 5 3
2 g

Finalize  These values are the initial values of the angular and translational accelerations. Once the rod begins to 
rotate, the gravitational force is no longer perpendicular to the rod and the values of the two accelerations decrease, 
going to zero at the moment the rod passes through the vertical orientation.

What if we were to place a penny on the end of the rod and then release the rod? Would the penny stay in 
contact with the rod?

Answer  ​The result for the initial acceleration of a point on the end of the rod shows that at . g. An unsupported 
penny falls at acceleration g. So, if we place a penny on the end of the rod and then release the rod, the end of the 
rod falls faster than the penny does! The penny does not stay in contact with the rod. (Try this with a penny and a 
meterstick!)

What If ?

continued

Examples: 

•	 a bicycle chain around the sprocket of a bicycle causes the rear wheel of the bicycle to rotate
•	 an electric dipole moment in an electric field rotates due to the electric force from the field  (Chapter 23)
•	 a magnetic dipole moment in a magnetic field rotates due to the magnetic force from the field  (Chapter 30)
•	 the armature of a motor rotates due to the torque exerted by a surrounding magnetic field (Chapter 31)

	 The question now is to find the location on the rod 
at which we can place a penny that will stay in contact 
as both begin to fall. To find the translational accelera-
tion of an arbitrary point on the rod at a distance r , L  

from the pivot point, we combine Equation (1) with 
Equation 10.11:

at 5 r a 5
3g

2L
 r
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▸ 10.4 c o n t i n u e d

	

Conceptual Example 10.5	   �  Falling Smokestacks and Tumbling Blocks

When a tall smokestack falls over, it often breaks somewhere along its length before 
it hits the ground as shown in Figure 10.13. Why?

As the smokestack rotates around its base, each higher portion of the smokestack falls 
with a larger tangential acceleration than the portion below it according to Equation 
10.11. The angular acceleration increases as the smokestack tips farther. Eventu-
ally, higher portions of the smokestack experience an acceleration greater than the  
acceleration that could result from gravity alone; this situation is similar to that 
described in Example 10.4. That can happen only if these portions are being 
pulled downward by a force in addition to the gravitational force. The force that 
causes that to occur is the shear force from lower portions of the smokestack. Even-
tually, the shear force that provides this acceleration is greater than the smoke-
stack can withstand, and the smokestack breaks. The same thing happens with a tall tower of children’s toy blocks. 
Borrow some blocks from a child and build such a tower. Push it over and watch it come apart at some point before it 
strikes the floor.

S o l u ti  o n

Figure 10.13  ​(Conceptual 
Example 10.5) A falling smoke-
stack breaks at some point along 
its length.
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Example 10.6	     Angular Acceleration of a Wheel 

A wheel of radius R, mass M, and moment of inertia I is mounted on a frictionless, 
horizontal axle as in Figure 10.14. A light cord wrapped around the wheel supports an 
object of mass m. When the wheel is released, the object accelerates downward, the cord 
unwraps off the wheel, and the wheel rotates with an angular acceleration. Find expres-
sions for the angular acceleration of the wheel, the translational acceleration of the 
object, and the tension in the cord.

Conceptualize  ​Imagine that the object is a bucket in an 
old-fashioned water well. It is tied to a cord that passes 
around a cylinder equipped with a crank for raising the 
bucket. After the bucket has been raised, the system is 
released and the bucket accelerates downward while the 
cord unwinds off the cylinder.

Categorize  ​We apply two analysis models here. The object 
is modeled as a particle under a net force. The wheel is mod-
eled as a rigid object under a net torque.

Analyze  ​The magnitude of the torque acting on the wheel about its axis of rotation is t 5 TR , where T is the force 
exerted by the cord on the rim of the wheel. (The gravitational force exerted by the Earth on the wheel and the 

AM

S o l u ti  o n

M

R

m

mgS 

T
S

T
S

O

Figure 10.14  ​(Example 10.6) 
An object hangs from a cord 
wrapped around a wheel.

For the penny to stay in contact with the rod, the limiting 
case is that the translational acceleration must be equal 
to that due to gravity:

at 5 g 5
3g

2L
 r

 r 5 2
3L

Therefore, a penny placed closer to the pivot than two-
thirds of the length of the rod stays in contact with the 
falling rod, but a penny farther out than this point loses 
contact.
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normal force exerted by the axle on the wheel both pass through the axis of rotation and therefore produce no 
torque.)

From the rigid object under a net torque model, write 
Equation 10.18:

o text 5 Ia

Solve for a and substitute the net torque: (1)   a 5
a text

I
5

TR
I

From the particle under a net force model, apply New-
ton’s second law to the motion of the object, taking the 
downward direction to be positive:

  o Fy 5 mg 2 T 5 ma

Solve for the acceleration a: (2)   a 5
mg 2 T

m
 

Use this fact together with Equations (1) and (2): (3)   a 5 Ra 5
TR 2

I
5

mg 2 T
m

 

Solve for the tension T : (4)   T 5 
mg

1 1 1mR 2/I 2

Substitute Equation (4) into Equation (2) and solve for a: (5)   a 5 
g

1 1 1I/mR 2 2

Use a 5 Ra and Equation (5) to solve for a: a 5
a
R

5
g

R 1 1I/mR 2

Equations (1) and (2) have three unknowns: a, a, and T. Because the object and wheel are connected by a cord that 
does not slip, the translational acceleration of the suspended object is equal to the tangential acceleration of a point 
on the wheel’s rim. Therefore, the angular acceleration a of the wheel and the translational acceleration of the object 
are related by a 5 Ra.

Finalize  We finalize this problem by imagining the behavior of the system in some extreme limits.

​What if the wheel were to become very massive so that I becomes very large? What happens to the accel-
eration a of the object and the tension T ?

Answer  ​If the wheel becomes infinitely massive, we can imagine that the object of mass m will simply hang from the 
cord without causing the wheel to rotate.
	 We can show that mathematically by taking the limit I S `. Equation (5) then becomes

a 5
g

1 1 1I/mR 2 2    S   0

which agrees with our conceptual conclusion that the object will hang at rest. Also, Equation (4) becomes

T 5
mg

1 1 1mR 2/I 2    S   mg

which is consistent because the object simply hangs at rest in equilibrium between the gravitational force and the ten-
sion in the string.

What If ?

	

▸ 10.6 c o n t i n u e d

10.6	 Calculation of Moments of Inertia
The moment of inertia of a system of discrete particles can be calculated in a 
straightforward way with Equation 10.19. We can evaluate the moment of iner-
tia of a continuous rigid object by imagining the object to be divided into many 
small elements, each of which has mass Dmi . We use the definition I 5 oi  ri

2 Dmi  
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and take the limit of this sum as Dmi S 0. In this limit, the sum becomes an inte-
gral over the volume of the object:

	 I 5 lim
Dmi S 0

 a
i

ri
2  Dmi 5 3r 2 dm	 (10.20)

	 It is usually easier to calculate moments of inertia in terms of the volume of 
the elements rather than their mass, and we can easily make that change by using 
Equation 1.1, r ; m/V, where r is the density of the object and V is its volume. From 
this equation, the mass of a small element is dm 5 r dV. Substituting this result into 
Equation 10.20 gives

	 I 5 3rr 2 dV 	 (10.21)

If the object is homogeneous, r is constant and the integral can be evaluated for a 
known geometry. If r is not constant, its variation with position must be known to 
complete the integration.
	 The density given by r 5 m/V sometimes is referred to as volumetric mass density 
because it represents mass per unit volume. Often we use other ways of express-
ing density. For instance, when dealing with a sheet of uniform thickness t, we can 
define a surface mass density s 5 rt, which represents mass per unit area. Finally, when 
mass is distributed along a rod of uniform cross-sectional area A, we sometimes use 
linear mass density l 5 M/L 5 rA, which is the mass per unit length.

� Moment of inertia 
of a rigid object

Example 10.7	     Uniform Rigid Rod

Calculate the moment of inertia of a uniform thin rod of length L and mass M (Fig. 
10.15) about an axis perpendicular to the rod (the y9 axis) and passing through its 
center of mass.

Conceptualize  ​Imagine twirling the rod in Fig-
ure 10.15 with your fingers around its midpoint. 
If you have a meterstick handy, use it to simulate 
the spinning of a thin rod and feel the resistance it 
offers to being spun.

Categorize  ​This example is a substitution problem, using the definition of moment of inertia in Equation 10.20. As 
with any integration problem, the solution involves reducing the integrand to a single variable.
	 The shaded length element dx9 in Figure 10.15 has a mass dm equal to the mass per unit length l multiplied by dx9.

S o l u ti  o n

L

x�

O
x�

dx�

y�y

Figure 10.15  ​(Example 10.7) 
A uniform rigid rod of length L. 
The moment of inertia about the 
y9 axis is less than that about the y 
axis. The latter axis is examined in 
Example 10.9.

Express dm in terms of dx9: dm 5 l dx r 5
M
L

 dx r

Substitute this expression into Equation 10.20, with
r 2 5 (x9)2:

Iy r 5 3r 2 dm 5 3
L/2

2L/2
 1x r 22 

M
L

 dx r 5
M
L

 3
L/2

2L/2
 1x r 22 dx r

5
M
L

 c 1x r 2
3

3
 d

L/2

2L/2
5 1

12ML2

Check this result in Table 10.2.
	

Example 10.8	     Uniform Solid Cylinder

A uniform solid cylinder has a radius R, mass M, and length L. Calculate its moment of inertia about its central axis 
(the z axis in Fig. 10.16).
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Conceptualize  ​To simulate this situation, imagine twirling a can of 
frozen juice around its central axis. Don’t twirl a nonfrozen can of 
vegetable soup; it is not a rigid object! The liquid is able to move rela-
tive to the metal can.

Categorize  ​This example is a substitution problem, using the defini-
tion of moment of inertia. As with Example 10.7, we must reduce the 
integrand to a single variable.
	 It is convenient to divide the cylinder into many cylindrical shells, 
each having radius r, thickness dr, and length L as shown in Figure 
10.16. The density of the cylinder is r. The volume dV of each shell is 
its cross-sectional area multiplied by its length: dV 5 L dA 5 L(2pr) dr.

S o l u ti  o n

L

dr

z

r

R

Figure 10.16  ​(Exam-
ple 10.8) Calculating I 
about the z axis for a  
uniform solid cylinder.

Express dm in terms of dr : dm 5 r dV 5 rL(2pr) dr

Substitute this expression into Equation 10.20: Iz 5 3r 2 dm 5 3r 2 3rL 12pr 2  dr 4 5 2prL 3
R

0
 r 3 dr 5 1

2 prLR 4

Use the total volume pR2L of the cylinder to express  
its density:

r 5
M
V

5
M

pR 2L

Substitute this value into the expression for Iz: Iz 5 1
2pa M

pR 2L
bLR 4 5 1

2MR 2

Check this result in Table 10.2.

What if the length of the cylinder in Figure 10.16 is increased to 2L, while the mass M and radius R are 
held fixed? How does that change the moment of inertia of the cylinder?

Answer  ​Notice that the result for the moment of inertia of a cylinder does not depend on L, the length of the cylinder. 
It applies equally well to a long cylinder and a flat disk having the same mass M and radius R. Therefore, the moment 
of inertia of the cylinder is not affected by how the mass is distributed along its length.

What If ?

	

	 The calculation of moments of inertia of an object about an arbitrary axis can be 
cumbersome, even for a highly symmetric object. Fortunately, use of an important 
theorem, called the parallel-axis theorem, often simplifies the calculation.
	 To generate the parallel-axis theorem, suppose the object in Figure 10.17a on 
page 310 rotates about the z axis. The moment of inertia does not depend on how 
the mass is distributed along the z axis; as we found in Example 10.8, the moment 
of inertia of a cylinder is independent of its length. Imagine collapsing the three-
dimensional object into a planar object as in Figure 10.17b. In this imaginary pro-
cess, all mass moves parallel to the z axis until it lies in the xy plane. The coordinates 
of the object’s center of mass are now xCM, yCM, and zCM 5 0. Let the mass element 
dm have coordinates (x, y, 0) as shown in the view down the z axis in Figure 10.17c. 
Because this element is a distance r 5 !x2 1 y2  from the z axis, the moment of 
inertia of the entire object about the z axis is

I 5 3r 2 dm 5 3 1x2 1 y2 2  dm

We can relate the coordinates x, y of the mass element dm to the coordinates of 
this same element located in a coordinate system having the object’s center of mass 
as its origin. If the coordinates of the center of mass are xCM, yCM, and zCM 5 0 
in the original coordinate system centered on O, we see from Figure 10.17c that  

▸ 10.8 c o n t i n u e d

www.as
warp

hy
sic

s.w
ee

bly
.co

m



310	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

the relationships between the unprimed and primed coordinates are x 5 x9 1 xCM,  
y 5 y9 1 yCM, and z 5 z9 5 0. Therefore,

 I 5 3 3 1x r 1 xCM 22 1 1 y r 1 yCM 22 4 dm

5 3 3 1x r 22 1 1y r 22 4 dm 1 2xCM  3x r dm 1 2yCM  3y rdm 1 1xCM
2 1 yCM

2 23  dm

The first integral is, by definition, the moment of inertia ICM about an axis that is 
parallel to the z axis and passes through the center of mass. The second two inte-
grals are zero because, by definition of the center of mass, e x9 dm 5 e y9 dm 5 0. 
The last integral is simply MD 2 because e dm 5 M and D 2 5 xCM

2 1 yCM
2. Therefore, 

we conclude that

	 I 5 I CM 1 MD 2	 (10.22)Parallel-axis theorem 

Axis through
CM

x

y

z
Rotation
axis

O

a

Axis through
CM

x

y

z

Rotation
axis

b

Figure 10.17  ​(a) An arbitrarily shaped rigid object. The origin of the coordinate system is not at 
the center of mass of the object. Imagine the object rotating about the z axis. (b) All mass elements 
of the object are collapsed parallel to the z axis to form a planar object. (c) An arbitrary mass element 
dm is indicated in blue in this view down the z axis. The parallel axis theorem can be used with the 
geometry shown to determine the moment of inertia of the original object around the z axis.

y

y

x, y
dm

O

D

r

x

x

CM

y�

yCM

xCM

xCM, yCM 

x�

c

y�
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Example 10.9	     Applying the Parallel-Axis Theorem

Consider once again the uniform rigid rod of mass M and length L shown in Figure 10.15. Find the moment of inertia 
of the rod about an axis perpendicular to the rod through one end (the y axis in Fig. 10.15).

Conceptualize  ​Imagine twirling the rod around an endpoint rather than the midpoint. If you have a meterstick 
handy, try it and notice the degree of difficulty in rotating it around the end compared with rotating it around the 
center.

Categorize  ​This example is a substitution problem, involving the parallel-axis theorem.
	 Intuitively, we expect the moment of inertia to be greater than the result ICM 5 1

12ML2 from Example 10.7 because 
there is mass up to a distance of L away from the rotation axis, whereas the farthest distance in Example 10.7 was only 
L/2. The distance between the center-of-mass axis and the y axis is D 5 L/2.

S o l u ti  o n
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Use the parallel-axis theorem: I 5 ICM 1 MD 2 5 1
12ML2 1 M aL

2
b

2

5 1
3ML2

Check this result in Table 10.2.

10.7	 Rotational Kinetic Energy
After investigating the role of forces in our study of translational motion, we turned 
our attention to approaches involving energy. We do the same thing in our current 
study of rotational motion.
	 In Chapter 7, we defined the kinetic energy of an object as the energy associated 
with its motion through space. An object rotating about a fixed axis remains station-
ary in space, so there is no kinetic energy associated with translational motion. The 
individual particles making up the rotating object, however, are moving through 
space; they follow circular paths. Consequently, there is kinetic energy associated 
with rotational motion.
	 Let us consider an object as a system of particles and assume it rotates about a 
fixed z axis with an angular speed v. Figure 10.18 shows the rotating object and 
identifies one particle on the object located at a distance ri from the rotation axis. 
If the mass of the ith particle is mi and its tangential speed is vi, its kinetic energy is

Ki 5 1
2mivi

2

To proceed further, recall that although every particle in the rigid object has the 
same angular speed v, the individual tangential speeds depend on the distance ri 
from the axis of rotation according to Equation 10.10. The total kinetic energy of the 
rotating rigid object is the sum of the kinetic energies of the individual particles:

KR 5 a
i

 Ki 5 a
i

 12mivi
2 5 1

2 a
i

miri
2v2

We can write this expression in the form

	 KR 5 1
2 aa

i
miri

2bv2	 (10.23)

where we have factored v2 from the sum because it is common to every particle. 
We recognize the quantity in parentheses as the moment of inertia of the object, 
introduced in Section 10.5.
	 Therefore, Equation 10.23 can be written

	 KR 5 1
2Iv2	 (10.24)

Although we commonly refer to the quantity 1
2Iv2 as rotational kinetic energy, 

it is not a new form of energy. It is ordinary kinetic energy because it is derived 
from a sum over individual kinetic energies of the particles contained in the rigid 
object. The mathematical form of the kinetic energy given by Equation 10.24 is 
convenient when we are dealing with rotational motion, provided we know how to 
calculate I.

Q	 uick Quiz 10.6  A section of hollow pipe and a solid cylinder have the same 
radius, mass, and length. They both rotate about their long central axes with 
the same angular speed. Which object has the higher rotational kinetic energy? 
(a) The hollow pipe does. (b) The solid cylinder does. (c) They have the same 
rotational kinetic energy. (d) It is impossible to determine.

WW Rotational kinetic energy

mi

ri

z axis

O

v

vi
S

Figure 10.18  ​A rigid object 
rotating about the z axis with 
angular speed v. The kinetic 
energy of the particle of mass mi is 
1
2mivi

2. The total kinetic energy of 
the object is called its rotational 
kinetic energy.

	

▸ 10.9 c o n t i n u e d
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312	 Chapter 10  Rotation of a Rigid Object About a Fixed Axis

Example 10.10	     An Unusual Baton

Four tiny spheres are fastened to the ends of two rods of 
negligible mass lying in the xy plane to form an unusual 
baton (Fig. 10.19). We shall assume the radii of the spheres 
are small compared with the dimensions of the rods.

(A)  ​If the system rotates about the y axis (Fig. 10.19a) 
with an angular speed v, find the moment of inertia and 
the rotational kinetic energy of the system about this axis.

Conceptualize  ​Figure 10.19 is a pictorial representation 
that helps conceptualize the system of spheres and how 
it spins. Model the spheres as particles.

Categorize  ​This example is a substitution problem 
because it is a straightforward application of the defini-
tions discussed in this section.

S o l u t i o n

b

y

b

b

xa a

a

M

M

m

m

x

y

a

a

b

b

m

M M

m

Figure 10.19  ​(Example 10.10) Four spheres form an unusual 
baton. (a) The baton is rotated about the y axis. (b) The baton is 
rotated about the z axis.

Apply  Equation 10.19 to the system: Iy 5 a
i

mi ri
2 5 Ma2 1 Ma2 5  2Ma 2

Evaluate the rotational kinetic energy using 
Equation 10.24:

KR 5 1
2Iy v2 5 1

2 12Ma2 2v2 5  Ma 2v2

That the two spheres of mass m do not enter into this result makes sense because they have no motion about the axis 
of rotation; hence, they have no rotational kinetic energy. By similar logic, we expect the moment of inertia about the 
x axis to be Ix 5 2mb 2 with a rotational kinetic energy about that axis of KR 5 mb 2v2.

(B)  ​Suppose the system rotates in the xy plane about an axis (the z axis) through the center of the baton (Fig. 10.19b). 
Calculate the moment of inertia and rotational kinetic energy about this axis.

S o l u t i o n

Apply Equation 10.19 for this new rotation axis: Iz 5 a
i

miri
2 5 Ma2 1 Ma2 1 mb2 1 mb2 5  2Ma2  1 2mb2

Evaluate the rotational kinetic energy using 
Equation 10.24:

KR 5 1
2Iz v2 5 1

2 12Ma2 1 2mb2 2v2 5  (Ma2 1 mb2)v2

Comparing the results for parts (A) and (B), we conclude that the moment of inertia and therefore the rotational 
kinetic energy associated with a given angular speed depend on the axis of rotation. In part (B), we expect the result to 
include all four spheres and distances because all four spheres are rotating in the xy plane. Based on the work–kinetic 
energy theorem, the smaller rotational kinetic energy in part (A) than in part (B) indicates it would require less work 
to set the system into rotation about the y axis than about the z axis.

What if the mass M is much larger than m? How do the answers to parts (A) and (B) compare?

Answer  ​If M .. m, then m can be neglected and the moment of inertia and the rotational kinetic energy in part (B) 
become

Iz 5 2Ma2  and  KR 5 Ma2v2

which are the same as the answers in part (A). If the masses m of the two tan spheres in Figure 10.19 are negligible, 
these spheres can be removed from the figure and rotations about the y and z axes are equivalent.

What If ?

	

10.8	 Energy Considerations in Rotational Motion
Having introduced rotational kinetic energy in Section 10.7, let us now see how an 
energy approach can be useful in solving rotational problems. We begin by consid-
ering the relationship between the torque acting on a rigid object and its resulting 
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rotational motion so as to generate expressions for power and a rotational analog 
to the work–kinetic energy theorem. Consider the rigid object pivoted at O in Fig-
ure 10.20. Suppose a single external force  F

S
 is applied at P, where  F

S
 lies in the 

plane of the page. The work done on the object by  F
S

 as its point of application 
rotates through an infinitesimal distance ds 5 r d u is

dW 5 F
S

? d sS 5 1F sin f 2r du

where F sin f is the tangential component of  F
S

, or, in other words, the component 
of the force along the displacement. Notice that the radial component vector of F

S
 

does no work on the object because it is perpendicular to the displacement of  
the point of application of  F

S
.

	 Because the magnitude of the torque due to  F
S

 about an axis through O is 
defined as rF sin f by Equation 10.14, we can write the work done for the infinitesi-
mal rotation as

	 dW 5 t du	 (10.25)

The rate at which work is being done by  F
S

 as the object rotates about the fixed axis 
through the angle du in a time interval dt is

dW
dt

5 t 
du

dt

Because dW/dt is the instantaneous power P (see Section 8.5) delivered by the force 
and du/dt 5 v, this expression reduces to

	 P 5
dW
dt

5 tv	 (10.26)

This equation is analogous to P 5 Fv in the case of translational motion, and Equa-
tion 10.25 is analogous to dW 5 Fx dx.
	 In studying translational motion, we have seen that models based on an energy 
approach can be extremely useful in describing a system’s behavior. From what we 
learned of translational motion, we expect that when a symmetric object rotates 
about a fixed axis, the work done by external forces equals the change in the rota-
tional energy of the object.
	 To prove that fact, let us begin with the rigid object under a net torque model, 
whose mathematical representation is o text 5 Ia. Using the chain rule from calcu-
lus, we can express the net torque as

a text 5 Ia 5 I 
dv

dt
5 I 

dv

du
 
du

dt
5 I 

dv

du
 v

Rearranging this expression and noting that o text du 5 dW gives

o text du 5 dW 5 Iv dv

Integrating this expression, we obtain for the work W done by the net external force 
acting on a rotating system

	 W 5 3
vf

vi

 Iv dv 5 1
2Ivf

2 2 1
2Ivi

2	 (10.27)

where the angular speed changes from vi to vf . Equation 10.27 is the work–kinetic 
energy theorem for rotational motion. Similar to the work–kinetic energy theorem 
in translational motion (Section 7.5), this theorem states that the net work done by 
external forces in rotating a symmetric rigid object about a fixed axis equals the 
change in the object’s rotational energy.
	 This theorem is a form of the nonisolated system (energy) model discussed in 
Chapter 8. Work is done on the system of the rigid object, which represents a trans-
fer of energy across the boundary of the system that appears as an increase in the 
object’s rotational kinetic energy.

WW �Power delivered to a rotating 
rigid object

WW �Work–kinetic energy theorem 
for rotational motion

O

P
rd u

f

F
S

d sS

Figure 10.20  ​A rigid object 
rotates about an axis through O 
under the action of an external 
force F

S
 applied at P.
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314	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

	 In general, we can combine this theorem with the translational form of the work–
kinetic energy theorem from Chapter 7. Therefore, the net work done by external 
forces on an object is the change in its total kinetic energy, which is the sum of the 
translational and rotational kinetic energies. For example, when a pitcher throws a 
baseball, the work done by the pitcher’s hands appears as kinetic energy associated 
with the ball moving through space as well as rotational kinetic energy associated 
with the spinning of the ball.
	 In addition to the work–kinetic energy theorem, other energy principles can 
also be applied to rotational situations. For example, if a system involving rotating 
objects is isolated and no nonconservative forces act within the system, the isolated 
system model and the principle of conservation of mechanical energy can be used 
to analyze the system as in Example 10.11 below. In general, Equation 8.2, the con-
servation of energy equation, applies to rotational situations, with the recognition 
that the change in kinetic energy ∆K will include changes in both translational and 
rotational kinetic energies.
	 Finally, in some situations an energy approach does not provide enough infor-
mation to solve the problem and it must be combined with a momentum approach. 
Such a case is illustrated in Example 10.14 in Section 10.9.
	 Table 10.3 lists the various equations we have discussed pertaining to rotational 
motion together with the analogous expressions for translational motion. Notice 
the similar mathematical forms of the equations. The last two equations in the left-
hand column of Table 10.3, involving angular momentum L, are discussed in Chap-
ter 11 and are included here only for the sake of completeness.

Table 10.3 Useful Equations in Rotational and Translational Motion
Rotational Motion About a Fixed Axis	 Translational Motion

Angular speed v 5 du/dt	 Translational speed v 5 dx/dt
Angular acceleration a 5 dv/dt	 Translational acceleration a 5 dv/dt
Net torque otext 5 Ia	 Net force oF  5 ma
If	 vf 5 vi 1 at	 If	 vf 5 vi 1 at

a 5 constant	 uf 5 ui 1 vit 1 12at2	 a 5 constant	 xf 5 xi 1 vit 1 12at 2

	 vf
2 5 vi

2 1 2a(uf 2 ui)		  vf
2 5 vi

2 1 2a(xf 2 xi)

Work W 5  3
uf

ui

 t du	 Work W 5  3
xf

xi

 Fx dx

Rotational kinetic energy KR 5 12Iv2	 Kinetic energy K 5 12mv2

Power P 5 tv		  Power P 5 Fv
Angular momentum L 5 Iv	 Linear momentum p 5 mv
Net torque ot 5 dL/dt	 Net force oF 5 dp/dt

• •

Example 10.11	     Rotating Rod Revisited 

A uniform rod of length L and mass M is free to rotate on a frictionless pin passing 
through one end (Fig 10.21). The rod is released from rest in the horizontal position.

(A)  What is its angular speed when the rod reaches its lowest position?

Conceptualize  ​Consider Figure 10.21 and imagine the rod rotating downward 
through a quarter turn about the pivot at the left end. Also look back at Example 
10.8. This physical situation is the same.

Categorize  ​As mentioned in Example 10.4, the angular acceleration of the rod is 
not constant. Therefore, the kinematic equations for rotation (Section 10.2) can-

AM

S o l u ti  o n

CM

L/2

O

Figure 10.21  ​(Example 10.11) 
A uniform rigid rod pivoted at O 
rotates in a vertical plane under the 
action of the gravitational force.
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not be used to solve this example. We categorize the system of the rod and the Earth as an isolated system in terms of 
energy with no nonconservative forces acting and use the principle of conservation of mechanical energy.

Analyze  ​We choose the configuration in which the rod is hanging straight down as the reference configuration for 
gravitational potential energy and assign a value of zero for this configuration. When the rod is in the horizontal 
position, it has no rotational kinetic energy. The potential energy of the system in this configuration relative to the 
reference configuration is MgL/2 because the center of mass of the rod is at a height L/2 higher than its position in 
the reference configuration. When the rod reaches its lowest position, the energy of the system is entirely rotational 
energy 12Iv2, where I is the moment of inertia of the rod about an axis passing through the pivot.

▸ 10.11 c o n t i n u e d

Using the isolated system (energy) model, write an 
appropriate reduction of Equation 8.2:

DK 1 DU 5 0

Substitute for each of the final and initial energies: 11
2Iv2 2 0 2 1 10 2 1

2MgL 2 5 0

Solve for v and use I 5 1
3ML2 (see Table 10.2) for the rod: v 5 Å

MgL

I
5 Å

MgL
1
3ML2 5 Å

3g

L

Use Equation 10.10 and the result from part (A): vCM 5 r v 5
L
2

 v 5  1
2 "3gL

Because r for the lowest point on the rod is twice what it 
is for the center of mass, the lowest point has a tangen-
tial speed twice that of the center of mass:

v 5 2vCM 5 "3gL

(B)  Determine the tangential speed of the center of mass and the tangential speed of the lowest point on the rod 
when it is in the vertical position.

S o l u ti  o n

Finalize  The initial configuration in this example is the same as that in Example 10.4. In Example 10.4, however, we 
could only find the initial angular acceleration of the rod. Applying an energy approach in the current example allows 
us to find additional information, the angular speed of the rod at the lowest point. Convince yourself that you could 
find the angular speed of the rod at any angular position by knowing the location of the center of mass at this position.

​What if we want to find the angular speed of the rod when the angle it makes with the horizontal is 45.08? 
Because this angle is half of 90.08, for which we solved the problem above, is the angular speed at this configuration 
half the answer in the calculation above, that is, 12!3g/L?

Answer  ​Imagine the rod in Figure 10.21 at the 45.08 position. Use a pencil or a ruler to represent the rod at this posi-
tion. Notice that the center of mass has dropped through more than half of the distance L/2 in this configuration. 
Therefore, more than half of the initial gravitational potential energy has been transformed to rotational kinetic 
energy. So, we should not expect the value of the angular speed to be as simple as proposed above.
	 Note that the center of mass of the rod drops through a distance of 0.500L as the rod reaches the vertical configu-
ration. When the rod is at 45.08 to the horizontal, we can show that the center of mass of the rod drops through a 
distance of 0.354L. Continuing the calculation, we find that the angular speed of the rod at this configuration is 0.841
!3g/L , (not 12!3g/L).

What If ?

	

Example 10.12	     Energy and the Atwood Machine 

Two blocks having different masses m1 and m2 are connected by a string passing over a pulley as shown in Figure 10.22 
on page 316. The pulley has a radius R and moment of inertia I about its axis of rotation. The string does not slip on 
the pulley, and the system is released from rest. Find the translational speeds of the blocks after block 2 descends 
through a distance h and find the angular speed of the pulley at this time.

AM

continued
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316	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

Conceptualize  ​We have already seen examples involving the 
Atwood machine, so the motion of the objects in Figure 10.22 
should be easy to visualize.

Categorize  ​Because the string does not slip, the pulley rotates 
about the axle. We can neglect friction in the axle because 
the axle’s radius is small relative to that of the pulley. Hence, 
the frictional torque is much smaller than the net torque 
applied by the two blocks provided that their masses are sig-
nificantly different. Consequently, the system consisting of 
the two blocks, the pulley, and the Earth is an isolated system in 
terms of energy with no nonconservative forces acting; there-
fore, the mechanical energy of the system is conserved.

Analyze  ​We define the zero configuration for gravitational potential energy as that which exists when the system is 
released. From Figure 10.22, we see that the descent of block 2 is associated with a decrease in system potential energy 
and that the rise of block 1 represents an increase in potential energy.

S o l u ti  o n

h

h

R

m2

m1Figure 10.22  (Example 
10.12) An Atwood machine with 
a massive pulley.

Using the isolated system (energy) model, write 
an appropriate reduction of the conservation of 
energy equation:

DK 1 DU 5 0

Substitute for each of the energies: 3 11
2m1vf

2 1 1
2m2vf

2 1 1
2Ivf

2 2 2 0 4 1 3 1m1gh 2 m2gh 2 2 0 4 5 0 

Use vf 5 Rvf to substitute for vf : 1
2m1vf

2 1 1
2m2vf

2 1 1
2I 

vf
2

R 2 5 m2gh 2 m1gh

1
2am1 1 m2 1

I
R 2bvf

2 5 1m2 2 m1 2gh

Solve for vf : (1)   vf 5 c 2 1m2 2 m1 2gh

m1 1 m2 1 I/R 2 d
1/2

Use vf 5 Rvf to solve for vf : vf 5
vf

R
5  

1
R

 c 2 1m2 2 m1 2gh

m1 1 m2 1 I/R 2 d
1/2

Finalize  Each block can be modeled as a particle under constant acceleration because it experiences a constant net force. 
Think about what you would need to do to use Equation (1) to find the acceleration of one of the blocks. Then imag-
ine the pulley becoming massless and determine the acceleration of a block. How does this result compare with the 
result of Example 5.9?

	

▸ 10.12 c o n t i n u e d

10.9	 Rolling Motion of a Rigid Object
In this section, we treat the motion of a rigid object rolling along a flat surface. In 
general, such motion is complex. For example, suppose a cylinder is rolling on a 
straight path such that the axis of rotation remains parallel to its initial orienta-
tion in space. As Figure 10.23 shows, a point on the rim of the cylinder moves in a 
complex path called a cycloid. We can simplify matters, however, by focusing on the 
center of mass rather than on a point on the rim of the rolling object. As shown 
in Figure 10.23, the center of mass moves in a straight line. If an object such as a 
cylinder rolls without slipping on the surface (called pure rolling motion), a simple 
relationship exists between its rotational and translational motions.
	 Consider a uniform cylinder of radius R rolling without slipping on a horizontal 
surface (Fig. 10.24). As the cylinder rotates through an angle u, its center of mass 
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Figure 10.23  ​Two points on a 
rolling object take different paths 
through space.

One light source at the center of a 
rolling cylinder and another at one 
point on the rim illustrate the 
different paths these two points take. 

The point on the 
rim moves in the 
path called a cycloid 
(red curve).

The center 
moves in a 
straight line 
(green line). 
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moves a linear distance s 5 Ru (see Eq. 10.1a). Therefore, the translational speed of 
the center of mass for pure rolling motion is given by

	 vCM 5
ds
dt

5 R 
du

dt
5 Rv	 (10.28)

where v is the angular speed of the cylinder. Equation 10.28 holds whenever a cyl-
inder or sphere rolls without slipping and is the condition for pure rolling motion. 
The magnitude of the linear acceleration of the center of mass for pure rolling 
motion is

	 aCM 5
dvCM 

dt
5 R 

dv

dt
5 Ra	 (10.29)

where a is the angular acceleration of the cylinder.
	 Imagine that you are moving along with a rolling object at speed vCM, staying 
in a frame of reference at rest with respect to the center of mass of the object. As 
you observe the object, you will see the object in pure rotation around its center 
of mass. Figure 10.25a shows the velocities of points at the top, center, and bottom 
of the object as observed by you. In addition to these velocities, every point on the 
object moves in the same direction with speed vCM relative to the surface on which 
it rolls. Figure 10.25b shows these velocities for a nonrotating object. In the refer-
ence frame at rest with respect to the surface, the velocity of a given point on the 
object is the sum of the velocities shown in Figures 10.25a and 10.25b. Figure 10.25c 
shows the results of adding these velocities.
	 Notice that the contact point between the surface and object in Figure 10.25c 
has a translational speed of zero. At this instant, the rolling object is moving in 
exactly the same way as if the surface were removed and the object were pivoted at 
point P and spun about an axis passing through P. We can express the total kinetic 
energy of this imagined spinning object as

	 K 5 1
2IP v2	 (10.30)

where IP is the moment of inertia about a rotation axis through P.

vCM

CM
vCM

vCM
P

CM v � 0  

P

v � R

v � R

CM

P
v � 0

v � vCM

v � vCM � R  � 2vCMv
v

v

Pure rotation Pure translation Combination of 
translation and rotation

a b c

Figure 10.25  The motion of a 
rolling object can be modeled as 
a combination of pure translation 
and pure rotation.

s � R

R s

u

u

Figure 10.24  For pure rolling 
motion, as the cylinder rotates 
through an angle u its center 
moves a linear distance s 5 Ru.

Pitfall Prevention 10.6
Equation 10.28 Looks Familiar   
Equation 10.28 looks very similar 
to Equation 10.10, so be sure to 
be clear on the difference. Equa-
tion 10.10 gives the tangential 
speed of a point on a rotating 
object located a distance r from 
a fixed rotation axis if the object 
is rotating with angular speed v. 
Equation 10.28 gives the trans-
lational speed of the center of 
mass of a rolling object of radius R 
rotating with angular speed v.
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	 Because the motion of the imagined spinning object is the same at this instant as 
our actual rolling object, Equation 10.30 also gives the kinetic energy of the rolling 
object. Applying the parallel-axis theorem, we can substitute IP 5 ICM 1 MR 2 into 
Equation 10.30 to obtain

K 5 1
2ICMv2 1 1

2MR2v2

Using vCM 5 Rv, this equation can be expressed as

	 K 5 1
2 ICMv2 1 1

2MvCM
2	 (10.31)

The term 1
2ICMv2 represents the rotational kinetic energy of the object about its 

center of mass, and the term 12MvCM
2 represents the kinetic energy the object would 

have if it were just translating through space without rotating. Therefore, the total 
kinetic energy of a rolling object is the sum of the rotational kinetic energy about 
the center of mass and the translational kinetic energy of the center of mass. This 
statement is consistent with the situation illustrated in Figure 10.25, which shows 
that the velocity of a point on the object is the sum of the velocity of the center of 
mass and the tangential velocity around the center of mass.
	 Energy methods can be used to treat a class of problems concerning the roll-
ing motion of an object on a rough incline. For example, consider Figure 10.26, 
which shows a sphere rolling without slipping after being released from rest at the 
top of the incline. Accelerated rolling motion is possible only if a friction force 
is present between the sphere and the incline to produce a net torque about the 
center of mass. Despite the presence of friction, no loss of mechanical energy 
occurs because the contact point is at rest relative to the surface at any instant. 
(On the other hand, if the sphere were to slip, mechanical energy of the sphere–
incline–Earth system would decrease due to the nonconservative force of kinetic 
friction.)
	 In reality, rolling friction causes mechanical energy to transform to internal 
energy. Rolling friction is due to deformations of the surface and the rolling object. 
For example, automobile tires flex as they roll on a roadway, representing a trans-
formation of mechanical energy to internal energy. The roadway also deforms a 
small amount, representing additional rolling friction. In our problem-solving 
models, we ignore rolling friction unless stated otherwise.
	 Using vCM 5 Rv for pure rolling motion, we can express Equation 10.31 as

  K 5 1
2ICM avCM 

R
b

2

 1 1
2MvCM

2

	  K 5 1
2 a

ICM 
R2  1 MbvCM

2	 (10.32)

For the sphere–Earth system in Figure 10.26, we define the zero configuration of 
gravitational potential energy to be when the sphere is at the bottom of the incline. 
Therefore, Equation 8.2 gives

DK 1 DU 5 0

	 c1
2 a

ICM 
R2  1 MbvCM

2 2 0 d 1 10 2 Mgh 2 5 0	

	  vCM 5 c 2gh

1 1 1ICM /MR2 2  d
1/2

	 (10.33)

Q	 uick Quiz 10.7 ​ A ball rolls without slipping down incline A, starting from rest. 
At the same time, a box starts from rest and slides down incline B, which is iden-
tical to incline A except that it is frictionless. Which arrives at the bottom first? 
(a) The ball arrives first. (b) The box arrives first. (c) Both arrive at the same 
time. (d) It is impossible to determine.

Total kinetic energy 
of a rolling object

x

M

u

v
h

vCM
S

R

Figure 10.26  A sphere roll-
ing down an incline. Mechanical 
energy of the sphere–Earth system 
is conserved if no slipping occurs.
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3Example 10.14 was inspired in part by C. E. Mungan, “A primer on work–energy relationships for introductory physics,” The Physics Teacher, 43:10, 2005.

	

Example 10.13	     Sphere Rolling Down an Incline 

For the solid sphere shown in Figure 10.26, calculate the translational speed of the center of mass at the bottom of the 
incline and the magnitude of the translational acceleration of the center of mass.

Conceptualize  ​Imagine rolling the sphere down the incline. Compare it in your mind to a book sliding down a fric-
tionless incline. You probably have experience with objects rolling down inclines and may be tempted to think that the 
sphere would move down the incline faster than the book. You do not, however, have experience with objects sliding 
down frictionless inclines! So, which object will reach the bottom first? (See Quick Quiz 10.7.)

Categorize  ​We model the sphere and the Earth as an isolated system in terms of energy with no nonconservative forces 
acting. This model is the one that led to Equation 10.33, so we can use that result.

AM

S o l u ti  o n

Analyze  ​Evaluate the speed of the center of mass of the 
sphere from Equation 10.33:

(1)   vCM 5 c 2gh

1 1 12
5MR 2/MR 2 2  d

1/2

5 110
7 gh 21/2

	 This result is less than !2gh, which is the speed an object would have if it simply slid down the incline without rotat-
ing. (Eliminate the rotation by setting ICM 5 0 in Eq. 10.33.)
	 To calculate the translational acceleration of the center of mass, notice that the vertical displacement of the sphere 
is related to the distance x it moves along the incline through the relationship h 5 x sin u.

Use this relationship to rewrite Equation (1): vCM 2 5 10
7 gx sin u

Write Equation 2.17 for an object starting from rest and 
moving through a distance x under constant acceleration:

vCM
2 5 2aCMx

Equate the preceding two expressions to find aCM: aCM 5 5
7g sin u

Finalize  Both the speed and the acceleration of the center of mass are independent of the mass and the radius of the 
sphere. That is, all homogeneous solid spheres experience the same speed and acceleration on a given incline. Try to 
verify this statement experimentally with balls of different sizes, such as a marble and a croquet ball.
	 If we were to repeat the acceleration calculation for a hollow sphere, a solid cylinder, or a hoop, we would obtain 
similar results in which only the factor in front of g sin u would differ. The constant factors that appear in the expres-
sions for vCM and aCM depend only on the moment of inertia about the center of mass for the specific object. In all 
cases, the acceleration of the center of mass is less than g sin u, the value the acceleration would have if the incline were 
frictionless and no rolling occurred.

Example 10.14	     Pulling on a Spool3 

A cylindrically symmetric spool of mass m and radius R sits at rest on a horizontal 
table with friction (Fig. 10.27). With your hand on a light string wrapped around 
the axle of radius r, you pull on the spool with a constant horizontal force of mag-
nitude T to the right. As a result, the spool rolls without slipping a distance L 
along the table with no rolling friction.

(A)  Find the final translational speed of the center of mass of the spool.

Conceptualize  ​Use Figure 10.27 to visualize the motion of the spool when you 
pull the string. For the spool to roll through a distance L, notice that your hand 
on the string must pull through a distance different from L.

AM

S o l u ti  o n

R
T
S

L

r

Figure 10.27  ​(Example 10.14)  
A spool rests on a horizontal table. 
A string is wrapped around the axle 
and is pulled to the right by a hand.

continued

www.as
warp

hy
sic

s.w
ee

bly
.co

m



320	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

Categorize  ​The spool is a rigid object under a net torque, but the net torque includes that due to the friction force at 
the bottom of the spool, about which we know nothing. Therefore, an approach based on the rigid object under a 
net torque model will not be successful. Work is done by your hand on the spool and string, which form a noniso-
lated system in terms of energy. Let’s see if an approach based on the nonisolated system (energy) model is fruitful.

Analyze  ​The only type of energy that changes in the system is the kinetic energy of the spool. There is no rolling fric-
tion, so there is no change in internal energy. The only way that energy crosses the system’s boundary is by the work 
done by your hand on the string. No work is done by the static force of friction on the bottom of the spool (to the left 
in Fig. 10.27) because the point of application of the force moves through no displacement.

Write the appropriate reduction of the conservation of 
energy equation, Equation 8.2:

(1)   W 5 DK 5 DKtrans 1 DKrot

where W is the work done on the string by your hand. To find this work, we need to find the displacement of your hand 
during the process.
	 We first find the length of string that has unwound off the spool. If the spool rolls through a distance L, the total 
angle through which it rotates is u 5 L/R. The axle also rotates through this angle.

Use Equation 10.1a to find the total arc length through 
which the axle turns:

, 5 r u 5
r
R

 L

This result also gives the length of string pulled off the axle. Your hand will move through this distance plus the dis-
tance L through which the spool moves. Therefore, the magnitude of the displacement of the point of application of 
the force applied by your hand is , 1 L 5 L(1 1 r/R).

Solve for vCM: (3)   vCM 5 Å
2TL 11 1 r/R 2
m 11 1 I/mR 2 2

Apply the nonslip rolling condition v 5 vCM/R : TL a1 1
r
R
b 5 1

2mvCM
2 1 1

2I 
vCM

2

R 2

(B)  Find the value of the friction force f.

Categorize  ​Because the friction force does no work, we cannot evaluate it from an energy approach. We model the 
spool as a nonisolated system, but this time in terms of momentum. The string applies a force across the boundary of the 
system, resulting in an impulse on the system. Because the forces on the spool are constant, we can model the spool’s 
center of mass as a particle under constant acceleration.

S o l u ti  o n

Substitute Equation (2) into Equation (1): TL a1 1
r
R
b 5 1

2mvCM
2 1 1

2Iv2

Evaluate the work done by your hand on the string: (2)   W 5 TL a1 1
r
R
b

where I is the moment of inertia of the spool about its center of mass and vCM and v are the final values after the wheel 
rolls through the distance L.

Analyze  ​Write the impulse–momentum theorem (Eq. 
9.40) for the spool:

m(vCM 2 0) 5 (T 2 f )Dt 

(4)   mvCM 5 (T 2 f )Dt

For a particle under constant acceleration starting from rest, Equation 2.14 tells us that the average velocity of the cen-
ter of mass is half the final velocity.

Use Equation 2.2 to find the time interval for the center 
of mass of the spool to move a distance L from rest to a 
final speed vCM:

(5)   Dt 5
L

vCM,avg 
5

2L
vCM

▸ 10.14 c o n t i n u e d
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	   Summary	 321

Substitute Equation (5) into Equation (4): mvCM 5 1T 2 f 2  2L
vCM

Solve for the friction force f : f 5 T 2
mvCM

2

2L

continued

	

▸ 10.14 c o n t i n u e d

Substitute vCM from Equation (3): f 5 T 2
m
2L

 c 2TL 11 1 r/R 2
m 11 1 I/mR 2 2  d  

5 T 2 T 
11 1 r/R 2

11 1 I/mR 2 2 5 T c I 2 mrR
I 1 mR 2 d

Finalize  Notice that we could use the impulse–momentum theorem for the translational motion of the spool while ignor-
ing that the spool is rotating! This fact demonstrates the power of our growing list of approaches to solving problems.

continued

Summary

Definitions

  The angular position of a rigid object is defined as the angle 
u between a reference line attached to the object and a refer-
ence line fixed in space. The angular displacement of a particle 
moving in a circular path or a rigid object rotating about a 
fixed axis is Du ; uf 2 ui.
	 The instantaneous angular speed of a particle moving in a 
circular path or of a rigid object rotating about a fixed axis is

	 v ;
du

dt
	 (10.3)

The instantaneous angular acceleration of a particle moving in 
a circular path or of a rigid object rotating about a fixed axis is

	 a ;
dv

dt
	 (10.5)

	 When a rigid object rotates about a fixed axis, every part of 
the object has the same angular speed and the same angular 
acceleration.

  The magnitude of the torque associated 
with a force F

S
 acting on an object at a dis-

tance r from the rotation axis is

	 t 5 rF sin f 5 Fd	 (10.14)
where f is the angle between the position vec-
tor of the point of application of the force and 
the force vector, and d is the moment arm of 
the force, which is the perpendicular distance 
from the rotation axis to the line of action of 
the force.

  The moment of inertia of a system of par-
ticles is defined as

	 I ; a
i

miri
2	 (10.19)

where mi is the mass of the ith particle and ri is 
its distance from the rotation axis.

  When a rigid object rotates about a 
fixed axis, the angular position, angu-
lar speed, and angular acceleration are 
related to the translational position, 
translational speed, and translational 
acceleration through the relationships

	 s 5 ru	 (10.1a)

	 v 5 rv	 (10.10)

	 at 5 r a	 (10.11)

  If a rigid object rotates about a fixed axis with angular speed v, its 
rotational kinetic energy can be written

	 KR 5 1
2Iv2	 (10.24)

where I is the moment of inertia of the object about the axis of rotation.

  The moment of inertia of a rigid object is

	 I 5 3r 2 dm	 (10.20)

where r is the distance from the mass element dm to the axis of rotation.
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322	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

  The rate at which work is 
done by an external force in 
rotating a rigid object about 
a fixed axis, or the power 
delivered, is

	 P 5 tv	 (10.26)

  If work is done on a rigid object 
and the only result of the work is rota-
tion about a fixed axis, the net work 
done by external forces in rotating the 
object equals the change in the rota-
tional kinetic energy of the object:

	 W 5 1
2 Ivf

2 2 1
2 Ivi

2	 (10.27)

  The total kinetic energy of a rigid 
object rolling on a rough surface 
without slipping equals the rotational 
kinetic energy about its center of 
mass plus the translational kinetic 
energy of the center of mass:

	 K 5 1
2 ICM v2 1 1

2 MvCM
2	 (10.31)

Analysis Models for Problem Solving

  Rigid Object Under Constant Angu-
lar Acceleration. If a rigid object rotates 
about a fixed axis under constant angular 
acceleration, one can apply equations of 
kinematics that are analogous to those for 
translational motion of a particle under 
constant acceleration:

	 vf 5 vi 1 at	 (10.6)

	 uf 5 ui 1 vit 1 1
2at 2	 (10.7)

	 vf
2 5 vi

2 1 2a(uf 2 ui)	 (10.8)

	 uf 5 ui 1 1
2 1vi 1 vf 2 t	 (10.9)

  Rigid Object Under 
a Net Torque. If a rigid 
object free to rotate 
about a fixed axis has 
a net external torque 
acting on it, the object 
undergoes an angular 
acceleration a, where

	 o text 5 Ia	 (10.18)

	 This equation is the rotational analog 
to Newton’s second law in the particle 
under a net force model.

a� constant a

	 1.	 A cyclist rides a bicycle with a wheel radius of 0.500 m 
across campus. A piece of plastic on the front rim makes 
a clicking sound every time it passes through the fork. 
If the cyclist counts 320 clicks between her apartment 
and the cafeteria, how far has she traveled? (a) 0.50 km  
(b) 0.80 km (c) 1.0 km (d) 1.5 km (e) 1.8 km

	 2.	 Consider an object on a rotating disk a distance r from 
its center, held in place on the disk by static friction. 
Which of the following statements is not true concern-
ing this object? (a) If the angular speed is constant, 
the object must have constant tangential speed. (b) If 
the angular speed is constant, the object is not accel-
erated. (c) The object has a tangential acceleration 
only if the disk has an angular acceleration. (d) If the 
disk has an angular acceleration, the object has both a 
centripetal acceleration and a tangential acceleration.  
(e) The object always has a centripetal acceleration 
except when the angular speed is zero.

	 3.	 A wheel is rotating about a fixed axis with constant 
angular acceleration 3 rad/s2. At different moments, its 
angular speed is 22 rad/s, 0, and 12 rad/s. For a point 
on the rim of the wheel, consider at these moments 
the magnitude of the tangential component of accel-
eration and the magnitude of the radial component of 
acceleration. Rank the following five items from larg-
est to smallest: (a) uatu when v 5 22 rad/s, (b)uaru when 

v 5 22 rad/s, (c)uaru when v 5 0, (d)  uatu when v 5  
2 rad/s, and (e) uaru when v 5 2 rad/s. If two items are 
equal, show them as equal in your ranking. If a quan-
tity is equal to zero, show that fact in your ranking.

	 4.	 A grindstone increases in angular speed from 4.00 rad/s  
to 12.00 rad/s in 4.00 s. Through what angle does it 
turn during that time interval if the angular accelera-
tion is constant? (a) 8.00 rad (b) 12.0 rad (c) 16.0 rad 
(d) 32.0 rad (e) 64.0 rad

	 5.	 Suppose a car’s standard tires are replaced with tires 
1.30 times larger in diameter. (i) Will the car’s speed-
ometer reading be (a) 1.69 times too high, (b) 1.30 
times too high, (c) accurate, (d) 1.30 times too low,  
(e) 1.69 times too low, or (f) inaccurate by an unpre-
dictable factor? (ii) Will the car’s fuel economy in miles 
per gallon or km/L appear to be (a) 1.69 times better, 
(b) 1.30 times better, (c) essentially the same, (d) 1.30 
times worse, or (e) 1.69 times worse?

	 6.	 Figure OQ10.6 shows a system of four particles joined 
by light, rigid rods. Assume a 5 b and M is larger than 
m. About which of the coordinate axes does the sys-
tem have (i) the smallest and (ii) the largest moment 
of inertia? (a)  the x axis (b) the y axis (c) the z axis. 
(d) The moment of inertia has the same small value for 
two axes. (e) The moment of inertia is the same for all 
three axes.

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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	 8.	 A constant net torque is exerted on an object. Which 
of the following quantities for the object cannot be 
constant? Choose all that apply. (a) angular position  
(b) angular velocity (c) angular acceleration (d) moment  
of inertia (e) kinetic energy

	 9.	 A basketball rolls across a classroom floor without slip-
ping, with its center of mass moving at a certain speed. 
A block of ice of the same mass is set sliding across the 
floor with the same speed along a parallel line. Which 
object has more (i) kinetic energy and (ii) momentum? 
(a) The basketball does. (b) The ice does. (c) The two 
quantities are equal. (iii) The two objects encounter a 
ramp sloping upward. Which object will travel farther 
up the ramp? (a) The basketball will. (b) The ice will. 
(c) They will travel equally far up the ramp.

	10.	A toy airplane hangs from the ceiling at the bottom 
end of a string. You turn the airplane many times to 
wind up the string clockwise and release it. The air-
plane starts to spin counterclockwise, slowly at first 
and then faster and faster. Take counterclockwise as 
the positive sense and assume friction is negligible. 
When the string is entirely unwound, the airplane has 
its maximum rate of rotation. (i) At this moment, is 
its angular acceleration (a) positive, (b) negative, or 
(c) zero? (ii) The airplane continues to spin, winding 
the string counterclockwise as it slows down. At the 
moment it momentarily stops, is its angular accelera-
tion (a) positive, (b) negative, or (c) zero?

	11.	 A solid aluminum sphere of radius R has moment of iner-
tia I about an axis through its center. Will the moment of 
inertia about a central axis of a solid aluminum sphere 
of radius 2R be (a) 2I, (b) 4I, (c) 8I, (d) 16I, or (e) 32I ?

	

y

M M

m

m

b

b

x
a a

z

Figure OQ10.6

7.	 As shown in Figure OQ10.7, a cord is wrapped onto a 
cylindrical reel mounted on a fixed, frictionless, hori-
zontal axle. When does the reel have a greater mag-
nitude of angular acceleration? (a) When the cord is 
pulled down with a constant force of 50 N. (b) When 
an object of weight 50 N is hung from the cord and 
released. (c) The angular accelerations in parts (a) and  
(b) are equal. (d) It is impossible to determine.

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Is it possible to change the translational kinetic energy 
of an object without changing its rotational energy?

	 2.	 Must an object be rotating to have a nonzero moment 
of inertia?

	 3.	 Suppose just two external forces act on a stationary, 
rigid object and the two forces are equal in magnitude 
and opposite in direction. Under what condition does 
the object start to rotate?

	 4.	 Explain how you might use the apparatus described in 
Figure OQ10.7 to determine the moment of inertia of 
the wheel. Note: If the wheel does not have a uniform 
mass density, the moment of inertia is not necessarily 
equal to 12MR 2.

	 5.	 Using the results from Example 10.6, how would you 
calculate the angular speed of the wheel and the linear 
speed of the hanging object at t 5 2 s, assuming the 
system is released from rest at t 5 0?

	 6.	 Explain why changing the axis of rotation of an object 
changes its moment of inertia.

	 7.	 Suppose you have two eggs, one hard-boiled and the 
other uncooked. You wish to determine which is the 
hard-boiled egg without breaking the eggs, which 

can be done by spinning the two eggs on the floor 
and comparing the rotational motions. (a) Which egg 
spins faster? (b) Which egg rotates more uniformly?  
(c) Which egg begins spinning again after being 
stopped and then immediately released? Explain your 
answers to parts (a), (b), and (c).

	 8.	 Suppose you set your textbook sliding across a gymna-
sium floor with a certain initial speed. It quickly stops 
moving because of a friction force exerted on it by the 
floor. Next, you start a basketball rolling with the same 
initial speed. It keeps rolling from one end of the gym 
to the other. (a)  Why does the basketball roll so far? 
(b) Does friction significantly affect the basketball’s 
motion?

	 9.	 (a) What is the angular speed of the second hand of 
an analog clock? (b) What is the direction of vS as you 
view a clock hanging on a vertical wall? (c) What is the 
magnitude of the angular acceleration vector aS of the 
second hand?

	10.	One blade of a pair of scissors rotates counterclockwise 
in the xy plane. (a) What is the direction of vS for the 
blade? (b) What is the direction of aS if the magnitude 
of the angular velocity is decreasing in time?

Figure OQ10.7  Objective Question 7 and Conceptual Question 4.
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324	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

mine the angular position, angular speed, and angu-
lar acceleration of the door (a) at t 5 0 and (b) at t 5 
3.00 s.

	 4.	 A bar on a hinge starts from rest and rotates with an 
angular acceleration a 5 10 1 6t, where a is in rad/s2  
and t is in seconds. Determine the angle in radians 
through which the bar turns in the first 4.00 s.

Section 10.2 Analysis Model: Rigid Object  
Under Constant Angular Acceleration
	 5.	 A wheel starts from rest and rotates with constant 

angular acceleration to reach an angular speed of  
12.0 rad/s in 3.00 s. Find (a) the magnitude of the angu-

W

Section 10.1 Angular Position, Velocity, and Acceleration

	 1.	 (a) Find the angular speed of the Earth’s rotation about 
its axis. (b) How does this rotation affect the shape of 
the Earth?

	 2.	 A potter’s wheel moves uniformly from rest to an angu-
lar speed of 1.00 rev/s in 30.0 s. (a) Find its average 
angular acceleration in radians per second per second. 
(b) Would doubling the angular acceleration during 
the given period have doubled the final angular speed?

	 3.	 During a certain time interval, the angular position 
of a swinging door is described by u 5 5.00 1 10.0t 1 
2.00t 2, where u is in radians and t is in seconds. Deter-

Q/C

W

far side and pulled forward horizontally, the tricycle 
would start to roll forward. (a) Instead, assume a string 
is attached to the lower pedal on the near side and 
pulled forward horizontally as shown by A. Will the tri-
cycle start to roll? If so, which way? Answer the same 
questions if (b) the string is pulled forward and upward 
as shown by B, (c) if the string is pulled straight down 
as shown by C, and (d) if the string is pulled forward 
and downward as shown by D. (e) What If? Suppose 
the string is instead attached to the rim of the front 
wheel and pulled upward and backward as shown by E. 
Which way does the tricycle roll? (f) Explain a pattern 
of reasoning, based on the figure, that makes it easy to 
answer questions such as these. What physical quantity 
must you evaluate?

B

A

D
C

E

Figure CQ10.15

	16.	A person balances a meterstick in a horizontal posi-
tion on the extended index fingers of her right and 
left hands. She slowly brings the two fingers together. 
The stick remains balanced, and the two fingers always 
meet at the 50-cm mark regardless of their original 
positions. (Try it!) Explain why that occurs.

	11.	 If you see an object rotating, is there necessarily a net 
torque acting on it?

	12.	If a small sphere of mass M were placed at the end 
of the rod in Figure 10.21, would the result for v be 
greater than, less than, or equal to the value obtained 
in Example 10.11?

	13.	Three objects of uniform density—a solid sphere, 
a solid cylinder, and a hollow cylinder—are placed 
at the top of an incline (Fig. CQ10.13). They are all 
released from rest at the same elevation and roll with-
out slipping. (a) Which object reaches the bottom first?  
(b) Which reaches it last? Note: The result is indepen-
dent of the masses and the radii of the objects. (Try 
this activity at home!)

Figure CQ10.13

	14.	Which of the entries in Table 10.2 applies to finding 
the moment of inertia (a) of a long, straight sewer pipe 
rotating about its axis of symmetry? (b) Of an embroi-
dery hoop rotating about an axis through its center 
and perpendicular to its plane? (c) Of a uniform door 
turning on its hinges? (d) Of a coin turning about an 
axis through its center and perpendicular to its faces?

	15.	Figure CQ10.15 shows a side view of a child’s tricycle 
with rubber tires on a horizontal concrete sidewalk. 
If a string were attached to the upper pedal on the 

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C
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lar acceleration of the wheel and (b) the angle in radi-
ans through which it rotates in this time interval.

	 6.	 A centrifuge in a medical laboratory rotates at an angu-
lar speed of 3 600 rev/min. When switched off, it rotates 
through 50.0 revolutions before coming to rest. Find 
the constant angular acceleration of the centrifuge.

	 7.	 An electric motor rotating a workshop grinding wheel 
at 1.00 3 102 rev/min is switched off. Assume the wheel 
has a constant negative angular acceleration of magni-
tude 2.00 rad/s2. (a) How long does it take the grinding 
wheel to stop? (b) Through how many radians has the 
wheel turned during the time interval found in part (a)?

	 8.	 A machine part rotates at an angular speed of 
0.060  rad/s; its speed is then increased to 2.2 rad/s 
at an angular acceleration of 0.70 rad/s2. (a) Find the 
angle through which the part rotates before reaching 
this final speed. (b) If both the initial and final angu-
lar speeds are doubled and the angular acceleration 
remains the same, by what factor is the angular dis-
placement changed? Why?

	 9.	 A dentist’s drill starts from rest. After 3.20 s of con-
stant angular acceleration, it turns at a rate of 2.51 3 
104 rev/min. (a) Find the drill’s angular acceleration.  
(b) Determine the angle (in radians) through which 
the drill rotates during this period.

	10.	Why is the following situation impossible? Starting from 
rest, a disk rotates around a fixed axis through an 
angle of 50.0   rad in a time interval of 10.0 s. The 
angular acceleration of the disk is constant during the 
entire motion, and its final angular speed is 8.00 rad/s.

	11.	 A rotating wheel requires 3.00 s to rotate through  
37.0 revolutions. Its angular speed at the end of the 
3.00-s interval is 98.0 rad/s. What is the constant angu-
lar acceleration of the wheel?

	12.	The tub of a washer goes into its spin cycle, starting 
from rest and gaining angular speed steadily for 8.00 s,  
at which time it is turning at 5.00 rev/s. At this point, 
the person doing the laundry opens the lid, and a 
safety switch turns off the washer. The tub smoothly 
slows to rest in 12.0 s. Through how many revolutions 
does the tub turn while it is in motion?

	13.	A spinning wheel is slowed down by a brake, giving it 
a constant angular acceleration of 25.60 rad/s2. Dur-
ing a 4.20-s time interval, the wheel rotates through  
62.4 rad. What is the angular speed of the wheel at the 
end of the 4.20-s interval?

	14.	 Review. Consider a tall building located on the Earth’s 
equator. As the Earth rotates, a person on the top floor of 
the building moves faster than someone on the ground 
with respect to an inertial reference frame because the 
person on the ground is closer to the Earth’s axis. Con-
sequently, if an object is dropped from the top floor to 
the ground a distance h below, it lands east of the point 
vertically below where it was dropped. (a) How far to the 
east will the object land? Express your answer in terms 
of h, g, and the angular speed v of the Earth. Ignore air 
resistance and assume the free-fall acceleration is con-
stant over this range of heights. (b) Evaluate the east-
ward displacement for h 5 50.0 m. (c) In your judgment, 
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were we justified in ignoring this aspect of the Coriolis 
effect in our previous study of free fall? (d) Suppose the 
angular speed of the Earth were to decrease due to tidal 
friction with constant angular acceleration. Would the 
eastward displacement of the dropped object increase 
or decrease compared with that in part (b)?

Section 10.3 Angular and Translational Quantities
	15.	A racing car travels on a circular track of radius 250 m.  

Assuming the car moves with a constant speed of  
45.0 m/s, find (a) its angular speed and (b) the magni-
tude and direction of its acceleration.

	16.	Make an order-of-magnitude estimate of the number 
of revolutions through which a typical automobile tire 
turns in one year. State the quantities you measure or 
estimate and their values.

	17.	 A discus thrower (Fig. P4.33, page 104) accelerates a 
discus from rest to a speed of 25.0 m/s by whirling it 
through 1.25 rev. Assume the discus moves on the arc 
of a circle 1.00 m in radius. (a) Calculate the final angu-
lar speed of the discus. (b) Determine the magnitude 
of the angular acceleration of the discus, assuming it 
to be constant. (c) Calculate the time interval required 
for the discus to accelerate from rest to 25.0 m/s.

	18.	Figure P10.18 shows the drive train of a bicycle that 
has wheels 67.3 cm in diameter and pedal cranks  
17.5 cm long. The cyclist pedals at a steady cadence of  
76.0 rev/min. The chain engages with a front sprocket 
15.2 cm in diameter and a rear sprocket 7.00 cm in 
diameter. Calculate (a) the speed of a link of the chain 
relative to the bicycle frame, (b) the angular speed of 
the bicycle wheels, and (c) the speed of the bicycle rela-
tive to the road. (d) What pieces of data, if any, are not 
necessary for the calculations?

Chain

Front sprocket
Pedal crank

Rear
sprocket

Figure P10.18

	19.	A wheel 2.00 m in diameter lies in a vertical plane and 
rotates about its central axis with a constant angular 
acceleration of 4.00 rad/s2. The wheel starts at rest at  
t 5 0, and the radius vector of a certain point P on the 
rim makes an angle of 57.38 with the horizontal at this 
time. At t 5 2.00 s, find (a) the angular speed of the 
wheel and, for point P, (b) the tangential speed, (c) the 
total acceleration, and (d) the angular position.

	20.	A car accelerates uniformly from rest and reaches a 
speed of 22.0 m/s in 9.00 s. Assuming the diameter of 
a tire is 58.0 cm, (a) find the number of revolutions the 
tire makes during this motion, assuming that no slip-
ping occurs. (b) What is the final angular speed of a 
tire in revolutions per second?

W

W
Q/C

M

W

www.as
warp

hy
sic

s.w
ee

bly
.co

m



326	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

	21.	 A disk 8.00 cm in radius rotates at a constant rate of 
1 200 rev/min about its central axis. Determine (a) its 
angular speed in radians per second, (b) the tangen-
tial speed at a point 3.00 cm from its center, (c) the 
radial acceleration of a point on the rim, and (d) the 
total distance a point on the rim moves in 2.00 s.

	22.	A straight ladder is leaning against the wall of a house. 
The ladder has rails 4.90 m long, joined by rungs  
0.410 m long. Its bottom end is on solid but sloping 
ground so that the top of the ladder is 0.690 m to the 
left of where it should be, and the ladder is unsafe to 
climb. You want to put a flat rock under one foot of 
the ladder to compensate for the slope of the ground. 
(a) What should be the thickness of the rock? (b) Does 
using ideas from this chapter make it easier to explain 
the solution to part (a)? Explain your answer.

	23.	A car traveling on a flat (unbanked), circular track 
accelerates uniformly from rest with a tangential accel-
eration of 1.70 m/s2. The car makes it one-quarter of 
the way around the circle before it skids off the track. 
From these data, determine the coefficient of static 
friction between the car and the track.

	24.	A car traveling on a flat (unbanked), circular track 
accelerates uniformly from rest with a tangential accel-
eration of a. The car makes it one-quarter of the way 
around the circle before it skids off the track. From 
these data, determine the coefficient of static friction 
between the car and the track.

	25.	In a manufacturing process, a large, cylindrical roller 
is used to flatten material fed beneath it. The diam-
eter of the roller is 1.00 m, and, while being driven into 
rotation around a fixed axis, its angular position is 
expressed as

u 5 2.50t2 2 0.600t 3

		  where u is in radians and t is in seconds. (a) Find the 
maximum angular speed of the roller. (b) What is the 
maximum tangential speed of a point on the rim of 
the roller? (c) At what time t should the driving force 
be removed from the roller so that the roller does not 
reverse its direction of rotation? (d) Through how 
many rotations has the roller turned between t 5 0 and 
the time found in part (c)?

	26.	Review. A small object with mass 4.00 kg moves coun-
terclockwise with constant angular speed 1.50 rad/s in 
a circle of radius 3.00 m centered at the origin. It starts 
at the point with position vector 3.00 î m. It then under-
goes an angular displacement of 9.00 rad. (a) What is its 
new position vector? Use unit-vector notation for all vec-
tor answers. (b) In what quadrant is the particle located, 
and what angle does its position vector make with the 
positive x axis? (c) What is its velocity? (d) In what direc-
tion is it moving? (e) What is its acceleration? (f) Make a 
sketch of its position, velocity, and acceleration vectors. 
(g) What total force is exerted on the object?

Section 10.4 Torque

	27.	 Find the net torque on the wheel in Figure P10.27 about 
the axle through O, taking a 5 10.0 cm and b 5 25.0 cm.
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10.0 N

30.0� a

O

b
12.0 N

9.00 N

Figure P10.27

	28.	The fishing pole in Figure P10.28 makes an angle of 
20.0° with the horizontal. What is the torque exerted 
by the fish about an axis perpendicular to the page 
and passing through the angler’s hand if the fish pulls 
on the fishing line with a force  F

S
5 100 N at an angle 

37.0° below the horizontal? The force is applied at a 
point 2.00 m from the angler’s hands.

100 N
20.0�

20.0�
37.0�

2.00 m

Figure P10.28

Section 10.5 Analysis Model: Rigid Object Under a Net Torque

	29.	An electric motor turns a flywheel through a drive belt 
that joins a pulley on the motor and a pulley that is rig-
idly attached to the flywheel as shown in Figure P10.29. 
The flywheel is a solid disk with a mass of 80.0 kg and 
a radius R 5 0.625 m. It turns on a frictionless axle.  
Its pulley has much smaller mass and a radius of r 5 
0.230 m. The tension Tu in the upper (taut) segment 
of the belt is 135 N, and the flywheel has a clockwise 
angular acceleration of 1.67 rad/s2. Find the tension in 
the lower (slack) segment of the belt.

R

r

Tu

Figure P10.29

	30.	A grinding wheel is in the form of a uniform solid disk 
of radius 7.00 cm and mass 2.00 kg. It starts from rest 
and accelerates uniformly under the action of the con-
stant torque of 0.600 N ? m that the motor exerts on 
the wheel. (a) How long does the wheel take to reach its 
final operating speed of 1 200 rev/min? (b) Through 
how many revolutions does it turn while accelerating?
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Object m2 is resting on the floor, and object m1 is 4.00 m 
above the floor when it is released from rest. The pulley 
axis is frictionless. The cord is light, does not stretch, 
and does not slip on the pulley. (a) Calculate the time 
interval required for m1 to hit the floor. (b) How would 
your answer change if the pulley were massless?

	37.	 A potter’s wheel—a thick stone disk of radius 0.500 m 
and mass 100 kg—is freely rotating at 50.0 rev/min. 
The potter can stop the wheel in 6.00 s by pressing a 
wet rag against the rim and exerting a radially inward 
force of 70.0 N. Find the effective coefficient of kinetic 
friction between wheel and rag.

Section 10.6 Calculation of Moments of Inertia

	38.	Imagine that you stand tall and turn about a verti-
cal axis through the top of your head and the point 
halfway between your ankles. Compute an order-of-
magnitude estimate for the moment of inertia of your 
body for this rotation. In your solution, state the quan-
tities you measure or estimate and their values.

	39.	A uniform, thin, solid door has height 2.20 m, width 
0.870 m, and mass 23.0 kg. (a) Find its moment of iner-
tia for rotation on its hinges. (b) Is any piece of data 
unnecessary?

	40.	Two balls with masses M and m are connected by a 
rigid rod of length L and negligible mass as shown in 
Figure P10.40. For an axis perpendicular to the rod, 
(a) show that the system has the minimum moment 
of inertia when the axis passes through the center of 
mass. (b) Show that this moment of inertia is I 5 mL2, 
where m 5 mM/(m 1 M).

L

L � xx
M m

Figure P10.40

	41.	Figure P10.41 shows a side view of a car tire before it 
is mounted on a wheel. Model it as having two side-
walls of uniform thickness 0.635 cm and a tread wall of  
uniform thickness 2.50 cm and width 20.0 cm. Assume 
the rubber has uniform density 1.10 3 103 kg/m3. Find 
its moment of inertia about an axis perpendicular to 
the page through its center.

Tread

Sidewall
33.0 cm

30.5 cm

16.5 cm

Figure P10.41

	42.	Following the procedure used in Example 10.7, prove 
that the moment of inertia about the y axis of the rigid 
rod in Figure 10.15 is 13ML2.
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	31.	 A 150-kg merry-go-round in the shape of a uniform, 
solid, horizontal disk of radius 1.50 m is set in motion 
by wrapping a rope about the rim of the disk and pull-
ing on the rope. What constant force must be exerted 
on the rope to bring the merry-go-round from rest to 
an angular speed of 0.500 rev/s in 2.00 s?

	32.	Review. A block of mass m1 5 2.00 kg and a block of 
mass m2 5 6.00 kg are connected by a massless string 
over a pulley in the shape of a solid disk having radius 
R 5 0.250 m and mass M 5 10.0 kg. The fixed, wedge-
shaped ramp makes an angle of u 5 30.08 as shown 
in Figure P10.32. The coefficient of kinetic friction is 
0.360 for both blocks. (a) Draw force diagrams of both 
blocks and of the pulley. Determine (b) the accelera-
tion of the two blocks and (c) the tensions in the string 
on both sides of the pulley.

m1

m2

M, R

u

Figure P10.32

	33.	A model airplane with mass 0.750 kg is tethered to the 
ground by a wire so that it flies in a horizontal circle 
30.0 m in radius. The airplane engine provides a net 
thrust of 0.800 N perpendicular to the tethering wire. 
(a) Find the torque the net thrust produces about the 
center of the circle. (b) Find the angular acceleration 
of the airplane. (c) Find the translational acceleration 
of the airplane tangent to its flight path.

	34.	A disk having moment of inertia 100 kg ? m2 is free to 
rotate without friction, starting from rest, about a fixed 
axis through its center. A tangential force whose magni-
tude can range from F 5 0 to F 5 50.0 N can be applied 
at any distance ranging from R 5 0 to R 5 3.00 m from 
the axis of rotation. (a) Find a pair of values of F and R 
that cause the disk to complete 2.00 rev in 10.0 s. (b) Is 
your answer for part (a) a unique answer? How many 
answers exist?

	35.	The combination of an applied force and a friction 
force produces a constant total torque of 36.0 N ? m on 
a wheel rotating about a fixed axis. 
The applied force acts for 6.00 s.  
During this time, the angular 
speed of the wheel increases from 
0 to 10.0 rad/s. The applied force 
is then removed, and the wheel 
comes to rest in 60.0 s. Find (a) the 
moment of inertia of the wheel, 
(b) the magnitude of the torque 
due to friction, and (c) the total 
number of revolutions of the wheel 
during the entire interval of 66.0 s.

	36.	Review. Consider the system shown 
in Figure P10.36 with m1 5 20.0 kg, 
m2 5 12.5 kg, R 5 0.200 m, and the 
mass of the pulley M 5 5.00  kg. 

M
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M R

m1

m2

Figure P10.36
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hole does not pass through the center of the disk. The 
cam with the hole cut out has mass M. The cam is 
mounted on a uniform, solid, cylindrical shaft of diam-
eter R and also of mass M. What is the kinetic energy of 
the cam–shaft combination when it is rotating with 
angular speed v about the shaft’s axis?

	47.	 A war-wolf or trebuchet is a device used during the Mid-
dle Ages to throw rocks at castles and now sometimes 
used to fling large vegetables and pianos as a sport. A 
simple trebuchet is shown in Figure P10.47. Model it 
as a stiff rod of negligible mass, 3.00 m long, joining 
particles of mass m1 5 0.120 kg and m2 5 60.0 kg at its 
ends. It can turn on a frictionless, horizontal axle per-
pendicular to the rod and 14.0 cm from the large-mass 
particle. The operator releases the trebuchet from rest 
in a horizontal orientation. (a) Find the maximum 
speed that the small-mass object attains. (b) While the 
small-mass object is gaining speed, does it move with 
constant acceleration? (c) Does it move with constant 
tangential acceleration? (d) Does the trebuchet move 
with constant angular acceleration? (e) Does it have 
constant momentum? (f) Does the trebuchet–Earth 
system have constant mechanical energy?

3.00 m

m1 m2

Figure P10.47

Section 10.8 Energy Considerations in Rotational Motion

	48.	A horizontal 800-N merry-go-round is a solid disk of 
radius 1.50 m and is started from rest by a constant 
horizontal force of 50.0 N applied tangentially to the 
edge of the disk. Find the kinetic energy of the disk 
after 3.00 s.

	49.	Big Ben, the nickname for the clock in Elizabeth Tower 
(named after the Queen in 2012) in London, has an 
hour hand 2.70 m long with a mass of 60.0 kg and a 
minute hand 4.50 m long with a mass of 100 kg (Fig. 
P10.49). Calculate the total rotational kinetic energy of 
the two hands about the axis of rotation. (You may 

Q/C

	43.	Three identical thin rods, each 
of length L and mass m, are 
welded perpendicular to one 
another as shown in Figure 
P10.43. The assembly is rotated 
about an axis that passes 
through the end of one rod and 
is parallel to another. Deter-
mine the moment of inertia of 
this structure about this axis.

Section 10.7 Rotational  
Kinetic Energy

	44.	Rigid rods of negligible mass lying along the y axis con-
nect three particles (Fig. P10.44). The system rotates 
about the x axis with an 
angular speed of 2.00 rad/s. 
Find (a)  the moment of iner-
tia about the x axis, (b) the 
total rotational kinetic energy 
evaluated from 1

2Iv2, (c) the 
tangential speed of each 
particle, and (d)  the total 
kinetic energy evaluated from 

a
1
2mivi

2. (e) Compare the 
answers for kinetic energy in 
parts (a) and (b).

	45.	The four particles in Figure P10.45 are connected by 
rigid rods of negligible mass. The origin is at the cen-
ter of the rectangle. The system rotates in the xy plane 
about the z axis with an angular speed of 6.00 rad/s. Cal-
culate (a) the moment of inertia of the system about the 
z axis and (b) the rotational kinetic energy of the system.

3.00 kg 2.00 kg

4.00 kg
2.00 kg

6.00 m

4.00 m

y

x
O

Figure P10.45

	46.	Many machines employ cams for various purposes, 
such as opening and closing valves. In Figure P10.46, 
the cam is a circular disk of radius R with a hole of 
diameter R cut through it. As shown in the figure, the 

S

x
O

y � 3.00 m4.00 kg

3.00 kg

2.00 kg

y

y � �2.00 m

y � �4.00 m

Figure P10.44
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Figure P10.49  Problems 49 and 72.
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and the pulley is a hollow cylinder with a mass of M 5 
0.350  kg, an inner radius of R1 5 0.020 0  m, and an 
outer radius of R2 5 0.030 0 m. Assume the mass of the 
spokes is negligible. The coefficient of kinetic friction 
between the block and the horizontal surface is mk 5 
0.250. The pulley turns without friction on its axle. The 
light cord does not stretch and does not slip on the pul-
ley. The block has a velocity of vi 5 0.820 m/s toward 
the pulley when it passes a reference point on the table. 
(a) Use energy methods to predict its speed after it has 
moved to a second point, 0.700 m away. (b) Find the 
angular speed of the pulley at the same moment.

	54.	Review. A thin, cylindri-
cal rod , 5 24.0  cm long 
with mass m 5 1.20 kg has  
a ball of diameter d 5 
8.00  cm and mass M 5  
2.00 kg attached to one 
end. The arrangement 
is originally vertical and 
stationary, with the ball 
at the top as shown in 
Figure P10.54. The com-
bination is free to pivot 
about the bottom end of 
the rod after being given a 
slight nudge. (a) After the combination rotates through 
90 degrees, what is its rotational kinetic energy? (b) What 
is the angular speed of the rod and ball? (c) What is the 
linear speed of the center of mass of the ball? (d) How 
does it compare with the speed had the ball fallen freely 
through the same distance of 28 cm?

	55.	Review. An object with a mass of m 5 5.10 kg is 
attached to the free end of a light string wrapped 
around a reel of radius R 5 0.250  m and mass M 5 
3.00 kg. The reel is a solid disk, free to rotate in a ver-
tical plane about the horizontal axis passing through 
its center as shown in Figure  P10.55. The suspended 
object is released from rest 6.00  m above the floor. 
Determine (a) the tension in the string, (b) the accel-
eration of the object, and (c) the speed with which the 
object hits the floor. (d)  Verify your answer to part  
(c) by using the isolated system (energy) model.

d

m�

M

Figure P10.54

AMT

M

model the hands as long, thin rods rotated about one 
end. Assume the hour and minute hands are rotating 
at a constant rate of one revolution per 12 hours and 
60 minutes, respectively.)

	50.	Consider two objects with m1 . 
m2 connected by a light string 
that passes over a pulley having 
a moment of inertia of I about 
its axis of rotation as shown in 
Figure P10.50. The string does 
not slip on the pulley or stretch. 
The pulley turns without fric-
tion. The two objects are 
released from rest separated by 
a vertical distance 2h. (a) Use 
the principle of conservation of 
energy to find the translational 
speeds of the objects as they 
pass each other. (b) Find the angular speed of the pul-
ley at this time. 

	51.	 The top in Figure P10.51 has a moment of inertia of 
4.00 3 1024 kg ? m2 and is initially at rest. It is free to 
rotate about the stationary axis AA9. A string, wrapped 
around a peg along the axis 
of the top, is pulled in such 
a manner as to maintain a 
constant tension of 5.57 N. If 
the string does not slip while 
it is unwound from the peg, 
what is the angular speed 
of the top after 80.0 cm  
of string has been pulled off 
the peg?

	52.	Why is the following situation 
impossible? In a large city with an air-pollution problem, 
a bus has no combustion engine. It runs over its citywide 
route on energy drawn from a large, rapidly rotating fly-
wheel under the floor of the bus. The flywheel is spun 
up to its maximum rotation rate of 3 000 rev/min by an 
electric motor at the bus terminal. Every time the bus 
speeds up, the flywheel slows down slightly. The bus is 
equipped with regenerative braking so that the flywheel 
can speed up when the bus slows down. The flywheel is 
a uniform solid cylinder with mass 1 200 kg and radius 
0.500 m. The bus body does work against air resistance 
and rolling resistance at the average rate of 25.0 hp as it 
travels its route with an average speed of 35.0 km/h.

	53.	In Figure P10.53, the hanging object has a mass of m1 5 
0.420 kg; the sliding block has a mass of m2 5 0.850 kg; 

2h

I

m1

m2

R

Figure P10.50

A

A�

F
S

 

Figure P10.51
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	56.	This problem describes one 
experimental method for deter-
mining the moment of inertia 
of an irregularly shaped object 
such as the payload for a satel-
lite. Figure P10.56 shows a  
counterweight of mass m sus-
pended by a cord wound 
around a spool of radius r, 
forming part of a turntable sup-
porting the object. The turnta-
ble can rotate without friction. When the counter-
weight is released from rest, it descends through a 
distance h, acquiring a speed v. Show that the moment 
of inertia I of the rotating apparatus (including the 
turntable) is mr 2(2gh/v 2 2 1).

	57.	 A uniform solid disk of 
radius R and mass M is free 
to rotate on a frictionless 
pivot through a point on its 
rim (Fig. P10.57). If the disk 
is released from rest in the 
position shown by the copper- 
colored circle, (a) what is the 
speed of its center of mass 
when the disk reaches the 
position indicated by the dashed circle? (b) What 
is the speed of the lowest point on the disk in the 
dashed position? (c) What If? Repeat part (a) using a 
uniform hoop.

	58.	The head of a grass string trimmer has 100 g of cord 
wound in a light, cylindrical spool with inside diam-
eter 3.00 cm and outside diameter 18.0 cm as shown 
in Figure P10.58. The cord has a linear density of 
10.0 g/m. A single strand of the cord extends 16.0 cm 
from the outer edge of the spool. (a) When switched 
on, the trimmer speeds up from 0 to 2 500 rev/min  
in 0.215 s. What average power is delivered to the 
head by the trimmer motor while it is accelerating? 
(b)  When the trimmer is cutting grass, it spins at 
2 000  rev/min and the grass exerts an average tan-
gential force of 7.65 N on the outer end of the cord, 
which is still at a radial distance of 16.0 cm from the 
outer edge of the spool. What is the power delivered 
to the head under load?

S

Pivot R

gS 

Figure P10.57

S

Section 10.9 Rolling Motion of a Rigid Object

	59.	A cylinder of mass 10.0 kg rolls without slipping on a 
horizontal surface. At a certain instant, its center of 
mass has a speed of 10.0 m/s. Determine (a) the trans-
lational kinetic energy of its center of mass, (b) the 
rotational kinetic energy about its center of mass, and 
(c) its total energy.

	60.	A solid sphere is released from height h from the top 
of an incline making an angle u with the horizontal. 
Calculate the speed of the sphere when it reaches the 
bottom of the incline (a) in the case that it rolls with-
out slipping and (b) in the case that it slides friction-
lessly without rolling. (c) Compare the time intervals 
required to reach the bottom in cases (a) and (b).

	61.	(a) Determine the acceleration of the center of mass 
of a uniform solid disk rolling down an incline making 
angle u with the horizontal. (b) Compare the accelera-
tion found in part (a) with that of a uniform hoop.  
(c) What is the minimum coefficient of friction 
required to maintain pure rolling motion for the disk?

	62.	A smooth cube of mass m and edge length r slides with 
speed v on a horizontal surface with negligible friction. 
The cube then moves up a smooth incline that makes 
an angle u with the horizontal. A cylinder of mass m 
and radius r rolls without slipping with its center of 
mass moving with speed v and encounters an incline 
of the same angle of inclination but with sufficient fric-
tion that the cylinder continues to roll without slipping. 
(a) Which object will go the greater distance up the 
incline? (b) Find the difference between the maximum 
distances the objects travel up the incline. (c) Explain 
what accounts for this difference in distances traveled.

	63.	A uniform solid disk and a uniform hoop are placed 
side by side at the top of an incline of height h. (a) If 
they are released from rest and roll without slipping, 
which object reaches the bottom first? (b) Verify your 
answer by calculating their speeds when they reach the 
bottom in terms of h.

	64.	A tennis ball is a hollow sphere with a thin wall. It is set 
rolling without slipping at 4.03 m/s on a horizontal sec-
tion of a track as shown in Figure P10.64. It rolls around 
the inside of a vertical circular loop of radius r  5 
45.0 cm. As the ball nears the bottom of the loop, the 
shape of the track deviates from a perfect circle so that 
the ball leaves the track at a point h 5 20.0 cm below the 
horizontal section. (a) Find the ball’s speed at the top 
of the loop. (b) Demonstrate that the ball will not fall 
from the track at the top of the loop. (c) Find the ball’s 
speed as it leaves the track at the bottom. (d) What If? 
Suppose that static friction between ball and track were 

M
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Figure P10.56
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3.00 cm

16.0 cm

Figure P10.58
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negligible so that the ball slid instead of rolling. Would 
its speed then be higher, lower, or the same at the top of 
the loop? (e) Explain your answer to part (d).

	65.	A metal can containing condensed mushroom soup 
has mass 215 g, height 10.8 cm, and diameter 6.38 cm. 
It is placed at rest on its side at the top of a 3.00-m-long 
incline that is at 25.08 to the horizontal and is then 
released to roll straight down. It reaches the bottom 
of the incline after 1.50 s. (a) Assuming mechanical 
energy conservation, calculate the moment of inertia 
of the can. (b) Which pieces of data, if any, are unnec-
essary for calculating the solution? (c) Why can’t the 
moment of inertia be calculated from I 5 1

2mr 2 for the 
cylindrical can?

Additional Problems

	66.	As shown in Figure 10.13 on page 306, toppling chim-
neys often break apart in midfall because the mor-
tar between the bricks cannot withstand much shear 
stress. As the chimney begins to fall, shear forces must 
act on the topmost sections to accelerate them tangen-
tially so that they can keep up with the rotation of the  
lower part of the stack. For simplicity, let us model  
the chimney as a uniform rod of length , pivoted at 
the lower end. The rod starts at rest in a vertical posi-
tion (with the frictionless pivot at the bottom) and falls 
over under the influence of gravity. What fraction of 
the length of the rod has a tangential acceleration 
greater than g sin u, where u is the angle the chimney 
makes with the vertical axis?

	67.	 Review. A 4.00-m length of light nylon cord is wound 
around a uniform cylindrical spool of radius 0.500 m 
and mass 1.00 kg. The spool is mounted on a friction-
less axle and is initially at rest. The cord is pulled from 
the spool with a constant acceleration of magnitude 
2.50 m/s2. (a) How much work has been done on the 
spool when it reaches an angular speed of 8.00 rad/s? 
(b) How long does it take the spool to reach this angu-
lar speed? (c) How much cord is left on the spool when 
it reaches this angular speed?

	68.	An elevator system in a tall building consists of a  
800-kg car and a 950-kg counterweight joined by a light 
cable of constant length that passes over a pulley of 
mass 280 kg. The pulley, called a sheave, is a solid cylin-
der of radius 0.700 m turning on a horizontal axle. The 
cable does not slip on the sheave. A number n of peo-
ple, each of mass 80.0 kg, are riding in the elevator car, 
moving upward at 3.00 m/s and approaching the floor 
where the car should stop. As an energy-conservation  
measure, a computer disconnects the elevator motor 
at just the right moment so that the sheave–car– 
counterweight system then coasts freely without fric-
tion and comes to rest at the floor desired. There it is 
caught by a simple latch rather than by a massive brake. 
(a) Determine the distance d the car coasts upward as 
a function of n. Evaluate the distance for (b)  n  5 2,  
(c) n 5 12, and (d) n 5 0. (e) For what integer values 
of n does the expression in part (a) apply? (f) Explain 
your answer to part (e). (g) If an infinite number of 
people could fit on the elevator, what is the value of d ?

Q/C

S

M
AMT
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	69.	A shaft is turning at 65.0 rad/s at time t 5 0. Thereaf-
ter, its angular acceleration is given by

a 5 210.0 2 5.00t

		  where a is in rad/s2 and t is in seconds. (a) Find the 
angular speed of the shaft at t 5 3.00 s. (b) Through 
what angle does it turn between t 5 0 and t 5 3.00 s?

	70.	A shaft is turning at angular speed v at time t 5 0. 
Thereafter, its angular acceleration is given by

a 5 A 1 Bt

		  (a) Find the angular speed of the shaft at time t. 
(b) Through what angle does it turn between t 5 0 and t ?

	71.	Review. A mixing beater consists of three thin rods, 
each 10.0 cm long. The rods diverge from a central 
hub, separated from each other by 120°, and all turn 
in the same plane. A ball is attached to the end of each 
rod. Each ball has cross-sectional area 4.00 cm2 and is 
so shaped that it has a drag coefficient of 0.600. Cal-
culate the power input required to spin the beater at  
1 000 rev/min (a) in air and (b) in water.

	72.	The hour hand and the minute hand of Big Ben, the 
Elizabeth Tower clock in London, are 2.70 m and 4.50 m  
long and have masses of 60.0 kg and 100 kg, respec-
tively (see Fig. P10.49). (a) Determine the total torque 
due to the weight of these hands about the axis of rota-
tion when the time reads (i) 3:00, (ii) 5:15, (iii) 6:00, 
(iv) 8:20, and (v) 9:45. (You may model the hands as 
long, thin, uniform rods.) (b) Determine all times 
when the total torque about the axis of rotation is zero. 
Determine the times to the nearest second, solving a 
transcendental equation numerically.

	73.	A long, uniform rod of length L and mass M is pivoted 
about a frictionless, horizontal pin through one end. 
The rod is nudged from rest in a vertical position as 
shown in Figure P10.73. At the instant the rod is hori-
zontal, find (a) its angular speed, (b) the magnitude of 
its angular acceleration, (c) the x and y components of 
the acceleration of its center of mass, and (d) the com-
ponents of the reaction force at the pivot.

xPin

L

y

Figure P10.73

	74.	A bicycle is turned upside down while its owner repairs 
a flat tire on the rear wheel. A friend spins the front 
wheel, of radius 0.381 m, and observes that drops 
of water fly off tangentially in an upward direction 
when the drops are at the same level as the center of 
the wheel. She measures the height reached by drops 
moving vertically (Fig. P10.74 on page 332). A drop 
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that breaks loose from the tire on one turn rises h 5  
54.0 cm above the tangent point. A drop that breaks 
loose on the next turn rises 51.0 cm above the tangent 
point. The height to which the drops rise decreases 
because the angular speed of the wheel decreases. 
From this information, determine the magnitude of 
the average angular acceleration of the wheel.

h

v  �  0

Figure P10.74  Problems 74 and 75.

	75.	A bicycle is turned upside down while its owner repairs 
a flat tire on the rear wheel. A friend spins the front 
wheel, of radius R, and observes that drops of water 
fly off tangentially in an upward direction when the 
drops are at the same level as the center of the wheel. 
She measures the height reached by drops moving ver-
tically (Fig. P10.74). A drop that breaks loose from the 
tire on one turn rises a distance h1 above the tangent 
point. A drop that breaks loose on the next turn rises 
a distance h2 , h1 above the tangent point. The height 
to which the drops rise decreases because the angular 
speed of the wheel decreases. From this information, 
determine the magnitude of the average angular accel-
eration of the wheel.

	76.	(a) What is the rotational kinetic energy of the Earth 
about its spin axis? Model the Earth as a uniform 
sphere and use data from the endpapers of this book. 
(b) The rotational kinetic energy of the Earth is 
decreasing steadily because of tidal friction. Assuming 
the rotational period decreases by 10.0 ms each year, 
find the change in one day.

	77.	 Review. As shown in Figure P10.77, two blocks are con-
nected by a string of negligible mass passing over a pul-
ley of radius r = 0.250 m and moment of inertia I. The 
block on the frictionless incline is moving with a con-
stant acceleration of magnitude a = 2.00  m/s2. From 
this information, we wish to find the moment of inertia 
of the pulley. (a)  What analysis model is appropriate 
for the blocks? (b) What analysis model is appropriate 

S

GP

for the pulley? (c) From the analysis model in part (a), 
find the tension T 1. (d) Similarly, find the tension T 2. 
(e) From the analysis model in part (b), find a symbolic 
expression for the moment of inertia of the pulley in 
terms of the tensions T1 and T2, the pulley radius r, and 
the acceleration a. (f) Find the numerical value of the 
moment of inertia of the pulley.

	78.	Review. A string is wound around a 
uniform disk of radius R and mass 
M. The disk is released from rest 
with the string vertical and its top 
end tied to a fixed bar (Fig. P10.78). 
Show that (a)  the tension in the 
string is one third of the weight of 
the disk, (b) the magnitude of the 
acceleration of the center of mass is 
2g/3, and (c) the speed of the cen-
ter of mass is (4gh/3)1/2 after the disk has descended 
through distance h. (d) Verify your answer to part (c) 
using the energy approach.

	79.	The reel shown in Figure P10.79 has radius R and 
moment of inertia I. One end of the block of mass m is 
connected to a spring of force constant k, and the other 
end is fastened to a cord wrapped around the reel. The 
reel axle and the incline are frictionless. The reel is 
wound counterclockwise so that the spring stretches a 
distance d from its unstretched position and the reel is 
then released from rest. Find the angular speed of the 
reel when the spring is again unstretched.

R
I

k

u

m

Figure P10.79

	80.	A common demonstration, illustrated in Figure P10.80, 
consists of a ball resting at one end of a uniform board 
of length , that is hinged at the other end and elevated 
at an angle u. A light cup is attached to the board at 
rc so that it will catch the ball when the support stick 
is removed suddenly. (a) Show that the ball will lag 
behind the falling board when u is less than 35.38.  

h

MR

Figure P10.78

S

S

37.0�

15.0 kg

20.0 kg

T2
T1

m2
m1

aS 

Figure P10.77

Cup

�

Hinged end

Support
stick

u
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Figure P10.80
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top end. Suddenly, a horizontal impulsive force 14.7 î N  
is applied to it. (a) Suppose the force acts at the bot-
tom end of the rod. Find the acceleration of its center 
of mass and (b) the horizontal force the hinge exerts. 
(c) Suppose the force acts at the midpoint of the rod. 
Find the acceleration of this point and (d) the horizon-
tal hinge reaction force. (e)  Where can the impulse 
be applied so that the hinge will exert no horizontal 
force? This point is called the center of percussion.

	85.	A thin rod of length h and mass M is held vertically 
with its lower end resting on a frictionless, horizon-
tal surface. The rod is then released to fall freely.  
(a) Determine the speed of its center of mass just 
before it hits the horizontal surface. (b) What If? 
Now suppose the rod has a fixed pivot at its lower end. 
Determine the speed of the rod’s center of mass just 
before it hits the surface.

	86.	Review. A clown balances a small spherical grape at 
the top of his bald head, which also has the shape of 
a sphere. After drawing sufficient applause, the grape 
starts from rest and rolls down without slipping. It will 
leave contact with the clown’s scalp when the radial 
line joining it to the center of curvature makes what 
angle with the vertical?

Challenge Problems

	87.	 A plank with a mass M 5 6.00 kg rests on top of two 
identical, solid, cylindrical rollers that have R 5 5.00 cm  
and m 5 2.00 kg (Fig. P10.87). The plank is pulled by a  
constant horizontal force  F

S
 of magnitude 6.00 N 

applied to the end of the plank and perpendicular to 
the axes of the cylinders (which are parallel). The cyl-
inders roll without slipping on a flat surface. There is 
also no slipping between the cylinders and the plank. 
(a) Find the initial acceleration of the plank at the 
moment the rollers are equidistant from the ends of 
the plank. (b) Find the acceleration of the rollers at 
this moment. (c) What friction forces are acting at this 
moment?

M

R
m m

F
S

R

Figure P10.87

	88.	As a gasoline engine operates, a flywheel turning with 
the crankshaft stores energy after each fuel explosion, 
providing the energy required to compress the next 
charge of fuel and air. For the engine of a certain lawn 
tractor, suppose a flywheel must be no more than  
18.0 cm in diameter. Its thickness, measured along its 
axis of rotation, must be no larger than 8.00 cm. The 
flywheel must release energy 60.0  J when its angular 
speed drops from 800 rev/min to 600 rev/min. Design 
a sturdy steel (density 7.85 3 103 kg/m3) flywheel to 
meet these requirements with the smallest mass you 
can reasonably attain. Specify the shape and mass of 
the flywheel.

S

(b) Assuming the board is 1.00 m long and is sup-
ported at this limiting angle, show that the cup must be 
18.4 cm from the moving end.

	81.	 A uniform solid sphere of radius r is placed on the 
inside surface of a hemispherical bowl with radius R. 
The sphere is released from rest at an angle u to the 
vertical and rolls without slipping (Fig. P10.81). Deter-
mine the angular speed of the sphere when it reaches 
the bottom of the bowl.

u
R

r

Figure P10.81

	82.	Review. A spool of wire of mass M and radius R is 
unwound under a constant force F

S
 (Fig. P10.82). Assum-

ing the spool is a uniform, solid cylinder that doesn’t 
slip, show that (a) the acceleration of the center of mass 
is 4 F

S
/3M  and (b) the force of friction is to the right and 

equal in magnitude to F/3. (c) If the cylinder starts from 
rest and rolls without slipping, what is the speed of its 
center of mass after it has rolled through a distance d?

M

R

F
S

Figure P10.82

	83.	A solid sphere of mass m and radius r rolls without slip-
ping along the track shown in Figure P10.83. It starts 
from rest with the lowest point of the sphere at height h 
above the bottom of the loop of radius R, much larger 
than r. (a) What is the minimum value of h (in terms of 
R) such that the sphere completes the loop? (b) What 
are the force components on the sphere at the point P 
if h 5 3R?

h R

Solid sphere of mass m 
and radius r �� R.

P

Figure P10.83

	84.	A thin rod of mass 0.630 kg and length 1.24 m is at 
rest, hanging vertically from a strong, fixed hinge at its 
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334	C hapter 10  Rotation of a Rigid Object About a Fixed Axis

	92.	A cord is wrapped around a pulley that is shaped like 
a disk of mass m and radius r. The cord’s free end is 
connected to a block of mass M. The block starts from 
rest and then slides down an incline that makes an 
angle u with the horizontal as shown in Figure P10.92. 
The coefficient of kinetic friction between block and 
incline is m. (a) Use energy methods to show that the 
block’s speed as a function of position d down the 
incline is

v 5 Å
4Mgd 1sin u 2 m cos u 2

m 1 2M

		  (b) Find the magnitude of the acceleration of the block 
in terms of m, m, M, g, and u.

r
m

u

M

Figure P10.92

	93.	A merry-go-round is stationary. A dog is running 
around the merry-go-round on the ground just out-
side its circumference, moving with a constant angu-
lar speed of 0.750 rad/s. The dog does not change his 
pace when he sees what he has been looking for: a 
bone resting on the edge of the merry-go-round one-
third of a revolution in front of him. At the instant the 
dog sees the bone (t 5 0), the merry-go-round begins 
to move in the direction the dog is running, with a 
constant angular acceleration of 0.015 0 rad/s2. (a) At 
what time will the dog first reach the bone? (b) The 
confused dog keeps running and passes the bone. 
How long after the merry-go-round starts to turn do 
the dog and the bone draw even with each other for 
the second time?

	94.	A uniform, hollow, cylin-
drical spool has inside 
radius R/2, outside radius 
R, and mass M (Fig. 
P10.94). It is mounted so 
that it rotates on a fixed, 
horizontal axle. A coun-
terweight of mass m is 
connected to the end of a 
string wound around the 
spool. The counterweight 
falls from rest at t 5 0 to 
a position y at time t. Show 
that the torque due to the friction forces between spool 
and axle is

tf 5 R cmag 2
2y

t 2 b 2 M 
5y

4t 2 d

S

S

	89.	As a result of friction, the angular speed of a wheel 
changes with time according to

du

dt
5 v0e

2st

		  where v0 and s are constants. The angular speed 
changes from 3.50 rad/s at t 5 0 to 2.00 rad/s at t 5 
9.30 s. (a) Use this information to determine s and 
v0. Then determine (b) the magnitude of the angular 
acceleration at t 5 3.00 s, (c) the number of revolutions 
the wheel makes in the first 2.50 s, and (d) the number 
of revolutions it makes before coming to rest.

	90.	To find the total angular displacement during the 
playing time of the compact disc in part (B) of Exam-
ple 10.2, the disc was modeled as a rigid object under 
constant angular acceleration. In reality, the angular 
acceleration of a disc is not constant. In this problem, 
let us explore the actual time dependence of the angu-
lar acceleration. (a) Assume the track on the disc is a 
spiral such that adjacent loops of the track are sepa-
rated by a small distance h. Show that the radius r of a 
given portion of the track is given by

r 5 ri 1
hu

2p

		  where ri is the radius of the innermost portion of the 
track and u is the angle through which the disc turns to 
arrive at the location of the track of radius r. (b) Show 
that the rate of change of the angle u is given by

du

dt
5

v
ri 1 1hu/2p 2

		  where v is the constant speed with which the disc sur-
face passes the laser. (c) From the result in part (b), use 
integration to find an expression for the angle u as a 
function of time. (d) From the result in part (c), use 
differentiation to find the angular acceleration of the 
disc as a function of time.

	91.	 A spool of thread consists of a cylinder of radius R1 with 
end caps of radius R2 as depicted in the end view shown 
in Figure P10.91. The mass of the spool, including the 
thread, is m, and its moment of inertia about an axis 
through its center is I. The spool is placed on a rough, 
horizontal surface so that it rolls without slipping when 
a force  T

S
 acting to the right is applied to the free end 

of the thread. (a) Show that the magnitude of the fric-
tion force exerted by the surface on the spool is given by

f 5 aI 1 mR1R 2

I 1 mR 2
2 bT

		  (b) Determine the direction of the force of friction.

S

S

R1

R2

T
S

Figure P10.91

M

mR/2

yR/2

Figure P10.94
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Two motorcycle racers lean 
precariously into a turn around a 
racetrack. The analysis of such a 
leaning turn is based on principles 
associated with angular momentum. 
(Stuart Westmorland/The Image Bank/

Getty Images)

11.1	 The Vector Product  
and Torque

11.2	 Analysis Model: 
Nonisolated System 
(Angular Momentum)

11.3	 Angular Momentum of  
a Rotating Rigid Object

11.4	 Analysis Model:  
Isolated System  
(Angular Momentum)

11.5	 The Motion of Gyroscopes 
and Tops

The central topic of this chapter is angular momentum, a quantity that plays a key role 
in rotational dynamics. In analogy to the principle of conservation of linear momentum, 
there is also a principle of conservation of angular momentum. The angular momentum of an 
isolated system is constant. For angular momentum, an isolated system is one for which no 
external torques act on the system. If a net external torque acts on a system, it is nonisolated. 
Like the law of conservation of linear momentum, the law of conservation of angular momen-
tum is a fundamental law of physics, equally valid for relativistic and quantum systems.

11.1	 The Vector Product and Torque
An important consideration in defining angular momentum is the process of 
multiplying two vectors by means of the operation called the vector product. We  
will introduce the vector product by considering the vector nature of torque.
	 Consider a force  F

S
 acting on a particle located at point P and described by the 

vector position rS (Fig. 11.1 on page 336). As we saw in Section 10.6, the magnitude 
of the torque due to this force about an axis through the origin is rF sin f, where f 
is the angle between rS and  F

S
. The axis about which  F

S
 tends to produce rotation is 

perpendicular to the plane formed by rS and  F
S

.
	 The torque vector tS is related to the two vectors  rS and  F

S
. We can establish a 

mathematical relationship between tS,  rS, and  F
S

 using a mathematical operation 
called the vector product:

	 tS ; rS 3 F
S

	 (11.1)

Angular Momentum
c h a p t e r 

11
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336	C hapter 11  Angular Momentum

	 We now give a formal definition of the vector product. Given any two vectors 
A
S

 and  B
S

, the vector product  A
S

3 B
S

 is defined as a third vector  C
S

, which has a  
magnitude of AB sin u, where u is the angle between  A

S
 and  B

S
. That is, if  C

S
 is 

given by

	 C
S

5 A
S

3 B
S

	 (11.2)

its magnitude is

	 C 5 AB sin u	 (11.3)

The quantity AB sin u is equal to the area of the parallelogram formed by  A
S

 and 
B
S

 as shown in Figure 11.2. The direction of C
S

 is perpendicular to the plane formed 
by  A

S
 and  B

S
, and the best way to determine this direction is to use the right-hand 

rule illustrated in Figure 11.2. The four fingers of the right hand are pointed along 
A
S

 and then “wrapped” in the direction that would rotate  A
S

 into  B
S

 through the 
angle u. The direction of the upright thumb is the direction of  A

S
3 B

S
5 C

S
. 

Because of the notation,  A
S

3 B
S

 is often read “ A
S

 cross B
S

,” so the vector product is 
also called the cross product.
	 Some properties of the vector product that follow from its definition are as 
follows:

	 1.	 Unlike the scalar product, the vector product is not commutative. Instead, 
the order in which the two vectors are multiplied in a vector product is 
important:

	 A
S

3 B
S

5 2 B
S

3 A
S

	 (11.4)
		  Therefore, if you change the order of the vectors in a vector product, you 

must change the sign. You can easily verify this relationship with the right-
hand rule.

	 2.	 If  A
S

 is parallel to  B
S

 (u 5 0 or 1808), then  A
S

3 B
S

5 0; therefore, it follows 
that  A

S
3 A

S
5 0.

	 3.	 If  A
S

 is perpendicular to  B
S

, then 0 AS 3 B
S 0 5 AB.

	 4.	 The vector product obeys the distributive law:

	 A
S

3 1 B
S

1 C
S 2 5 A

S
3 B

S
1 A

S
3 C

S
	 (11.5)

	 5.	 The derivative of the vector product with respect to some variable such as t is

	
d
dt

1 A
S

3 B
S 2 5

d A
S

dt
3 B

S
1 A

S
3

d B
S

dt
	 (11.6)

		  where it is important to preserve the multiplicative order of the terms on 
the right side in view of Equation 11.4.

	 It is left as an exercise (Problem 4) to show from Equations 11.3 and 11.4 and 
from the definition of unit vectors that the cross products of the unit vectors  î,  ĵ, 
and k̂ obey the following rules:

	  î 3  î 5  ĵ 3  ĵ 5 k̂ 3 k̂ 5 0	 (11.7a)

	  î 3  ĵ 5 2 ĵ 3  î 5 k̂	 (11.7b)

	  ĵ 3 k̂ 5 2k̂ 3  ĵ 5  î	 (11.7c)

	 k̂ 3  î 5 2 î 3 k̂ 5  ĵ	 (11.7d)

Signs are interchangeable in cross products. For example,  A
S

3 12B
S 2 5 2 A

S
3 B

S
 

and  î 3 12 ĵ 2 5 2 î 3  ĵ.
	 The cross product of any two vectors  A

S
 and  B

S
 can be expressed in the follow-

ing determinant form:

	 A
S

3 B
S

5 †
 î  ĵ k̂
Ax Ay Az

Bx By Bz

† 5 `Ay Az

By Bz
`  î 1 `Az Ax

Bz Bx
`  ĵ 1 `Ax Ay

Bx By
` k̂

Properties of the 
vector product

Cross products of 
unit vectors

Pitfall Prevention 11.1
The Vector Product Is a Vector   
Remember that the result of tak-
ing a vector product between two 
vectors is a third vector. Equation 
11.3 gives only the magnitude of 
this vector.

Figure 11.1  The torque vector 
t
S

 lies in a direction perpendicular 
to the plane formed by the posi-
tion vector  rS and the applied force 
vector  F

S
. In the situation shown, 

rS and  F
S

 lie in the xy plane, so the 
torque is along the z axis.

O

P

x

y

z

f

rS 

rS 

F
S

F
S

� �t
S

 

� � �

� �

u

A
S

B
S

C
S

A
S

B
S

A
S

B
S

C
S

S S

S

The direction of C is perpendicular 
to the plane formed by A and B,
and its direction is determined by 
the right-hand rule.

Figure 11.2  ​The vector product 
A
S

3 B
S

 is a third vector  C
S

 having 
a magnitude AB sin u equal to the 
area of the parallelogram shown.www.as
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Expanding these determinants gives the result

	 A
S

3 B
S

5 1AyBz 2 AzBy 2   î 1 1AzBx 2 AxBz 2   ĵ 1 1AxBy 2 AyBx 2  k̂	 (11.8)

Given the definition of the cross product, we can now assign a direction to the 
torque vector. If the force lies in the xy plane as in Figure 11.1, the torque tS is rep-
resented by a vector parallel to the z axis. The force in Figure 11.1 creates a torque 
that tends to rotate the particle counterclockwise about the z axis; the direction of 
tS is toward increasing z, and tS is therefore in the positive z direction. If we reversed 
the direction of  F

S
 in Figure 11.1, tS would be in the negative z direction.

Q	 uick Quiz 11.1 ​ Which of the following statements about the relationship between 
the magnitude of the cross product of two vectors and the product of the mag-
nitudes of the vectors is true? (a) 0 AS 3 B

S 0  is larger than AB. (b) 0 AS 3 B
S 0  is 

smaller than AB. (c) 0 AS 3 B
S 0  could be larger or smaller than AB, depending on 

the angle between the vectors. (d) 0 AS 3 B
S 0  could be equal to AB.

Example 11.1	     The Vector Product

Two vectors lying in the xy plane are given by the equations  A
S

5 2 î 1 3  ĵ and 
B
S

5 2  î 1 2  ĵ. Find  A
S

3 B
S

 and verify that  A
S

3 B
S

5 2 B
S

3 A
S

.

Conceptualize  ​Given the unit-vector notations of the vectors, think about the directions the vectors point in space. 
Draw them on graph paper and imagine the parallelogram shown in Figure 11.2 for these vectors.

Categorize  ​Because we use the definition of the cross product discussed in this section, we categorize this example as 
a substitution problem.

S o l u ti  o n

Write the cross product of the two vectors: A
S

3 B
S

5 12  î 1 3  ĵ 2 3 12 î 1 2  ĵ 2

Perform the multiplication: A
S

3 B
S

5 2  î 3 12 î 2 1 2  î 3 2  ĵ 1 3  ĵ 3 12 î 2 1 3  ĵ 3 2  ĵ

Use Equations 11.7a through 11.7d to evaluate 
the various terms:

A
S

3 B
S

5 0 1 4 k̂ 1 3 k̂ 1 0 5 7 k̂

To verify that A
S

3 B
S

5 2 B
S

3 A
S

, evaluate 
B
S

3 A
S

:
B
S

3 A
S

5 12 î 1 2  ĵ 2 3 12  î 1 3  ĵ 2

Perform the multiplication: B
S

3 A
S

5  12 î 2 3 2  î 1 12 î 2 3 3  ĵ 1 2  ĵ 3 2  î 1 2  ĵ 3 3  ĵ

Use Equations 11.7a through 11.7d to evaluate 
the various terms:

B
S

3 A
S

5 0 2 3 k̂ 2 4 k̂ 1 0 5 27 k̂

Therefore, A
S

3 B
S

5 2 B
S

3 A
S

. As an alternative method for finding A
S

3 B
S

, you could use Equation 11.8. Try it!

	

Example 11.2	     The Torque Vector

A force of F
S

5 12.00  î 1 3.00  ĵ 2  N is applied to an object that is pivoted about a fixed axis aligned along the z coordi-
nate axis. The force is applied at a point located at rS 5 14.00  î 1 5.00  ĵ 2  m. Find the torque tS applied to the object.

Conceptualize  ​Given the unit-vector notations, think about the directions of the force and position vectors. If this 
force were applied at this position, in what direction would an object pivoted at the origin turn?

S o l u ti  o n

continued
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338	C hapter 11  Angular Momentum

Categorize  ​Because we use the definition of the cross product discussed in this section, we categorize this example as 
a substitution problem.

Set up the torque vector using Equation 11.1: tS 5 rS 3 F
S

5 3 14.00  î 1 5.00  ĵ 2  m 4 3 3 12.00  î 1 3.00  ĵ 2  N 4

Perform the multiplication: tS 5 3 14.00 2 12.00 2   î 3  î 1 14.00 2 13.00 2   î 3  ĵ 

1 15.00 2 12.00 2  ĵ 3  î 1 15.00 2 13.00 2  ĵ 3  ĵ 4 N # m

Use Equations 11.7a through 11.7d to evaluate 
the various terms:

tS 5 30 1 12.0 k̂ 2 10.0 k̂ 1 0 4 N # m 5 2.0 k̂ N # m

Notice that both rS and F
S

 are in the xy plane. As expected, the torque vector is perpendicular to this plane, hav-
ing only a z component. We have followed the rules for significant figures discussed in Section 1.6, which lead to an 
answer with two significant figures. We have lost some precision because we ended up subtracting two numbers that 
are close.

11.2	 �Analysis Model: Nonisolated System  
(Angular Momentum)

Imagine a rigid pole sticking up through the ice on a frozen pond (Fig. 11.3). A 
skater glides rapidly toward the pole, aiming a little to the side so that she does 
not hit it. As she passes the pole, she reaches out to her side and grabs it, an action 
that causes her to move in a circular path around the pole. Just as the idea of lin-
ear momentum helps us analyze translational motion, a rotational analog—angular 
momentum—helps us analyze the motion of this skater and other objects undergo-
ing rotational motion.
	 In Chapter 9, we developed the mathematical form of linear momentum and 
then proceeded to show how this new quantity was valuable in problem solving. We 
will follow a similar procedure for angular momentum.
	 Consider a particle of mass m located at the vector position rS and moving with 
linear momentum pS as in Figure 11.4. In describing translational motion, we 
found that the net force on the particle equals the time rate of change of its linear 
momentum, g  F

S
5 d pS/dt (see Eq. 9.3). Let us take the cross product of each side 

of Equation 9.3 with rS, which gives the net torque on the particle on the left side of 
the equation:

rS 3 a F
S

5 a tS 5 rS 3
d pS

dt

Now let’s add to the right side the term 1d rS/dt 2 3 pS, which is zero because 
d rS/dt 5 vS and  vS and pS are parallel. Therefore,

a tS 5 rS 3
d pS

dt
1

d rS

dt
3 pS

We recognize the right side of this equation as the derivative of  rS 3 pS (see Eq. 
11.6). Therefore,

	 a tS 5
d 1 rS 3 pS 2

dt
	 (11.9)

which looks very similar in form to Equation 9.3, g  F
S

5 d pS/dt. Because torque 
plays the same role in rotational motion that force plays in translational motion, 
this result suggests that the combination  rS 3 pS should play the same role in rota-

Figure 11.3  As the skater passes 
the pole, she grabs hold of it, 
which causes her to swing around 
the pole rapidly in a circular path.

	

▸ 11.2 c o n t i n u e d
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tional motion that pS plays in translational motion. We call this combination the 
angular momentum of the particle:

The instantaneous angular momentum  L
S

 of a particle relative to an axis 
through the origin O is defined by the cross product of the particle’s instanta-
neous position vector rS and its instantaneous linear momentum pS:

	 L
S

; rS 3 pS	  (11.10)

We can now write Equation 11.9 as

	 a tS 5
d L

S

dt
	 (11.11)

which is the rotational analog of Newton’s second law, g  F
S

5 d pS/dt. Torque 
causes the angular momentum  L

S
 to change just as force causes linear momentum 

pS to change.
	 Notice that Equation 11.11 is valid only if g  tS and  L

S
 are measured about the 

same axis. Furthermore, the expression is valid for any axis fixed in an inertial frame.
	 The SI unit of angular momentum is kg ? m2/s. Notice also that both the mag-
nitude and the direction of  L

S
 depend on the choice of axis. Following the right-

hand rule, we see that the direction of  L
S

 is perpendicular to the plane formed by 
rS and pS. In Figure 11.4,  rS and pS are in the xy plane, so  L

S
 points in the z direction. 

Because pS 5 m vS, the magnitude of  L
S

 is

	 L 5 mvr sin f	 (11.12)

where f is the angle between  rS and pS. It follows that L is zero when  rS is parallel to 
pS (f 5 0 or 1808). In other words, when the translational velocity of the particle is 
along a line that passes through the axis, the particle has zero angular momentum 
with respect to the axis. On the other hand, if  rS is perpendicular to pS (f 5 908), 
then L 5 mvr. At that instant, the particle moves exactly as if it were on the rim of a 
wheel rotating about the axis in a plane defined by  rS and pS.

Q	 uick Quiz 11.2 ​ Recall the skater described at the beginning of this section.  
Let her mass be m. (i) What would be her angular momentum relative to the 
pole at the instant she is a distance d from the pole if she were skating directly 
toward it at speed v? (a) zero (b) mvd (c) impossible to determine (ii) What 
would be her angular momentum relative to the pole at the instant she is a dis-
tance d from the pole if she were skating at speed v along a straight path that is 
a perpendicular distance a from the pole? (a) zero (b) mvd (c) mva (d) impos-
sible to determine

WW �Angular momentum  
of a particle

Figure 11.4  The angular 
momentum L

S
 of a particle is a  

vector given by L
S

5 rS 3 pS.

O

z

m
y

x
f

The angular momentum L of a 
particle about an axis is a vector 
perpendicular to both the 
particle’s position r relative to 
the axis and its momentum p.

rS

S

rS

pS

S

pS

L
S

S

� �

Pitfall Prevention 11.2
Is Rotation Necessary for Angular 
Momentum?  We can define angu-
lar momentum even if the particle 
is not moving in a circular path.  
A particle moving in a straight 
line has angular momentum 
about any axis displaced from  
the path of the particle.

Example 11.3	     Angular Momentum of a Particle in Circular Motion

A particle moves in the xy plane in a circular path of radius r as shown in Figure 
11.5. Find the magnitude and direction of its angular momentum relative to an axis 
through O when its velocity is vS.

Conceptualize  ​The linear momentum of the 
particle is always changing in direction (but not 
in magnitude). You might therefore be tempted 
to conclude that the angular momentum of the 
particle is always changing. In this situation, 
however, that is not the case. Let’s see why.

S o l u ti  o n

x

y

m

O

vS

rS 
Figure 11.5  ​(Example 11.3) A 
particle moving in a circle of radius r 
has an angular momentum about an 
axis through O that has magnitude 
mvr. The vector L

S
5 rS 3 pS points 

out of the page.

continued
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340	C hapter 11  Angular Momentum

Categorize  ​We use the definition of the angular momentum of a particle discussed in this section, so we categorize 
this example as a substitution problem.

Use Equation 11.12 to evaluate the magnitude of  L
S

: L 5 mvr sin 908 5   mvr

	 This value of L is constant because all three factors on the right are constant. The direction of  L
S

 also is constant, 
even though the direction of pS 5 m vS keeps changing. To verify this statement, apply the right-hand rule to find the 
direction of  L

S
5 rS 3 pS 5 m rS 3 vS in Figure 11.5. Your thumb points out of the page, so that is the direction of  L

S
. 

Hence, we can write the vector expression  L
S

5 1mvr 2  k̂. If the particle were to move clockwise,  L
S

 would point down-
ward and into the page and  L

S
5 2 1mvr 2  k̂. A particle in uniform circular motion has a constant angular momentum 

about an axis through the center of its path.

Angular Momentum of a System of Particles
Using the techniques of Section 9.7, we can show that Newton’s second law for a 
system of particles is

a F
S

ext 5
d pStot

dt

This equation states that the net external force on a system of particles is equal to 
the time rate of change of the total linear momentum of the system. Let’s see if a 
similar statement can be made for rotational motion. The total angular momen-
tum of a system of particles about some axis is defined as the vector sum of the 
angular momenta of the individual particles:

L
S

tot 5 L
S

1 1 L
S

2 1 c1 L
S

n 5 a
i

L
S

i

where the vector sum is over all n particles in the system.
	 Differentiating this equation with respect to time gives

d L
S

tot

dt
5 a

i

d L
S

i

dt
5 a

i
tSi

where we have used Equation 11.11 to replace the time rate of change of the angu-
lar momentum of each particle with the net torque on the particle.
	 The torques acting on the particles of the system are those associated with inter-
nal forces between particles and those associated with external forces. The net 
torque associated with all internal forces, however, is zero. Recall that Newton’s 
third law tells us that internal forces between particles of the system are equal in 
magnitude and opposite in direction. If we assume these forces lie along the line 
of separation of each pair of particles, the total torque around some axis passing 
through an origin O due to each action–reaction force pair is zero (that is, the 
moment arm d from O to the line of action of the forces is equal for both particles, 
and the forces are in opposite directions). In the summation, therefore, the net 
internal torque is zero. We conclude that the total angular momentum of a system 
can vary with time only if a net external torque is acting on the system:

	 a tSext 5
d L

S

tot

dt
	 (11.13)

This equation is indeed the rotational analog of g  F
S

ext 5 d pS tot/dt for a system 
of particles. Equation 11.13 is the mathematical representation of the angular 
momentum version of the nonisolated system model. If a system is nonisolated 
in the sense that there is a net torque on it, the torque is equal to the time rate of 
change of angular momentum.
	 Although we do not prove it here, this statement is true regardless of the motion 
of the center of mass. It applies even if the center of mass is accelerating, provided 

�The net external torque on a  
system equals the time rate 

of change of angular momen-
tum of the system

	

▸ 11.3 c o n t i n u e d
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the torque and angular momentum are evaluated relative to an axis through the 
center of mass.
	 Equation 11.13 can be rearranged and integrated to give

D L
S

tot 5 3 1 a tSext 2dt

This equation represents the angular impulse–angular momentum theorem. Compare 
this equation to the translational version, Equation 9.40.

Example 11.4	       A System of Objects 

A sphere of mass m1 and a block of mass m2 are connected by a light cord that passes 
over a pulley as shown in Figure 11.6. The radius of the pulley is R, and the mass of 
the thin rim is M. The spokes of the pulley have negligible mass. The block slides on 
a frictionless, horizontal surface. Find an expression for the linear acceleration of 
the two objects, using the concepts of angular momentum and torque.

Conceptualize  ​When the system is released, the block slides to the left, the sphere 
drops downward, and the pulley rotates counterclockwise. This situation is similar to 
problems we have solved earlier except that now we want to use an angular momen-
tum approach.

Categorize  ​We identify the block, pulley, and sphere as a nonisolated system for angu-
lar momentum, subject to the external torque due to the gravitational force on the 
sphere. We shall calculate the angular momentum about an axis that coincides with the axle of the pulley. The angular 
momentum of the system includes that of two objects moving translationally (the sphere and the block) and one object 
undergoing pure rotation (the pulley).

Analyze  ​At any instant of time, the sphere and the block have a common speed v, so the angular momentum of the 
sphere about the pulley axle is m1vR and that of the block is m2vR. At the same instant, all points on the rim of the pul-
ley also move with speed v, so the angular momentum of the pulley is MvR.
	 Now let’s address the total external torque acting on the system about the pulley axle. Because it has a moment arm 
of zero, the force exerted by the axle on the pulley does not contribute to the torque. Furthermore, the normal force 

AM

S o l u ti  o n

m2

m1

R

vS

vS

Figure 11.6  ​(Example 11.4) 
When the system is released, the 
sphere moves downward and 
the block moves to the left.

continued

Analysis Model	    Nonisolated System (Angular Momentum)

Imagine a system that rotates about an axis. If there is a net external torque acting on the 
system, the time rate of change of the angular momentum of the system is equal to the 
net external torque:

	 a tSext 5
d L

S

tot

dt
	 (11.13)

Examples: 

•	 a flywheel in an automobile engine increases its angular momentum when the 
engine applies torque to it

•	 the tub of a washing machine decreases in angular momentum due to frictional 
torque after the machine is turned off

•	 the axis of the Earth undergoes a precessional motion due to the torque exerted on 
the Earth by the gravitational force from the Sun 

•	 the armature of a motor increases its angular momentum due to the torque exerted by a surrounding magnetic 
field (Chapter 31)

Angular momentum

System
boundary External

torque

The rate of change in the 
angular momentum of the 
nonisolated system is equal 
to the net external torque 
on the system.
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342	C hapter 11  Angular Momentum

Finalize  ​When we evaluated the net torque about the axle, we did not include the forces that the cord exerts on the 
objects because these forces are internal to the system under consideration. Instead, we analyzed the system as a 
whole. Only external torques contribute to the change in the system’s angular momentum. Let M S 0 in Equation (3) 
and call the result Equation A. Now go back to Equation (5) in Example 5.10, let u S 0, and call the result Equation B.  
Do Equations A and B match? Looking at Figures 5.15 and 11.6 in these limits, should the two equations match?

Substitute this expression and the total external torque 
into Equation 11.13, the mathematical representation of 
the nonisolated system model for angular momentum:

a text 5
dL
dt

m1gR 5
d
dt

 3 1m1 1 m2 1 M 2vR 4

(2)   m1gR 5 1m1 1 m2 1 M 2R 
dv
dt

Recognizing that dv/dt 5 a, solve Equation (2) for a : (3)   a 5 
m1g

m1 1 m2 1 M

11.3	 Angular Momentum of a Rotating Rigid Object
In Example 11.4, we considered the angular momentum of a deformable system of 
particles. Let us now restrict our attention to a nondeformable system, a rigid object. 
Consider a rigid object rotating about a fixed axis that coincides with the z axis of a 
coordinate system as shown in Figure 11.7. Let’s determine the angular momentum 
of this object. Each particle of the object rotates in the xy plane about the z axis with 
an angular speed v. The magnitude of the angular momentum of a particle of mass 
mi about the z axis is miviri . Because vi 5 ri v (Eq. 10.10), we can express the magni-
tude of the angular momentum of this particle as

Li 5 miri
2v

The vector L
S

i for this particle is directed along the z axis, as is the vector vS.
	 We can now find the angular momentum (which in this situation has only a z 
component) of the whole object by taking the sum of Li over all particles:

Lz 5 a
i

Li 5 a
i

m iri
 2v 5 aa

i
m iri 2bv

	 Lz 5 Iv	 (11.14)

where we have recognized oi miri
2 as the moment of inertia I of the object about the 

z axis (Eq. 10.19). Notice that Equation 11.14 is mathematically similar in form to 
Equation 9.2 for linear momentum: pS 5 mvS.
	 Now let’s differentiate Equation 11.14 with respect to time, noting that I is con-
stant for a rigid object:

	
dLz

dt
5 I 

dv

dt
5 Ia	 (11.15)

y

z

x

mi
vi
S

L
S

rS 

v
S

Figure 11.7  ​When a rigid object 
rotates about an axis, the angu-
lar momentum  L

S
 is in the same 

direction as the angular velocity 
v
S according to the expression 
L
S

5 I v
S .

Write an expression for the total angular momentum of 
the system:

(1)   L 5 m1vR 1 m2vR 1 MvR 5 (m1 1 m2 1 M)vR

acting on the block is balanced by the gravitational force m2gS, so these forces do not contribute to the torque. The 
gravitational force m1gS acting on the sphere produces a torque about the axle equal in magnitude to m1gR, where R 
is the moment arm of the force about the axle. This result is the total external torque about the pulley axle; that is, 
g  text 5 m1gR.

	

▸ 11.4 c o n t i n u e d
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where a is the angular acceleration relative to the axis of rotation. Because dLz/dt 
is equal to the net external torque (see Eq. 11.13), we can express Equation 11.15 as

	 o text 5 Ia	 (11.16)

That is, the net external torque acting on a rigid object rotating about a fixed axis 
equals the moment of inertia about the rotation axis multiplied by the object’s 
angular acceleration relative to that axis. This result is the same as Equation 10.18, 
which was derived using a force approach, but we derived Equation 11.16 using the 
concept of angular momentum. As we saw in Section 10.7, Equation 11.16 is the 
mathematical representation of the rigid object under a net torque analysis model. 
This equation is also valid for a rigid object rotating about a moving axis, provided 
the moving axis (1) passes through the center of mass and (2) is a symmetry axis.
	 If a symmetrical object rotates about a fixed axis passing through its center  
of mass, you can write Equation 11.14 in vector form as L

S
5 I vS, where L

S
 is the 

total angular momentum of the object measured with respect to the axis of rota-
tion. Furthermore, the expression is valid for any object, regardless of its symmetry, 
if L

S
 stands for the component of angular momentum along the axis of rotation.1

Q	 uick Quiz 11.3 ​ A solid sphere and a hollow sphere have the same mass and 
radius. They are rotating with the same angular speed. Which one has the 
higher angular momentum? (a) the solid sphere (b) the hollow sphere (c) both 
have the same angular momentum (d) impossible to determine

WW �Rotational form of  
Newton’s second law
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1In general, the expression L
S

5 I vS is not always valid. If a rigid object rotates about an arbitrary axis, then L
S

 and vS 
may point in different directions. In this case, the moment of inertia cannot be treated as a scalar. Strictly speaking, 
L
S

5 I vS applies only to rigid objects of any shape that rotate about one of three mutually perpendicular axes (called 
principal axes) through the center of mass. This concept is discussed in more advanced texts on mechanics.

Example 11.5	         Bowling Ball

Estimate the magnitude of the angular momentum  
of a bowling ball spinning at 10 rev/s as shown in Fig-
ure 11.8.

Conceptualize  ​Imagine spinning a bowling ball on 
the smooth floor of a bowling alley. Because a bowling 
ball is relatively heavy, the angular momentum should 
be relatively large.

Categorize  ​We evaluate the angular momentum 
using Equation 11.14, so we categorize this example as 
a substitution problem.
	 We start by making some estimates of the relevant physical parameters and model the ball as a uniform solid sphere. 
A typical bowling ball might have a mass of 7.0 kg and a radius of 12 cm.

S o l u ti  o n

z

y

x

L
S

Figure 11.8  ​(Example 11.5) 
A bowling ball that rotates 
about the z axis in the direc-
tion shown has an angular 
momentum L

S
 in the positive 

z direction. If the direction 
of rotation is reversed, then 
L
S

 points in the negative z 
direction.

Evaluate the moment of inertia of the 
ball about an axis through its center from 
Table 10.2:

I 5 2
5MR 2 5 2

5 17.0 kg 2 10.12 m 22 5 0.040 kg # m2

Evaluate the magnitude of the angular 
momentum from Equation 11.14:

Lz 5 Iv 5 10.040 kg # m2 2 110 rev/s 2 12p rad/rev 2 5 2.53 kg # m2/s

Because of the roughness of our estimates, we should keep only one significant figure, so Lz 5   3 kg ? m2/s.
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344	C hapter 11  Angular Momentum

Example 11.6	     The Seesaw 

A father of mass mf  and his daughter of mass md sit on 
opposite ends of a seesaw at equal distances from the 
pivot at the center (Fig. 11.9). The seesaw is modeled as 
a rigid rod of mass M and length , and is pivoted without 
friction. At a given moment, the combination rotates in a 
vertical plane with an angular speed v.

(A)  ​Find an expression for the magnitude of the system’s 
angular momentum.

Conceptualize  ​Identify the z axis through O as the axis of rotation in Figure 11.9. The rotating system has angular 
momentum about that axis.

Categorize  ​Ignore any movement of arms or legs of the father and daughter and model them both as particles. The 
system is therefore modeled as a rigid object. This first part of the example is categorized as a substitution problem.
	 The moment of inertia of the system equals the sum of the moments of inertia of the three components: the seesaw 
and the two individuals. We can refer to Table 10.2 to obtain the expression for the moment of inertia of the rod and 
use the particle expression I 5 mr 2 for each person.

AM

S o l u ti  o n
mf

�

O

y

xu

mdgS 

gS 

Figure 11.9  ​(Example 
11.6) A father and 
daughter demonstrate 
angular momentum on 
a seesaw.

Find the total moment of inertia of the system about the 
z axis through O :

I 5 1
12M,2 1 mf a

,

2
b

2

1 mda
,

2
b

2

5
,2

4
aM

3
1 mf 1 mdb

Find the magnitude of the angular momentum of the 
system:

L 5 Iv 5 
,2

4
aM

3
1 mf 1 mdbv

(B)  ​Find an expression for the magnitude of the angular acceleration of the system when the seesaw makes an angle u 
with the horizontal.

Conceptualize  ​Generally, fathers are more massive than daughters, so the system is not in equilibrium and has an 
angular acceleration. We expect the angular acceleration to be positive in Figure 11.9.

Categorize  ​The combination of the board, father, and daughter is a rigid object under a net torque because of the external 
torque associated with the gravitational forces on the father and daughter. We again identify the axis of rotation as the 
z axis in Figure 11.9.

Analyze  ​To find the angular acceleration of the system at any angle u, we first calculate the net torque on the system 
and then use o text 5 Ia from the rigid object under a net torque model to obtain an expression for a.

S o l u ti  o n

Evaluate the torque due to the gravitational force on the 
father:

tf 5 mf g  
,

2
  cos u 1 tSf out of page 2

Evaluate the torque due to the gravitational force on the 
daughter:

td 5 2mdg  
,

2
  cos u   1 tSd into page 2

Evaluate the net external torque exerted on the system: a text 5 tf 1 td 5 1
2 1mf 2 md 2g , cos u

Use Equation 11.16 and I from part (A) to find a: a 5
a text

I
5  

2 1mf 2 md 2g cos u

, 3 1M/3 2 1 mf 1 md 4

Finalize  ​For a father more massive than his daughter, the angular acceleration is positive as expected. If the seesaw 
begins in a horizontal orientation (u 5 0) and is released, the rotation is counterclockwise in Figure 11.9 and the 
father’s end of the seesaw drops, which is consistent with everyday experience.

Imagine the father moves inward on the seesaw to a distance d from the pivot to try to balance the two 
sides. What is the angular acceleration of the system in this case when it is released from an arbitrary angle u?
What If ?
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Find the total moment of inertia about the z axis 
through O for the modified system:

I 5 1
12M,2 1 mf d

2 1 md a,

2
b

2

5
,2

4
 aM

3
1 mdb 1 mf d

2

Find the net torque exerted on the system about an axis 
through O :

a text 5 tf 1 td 5 mf gd cos u 2 1
2mdg, cos u

Find the new angular acceleration of the system: a 5
a text

I
5

1mf d 2 1
2md, 2g cos u

1,2/4 2  3 1M/3 2 1 md 4 1 mf d
2

Find the required position of the father by setting a 5 0: a 5
1mf d 2 1

2md , 2g cos u

1,2/4 2 3 1M/3 2 1 md 4 1 mf d
2 5 0

 mf d 2 1
2md, 5 0  S   d 5 amd

mf
b ,

2

The seesaw is balanced when the angular acceleration is zero. In this situation, both father and daughter can push off 
the ground and rise to the highest possible point.

11.4	 �Analysis Model: Isolated System  
(Angular Momentum)

In Chapter 9, we found that the total linear momentum of a system of particles 
remains constant if the system is isolated, that is, if the net external force acting 
on the system is zero. We have an analogous conservation law in rotational motion:

The total angular momentum of a system is constant in both magnitude and 
direction if the net external torque acting on the system is zero, that is, if the 
system is isolated.

This statement is often called2 the principle of conservation of angular momentum 
and is the basis of the angular momentum version of the isolated system model. 
This principle follows directly from Equation 11.13, which indicates that if

	 a tSext 5
d L

S

tot

dt
5 0	 (11.17)

then

	 D L
S

tot 5 0	 (11.18)

Equation 11.18 can be written as

	 L
S

tot 5 constant or L
S

i 5 L
S

f 	

For an isolated system consisting of a small number of particles, we write this conser-
vation law as L

S

tot 5 g  L
S

n 5 constant, where the index n denotes the nth particle in 
the system.
	 If an isolated rotating system is deformable so that its mass undergoes redistri-
bution in some way, the system’s moment of inertia changes. Because the magni-
tude of the angular momentum of the system is L 5 Iv (Eq. 11.14), conservation 

WW �Conservation of angular 
momentum 

2The most general conservation of angular momentum equation is Equation 11.13, which describes how the system 
interacts with its environment.

In the rare case that the father and daughter have the same mass, the father is located at the end of the seesaw, d 5 ,/2.

	

▸ 11.6 c o n t i n u e d

Answer  ​The angular acceleration of the system should decrease if the system is more balanced.
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346	C hapter 11  Angular Momentum

of angular momentum requires that the product of I and v must remain constant. 
Therefore, a change in I for an isolated system requires a change in v. In this case, 
we can express the principle of conservation of angular momentum as

	 Iivi 5 If vf 5 constant	 (11.19)

This expression is valid both for rotation about a fixed axis and for rotation about 
an axis through the center of mass of a moving system as long as that axis remains 
fixed in direction. We require only that the net external torque be zero.
	 Many examples demonstrate conservation of angular momentum for a deform-
able system. You may have observed a figure skater spinning in the finale of a 
program (Fig. 11.10). The angular speed of the skater is large when his hands 
and feet are close to the trunk of his body. (Notice the skater’s hair!) Ignoring 
friction between skater and ice, there are no external torques on the skater. The 
moment of inertia of his body increases as his hands and feet are moved away 
from his body at the finish of the spin. According to the isolated system model for 
angular momentum, his angular speed must decrease. In a similar way, when div-
ers or acrobats wish to make several somersaults, they pull their hands and feet 
close to their bodies to rotate at a higher rate. In these cases, the external force 
due to gravity acts through the center of mass and hence exerts no torque about 
an axis through this point. Therefore, the angular momentum about the center 
of mass must be conserved; that is, Iivi 5 If vf . For example, when divers wish to 
double their angular speed, they must reduce their moment of inertia to half its 
initial value.
	 In Equation 11.18, we have a third version of the isolated system model. We can 
now state that the energy, linear momentum, and angular momentum of an iso-
lated system are all constant:

	 DEsystem 5 0	 (if there are no energy transfers across the system boundary)

	 DpStot 5 0	 (if the net external force on the system is zero)

	 DL
S

tot 5 0	 (if the net external torque on the system is zero)

A system may be isolated in terms of one of these quantities but not in terms of 
another. If a system is nonisolated in terms of momentum or angular momentum, 
it will often be nonisolated also in terms of energy because the system has a net 
force or torque on it and the net force or torque will do work on the system. We 
can, however, identify systems that are nonisolated in terms of energy but isolated 
in terms of momentum. For example, imagine pushing inward on a balloon (the 
system) between your hands. Work is done in compressing the balloon, so the sys-
tem is nonisolated in terms of energy, but there is zero net force on the system, so 
the system is isolated in terms of momentum. A similar statement could be made 
about twisting the ends of a long, springy piece of metal with both hands. Work 
is done on the metal (the system), so energy is stored in the nonisolated system as 
elastic potential energy, but the net torque on the system is zero. Therefore, the 
system is isolated in terms of angular momentum. Other examples are collisions of 
macroscopic objects, which represent isolated systems in terms of momentum but 
nonisolated systems in terms of energy because of the output of energy from the 
system by mechanical waves (sound).

Q	 uick Quiz 11.4 ​ A competitive diver leaves the diving board and falls toward 
the water with her body straight and rotating slowly. She pulls her arms and 
legs into a tight tuck position. What happens to her rotational kinetic energy? 
(a) It increases. (b) It decreases. (c) It stays the same. (d) It is impossible to 
determine. 

Figure 11.10  ​Angular momen-
tum is conserved as Russian 
gold medalist Evgeni Plushenko 
performs during the Turin 2006 
Winter Olympic Games. 

When his arms and legs are close 
to his body, the skater’s moment 
of inertia is small and his angular 
speed is large.
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To slow down for the finish of his 
spin, the skater moves his arms 
and legs outward, increasing his 
moment of inertia.
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Example 11.7	     Formation of a Neutron Star 

A star rotates with a period of 30 days about an axis through its center. The period is the time interval required for a 
point on the star’s equator to make one complete revolution around the axis of rotation. After the star undergoes a 
supernova explosion, the stellar core, which had a radius of 1.0 3 104 km, collapses into a neutron star of radius 3.0 km. 
Determine the period of rotation of the neutron star.

Conceptualize  ​The change in the neutron star’s motion is similar to that of the skater described earlier, but in the 
reverse direction. As the mass of the star moves closer to the rotation axis, we expect the star to spin faster.

Categorize  ​Let us assume that during the collapse of the stellar core, (1) no external torque acts on it, (2) it remains 
spherical with the same relative mass distribution, and (3) its mass remains constant. We categorize the star as an iso-
lated system in terms of angular momentum. We do not know the mass distribution of the star, but we have assumed the 
distribution is symmetric, so the moment of inertia can be expressed as kMR2, where k is some numerical constant. 
(From Table 10.2, for example, we see that k 5 25 for a solid sphere and k 5 23 for a spherical shell.)

Analyze  ​Let’s use the symbol T for the period, with Ti being the initial period of the star and Tf being the period of the 
neutron star. The star’s angular speed is given by v 5 2p/T.

AM

S o l u ti  o n

From the isolated system model for angular 
momentum, write Equation 11.19 for the star:

Iivi 5 If vf

Use v 5 2p/T to rewrite this equation in terms of 
the initial and final periods:

Ii a2p

Ti
b 5 If a2p

Tf
b

Substitute the moments of inertia in the preceding 
equation:

kMRi 2a2p

Ti
b 5 kMRf 2a2p

Tf
b

Solve for the final period of the star: Tf 5 a
Rf

Ri
b

2

Ti

Analysis Model	    Isolated System (Angular Momentum)

Imagine a system rotates about 
an axis. If there is no net external 
torque on the system, there is no 
change in the angular momen-
tum of the system:

	 DL
S

tot 5 0	 (11.18)

Applying this law of conserva-
tion of angular momentum to a 
system whose moment of inertia 
changes gives

	 Iivi 5 If vf 5 constant	 (11.19)

The angular momentum of the 
isolated system is constant.

Angular momentum

System
boundary

Examples: 

•	 after a supernova explosion, the core of a 
star collapses to a small radius and spins at a 
much higher rate

•	 the square of the orbital period of a planet is 
proportional to the cube of its semimajor axis; 
Kepler’s third law  (Chapter 13)

•	 in atomic transitions, selection rules on the 
quantum numbers must be obeyed in order to 
conserve angular momentum (Chapter 42)

•	 in beta decay of a radioactive nucleus, a neu-
trino must be emitted in order to conserve 
angular momentum (Chapter 44)

Substitute numerical values: Tf 5 a 3.0 km
1.0 3 104 km

b
2

130 days 2 5 2.7 3 1026 days 5  0.23 s

Finalize  ​The neutron star does indeed rotate faster after it collapses, as predicted. It moves very fast, in fact, rotating 
about four times each second!
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Therefore, the kinetic energy of the system increases. The student must perform muscular activity to move herself 
closer to the center of rotation, so this extra kinetic energy comes from potential energy stored in the student’s body 
from previous meals. The system is isolated in terms of energy, but a transformation process within the system changes 
potential energy to kinetic energy.

Find the initial moment of inertia Ii of the 
system (student plus platform) about the 
axis of rotation:

Ii 5 Ipi 1 Isi 5 1
2MR 2 1 mR 2

Find the moment of inertia of the system 
when the student walks to the position r , R:

If 5 Ipf 1 Isf 5 1
2MR 2 1 mr 2

Write Equation 11.19 for the system: Iivi 5 If vf

Substitute the moments of inertia: 11
2 MR 2 1 mR 2 2vi 5 11

2MR 2 1 mr 2 2vf

Solve for the final angular speed: vf 5 a
1
2 MR 2 1 mR 2

1
2 MR 2 1 mr 2 bvi

Substitute numerical values: vf 5 c
1
2 1100 kg 2 12.0 m 22 1 160 kg 2 12.0 m 22

1
2 1100 kg 2 12.0 m 22 1 160 kg 2 10.50 m 22 d 12.0 rad/s 2  5  4.1 rad/s

Finalize  ​As expected, the angular speed increases. The fastest that this system could spin would be when the stu-
dent moves to the center of the platform. Do this calculation to show that this maximum angular speed is 4.4 rad/s. 
Notice that the activity described in this problem is dangerous as discussed with regard to the Coriolis force in  
Section 6.3.

What if you measured the kinetic energy of the system before and after the student walks inward? Are the 
initial kinetic energy and the final kinetic energy the same?

Answer  ​You may be tempted to say yes because the system is isolated. Remember, however, that energy can be trans-
formed among several forms, so we have to handle an energy question carefully.

What If ?

Find the initial kinetic energy: Ki 5 1
2Ii vi 2 5 1

2 1440 kg # m2 2 12.0 rad/s 22 5 880 J

Find the final kinetic energy: Kf 5 1
2 If vf

2 5 1
2 1215 kg # m2 2 14.1 rad/s 22 5 1.80 3 103 J

Example 11.8	     The Merry-Go-Round 

A horizontal platform in the shape of a circular disk rotates freely in a horizon-
tal plane about a frictionless, vertical axle (Fig. 11.11). The platform has a mass 
M 5 100 kg and a radius R 5 2.0 m. A student whose mass is m 5 60 kg walks 
slowly from the rim of the disk toward its center. If the angular speed of the system 
is 2.0 rad/s when the student is at the rim, what is the angular speed when she 
reaches a point r 5 0.50 m from the center?

Conceptualize  ​The speed change here is similar to those of the spinning skater 
and the neutron star in preceding discussions. This problem is different because 
part of the moment of inertia of the system changes (that of the student) while 
part remains fixed (that of the platform).

Categorize  ​Because the platform rotates on a frictionless axle, we identify the 
system of the student and the platform as an isolated system in terms of angular 
momentum.

Analyze  ​Let us denote the moment of inertia of the platform as Ip and that of the student as Is. We model the student 
as a particle.

AM

S o l u ti  o n
R

M

m

Figure 11.11  ​(Example 11.8) As 
the student walks toward the center 
of the rotating platform, the angu-
lar speed of the system increases 
because the angular momentum of 
the system remains constant.
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Example 11.9	     Disk and Stick Collision 

A 2.0-kg disk traveling at 3.0 m/s strikes a 1.0-kg stick of length 4.0 m that is lying flat 
on nearly frictionless ice as shown in the overhead view of Figure 11.12a. The disk 
strikes at the endpoint of the stick, at a distance r 5 2.0 m from the stick’s center. 
Assume the collision is elastic and the disk does not deviate from its original line of 
motion. Find the translational speed of the disk, the translational speed of the stick, 
and the angular speed of the stick after the collision. The moment of inertia of the 
stick about its center of mass is 1.33 kg ? m2.

Conceptualize  ​Examine Figure 11.12a and imagine what 
happens after the disk hits the stick. Figure 11.12b shows 
what you might expect: the disk continues to move at a slower 
speed, and the stick is in both translational and rotational 
motion. We assume the disk does not deviate from its origi-
nal line of motion because the force exerted by the stick on 
the disk is parallel to the original path of the disk.

Categorize  ​Because the ice is frictionless, the disk and stick 
form an isolated system in terms of momentum and angular momentum. Ignoring the sound made in the collision, we also 
model the system as an isolated system in terms of energy. In addition, because the collision is assumed to be elastic, the 
kinetic energy of the system is constant.

Analyze  ​First notice that we have three unknowns, so we need three equations to solve simultaneously.

AM

S o l u ti  o n After

Before

v

a

b

vdf
S

vs
S

r

vdi
S

Figure 11.12  ​(Example 
11.9) Overhead view of 
a disk striking a stick 
in an elastic collision. 
(a) Before the collision, 
the disk moves toward the 
stick. (b) The collision 
causes the stick to rotate 
and move to the right.

Apply the isolated system model for momentum to 
the system and then rearrange the result:

DpStot 5 0   S   1mdvdf 1 msvs 2 2 md vdi 5 0

(1)   md(vdi 2 vdf) 5 msvs

Apply the isolated system model for angular momen-
tum to the system and rearrange the result. Use an 
axis passing through the center of the stick as the 
rotation axis so that the path of the disk is a distance 
r 5 2.0 m from the rotation axis:

D L
S

tot 5 0   S   12rmdvdf 1 Iv 2 2 12rmd vdi 2 5 0

(2)   2rmd(vdi 2 vdf) 5 Iv

Apply the isolated system model for energy to the 
system, rearrange the equation, and factor the com-
bination of terms related to the disk:

DK 5 0   S   11
2mdvdf

2 1 1
2msvs

2 1 1
2Iv2 2 2 1

2mdvdi
2 5 0

(3)   md(vdi 2 vdf)(vdi 1 vdf) 5 msvs
2 1 Iv2

Multiply Equation (1) by r and add to Equation (2): rmd(vdi 2 vdf) 5 rmsvs

2rmd(vdi 2 vdf) 5 Iv

0 5 rmsvs 1 Iv

Solve for v: (4)   v 5 2
rmsvs

I

Divide Equation (3) by Equation (1):
md 1vdi 2 vdf 2 1vdi 1 vdf 2

md 1vdi 2 vdf 2
5

msvs
2 1 Iv2

msvs

(5)   vdi 1 vdf 5 vs 1
Iv2

msvs

Substitute Equation (4) into Equation (5): (6)   vdi 1 vdf 5 vs a1 1
r 2ms

I
b

Substitute vdf from Equation (1) into 
Equation (6):

vdi 1 avdi 2
ms

md
 vsb 5 vsa1 1

r 2ms

I
b

continued
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11.5	 The Motion of Gyroscopes and Tops
An unusual and fascinating type of motion you have probably observed is that of a 
top spinning about its axis of symmetry as shown in Figure 11.13a. If the top spins 
rapidly, the symmetry axis rotates about the z axis, sweeping out a cone (see Fig. 
11.13b). The motion of the symmetry axis about the vertical—known as preces-
sional motion—is usually slow relative to the spinning motion of the top.
	 It is quite natural to wonder why the top does not fall over. Because the center 
of mass is not directly above the pivot point O, a net torque is acting on the top 
about an axis passing through O, a torque resulting from the gravitational force 
M gS. The top would certainly fall over if it were not spinning. Because it is spin-
ning, however, it has an angular momentum  L

S
 directed along its symmetry axis. 

We shall show that this symmetry axis moves about the z axis (precessional motion 
occurs) because the torque produces a change in the direction of the symmetry axis. 
This illustration is an excellent example of the importance of the vector nature of 
angular momentum.
	 The essential features of precessional motion can be illustrated by considering 
the simple gyroscope shown in Figure 11.14a. The two forces acting on the gyro-
scope are shown in Figure 11.14b: the downward gravitational force M gS and the 
normal force nS acting upward at the pivot point O. The normal force produces no 
torque about an axis passing through the pivot because its moment arm through 
that point is zero. The gravitational force, however, produces a torque tS 5 rS 3 M gS 
about an axis passing through O, where the direction of tS is perpendicular to the 
plane formed by rS and M gS. By necessity, the vector tS lies in a horizontal xy plane 

Table 11.1 Comparison of Values in Example 11.9 Before and After the Collision
	 v (m/s)	 v (rad/s)	 p (kg ? m/s)	 L (kg ? m2/s)	 K trans ( J)	 K rot ( J)

Before
Disk	 3.0	 —	 6.0	 212	 9.0	 —
Stick	 0	 0	 0	 0	 0	 0
Total for system	 —	 —	 6.0	 212	 9.0	 0
After
Disk	 2.3	 —	 4.7	 29.3	 5.4	 —
Stick	 1.3	 22.0	 1.3	 22.7	 0.9	 2.7
Total for system	 —	 —	 6.0	 212	 6.3	 2.7

Note: Linear momentum, angular momentum, and total kinetic energy of the system are all conserved.

Solve for vs and substitute numerical 
values:

vs 5
2vdi

1 1 1ms/md 2 1 1r 2ms /I 2

5 
2 13.0 m/s 2

1 1 11.0 kg/2.0 kg 2 1 3 12.0 m 22 11.0 kg 2/1.33 kg # m2 4  5  1.3 m/s

Substitute numerical values into 
Equation (4):

v 5 2
12.0 m 2 11.0 kg 2 11.3 m/s 2

1.33 kg # m2 5 22.0 rad/s

Solve Equation (1) for vdf and substitute 
numerical values:

vdf 5 vdi 2
ms

md
 vs 5 3.0 m/s 2

1.0 kg

2.0 kg
11.3 m/s 2 5 2.3 m/s

Finalize  ​These values seem reasonable. The disk is moving more slowly after the collision than it was before the col-
lision, and the stick has a small translational speed. Table 11.1 summarizes the initial and final values of variables for 
the disk and the stick, and it verifies the conservation of linear momentum, angular momentum, and kinetic energy 
for the isolated system.

	

▸ 11.9 c o n t i n u e d
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perpendicular to the angular momentum vector. The net torque and angular 
momentum of the gyroscope are related through Equation 11.13:

a tSext 5
d L

S

dt

This expression shows that in the infinitesimal time interval dt, the nonzero torque 
produces a change in angular momentum d L

S
, a change that is in the same direc-

tion as tS. Therefore, like the torque vector, d L
S

 must also be perpendicular to  L
S

. 
Figure 11.14c illustrates the resulting precessional motion of the symmetry axis of 
the gyroscope. In a time interval dt, the change in angular momentum is d L

S
 5 

L
S

f 2 L
S

i 5 tS dt. Because d L
S

 is perpendicular to  L
S

, the magnitude of  L
S

 does not 
change 1 0 LS i 0 5 0 LS f 0 2 . Rather, what is changing is the direction of  L

S
. Because the 

change in angular momentum d L
S

 is in the direction of tS, which lies in the xy plane, 
the gyroscope undergoes precessional motion.
	 To simplify the description of the system, we assume the total angular momen-
tum of the precessing wheel is the sum of the angular momentum IvS due to the 
spinning and the angular momentum due to the motion of the center of mass 
about the pivot. In our treatment, we shall neglect the contribution from the center- 
of-mass motion and take the total angular momentum to be simply I vS. In practice, 
this approximation is good if vS is made very large.
	 The vector diagram in Figure 11.14c shows that in the time interval dt, the angu-
lar momentum vector rotates through an angle df, which is also the angle through 
which the gyroscope axle rotates. From the vector triangle formed by the vectors 
L
S

i , L
S

f , and d L
S

, we see that

df 5
dL
L

5
a text dt

L
5

1MgrCM 2  dt

L

Dividing through by dt and using the relationship L 5 Iv, we find that the rate at 
which the axle rotates about the vertical axis is

	 vp 5
df

dt
5

MgrCM

Iv
	 (11.20)

f

df

O O

M

i

OOO

M

z

y

x

r CM

y

nS

L
S

gSLf
S

a b c

The gravitational force        in the 
negative z direction produces a 
torque on the gyroscope in the 
positive y direction about the pivot.

MgS The torque results in a change in angular 
momentum       in a direction parallel to the 
torque vector. The gyroscope axle sweeps 
out an angle df in a time interval dt.

L
S

d

L
S

L
S

iL
S

d
t
S 

t
S 

Figure 11.14  ​(a) A spinning gyroscope is placed on a pivot at the right end. (b) Diagram for the 
spinning gyroscope showing forces, torque, and angular momentum. (c) Overhead view (looking 
down the z axis) of the gyroscope’s initial and final angular momentum vectors for an infinitesimal 
time interval dt.

y

 

CM

O

O

yM
x

x

z

�

b

a

L
S

L
S

fL
S

iL
S

nS

rS
gS

�
S

The right-hand rule indicates 
that    �    �     �    �         is 
in the xy plane.          
 

F
S

M gS�
S rS rS

The direction of �    is parallel 
to that of     in      .�

S
L
S

a

Figure 11.13  ​Precessional 
motion of a top spinning about 
its symmetry axis. (a) The only 
external forces acting on the top 
are the normal force nS and the 
gravitational force M gS. The direc-
tion of the angular momentum 
L
S

 is along the axis of symmetry. 
(b) Because L

S

f 5 D L
S

1 L
S

i , the 
top precesses about the z axis.
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The angular speed vp is called the precessional frequency. This result is valid 
only when vp ,, v. Otherwise, a much more complicated motion is involved. As 
you can see from Equation 11.20, the condition vp ,, v is met when v is large, 
that is, when the wheel spins rapidly. Furthermore, notice that the precessional 
frequency decreases as v increases, that is, as the wheel spins faster about its axis 
of symmetry.
	 As an example of the usefulness of gyroscopes, suppose you are in a spacecraft in 
deep space and you need to alter your trajectory. To fire the engines in the correct 
direction, you need to turn the spacecraft. How, though, do you turn a spacecraft 
in empty space? One way is to have small rocket engines that fire perpendicularly 
out the side of the spacecraft, providing a torque around its center of mass. Such a 
setup is desirable, and many spacecraft have such rockets.
	 Let us consider another method, however, that does not require the consump-
tion of rocket fuel. Suppose the spacecraft carries a gyroscope that is not rotating 
as in Figure 11.15a. In this case, the angular momentum of the spacecraft about its 
center of mass is zero. Suppose the gyroscope is set into rotation, giving the gyro-
scope a nonzero angular momentum. There is no external torque on the isolated 
system (spacecraft and gyroscope), so the angular momentum of this system must 
remain zero according to the isolated system (angular momentum) model. The 
zero value can be satisfied if the spacecraft rotates in the direction opposite that 
of the gyroscope so that the angular momentum vectors of the gyroscope and the 
spacecraft cancel, resulting in no angular momentum of the system. The result of 
rotating the gyroscope, as in Figure 11.15b, is that the spacecraft turns around! By 
including three gyroscopes with mutually perpendicular axles, any desired rota-
tion in space can be achieved.
	 This effect created an undesirable situation with the Voyager 2 spacecraft during 
its flight. The spacecraft carried a tape recorder whose reels rotated at high speeds. 
Each time the tape recorder was turned on, the reels acted as gyroscopes and the 
spacecraft started an undesirable rotation in the opposite direction. This rotation 
had to be counteracted by Mission Control by using the sideward-firing jets to stop 
the rotation!Figure 11.15  ​(a) A spacecraft 

carries a gyroscope that is not 
spinning. (b) The gyroscope is set 
into rotation.

a

When the gyroscope
turns counterclockwise,
the spacecraft turns 
clockwise.

b

Summary

Definitions

  Given two vectors  A
S

 and B
S

, the vec-
tor product  A

S
3 B

S
 is a vector C

S
 having a 

magnitude

	 C 5 AB sin u	 (11.3)

where u is the angle between  A
S

 and B
S

. The 
direction of the vector C

S
5 A

S
3 B

S
 is per-

pendicular to the plane formed by  A
S

 and B
S

, 
and this direction is determined by the right-
hand rule.

  The torque tS on a particle due to a force F
S

 about an axis 
through the origin in an inertial frame is defined to be

	 tS ; rS 3 F
S

	 (11.1)

  The angular momentum L
S

 about an axis through the origin 
of a particle having linear momentum pS 5 mvS is

	 L
S

; rS 3 pS	 (11.10)

where rS is the vector position of the particle relative to the origin.
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following questions. (iii) In this process, is the mechan-
ical energy of the mouse–turntable system constant? 
(iv) Is the momentum of the system constant? (v) Is the 
angular momentum of the system constant?

	 3.	 Let us name three perpendicular directions as right, 
up, and toward you as you might name them when 
you are facing a television screen that lies in a vertical 
plane. Unit vectors for these directions are r̂, û, and t̂,  
respectively. Consider the quantity (23û 3 2t̂). (i) Is 
the magnitude of this vector (a) 6, (b) 3, (c) 2, or (d) 0?  
(ii) Is the direction of this vector (a) down, (b) toward 
you, (c) up, (d) away from you, or (e) left?

	 4.	 Let the four compass directions north, east, south, 
and west be represented by unit vectors n̂, ê, ŝ, and ŵ, 
respectively. Vertically up and down are represented as 
û and d̂. Let us also identify unit vectors that are half-
way between these directions such as ne for northeast. 
Rank the magnitudes of the following cross products 
from largest to smallest. If any are equal in magnitude  

l
	 1.	 An ice skater starts a spin with her arms stretched out 

to the sides. She balances on the tip of one skate to 
turn without friction. She then pulls her arms in so that 
her moment of inertia decreases by a factor of 2. In the 
process of her doing so, what happens to her kinetic 
energy? (a) It increases by a factor of 4. (b) It increases 
by a factor of 2. (c) It remains constant. (d) It decreases 
by a factor of 2. (e) It decreases by a factor of 4.

	 2.	 A pet mouse sleeps near the eastern edge of a station-
ary, horizontal turntable that is supported by a friction-
less, vertical axle through its center. The mouse wakes 
up and starts to walk north on the turntable. (i) As it 
takes its first steps, what is the direction of the mouse’s 
displacement relative to the stationary ground below? 
(a) north (b) south (c) no displacement. (ii) In this 
process, the spot on the turntable where the mouse 
had been snoozing undergoes a displacement in what 
direction relative to the ground below? (a)  north  
(b) south (c) no displacement. Answer yes or no for the 

	   Objective Questions	 353

continued

  The z component of angular momentum of a rigid object rotating about a fixed z axis is

	 Lz 5 Iv	 (11.14)

where I is the moment of inertia of the object about the axis of rotation and v is its angular speed.

Concepts and Principles

Analysis Models for Problem Solving

Angular momentum

System
boundary External

torque

The rate of change in the 
angular momentum of the 
nonisolated system is equal 
to the net external torque 
on the system.

  Nonisolated System (Angular Momentum). If a sys-
tem interacts with its environment in the sense that 
there is an external torque on the system, the net exter-
nal torque acting on a system is equal to the time rate 
of change of its angular momentum:

	 a tSext 5
d L

S

tot

dt
	 (11.13)

The angular momentum of the 
isolated system is constant.

Angular momentum

System
boundary

  Isolated System (Angular Momentum). If a system 
experiences no external torque from the environ-
ment, the total angular momentum of the system is 
conserved:

	 D L
S

tot 5 0	 (11.18)

Applying this law of conservation of angular momen-
tum to a system whose moment of inertia changes gives

	 Iivi 5 If vf 5 constant	 (11.19)

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

www.as
warp

hy
sic

s.w
ee

bly
.co

m



354	C hapter 11  Angular Momentum

they walk, what happens to the angular speed of the 
turntable? (a) It increases. (b) It decreases. (c) It stays 
constant. Consider the ponies–turntable system in this 
process and answer yes or no for the following ques-
tions. (ii) Is the mechanical energy of the system con-
served? (iii) Is the momentum of the system conserved? 
(iv) Is the angular momentum of the system conserved?

	 8.	 Consider an isolated system moving through empty 
space. The system consists of objects that interact with 
each other and can change location with respect to 
one another. Which of the following quantities can 
change in time? (a) The angular momentum of the sys-
tem. (b) The linear momentum of the system. (c) Both 
the angular momentum and linear momentum of the 
system. (d) Neither the angular momentum nor linear 
momentum of the system.

or are equal to zero, show that in your ranking.  
(a) n̂ 3 n̂ (b) ŵ 3 ne (c) û 3 ne (d) n̂ 3 nw (e) n̂ 3 ê 

	 5.	 Answer yes or no to the following questions. (a) Is it 
possible to calculate the torque acting on a rigid object 
without specifying an axis of rotation? (b) Is the torque 
independent of the location of the axis of rotation?

	 6.	 Vector  A
S

 is in the negative y direction, and vector  B
S

 is in 
the negative x direction. (i) What is the direction of   A

S
3 

B
S

? (a) no direction because it is a scalar (b) x (c) 2y  
(d) z (e)  2z (ii) What is the direction of  B

S
3 A

S
? 

Choose from the same possibilities (a) through (e).

	 7.	 Two ponies of equal mass are initially at diametrically 
opposite points on the rim of a large horizontal turn-
table that is turning freely on a frictionless, vertical 
axle through its center. The ponies simultaneously start 
walking toward each other across the turntable. (i) As 

l ll

	 1.	 Stars originate as large bodies of slowly rotating gas. 
Because of gravity, these clumps of gas slowly decrease 
in size. What happens to the angular speed of a star as 
it shrinks? Explain.

	 2.	 A scientist arriving at a hotel asks a bellhop to carry 
a heavy suitcase. When the bellhop rounds a corner, 
the suitcase suddenly swings away from him for some 
unknown reason. The alarmed bellhop drops the suit-
case and runs away. What might be in the suitcase?

	 3.	 Why does a long pole help a tightrope walker stay 
balanced?

	 4.	 Two children are playing with a roll of paper towels. 
One child holds the roll between the index fingers 
of her hands so that it is free to rotate, and the sec-
ond child pulls at constant speed on the free end of 
the paper towels. As the child pulls the paper towels, 
the radius of the roll of remaining towels decreases.  
(a) How does the torque on the roll change with time? 
(b) How does the angular speed of the roll change 
in time? (c) If the child suddenly jerks the end paper 
towel with a large force, is the towel more likely to 
break from the others when it is being pulled from a 
nearly full roll or from a nearly empty roll?

	 5.	 Both torque and work are products of force and dis-
placement. How are they different? Do they have the 
same units?

	 6.	 In some motorcycle races, the riders drive over small 
hills and the motorcycle becomes airborne for a short 
time interval. If the motorcycle racer keeps the throttle 
open while leaving the hill and going into the air, the 
motorcycle tends to nose upward. Why?

	 7.	 If the torque acting on a particle about an axis through 
a certain origin is zero, what can you say about its angu-
lar momentum about that axis?

	 8.	 A ball is thrown in such a way that it does not spin 
about its own axis. Does this statement imply that the 
angular momentum is zero about an arbitrary axis? 
Explain.

	 9.	 If global warming continues over the next one hun-
dred years, it is likely that some polar ice will melt and 
the water will be distributed closer to the equator.  
(a) How would that change the moment of inertia of 
the Earth? (b) Would the duration of the day (one rev-
olution) increase or decrease?

	10.	 A cat usually lands on its feet regardless of the position 
from which it is dropped. A slow-motion film of a cat 
falling shows that the upper half of its body twists in 
one direction while the lower half twists in the oppo-
site direction. (See Fig. CQ11.10.) Why does this type of 
rotation occur?

Figure CQ11.10
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	11.	 In Chapters 7 and 8, we made use of energy bar charts 
to analyze physical situations. Why have we not used 
bar charts for angular momentum in this chapter?

1.  denotes answer available in Student Solutions Manual/Study GuideConceptual Questions
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	 Problems	 355

Section 11.1 The Vector Product and Torque

	 1.	 Given M
S

5 2 î 2 3 ĵ 1 k̂ and N
S

5 4 î 1 5 ĵ 2 2k̂, calcu-
late the vector product M

S
3 N

S
.

	 2.	 The displacement vectors 42.0 cm at 15.08 and 23.0 cm  
at 65.08 both start from the origin and form two sides 
of a parallelogram. Both angles are measured coun-
terclockwise from the x axis. (a) Find the area of 
the parallelogram. (b)  Find the length of its longer 
diagonal.

	 3.	 Two vectors are given by A
S

5  î 1 2 ĵ and B
S

5 22 î 1 3 ĵ.  
Find (a) A

S
3 B

S
 and (b) the angle between A

S
 and B

S
.

	 4.	 Use the definition of the vector product and the defini-
tions of the unit vectors  î,  ĵ, and k̂ to prove Equations 
11.7. You may assume the x axis points to the right, the 
y axis up, and the z axis horizontally toward you (not 
away from you). This choice is said to make the coordi-
nate system a right-handed system.

	 5.	 Calculate the net torque (magnitude and direction) on 
the beam in Figure P11.5 about (a) an axis through O 
perpendicular to the page and (b) an axis through C 
perpendicular to the page.

C

4.0 m

2.0 m45°

30 N

10 N

20°

30°

25 N

O

Figure P11.5

	 6.	 Two vectors are given by these expressions: A
S

5 23 î 1
7 ĵ 2 4 k̂  and B

S
5 6 î 2 10 ĵ 1 9k̂. Evaluate the quanti-

ties (a) cos21[ A
S

 ?  B
S

/AB] and (b) sin21[ 0 AS 3 B
S 0/AB].  

(c) Which give(s) the angle between the vectors?

	 7.	 If 0 AS 3 B
S 0 5 A

S
 ?  B

S
, what is the angle between A

S
 and B

S
?

	 8.	 A particle is located at the vector position  rS 5
14.00 î 1 6.00 ĵ 2  m, and a force exerted on it is given by 
F
S

5 13.00 î 1 2.00  ĵ 2  N. (a) What is the torque acting on 
the particle about the origin? (b) Can there be another 
point about which the torque caused by this force on 
this particle will be in the opposite direction and half 
as large in magnitude? (c) Can there be more than 
one such point? (d) Can such a point lie on the y axis?  
(e) Can more than one such point lie on the y axis?  
(f) Determine the position vector of one such point.

W

M

S

Q/C

	 9.	 Two forces  F
S

1 and F
S

2 act along the two sides of an equi-
lateral triangle as shown in Figure P11.9. Point O is the 
intersection of the altitudes of the triangle. (a) Find  
a third force  F

S

3 to be applied at B and along BC that 
will make the total torque zero about the point O.  
(b) What If? Will the total torque change if  F

S

3 is 
applied not at B but at any other point along BC?

A C

D
O

B

F1
S F2

S

F3
S

Figure P11.9

	10.	A student claims that he has found a vector  A
S

 such 
that 12 î 2 3 ĵ 1 4k̂ 2 3 A

S
5 14 î 1 3 ĵ 2 k̂ 2 . (a) Do you 

believe this claim? (b) Explain why or why not.

Section 11.2 ​ Analysis Model: Nonisolated System  
(Angular Momentum)
	11.	 A light, rigid rod of length , 5 1.00 m joins two par-

ticles, with masses m1 5 4.00 kg and m2 5 3.00 kg, at its 
ends. The combination rotates in the xy plane about a 
pivot through the center of the rod (Fig. P11.11). Deter-
mine the angular momentum of the system about the 
origin when the speed of each particle is 5.00 m/s.

x

y

m1

m2

,

vS

vS

Figure P11.11

	12.	A 1.50-kg particle moves in the xy plane with a veloc-
ity of vS 5 14.20 î 2 3.60 ĵ 2  m/s. Determine the angular 
momentum of the particle about the origin when its 
position vector is rS 5 11.50 î 1 2.20 ĵ 2  m.

	13.	A particle of mass m moves in the xy plane with a velocity 
of vS 5 vx î 1 vy ĵ. Determine the angular momentum  

Q/C

M

W

S

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S
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356	C hapter 11  Angular Momentum

	18.	A counterweight of mass m 5 4.00 kg is attached to 
a light cord that is wound around a pulley as in Fig-
ure P11.18. The pulley is a thin hoop of radius R  5  
8.00 cm and mass M 5 2.00 kg. The spokes have neg-
ligible mass. (a)  What is the magnitude of the net 
torque on the system about the axle of the pulley? 
(b) When the counterweight has a speed v, the pulley 
has an angular speed v 5 v/R. Determine the mag-
nitude of the total angular momentum of the system 
about the axle of the pulley. (c) Using your result from 
part (b) and tS 5 d L

S
/dt, calculate the acceleration of 

the counterweight.

m

R

M

Figure P11.18

	19.	The position vector of a particle of mass 2.00 kg as 
a function of time is given by  rS 5 16.00 î 1 5.00t  ĵ 2 , 
where  rS is in meters and t is in seconds. Determine the 
angular momentum of the particle about the origin as 
a function of time.

	20.	A 5.00-kg particle starts from the origin at time zero. 
Its velocity as a function of time is given by

vS 5 6t2
 î 1 2t ĵ 

		  where vS is in meters per second and t is in seconds. 
(a) Find its position as a function of time. (b) Describe 
its motion qualitatively. Find (c) its acceleration as a 
function of time, (d) the net force exerted on the par-
ticle as a function of time, (e) the net torque about the 
origin exerted on the particle as a function of time,  
(f) the angular momentum of the particle as a func-
tion of time, (g) the kinetic energy of the particle as a 
function of time, and (h) the power injected into the 
system of the particle as a function of time.

	21.	 A ball having mass m is fas-
tened at the end of a flagpole 
that is connected to the side 
of a tall building at point P as 
shown in Figure P11.21. The 
length of the flagpole is ,, and 
it makes an angle u with the x 
axis. The ball becomes loose 
and starts to fall with accelera-
tion 2g ĵ. (a)  Determine the 
angular momentum of the 
ball about point P as a function of time. (b) For what 
physical reason does the angular momentum change? 
(c) What is the rate of change of the angular momen-
tum of the ball about point P ?

W
AMT

M

Q/C

m

�

P

u

Figure P11.21

Q/C
S

of the particle about the origin when its position vector 
is rS 5 x î 1 y ĵ.

	14.	Heading straight toward the summit of Pike’s Peak, an 
airplane of mass 12 000 kg flies over the plains of Kan-
sas at nearly constant altitude 4.30 km with constant 
velocity 175 m/s west. (a) What is the airplane’s vector 
angular momentum relative to a wheat farmer on the 
ground directly below the airplane? (b) Does this value 
change as the airplane continues its motion along a 
straight line? (c) What If? What is its angular momen-
tum relative to the summit of Pike’s Peak?

	15.	Review. A projectile of mass m is launched with an ini-
tial velocity vSi making an angle u with the horizontal as 
shown in Figure P11.15. The projectile moves in the 
gravitational field of the Earth. Find the angular 
momentum of the projectile about the origin (a) when 
the projectile is at the origin, (b) when it is at the high-
est point of its trajectory, and (c) just before it hits the 
ground. (d) What torque causes its angular momen-
tum to change?

O R

vxi i

u

m
y

x

vi
S

v2
S

v1
S

�

Figure P11.15

	16.	Review. A conical pendulum consists 
of a bob of mass m in motion in a cir-
cular path in a horizontal plane as 
shown in Figure P11.16. During the 
motion, the supporting wire of length 
, maintains a constant angle u with 
the vertical. Show that the magnitude 
of the angular momentum of the bob 
about the vertical dashed line is

L 5 am2g ,3 sin4 u

cos u
b

1/2

	17.	 A particle of mass m moves in a circle of radius R at a 
constant speed v as shown in Figure P11.17. The motion 
begins at point Q at time t 5 0. Determine the angular 
momentum of the particle about the axis perpendicu-
lar to the page through point P as a function of time.

Q/C
S

�

m

u

Figure P11.16

S

S

mR

y

x
QP

vS

Figure P11.17  Problems 17 and 32.
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	 Problems	 357

the ring. (a) What angular momentum does the space 
station acquire? (b) For what time interval must the 
rockets be fired if each exerts a thrust of 125 N?

r

Figure P11.29  Problems 29 and 40.

Section 11.4 ​ Analysis Model: Isolated System  
(Angular Momentum)

	30.	A disk with moment of inertia I1 rotates about a fric-
tionless, vertical axle with angular speed vi. A second 
disk, this one having moment of inertia I2 and initially 
not rotating, drops onto the first disk (Fig. P11.30). 
Because of friction between the surfaces, the two even-
tually reach the same angular speed vf . (a) Calculate 
vf . (b) Calculate the ratio of the final to the initial 
rotational energy.

Before After

I2

I1

vi
S

vf
S

Figure P11.30

	31.	 A playground merry-go-round of radius R 5 2.00 m 
has a moment of inertia I 5 250 kg ? m2 and is rotating 
at 10.0 rev/min about a frictionless, vertical axle. Fac-
ing the axle, a 25.0-kg child hops onto the merry-go-
round and manages to sit down on the edge. What is 
the new angular speed of the merry-go-round?

	32.	Figure P11.17 represents a small, flat puck with mass 
m 5 2.40 kg sliding on a frictionless, horizontal sur-
face. It is held in a circular orbit about a fixed axis by 
a rod with negligible mass and length R 5 1.50 m, piv-
oted at one end. Initially, the puck has a speed of v 5  
5.00 m/s. A 1.30-kg ball of putty is dropped verti-
cally onto the puck from a small distance above it and 
immediately sticks to the puck. (a) What is the new 
period of rotation? (b) Is the angular momentum of 
the puck–putty system about the axis of rotation con-
stant in this process? (c) Is the momentum of the sys-
tem constant in the process of the putty sticking to 
the puck? (d) Is the mechanical energy of the system 
constant in the process?

W
S

AMT
W

Q/C

Section 11.3 ​ Angular Momentum of a Rotating Rigid Object

	22.	A uniform solid sphere of radius r 5 0.500 m and mass 
m 5 15.0 kg turns counterclockwise about a vertical axis 
through its center. Find its vector angular momentum 
about this axis when its angular speed is 3.00 rad/s.

	23.	Big Ben (Fig. P10.49, page 328), the Parliament tower 
clock in London, has hour and minute hands with 
lengths of 2.70  m and 4.50 m and masses of 60.0 kg 
and 100 kg, respectively. Calculate the total angular 
momentum of these hands about the center point. 
(You may model the hands as long, thin rods rotating 
about one end. Assume the hour and minute hands 
are rotating at a constant rate of one revolution per  
12 hours and 60 minutes, respectively.)

	24.	Show that the kinetic energy of an object rotating 
about a fixed axis with angular momentum L 5 Iv can 
be written as K 5 L2/2I.

	25.	A uniform solid disk of mass m 5 3.00 kg and radius 
r 5 0.200 m rotates about a fixed axis perpendicular 
to its face with angular frequency 6.00 rad/s. Calcu-
late the magnitude of the angular momentum of the 
disk when the axis of rotation (a) passes through its 
center of mass and (b) passes through a point midway 
between the center and the rim.

	26.	Model the Earth as a uniform sphere. (a) Calculate 
the angular momentum of the Earth due to its spin-
ning motion about its axis. (b) Calculate the angu-
lar momentum of the Earth due to its orbital motion 
about the Sun. (c) Explain why the answer in part (b) is 
larger than that in part (a) even though it takes signifi-
cantly longer for the Earth to go once around the Sun 
than to rotate once about its axis.

	27.	A particle of mass 0.400 kg is attached to the 100-cm 
mark of a meterstick of mass 0.100 kg. The meterstick 
rotates on the surface of a frictionless, horizontal 
table with an angular speed of 4.00 rad/s. Calculate 
the angular momentum of the system when the stick 
is pivoted about an axis (a) perpendicular to the table 
through the 50.0-cm mark and (b)  perpendicular to 
the table through the 0-cm mark.

	28.	The distance between the centers of the wheels of a 
motorcycle is 155 cm. The center of mass of the motor-
cycle, including the rider, is 88.0 cm above the ground 
and halfway between the wheels. Assume the mass of 
each wheel is small compared with the body of the 
motorcycle. The engine drives the rear wheel only. 
What horizontal acceleration of the motorcycle will 
make the front wheel rise off the ground?

	29.	A space station is constructed in the shape of a hollow 
ring of mass 5.00 3 104 kg. Members of the crew walk 
on a deck formed by the inner surface of the outer 
cylindrical wall of the ring, with radius r 5 100 m. At 
rest when constructed, the ring is set rotating about 
its axis so that the people inside experience an effec-
tive free-fall acceleration equal to g. (See Fig. P11.29.) 
The rotation is achieved by firing two small rockets 
attached tangentially to opposite points on the rim of 

S

W

Q/C

M

AMT
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358	C hapter 11  Angular Momentum

the pucks stick together and rotate after the collision 
(Fig. P11.36b). (a) What is the angular momentum of 
the system relative to the center of mass? (b) What is 
the angular speed about the center of mass?

vS

m1

m2

a b

Figure P11.36

	37.	 A wooden block of mass M resting on a frictionless, 
horizontal surface is attached to a rigid rod of length , 
and of negligible mass (Fig. P11.37). The rod is pivoted 
at the other end. A bullet of mass m traveling parallel 
to the horizontal surface and perpendicular to the rod 
with speed v hits the block and becomes embedded in 
it. (a) What is the angular momentum of the bullet–
block system about a vertical axis through the pivot? 
(b) What fraction of the original kinetic energy of the 
bullet is converted into internal energy in the system 
during the collision?

vS
m

M
�

Figure P11.37

	38.	Review. A thin, uniform, rectangular signboard hangs 
vertically above the door of a shop. The sign is hinged 
to a stationary horizontal rod along its top edge. The 
mass of the sign is 2.40 kg, and its vertical dimension 
is 50.0 cm. The sign is swinging without friction, so it 
is a tempting target for children armed with snowballs. 
The maximum angular displacement of the sign is 
25.08 on both sides of the vertical. At a moment when 
the sign is vertical and moving to the left, a snowball 
of mass 400 g, traveling horizontally with a velocity of 
160 cm/s to the right, strikes perpendicularly at the 
lower edge of the sign and sticks there. (a) Calculate 
the angular speed of the sign immediately before the 
impact. (b) Calculate its angular speed immediately 
after the impact. (c) The spattered sign will swing up 
through what maximum angle?

	39.	A wad of sticky clay with mass m and velocity  vSi is fired 
at a solid cylinder of mass M and radius R (Fig. P11.39). 
The cylinder is initially at rest and is mounted on a 
fixed horizontal axle that runs through its center of 
mass. The line of motion of the projectile is perpendic-
ular to the axle and at a distance d , R from the cen-
ter. (a) Find the angular speed of the system just after 
the clay strikes and sticks to the surface of the cylin-

S

Q/C
S

	33.	A 60.0-kg woman stands at the western rim of a 
horizontal turntable having a moment of inertia of 
500 kg  ? m2 and a radius of 2.00 m. The turntable is 
initially at rest and is free to rotate about a friction-
less, vertical axle through its center. The woman then 
starts walking around the rim clockwise (as viewed 
from above the system) at a constant speed of 1.50 m/s  
relative to the Earth. Consider the woman–turntable 
system as motion begins. (a) Is the mechanical energy 
of the system constant? (b) Is the momentum of the 
system constant? (c) Is the angular momentum of the 
system constant? (d) In what direction and with what 
angular speed does the turntable rotate? (e) How much 
chemical energy does the woman’s body convert into 
mechanical energy of the woman–turntable system as 
the woman sets herself and the turntable into motion?

	34.	A student sits on a freely rotating stool holding two 
dumbbells, each of mass 3.00 kg (Fig. P11.34). When 
his arms are extended horizontally (Fig. P11.34a), the 
dumbbells are 1.00 m from the axis of rotation and the 
student rotates with an angular speed of 0.750 rad/s. 
The moment of inertia of the student plus stool is  
3.00 kg · m2 and is assumed to be constant. The student 
pulls the dumbbells inward horizontally to a position 
0.300 m from the rotation axis (Fig. P11.34b). (a) Find 
the new angular speed of the student. (b) Find the 
kinetic energy of the rotating system before and after 
he pulls the dumbbells inward.

v vi f

a b

Figure P11.34

	35.	A uniform cylindrical turntable of radius 1.90 m and 
mass 30.0 kg rotates counterclockwise in a horizontal 
plane with an initial angular speed of 4p rad/s. The 
fixed turntable bearing is frictionless. A lump of clay 
of mass 2.25 kg and negligible size is dropped onto the 
turntable from a small distance above it and immedi-
ately sticks to the turntable at a point 1.80 m to the 
east of the axis. (a) Find the final angular speed of the 
clay and turntable. (b) Is the mechanical energy of  
the turntable–clay system constant in this process? 
Explain and use numerical results to verify your 
answer. (c) Is the momentum of the system constant in 
this process? Explain your answer.

	36.	A puck of mass m1 5 80.0 g and radius r1 5 4.00 cm 
glides across an air table at a speed of vS 5 1.50 m/s as 
shown in Figure P11.36a. It makes a glancing collision 
with a second puck of radius r2 5 6.00 cm and mass m2 5  
120 g (initially at rest) such that their rims just touch. 
Because their rims are coated with instant-acting glue, 
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of the spacecraft around the same axis is Is 5 5.00 3   
105 kg ? m2. Neither the spacecraft nor the gyroscope 
is originally rotating. The gyroscope can be powered 
up in a negligible period of time to an angular speed 
of 100 rad/s. If the orientation of the spacecraft is to 
be changed by 30.08, for what time interval should the 
gyroscope be operated?

	43.	The angular momentum vector of a precessing gyro-
scope sweeps out a cone as shown in Figure P11.43. The 
angular speed of the tip of the angular momentum vec-
tor, called its precessional frequency, is given by vp 5 
t/L, where t is the magnitude of the torque on the gyro-
scope and L is the magnitude of its angular momen-
tum. In the motion called precession of the equinoxes, the 
Earth’s axis of rotation precesses about the perpendicu-
lar to its orbital plane with a period of 2.58 3 104 yr. 
Model the Earth as a uniform sphere and calculate the 
torque on the Earth that is causing this precession.

 

L
t

L
S

vp � 

Figure P11.43  A precessing 
angular momentum vector 
sweeps out a cone in space.

Additional Problems

	44.	A light rope passes over a light, 
frictionless pulley. One end is fas-
tened to a bunch of bananas of 
mass M, and a monkey of mass M 
clings to the other end (Fig. P11.44). 
The monkey climbs the rope in 
an attempt to reach the bananas.  
(a) Treating the system as consist-
ing of the monkey, bananas, rope, 
and pulley, find the net torque on 
the system about the pulley axis.  
(b) Using the result of part (a), 
determine the total angular momen-
tum about the pulley axis and describe the motion of 
the system. (c) Will the monkey reach the bananas?

	45.	Comet Halley moves about the Sun in an elliptical 
orbit, with its closest approach to the Sun being about 
0.590 AU and its greatest distance 35.0 AU (1 AU 5 the 
Earth–Sun distance). The angular momentum of the 
comet about the Sun is constant, and the gravitational 
force exerted by the Sun has zero moment arm. The 
comet’s speed at closest approach is 54.0 km/s. What is 
its speed when it is farthest from the Sun?

	46.	Review. Two boys are sliding toward each other on a 
frictionless, ice-covered parking lot. Jacob, mass 45.0 kg,  
is gliding to the right at 8.00 m/s, and Ethan, mass 
31.0 kg, is gliding to the left at 11.0 m/s along the same 

M

M

Figure P11.44
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der. (b) Is the mechanical energy of the clay–cylinder 
system constant in this process? Explain your answer.  
(c) Is the momentum of the clay–cylinder system con-
stant in this process? Explain your answer.

M
R

m

d

vi
S

Figure P11.39

	40.	Why is the following situation impossible? A space station 
shaped like a giant wheel has a radius of r 5 100 m and 
a moment of inertia of 5.00 3 108 kg ? m2. A crew of 
150 people of average mass 65.0 kg is living on the rim, 
and the station’s rotation causes the crew to experience 
an apparent free-fall acceleration of g (Fig. P11.29).  
A research technician is assigned to perform an experi-
ment in which a ball is dropped at the rim of the station 
every 15 minutes and the time interval for the ball to 
drop a given distance is measured as a test to make sure 
the apparent value of g is correctly maintained. One 
evening, 100 average people move to the center of the 
station for a union meeting. The research technician, 
who has already been performing his experiment for an 
hour before the meeting, is disappointed that he cannot 
attend the meeting, and his mood sours even further by 
his boring experiment in which every time interval for 
the dropped ball is identical for the entire evening.

	41.	A 0.005 00-kg bullet traveling horizontally with speed  
1.00 3 103 m/s strikes an 18.0-kg door, embedding itself 
10.0 cm from the side opposite the hinges as shown in 
Figure P11.41. The 1.00-m wide door is free to swing 
on its frictionless hinges. (a) Before it hits the door, 
does the bullet have angular momentum relative to the 
door’s axis of rotation? (b) If so, evaluate this angu-
lar momentum. If not, explain why there is no angular 
momentum. (c) Is the mechanical energy of the bullet– 
door system constant during this collision? Answer 
without doing a calculation. (d) At what angular speed 
does the door swing open immediately after the colli-
sion? (e) Calculate the total energy of the bullet–door 
system and determine whether it is less than or equal 
to the kinetic energy of the bullet before the collision.

0.005 00 kg

18.0 kg

Hinge

Figure P11.41  An overhead view of a bullet striking a door.

Section 11.5 ​ The Motion of Gyroscopes and Tops
	42.	A spacecraft is in empty space. It carries on board a 

gyroscope with a moment of inertia of Ig 5 20.0 kg ? m2  
about the axis of the gyroscope. The moment of inertia 
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360	C hapter 11  Angular Momentum

Assuming m and d are known, find (a) the moment 
of inertia of the system of three particles about the 
pivot, (b) the torque acting on the system at t 5 0, 
(c) the angular acceleration of the system at t 5 0,  
(d) the linear acceleration of the particle labeled 3 at 
t 5 0, (e) the maximum kinetic energy of the system, 
(f) the maximum angular speed reached by the rod, 
(g) the maximum angular momentum of the system, 
and (h) the maximum speed reached by the particle 
labeled 2.

d

2d
3

mmm
P

d
31 2

Figure P11.49

	50.	Two children are playing on stools at a restaurant coun-
ter. Their feet do not reach the footrests, and the tops 
of the stools are free to rotate without friction on ped-
estals fixed to the floor. One of the children catches a 
tossed ball, in a process described by the equation

10.730 kg # m2 2 12.40 ĵ rad/s 2
1 10.120 kg 2 10.350 î m 2 3 14.30 k̂ m/s 2

5 30.730 kg # m2 1 10.120 kg 2 10.350 m 22 4vS
		  (a) Solve the equation for the unknown vS. (b) Com-

plete the statement of the problem to which this 
equation applies. Your statement must include the 
given numerical information and specification of the 
unknown to be determined. (c) Could the equation 
equally well describe the other child throwing the ball? 
Explain your answer.

	51.	 A projectile of mass m moves to the right with a speed vi 
(Fig. P11.51a). The projectile strikes and sticks to the end 
of a stationary rod of mass M, length d, pivoted about 
a frictionless axle perpendicular to the page through 
O (Fig. P11.51b). We wish to find the fractional change 
of kinetic energy in the system due to the collision.  
(a) What is the appropriate analysis model to describe 
the projectile and the rod? (b)  What is the angular 
momentum of the system before the collision about an 
axis through O? (c) What is the moment of inertia of 
the system about an axis through O after the projectile 
sticks to the rod? (d) If the angular speed of the system 
after the collision is v, what is the angular momentum 
of the system after the collision? (e) Find the angular 
speed v after the collision in terms of the given quanti-
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line. When they meet, they grab each other and hang 
on. (a) What is their velocity immediately thereafter? 
(b) What fraction of their original kinetic energy is 
still mechanical energy after their collision? That was 
so much fun that the boys repeat the collision with the 
same original velocities, this time moving along paral-
lel lines 1.20 m apart. At closest approach, they lock 
arms and start rotating about their common center of 
mass. Model the boys as particles and their arms as a 
cord that does not stretch. (c) Find the velocity of their 
center of mass. (d) Find their angular speed. (e) What 
fraction of their original kinetic energy is still mechani-
cal energy after they link arms? (f) Why are the answers 
to parts (b) and (e) so different?

	47.	 We have all complained that there aren’t enough hours 
in a day. In an attempt to fix that, suppose all the peo-
ple in the world line up at the equator and all start 
running east at 2.50 m/s relative to the surface of the 
Earth. By how much does the length of a day increase? 
Assume the world population to be 7.00 3 109 people 
with an average mass of 55.0 kg each and the Earth to 
be a solid homogeneous sphere. In addition, depend-
ing on the details of your solution, you may need to use 
the approximation 1/(1 2 x) < 1 1 x for small x.

	48.	A skateboarder with his board can be modeled as a 
particle of mass 76.0 kg, located at his center of mass, 
0.500 m above the ground. As shown in Figure P11.48, 
the skateboarder starts from rest in a crouching posi-
tion at one lip of a half-pipe (point A). The half-pipe 
forms one half of a cylinder of radius 6.80 m with its 
axis horizontal. On his descent, the skateboarder moves 
without friction and maintains his crouch so that his 
center of mass moves through one quarter of a circle. 
(a) Find his speed at the bottom of the half-pipe (point 
B). (b) Find his angular momentum about the center 
of curvature at this point. (c) Immediately after passing 
point B, he stands up and raises his arms, lifting his 
center of gravity to 0.950 m above the concrete (point 
C). Explain why his angular momentum is constant in 
this maneuver, whereas the kinetic energy of his body 
is not constant. (d) Find his speed immediately after he 
stands up. (e) How much chemical energy in the skate-
boarder’s legs was converted into mechanical energy in 
the skateboarder–Earth system when he stood up?

A

B C

Figure P11.48

	49.	A rigid, massless rod has three particles with equal 
masses attached to it as shown in Figure P11.49. The rod 
is free to rotate in a vertical plane about a frictionless 
axle perpendicular to the rod through the point P and 
is released from rest in the horizontal position at t 5 0.  
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of mass at speeds of 5.00 m/s. Treating the astronauts 
as particles, calculate (a) the magnitude of the angu-
lar momentum of the two-astronaut system and (b) the 
rotational energy of the system. By pulling on the rope, 
one astronaut shortens the distance between them to 
5.00 m. (c) What is the new angular momentum of 
the system? (d) What are the astronauts’ new speeds?  
(e) What is the new rotational energy of the system? 
(f) How much chemical potential energy in the body 
of the astronaut was converted to mechanical energy in 
the system when he shortened the rope?

	56.	Two astronauts (Fig. P11.55), each having a mass M, 
are connected by a rope of length d having negligible 
mass. They are isolated in space, orbiting their center 
of mass at speeds v. Treating the astronauts as particles, 
calculate (a)  the magnitude of the angular momen-
tum of the two-astronaut system and (b) the rotational 
energy of the system. By pulling on the rope, one of the 
astronauts shortens the distance between them to d/2.  
(c) What is the new angular momentum of the system? 
(d) What are the astronauts’ new speeds? (e) What is 
the new rotational energy of the system? (f) How much 
chemical potential energy in the body of the astronaut 
was converted to mechanical energy in the system 
when he shortened the rope?

	57.	 Native people throughout North and South America 
used a bola to hunt for birds and animals. A bola can 
consist of three stones, each with mass m, at the ends 
of three light cords, each with length ,. The other 
ends of the cords are tied together to form a Y. The 
hunter holds one stone and swings the other two above 
his head (Figure  P11.57a). Both these stones move 
together in a horizontal circle of radius 2, with speed 
v0. At a moment when the horizontal component of 
their velocity is directed toward the quarry, the hunter 
releases the stone in his hand. As the bola flies through 
the air, the cords quickly take a stable arrangement 
with constant 120-degree angles between them (Fig. 
P11.57b). In the vertical direction, the bola is in free 
fall. Gravitational forces exerted by the Earth make 
the junction of the cords move with the downward 
acceleration gS. You may ignore the vertical motion as 
you proceed to describe the horizontal motion of the 
bola. In terms of m, ,, and v0, calculate (a) the mag-
nitude of the momentum of the bola at the moment 
of release and, after release, (b) the horizontal speed 
of the center of mass of the bola and (c) the angu-
lar momentum of the bola about its center of mass.  
(d) Find the angular speed of the bola about its center 
of mass after it has settled into its Y shape. Calculate  
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ties. (f) What is the kinetic energy of the system before 
the collision? (g) What is the kinetic energy of the sys-
tem after the collision? (h)  Determine the fractional 
change of kinetic energy due to the collision.

	52. A puck of mass m 5 50.0 g is attached to a taut cord pass-
ing through a small hole in a frictionless, horizontal 
surface (Fig. P11.52). The puck is initially orbiting with 
speed vi 5 1.50 m/s in a circle of radius ri 5 0.300 m. 
The cord is then slowly pulled from below, decreasing 
the radius of the circle to r 5 0.100 m. (a) What is the 
puck’s speed at the smaller radius? (b) Find the tension 
in the cord at the smaller radius. (c) How much work is 
done by the hand in pulling the cord so that the radius 
of the puck’s motion changes from 0.300 m to 0.100 m?

ri

m
vi
S

Figure P11.52  Problems 52 and 53.

	53.	A puck of mass m is attached to a taut cord passing 
through a small hole in a frictionless, horizontal sur-
face (Fig. P11.52). The puck is initially orbiting with 
speed vi in a circle of radius ri . The cord is then slowly 
pulled from below, decreasing the radius of the circle 
to r. (a) What is the puck’s speed when the radius is r?  
(b) Find the tension in the cord as a function of r.  
(c) How much work is done by the hand in pulling the 
cord so that the radius of the puck’s motion changes 
from ri to r?

	54.	Why is the following situation impossible? A meteoroid strikes 
the Earth directly on the equator. At the time it lands, 
it is traveling exactly vertical and downward. Due to the 
impact, the time for the Earth to rotate once increases 
by 0.5 s, so the day is 0.5 s longer, undetectable to layper-
sons. After the impact, people on the Earth ignore the 
extra half-second each day and life goes on as normal. 
(Assume the density of the Earth is uniform.)

	55.	Two astronauts (Fig. P11.55), each having a mass of 
75.0 kg, are connected by a 10.0-m rope of negligible 
mass. They are isolated in space, orbiting their center 
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Figure P11.55  Problems 55 and 56. Figure P11.57
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362	C hapter 11  Angular Momentum

rolling occurs. (c) Assume the coefficient of friction 
between disk and surface is m. What is the time inter-
val after setting the disk down before pure rolling 
motion begins? (d) How far does the disk travel before 
pure rolling begins?

M

Figure P11.61

	62.	In Example 11.9, we investigated an elastic collision 
between a disk and a stick lying on a frictionless sur-
face. Suppose everything is the same as in the example 
except that the collision is perfectly inelastic so that 
the disk adheres to the stick at the endpoint at which it 
strikes. Find (a) the speed of the center of mass of the 
system and (b)  the angular speed of the system after 
the collision.

	63.	A solid cube of side 2a and mass M is sliding on a fric-
tionless surface with uniform velocity  vS as shown in 
Figure  P11.63a. It hits a small obstacle at the end of 
the table that causes the cube to tilt as shown in Fig-
ure P11.63b. Find the minimum value of the magni-
tude of  vS such that the cube tips over and falls off the 
table. Note: The cube undergoes an inelastic collision 
at the edge.

vS

2a

M v

a b

Figure P11.63

	64.	A solid cube of wood of side 2a and mass M is resting 
on a horizontal surface. The cube is constrained to 
rotate about a fixed axis AB (Fig. P11.64). A bullet of 
mass m and speed v is shot at the face opposite ABCD at 
a height of 4a/3. The bullet becomes embedded in the 
cube. Find the minimum value of v required to tip the 
cube so that it falls on face ABCD. Assume m ,, M.

m

2a

A

B

C

vS

3
4a

D

Figure P11.64
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the kinetic energy of the bola (e) at the instant of 
release and (f) in its stable Y shape. (g) Explain how 
the conservation laws apply to the bola as its configu-
ration changes. Robert Beichner suggested the idea 
for this problem.

	58.	A uniform rod of mass 300 g and length 50.0 cm 
rotates in a horizontal plane about a fixed, frictionless, 
vertical pin through its center. Two small, dense beads, 
each of mass m, are mounted on the rod so that they 
can slide without friction along its length. Initially, 
the beads are held by catches at positions 10.0 cm on 
each side of the center and the system is rotating at an 
angular speed of 36.0 rad/s. The catches are released 
simultaneously, and the beads slide outward along the 
rod. (a) Find an expression for the angular speed vf of 
the system at the instant the beads slide off the ends of 
the rod as it depends on m. (b) What are the maximum 
and the minimum possible values for vf and the values 
of m to which they correspond?

	59.	Global warming is a cause for concern because even 
small changes in the Earth’s temperature can have sig-
nificant consequences. For example, if the Earth’s polar 
ice caps were to melt entirely, the resulting additional 
water in the oceans would flood many coastal areas. 
Model the polar ice as having mass 2.30 3 1019 kg and 
forming two flat disks of radius 6.00 3 105 m. Assume 
the water spreads into an unbroken thin, spherical shell 
after it melts. Calculate the resulting change in the dura-
tion of one day both in seconds and as a percentage.

	60.	The puck in Figure P11.60 has a mass of 0.120 kg. The 
distance of the puck from the center of rotation is 
originally 40.0 cm, and the puck is sliding with a speed 
of 80.0 cm/s. The string is pulled downward 15.0 cm 
through the hole in the frictionless table. Determine 
the work done on the puck. (Suggestion: Consider the 
change of kinetic energy.)

m

F
S

ivSO R

Figure P11.60

Challenge Problems

	61.	 A uniform solid disk of radius R is set into rotation 
with an angular speed vi about an axis through its cen-
ter. While still rotating at this speed, the disk is placed 
into contact with a horizontal surface and immedi-
ately released as shown in Figure P11.61. (a) What is 
the angular speed of the disk once pure rolling takes 
place? (b) Find the fractional change in kinetic energy 
from the moment the disk is set down until pure  
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Balanced Rock in Arches National 
Park, Utah, is a 3 000 000-kg  
boulder that has been in stable 
equilibrium for several millennia.  
It had a smaller companion nearby, 
called “Chip Off the Old Block,” 
that fell during the winter of 1975. 
Balanced Rock appeared in an 
early scene of the movie Indiana 
Jones and the Last Crusade. We will 
study the conditions under which 
an object is in equilibrium in this 
chapter. (John W. Jewett, Jr.)

12.1	 Analysis Model: Rigid 
Object in Equilibrium

12.2	 More on the Center of 
Gravity

12.3	 Examples of Rigid Objects 
in Static Equilibrium

12.4	 Elastic Properties of Solids

c h a p t e r 

12Static Equilibrium  
and Elasticity

		  363

In Chapters 10 and 11, we studied the dynamics of rigid objects. Part of this chapter 
addresses the conditions under which a rigid object is in equilibrium. The term equilibrium 
implies that the object moves with both constant velocity and constant angular velocity 
relative to an observer in an inertial reference frame. We deal here only with the special 
case in which both of these velocities are equal to zero. In this case, the object is in what 
is called static equilibrium. Static equilibrium represents a common situation in engineering 
practice, and the principles it involves are of special interest to civil engineers, architects, 
and mechanical engineers. If you are an engineering student, you will undoubtedly take an 
advanced course in statics in the near future.
	 The last section of this chapter deals with how objects deform under load conditions. An 
elastic object returns to its original shape when the deforming forces are removed. Several 
elastic constants are defined, each corresponding to a different type of deformation.

12.1	 Analysis Model: Rigid Object in Equilibrium
In Chapter 5, we discussed the particle in equilibrium model, in which a particle 
moves with constant velocity because the net force acting on it is zero. The situation 
with real (extended) objects is more complex because these objects often cannot be 
modeled as particles. For an extended object to be in equilibrium, a second condi-
tion must be satisfied. This second condition involves the rotational motion of the 
extended object.
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F2
S

 

F1
S

 

F3
S

 

Figure 12.3  ​(Quick Quiz 12.2) 
Three forces act on an object. 
Notice that the lines of action of 
all three forces pass through a 
common point.

	 Consider a single force  F
S

 acting on a rigid object as shown in Figure 12.1. Recall 
that the torque associated with the force  F

S
 about an axis through O is given by 

Equation 11.1:

	 tS 5 rS 3 F
S

	

The magnitude of tS is Fd (see Equation 10.14), where d is the moment arm shown 
in Figure 12.1. According to Equation 10.18, the net torque on a rigid object causes 
it to undergo an angular acceleration.
	 In this discussion, we investigate those rotational situations in which the angular 
acceleration of a rigid object is zero. Such an object is in rotational equilibrium. 
Because o text 5 Ia for rotation about a fixed axis, the necessary condition for rota-
tional equilibrium is that the net torque about any axis must be zero. We now have 
two necessary conditions for equilibrium of a rigid object:

	 1.	 The net external force on the object must equal zero:

	 a F
S

ext 5 0	 (12.1)

	 2.	 The net external torque on the object about any axis must be zero:

	 a tSext 5 0	 (12.2)

These conditions describe the rigid object in equilibrium analysis model. The first 
condition is a statement of translational equilibrium; it states that the translational 
acceleration of the object’s center of mass must be zero when viewed from an iner-
tial reference frame. The second condition is a statement of rotational equilibrium; 
it states that the angular acceleration about any axis must be zero. In the special 
case of static equilibrium, which is the main subject of this chapter, the object in 
equilibrium is at rest relative to the observer and so has no translational or angular 
speed (that is, vCM 5 0 and v 5 0).

Q	 uick Quiz 12.1  ​Consider the object subject to the two forces of equal magnitude 
in Figure 12.2. Choose the correct statement with regard to this situation.  
(a) The object is in force equilibrium but not torque equilibrium. (b) The object 
is in torque equilibrium but not force equilibrium. (c) The object is in both 
force equilibrium and torque equilibrium. (d) The object is in neither force 
equilibrium nor torque equilibrium.

Q	 uick Quiz 12.2 ​ Consider the object subject to the three forces in Figure 12.3. 
Choose the correct statement with regard to this situation. (a) The object is in 
force equilibrium but not torque equilibrium. (b) The object is in torque equi-
librium but not force equilibrium. (c) The object is in both force equilibrium 
and torque equilibrium. (d) The object is in neither force equilibrium nor 
torque equilibrium.

	 The two vector expressions given by Equations 12.1 and 12.2 are equivalent, 
in general, to six scalar equations: three from the first condition for equilibrium 
and three from the second (corresponding to x, y, and z components). Hence, in a 
complex system involving several forces acting in various directions, you could be 
faced with solving a set of equations with many unknowns. Here, we restrict our 
discussion to situations in which all the forces lie in the xy plane. (Forces whose 
vector representations are in the same plane are said to be coplanar.) With this 
restriction, we must deal with only three scalar equations. Two come from balanc-
ing the forces in the x and y directions. The third comes from the torque equa-
tion, namely that the net torque about a perpendicular axis through any point in 
the xy plane must be zero. This perpendicular axis will necessarily be parallel to 

F
S

rS

P

O

d

u

Figure 12.1  ​A single force  F
S

 acts 
on a rigid object at the point P.

Pitfall Prevention 12.1
Zero Torque  Zero net torque does 
not mean an absence of rotational 
motion. An object that is rotating 
at a constant angular speed can 
be under the influence of a net 
torque of zero. This possibility 
is analogous to the translational 
situation: zero net force does not 
mean an absence of translational 
motion.

F
S

d

d

CM

F
S

Figure 12.2  ​(Quick Quiz 12.1) 
Two forces of equal magnitude are 
applied at equal distances from 
the center of mass of a rigid object.
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	 12.2  More on the Center of Gravity	 365

12.2	 More on the Center of Gravity
Whenever we deal with a rigid object, one of the forces we must consider is the grav-
itational force acting on it, and we must know the point of application of this force. 
As we learned in Section 9.5, associated with every object is a special point called its 
center of gravity. The combination of the various gravitational forces acting on all 
the various mass elements of the object is equivalent to a single gravitational force 
acting through this point. Therefore, to compute the torque due to the gravita-
tional force on an object of mass M, we need only consider the force M gS acting at 
the object’s center of gravity.
	 How do we find this special point? As mentioned in Section 9.5, if we assume gS is 
uniform over the object, the center of gravity of the object coincides with its cen-
ter of mass. To see why, consider an object of arbitrary shape lying in the xy plane 
as illustrated in Figure 12.4. Suppose the object is divided into a large number of 
particles of masses m1, m2, m3, . . . having coordinates (x1, y1), (x2, y2), (x3, y3), . . . . In 
Equation 9.29, we defined the x coordinate of the center of mass of such an object 
to be

	 xCM 5
m1x1 1 m2x2 1 m3x3 1 c

m1 1 m2 1 m3 1 c 5
a

i
mixi

a
i

mi

	

We use a similar equation to define the y coordinate of the center of mass, replac-
ing each x with its y counterpart.
	 Let us now examine the situation from another point of view by considering the 
gravitational force exerted on each particle as shown in Figure 12.5. Each particle 
contributes a torque about an axis through the origin equal in magnitude to the 
particle’s weight mg multiplied by its moment arm. For example, the magnitude of 
the torque due to the force m1gS1 is m1g1x1, where g1 is the value of the gravitational 
acceleration at the position of the particle of mass m1. We wish to locate the center 
of gravity, the point at which application of the single gravitational force M gSCG 
(where M 5 m1 1 m2 1 m3 1 ??? is the total mass of the object and gSCG is the accel-
eration due to gravity at the location of the center of gravity) has the same effect on 

CM

y

x

(x1, y1) (x2, y2)

(x3, y3)
m1

m2

m3 

O

Each particle of the object has 
a specific mass and specific 
coordinates. 

Figure 12.4  ​An object can be 
divided into many small particles. 
These particles can be used to 
locate the center of mass.

the z axis, so the two conditions of the rigid object in equilibrium model provide 
the equations

	 o Fx 5 0 ​ ​  o Fy 5 0 ​ ​  o tz 5 0	 (12.3)

where the location of the axis of the torque equation is arbitrary.

Analysis Model	    Rigid Object in Equilibrium

Imagine an object that can rotate, 
but is exhibiting no translational 
acceleration a and no rotational 
acceleration a. Such an object is in 
both translational and rotational 
equilibrium, so the net force and the 
net torque about any axis are both 
equal to zero:

	 a F
S

ext 5 0	 (12.1)

	 a tSext 5 0	 (12.2)

Examples: 

•	 a balcony juts out from a building and 
must support the weight of several 
humans without collapsing

•	 a gymnast performs the difficult iron cross 
maneuver in an Olympic event

•	 a ship moves at constant speed through 
calm water and maintains a perfectly 
level orientation (Chapter 14)

•	 polarized molecules in a dielectric mate-
rial in a constant electric field take on an average equilibrium orienta-
tion that remains fixed in time (Chapter 26)

a � 0
�Fx � 0

a � 0
�tz � 0

�Fy � 0

O

y

x

(x1, y1)
(x2, y2)

(x3, y3)

O

m3

y

CG

x

 � MFg
S

g
S

CG 

g
S

3

m2g
S

2m1g
S

1

Figure 12.5  ​By dividing an 
object into many particles, we can 
find its center of gravity.
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366	C hapter 12  Static Equilibrium and Elasticity

rotation as does the combined effect of all the individual gravitational forces mi g
S

i . 
Equating the torque resulting from M gSCG acting at the center of gravity to the sum 
of the torques acting on the individual particles gives

	 1m1 1 m2 1 m3 1 c2gCG xCG 5 m1g1x1 1 m2g2x2 1 m3g3x3 1 c

This expression accounts for the possibility that the value of g can in general vary 
over the object. If we assume uniform g over the object (as is usually the case), the g 
factors cancel and we obtain

	 xCG 5
m1x1 1 m2x2 1 m3x3 1 c

m1 1 m2 1 m3 1 c 	 (12.4)

Comparing this result with Equation 9.29 shows that the center of gravity is located 
at the center of mass as long as gS is uniform over the entire object. Several exam-
ples in the next section deal with homogeneous, symmetric objects. The center of 
gravity for any such object coincides with its geometric center.

Q	 uick Quiz 12.3 ​ A meterstick of uniform density is hung from a string tied at 
the 25-cm mark. A 0.50-kg object is hung from the zero end of the meterstick, 
and the meterstick is balanced horizontally. What is the mass of the meterstick?  
(a) 0.25 kg (b) 0.50 kg (c) 0.75 kg (d) 1.0 kg (e) 2.0 kg (f) impossible to 
determine

The center of gravity of the 
system (bottle plus holder) is 
directly over the support point.

Figure 12.6  ​This one-bottle 
wine holder is a surprising display 
of static equilibrium.
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12.3	 Examples of Rigid Objects in Static Equilibrium
The photograph of the one-bottle wine holder in Figure 12.6 shows one example 
of a balanced mechanical system that seems to defy gravity. For the system (wine 
holder plus bottle) to be in equilibrium, the net external force must be zero (see 
Eq. 12.1) and the net external torque must be zero (see Eq. 12.2). The second con-
dition can be satisfied only when the center of gravity of the system is directly over 
the support point.

Problem-Solving Strategy	    Rigid Object in Equilibrium

When analyzing a rigid object in equilibrium under the action of several external 
forces, use the following procedure.

1.	 Conceptualize. ​ Think about the object that is in equilibrium and identify all the 
forces on it. Imagine what effect each force would have on the rotation of the object 
if it were the only force acting.

2.	Categorize.  Confirm that the object under consideration is indeed a rigid object 
in equilibrium. The object must have zero translational acceleration and zero angu-
lar acceleration.

3.	Analyze.  Draw a diagram and label all external forces acting on the object. Try 
to guess the correct direction for any forces that are not specified. When using the 
particle under a net force model, the object on which forces act can be represented 
in a free-body diagram with a dot because it does not matter where on the object 
the forces are applied. When using the rigid object in equilibrium model, however, 
we cannot use a dot to represent the object because the location where forces act 
is important in the calculation. Therefore, in a diagram showing the forces on an 
object, we must show the actual object or a simplified version of it.
	 Resolve all forces into rectangular components, choosing a convenient coordinate 
system. Then apply the first condition for equilibrium, Equation 12.1. Remember to 
keep track of the signs of the various force components.
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Example 12.1	     The Seesaw Revisited 

A seesaw consisting of a uniform board of mass M and length , sup-
ports at rest a father and daughter with masses mf and md, respec-
tively, as shown in Figure 12.7. The support (called the fulcrum) is 
under the center of gravity of the board, the father is a distance d 
from the center, and the daughter is a distance ,/2 from the center.

(A)  ​Determine the magnitude of the upward force nS exerted by 
the support on the board.

Conceptualize  ​Let us focus our attention on the board and consider 
the gravitational forces on the father and daughter as forces applied directly to the board. The daughter would cause a 
clockwise rotation of the board around the support, whereas the father would cause a counterclockwise rotation.

Categorize  ​Because the text of the problem states that the system is at rest, we model the board as a rigid object in 
equilibrium. Because we will only need the first condition of equilibrium to solve this part of the problem, however, we 
could also simply model the board as a particle in equilibrium.

AM

S o l u t i o n

	 Choose a convenient axis for calculating the net torque on the rigid object. 
Remember that the choice of the axis for the torque equation is arbitrary; therefore, 
choose an axis that simplifies your calculation as much as possible. Usually, the most 
convenient axis for calculating torques is one through a point through which the 
lines of action of several forces pass, so their torques around this axis are zero. If you 
don’t know a force or don’t need to know a force, it is often beneficial to choose an 
axis through the point at which this force acts. Apply the second condition for equi-
librium, Equation 12.2.
	 Solve the simultaneous equations for the unknowns in terms of the known 
quantities.

4.	Finalize. ​ Make sure your results are consistent with your diagram. If you selected a 
direction that leads to a negative sign in your solution for a force, do not be alarmed; 
it merely means that the direction of the force is the opposite of what you guessed. 
Add up the vertical and horizontal forces on the object and confirm that each set 
of components adds to zero. Add up the torques on the object and confirm that the 
sum equals zero.

d

M

mf
mdgS 

nS

gS 

gS 

2
�

Figure 12.7  ​(Example 12.1) A balanced system.

Analyze  ​Define upward as the positive y direction and 
substitute the forces on the board into Equation 12.1:

n 2 mf g  2 mdg  2 Mg 5 0

Solve for the magnitude of the force nS: (1)   n 5 mf g 1 mdg 1 Mg 5  (mf 1 md 1 M)g

(B)  ​Determine where the father should sit to balance the system at rest.

Categorize  ​This part of the problem requires the introduction of torque to find the position of the father, so we model 
the board as a rigid object in equilibrium.

Analyze  The board’s center of gravity is at its geometric center because we are told that the board is uniform. If we 
choose a rotation axis perpendicular to the page through the center of gravity of the board, the torques produced by 
nS and the gravitational force on the board about this axis are zero.

S o l u t i o n

▸ Problem-Solving Strategy c o n t i n u e d

continued
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368	C hapter 12  Static Equilibrium and Elasticity

Finalize  ​This result is the same one we obtained in Example 11.6 by evaluating the angular acceleration of the system 
and setting the angular acceleration equal to zero.

Suppose we had chosen another point through which the rotation axis were to pass. For example, sup-
pose the axis is perpendicular to the page and passes through the location of the father. Does that change the results 
to parts (A) and (B)?

Answer  ​Part (A) is unaffected because the calculation of the net force does not involve a rotation axis. In part (B), we 
would conceptually expect there to be no change if a different rotation axis is chosen because the second condition of 
equilibrium claims that the torque is zero about any rotation axis.
	 Let’s verify this answer mathematically. Recall that the sign of the torque associated with a force is positive if that 
force tends to rotate the system counterclockwise, whereas the sign of the torque is negative if the force tends to 
rotate the system clockwise. Let’s choose a rotation axis perpendicular to the page and passing through the location 
of the father.

What If ?

Substitute expressions for the torques on the board 
around this axis into Equation 12.2:

n 1d 2 2 1Mg 2 1d 2 2 1mdg 2 ad 1
,

2
b 5 0

Substitute from Equation (1) in part (A) and solve for d: 1mf 1 md 1 M 2g 1d 2 2 1Mg 2 1d 2 2 1mdg 2 ad 1
,

2
b 5 0

1mf g 2 1d 2 2 1mdg 2 a,

2
b 5 0 S d 5 amd

mf
b ,

2
This result is in agreement with the one obtained in part (B).

	

▸ 12.1 c o n t i n u e d

Example 12.2	     Standing on a Horizontal Beam 

A uniform horizontal beam with a length of , 5  
8.00 m and a weight of Wb 5 200 N is attached to a 
wall by a pin connection. Its far end is supported by a 
cable that makes an angle of f 5 53.08 with the beam 
(Fig. 12.8a). A person of weight Wp 5 600 N stands a 
distance d 5 2.00 m from the wall. Find the tension 
in the cable as well as the magnitude and direction 
of the force exerted by the wall on the beam.

Conceptualize  ​Imagine the person in Figure 12.8a 
moving outward on the beam. It seems reasonable 
that the farther he moves outward, the larger the 
torque he applies about the pivot and the larger the 
tension in the cable must be to balance this torque.

Categorize  ​Because the system is at rest, we catego-
rize the beam as a rigid object in equilibrium.

Analyze  ​We identify all the external forces acting 
on the beam: the 200-N gravitational force, the 

AM

S o l u ti  o n

u

f

f

�

Wb

Wp

Wb

Wp

R cos u  

R sin u  

T cos f

T sin f

d

R
S

T
S

a b

c

2
�

Figure 12.8  ​(Example 12.2)  
(a) A uniform beam sup-
ported by a cable. A person 
walks outward on the beam. 
(b) The force diagram for the 
beam. (c) The force diagram 
for the beam showing the 
components of R

S
 and T

S
.

Solve for d: d 5 amd

mf
b ,

2

Substitute expressions for the torques on the board due 
to the father and daughter into Equation 12.2:

1mf g 2 1d 2 2 1mdg 2 ,
2

5 0
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Applying the first condition of equilibrium, substitute 
expressions for the forces on the beam into component 
equations from Equation 12.1:

(1)   o Fx 5 R cos u 2 T cos f 5 0

(2)   o Fy 5 R sin u 1 T sin f 2 Wp 2 Wb 5 0

where we have chosen rightward and upward as our positive directions. Because R, T, and u are all unknown, we can-
not obtain a solution from these expressions alone. (To solve for the unknowns, the number of simultaneous equations 
must generally equal the number of unknowns.)
	 Now let’s invoke the condition for rotational equilibrium. A convenient axis to choose for our torque equation is 
the one that passes through the pin connection. The feature that makes this axis so convenient is that the force R

S
 

and the horizontal component of T
S

 both have a moment arm of zero; hence, these forces produce no torque about 
this axis. 

Substitute expressions for the torques on 
the beam into Equation 12.2:

a tz 5 1T sin f 2 1, 2 2 Wpd 2 Wb a,

2
b 5 0

This equation contains only T as an 
unknown because of our choice of rota-
tion axis. Solve for T and substitute 
numerical values:

T 5
Wpd 1 Wb 1,/2 2

, sin f
5

1600 N 2 12.00 m 2 1 1200 N 2 14.00 m 2
18.00 m 2  sin 53.08

5 313 N

Rearrange Equations (1) and (2) and then 
divide:

R sin u
R cos u

5 tan u 5
Wp 1 Wb 2 T sin f

T cos f

Solve for u and substitute numerical 
values:

u 5 tan21a
Wp 1 Wb 2 T sin f

T cos f
b

5 tan21 c600 N 1 200 N 2 1313 N 2  sin 53.08

1313 N 2  cos 53.08
d 5 71.18

Solve Equation (1) for R and substitute 
numerical values:

R 5
T cos f

cos u
5

1313 N 2  cos 53.08

cos 71.18
5 581 N

Finalize  ​The positive value for the angle u indicates that our estimate of the direction of  R
S

 was accurate.
	 Had we selected some other axis for the torque equation, the solution might differ in the details but the answers 
would be the same. For example, had we chosen an axis through the center of gravity of the beam, the torque equation 
would involve both T and R. This equation, coupled with Equations (1) and (2), however, could still be solved for the 
unknowns. Try it!

​What if the person walks farther out on the beam? Does T change? Does R change? Does u change?

Answer  ​T must increase because the gravitational force on the person exerts a larger torque about the pin connection, 
which must be countered by a larger torque in the opposite direction due to an increased value of T. If T increases, the 
vertical component of  R

S
 decreases to maintain force equilibrium in the vertical direction. Force equilibrium in the 

horizontal direction, however, requires an increased horizontal component of  R
S

 to balance the horizontal component 
of the increased  T

S
. This fact suggests that u becomes smaller, but it is hard to predict what happens to R . Problem 66 

asks you to explore the behavior of R.

What If ?

	

▸ 12.2 c o n t i n u e d

force T
S

 exerted by the cable, the force R
S

 exerted by the wall at the pivot, and the 600-N force that the person exerts 
on the beam. These forces are all indicated in the force diagram for the beam shown in Figure 12.8b. When we 
assign directions for forces, it is sometimes helpful to imagine what would happen if a force were suddenly removed. 
For example, if the wall were to vanish suddenly, the left end of the beam would move to the left as it begins to fall. 
This scenario tells us that the wall is not only holding the beam up but is also pressing outward against it. Therefore, 
we draw the vector R

S
 in the direction shown in Figure 12.8b. Figure 12.8c shows the horizontal and vertical compo-

nents of  T 
S

 and R
S

.
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370	C hapter 12  Static Equilibrium and Elasticity

Finalize  ​Notice that the angle depends only on the coefficient of friction, not on the mass or length of the ladder.

Example 12.3	     The Leaning Ladder 

A uniform ladder of length , rests against a smooth, vertical wall (Fig. 
12.9a). The mass of the ladder is m, and the coefficient of static friction 
between the ladder and the ground is ms 5 0.40. Find the minimum 
angle umin at which the ladder does not slip.

Conceptualize  ​Think about any ladders you have climbed. Do you want 
a large friction force between the bottom of the ladder and the surface 
or a small one? If the friction force is zero, will the ladder stay up? Simu-
late a ladder with a ruler leaning against a vertical surface. Does the 
ruler slip at some angles and stay up at others?

Categorize  ​We do not wish the ladder to slip, so we model it as a rigid 
object in equilibrium.

Analyze  ​A diagram showing all the external forces acting on the ladder is illustrated in Figure 12.9b. The force exerted 
by the ground on the ladder is the vector sum of a normal force nS and the force of static friction f

S

s . The wall exerts a 
normal force P

S
 on the top of the ladder, but there is no friction force here because the wall is smooth. So the net force 

on the top of the ladder is perpendicular to the wall and of magnitude P.

AM

S o l u ti  o n

�

O m

u

u

P
S

nS

fs
S

gS

a

b

�

O m

u

u

P
S

nS

fs
S

gS

a

b

Figure 12.9  ​(Example 12.3) (a) A uniform 
ladder at rest, leaning against a smooth wall. The 
ground is rough. (b) The forces on the ladder.

Apply the first condition for equilibrium to the ladder in 
both the x and the y directions:

(1)   o  Fx 5 fs 2 P 5 0

(2)   o Fy 5 n 2 mg 5 0

Solve Equation (1) for P : (3)   P 5 fs

Solve Equation (2) for n: (4)   n 5 mg 

When the ladder is on the verge of slipping, the force 
of static friction must have its maximum value, which is 
given by fs,max 5 msn. Combine this equation with Equa-
tions (3) and (4):

(5)   Pmax 5 fs,max 5 msn 5 msmg

Apply the second condition for equilibrium to the lad-
der, evaluating torques about an axis perpendicular to 
the page through O :

a tO 5 P, sin u 2 mg 
,

2
 cos u 5 0

Solve for tan u:
sin u
cos u

5 tan u 5
mg

2P
   S   u 5 tan21 amg

2P
b

Under the conditions that the ladder is just ready 
to slip, u becomes umin and Pmax is given by Equa-
tion (5). Substitute:

umin 5 tan21 a mg

2Pmax
b 5 tan21 a 1

2ms
b 5 tan21 c 1

2 10.40 2 d 5 518

	

Example 12.4	     Negotiating a Curb 

(A)  ​Estimate the magnitude of the force F
S

 a person must apply to a wheelchair’s main wheel to roll up over a side-
walk curb (Fig. 12.10a). This main wheel that comes in contact with the curb has a radius r, and the height of the curb 
is h.

AM

umin 5 tan21a mg

2Pmax
b 5 tan21 a 1

2ms
b 5 tan21 c 1

2 10.40 2 d 5

[&&]
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Conceptualize  ​Think about wheelchair access to build-
ings. Generally, there are ramps built for individuals in 
wheelchairs. Steplike structures such as curbs are seri-
ous barriers to a wheelchair.

Categorize  ​Imagine the person exerts enough force so 
that the bottom of the main wheel just loses contact with 
the lower surface and hovers at rest. We model the wheel 
in this situation as a rigid object in equilibrium.

Analyze  ​Usually, the person’s hands supply the required 
force to a slightly smaller wheel that is concentric with 
the main wheel. For simplicity, let’s assume the radius of 
this second wheel is the same as the radius of the main 
wheel. Let’s estimate a combined gravitational force of 
magnitude mg 5 1 400 N for the person and the wheel-
chair, acting along a line of action passing through the 
axle of the main wheel, and choose a wheel radius of r 5  
30 cm. We also pick a curb height of h 5 10 cm. Let’s also 
assume the wheelchair and occupant are symmetric and 
each wheel supports a weight of 700 N. We then proceed 
to analyze only one of the main wheels. Figure 12.10b 
shows the geometry for a single wheel.
	 When the wheel is just about to be raised from the 
street, the normal force exerted by the ground on the 
wheel at point B goes to zero. Hence, at this time only three 
forces act on the wheel as shown in the force diagram in 
Figure 12.10c. The force R

S
, which is the force exerted by 

the curb on the wheel, acts at point A, so if we choose to 
have our axis of rotation be perpendicular to the page 
and pass through point A, we do not need to include  
R
S

 in our torque equation. The moment arm of F
S

 relative 
to an axis through A is given by 2r 2 h (see Fig. 12.10c).

S o l u ti  o n

a b

c d

F
S

r � h

h

d

r
A

O

C

B

F
S

F
S

R
S

R
S2r � h

O

A

D

uu

mgS

mgS

Figure 12.10  ​(Example 12.4) (a) A person in a wheelchair 
attempts to roll up over a curb. (b) Details of the wheel and curb. 
The person applies a force  F

S
 to the top of the wheel. (c) A force 

diagram for the wheel when it is just about to be raised. Three 
forces act on the wheel at this instant:  F

S
, which is exerted by the 

hand; R
S

, which is exerted by the curb; and the gravitational force 
m gS. (d) The vector sum of the three external forces acting on the 
wheel is zero.

Use the triangle OAC in Figure 12.10b to find the 
moment arm d of the gravitational force m gS acting on 
the wheel relative to an axis through point A:

(1)   d 5 "r 2 2 1r 2 h 22 5 "2rh 2 h2

Apply the second condition for equilibrium to the wheel, 
taking torques about an axis through A:

(2)   a tA 5 mgd 2 F 12r 2 h 2 5 0

Substitute for d from Equation (1): mg"2rh 2 h2 2 F 12r 2 h 2 5 0

Substitute the known values: F 5 1700 N 2Å
0.1 m

2 10.3 m 2 2 0.1 m

5   3 3 102 N

▸ 12.4 c o n t i n u e d

continued

Solve for F : (3)   F 5
mg"2rh 2 h2

2r 2 h

Simplify: F 5 mg
"h "2r 2 h

2r 2 h
5 mg Å

h
2r 2 h
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372	C hapter 12  Static Equilibrium and Elasticity

(B)  ​Determine the magnitude and direction of R
S

.

S o l u ti  o n

Apply the first condition for equilibrium to the x and y 
components of the forces on the wheel:

(4)   o Fx 5 F 2 R cos u 5 0

(5)   o Fy 5 R sin u 2 mg 5 0

Divide Equation (5) by Equation (4):
R sin u
 R cos u

5 tan u 5
mg

 F

Solve for the angle u: u 5 tan21 amg

F
b 5 tan21 a700 N

300 N
b 5 708

Solve Equation (5) for R and substitute numerical values: R 5
mg

sin u
5

700 N
sin 708

5 8 3 102 N

Finalize  ​Notice that we have kept only one digit as significant. (We have written the angle as 708 because 7 3 1018 is 
awkward!) The results indicate that the force that must be applied to each wheel is substantial. You may want to esti-
mate the force required to roll a wheelchair up a typical sidewalk accessibility ramp for comparison.

Would it be easier to negotiate the curb if the person grabbed the wheel at point D in Figure 12.10c and 
pulled upward?

Answer  ​If the force F
S

 in Figure 12.10c is rotated counterclockwise by 908 and applied at D, its moment arm about an 
axis through A is d 1 r. Let’s call the magnitude of this new force F9.

What If ?

Modify Equation (2) for this situation: o tA 5 mgd 2 F 9(d 1 r) 5 0

Solve this equation for F 9 and substitute for d: F r 5
mgd

d 1 r
5

mg"2rh 2 h2

"2rh 2 h2 1 r

Take the ratio of this force to the original force 
from Equation (3) and express the result in 
terms of h/r, the ratio of the curb height to the 
wheel radius:

F r
F

5

mg"2rh 2 h2

"2rh 2 h2 1 r

mg"2rh 2 h2

2r 2 h

5
2r 2 h

"2rh 2 h2 1 r
5

2 2 ah
r
b

Å2ah
r
b 2 ah

r
b

2

1 1

Substitute the ratio h/r 5 0.33 from the given 
values:

F r
F

5
2 2 0.33

"2 10.33 2 2 10.33 22 1 1
5 0.96

This result tells us that, for these values, it is slightly easier to pull upward at D than horizontally at the top of the wheel. 
For very high curbs, so that h/r is close to 1, the ratio F 9/F drops to about 0.5 because point A is located near the right 
edge of the wheel in Figure 12.10b. The force at D is applied at a distance of about 2r from A, whereas the force at the 
top of the wheel has a moment arm of only about r. For high curbs, then, it is best to pull upward at D, although a 
large value of the force is required. For small curbs, it is best to apply the force at the top of the wheel. The ratio F 9/F 
becomes larger than 1 at about h/r 5 0.3 because point A is now close to the bottom of the wheel and the force applied 
at the top of the wheel has a larger moment arm than when applied at D.
	 Finally, let’s comment on the validity of these mathematical results. Consider Figure 12.10d and imagine that the 
vector  F

S
 is upward instead of to the right. There is no way the three vectors can add to equal zero as required by the 

first equilibrium condition. Therefore, our results above may be qualitatively valid, but not exact quantitatively. To 
cancel the horizontal component of  R

S
, the force at D must be applied at an angle to the vertical rather than straight 

upward. This feature makes the calculation more complicated and requires both conditions of equilibrium.

	

▸ 12.4 c o n t i n u e d

www.as
warp

hy
sic

s.w
ee

bly
.co

m
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12.4	 Elastic Properties of Solids
Except for our discussion about springs in earlier chapters, we have assumed 
objects remain rigid when external forces act on them. In Section 9.8, we explored 
deformable systems. In reality, all objects are deformable to some extent. That is, it 
is possible to change the shape or the size (or both) of an object by applying exter-
nal forces. As these changes take place, however, internal forces in the object resist 
the deformation.
	 We shall discuss the deformation of solids in terms of the concepts of stress and 
strain. Stress is a quantity that is proportional to the force causing a deformation; 
more specifically, stress is the external force acting on an object per unit cross-
sectional area. The result of a stress is strain, which is a measure of the degree of 
deformation. It is found that, for sufficiently small stresses, stress is proportional 
to strain; the constant of proportionality depends on the material being deformed 
and on the nature of the deformation. We call this proportionality constant the 
elastic modulus. The elastic modulus is therefore defined as the ratio of the stress 
to the resulting strain:

	 Elastic modulus ;
stress
strain

	 (12.5)

The elastic modulus in general relates what is done to a solid object (a force is 
applied) to how that object responds (it deforms to some extent). It is similar to the 
spring constant k in Hooke’s law (Eq. 7.9) that relates a force applied to a spring and 
the resultant deformation of the spring, measured by its extension or compression.
	 We consider three types of deformation and define an elastic modulus for each:

1. � Young’s modulus measures the resistance of a solid to a change in its 
length.

2. � Shear modulus measures the resistance to motion of the planes within a 
solid parallel to each other.

3. � Bulk modulus measures the resistance of solids or liquids to changes in 
their volume.

Young’s Modulus: Elasticity in Length
Consider a long bar of cross-sectional area A and initial length Li that is clamped at 
one end as in Figure 12.11. When an external force is applied perpendicular to the 
cross section, internal molecular forces in the bar resist distortion (“stretching”), 
but the bar reaches an equilibrium situation in which its final length Lf is greater 
than Li and in which the external force is exactly balanced by the internal forces. 
In such a situation, the bar is said to be stressed. We define the tensile stress as the 
ratio of the magnitude of the external force F to the cross-sectional area A, where 
the cross section is perpendicular to the force vector. The tensile strain in this 
case is defined as the ratio of the change in length DL to the original length Li. We 
define Young’s modulus by a combination of these two ratios:

	 Y ;
tensile stress
tensile strain

5
F/A

DL/Li
	 (12.6)

Young’s modulus is typically used to characterize a rod or wire stressed under either 
tension or compression. Because strain is a dimensionless quantity, Y has units of 
force per unit area. Typical values are given in Table 12.1 on page 374.
	 For relatively small stresses, the bar returns to its initial length when the force is 
removed. The elastic limit of a substance is defined as the maximum stress that can 
be applied to the substance before it becomes permanently deformed and does not 
return to its initial length. It is possible to exceed the elastic limit of a substance by 

WW Young’s modulus

Figure 12.11  A force  F
S

 is 
applied to the free end of a bar 
clamped at the other end.

Li

�L

A

F
S

The amount by 
which the length
of the bar changes 
due to the applied
force is �L.
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374	C hapter 12  Static Equilibrium and Elasticity

applying a sufficiently large stress as seen in Figure 12.12. Initially, a stress-versus-
strain curve is a straight line. As the stress increases, however, the curve is no longer 
a straight line. When the stress exceeds the elastic limit, the object is permanently 
distorted and does not return to its original shape after the stress is removed. As 
the stress is increased even further, the material ultimately breaks.

Shear Modulus: Elasticity of Shape
Another type of deformation occurs when an object is subjected to a force paral-
lel to one of its faces while the opposite face is held fixed by another force (Fig. 
12.13a). The stress in this case is called a shear stress. If the object is originally a 
rectangular block, a shear stress results in a shape whose cross section is a paral-
lelogram. A book pushed sideways as shown in Figure 12.13b is an example of an 
object subjected to a shear stress. To a first approximation (for small distortions), 
no change in volume occurs with this deformation.
	 We define the shear stress as F/A, the ratio of the tangential force to the area 
A of the face being sheared. The shear strain is defined as the ratio Dx/h, where 
Dx is the horizontal distance that the sheared face moves and h is the height of the 
object. In terms of these quantities, the shear modulus is

	 S ;
shear stress
shear strain

5
F/A

Dx/h
	 (12.7)

	 Values of the shear modulus for some representative materials are given in Table 
12.1. Like Young’s modulus, the unit of shear modulus is the ratio of that for force 
to that for area.

Bulk Modulus: Volume Elasticity
Bulk modulus characterizes the response of an object to changes in a force of uni-
form magnitude applied perpendicularly over the entire surface of the object as 
shown in Figure 12.14. (We assume here the object is made of a single substance.) 

Shear modulus  

Table 12.1 Typical Values for Elastic Moduli
	 Young’s Modulus	 Shear Modulus	 Bulk Modulus
Substance	 (N/m2)	 (N/m2)	 (N/m2)

Tungsten	 35 3 1010	 14 3 1010	 20 3 1010

Steel	 20 3 1010	 8.4 3 1010	 6 3 1010

Copper	 11 3 1010	 4.2 3 1010	 14 3 1010

Brass	 9.1 3 1010	 3.5 3 1010	 6.1 3 1010

Aluminum	 7.0 3 1010	 2.5 3 1010	 7.0 3 1010

Glass	 6.5–7.8 3 1010	 2.6–3.2 3 1010	 5.0–5.5 3 1010

Quartz	 5.6 3 1010	 2.6 3 1010	 2.7 3 1010

Water	 —	 —	 0.21 3 1010

Mercury	 —	 —	 2.8 3 1010

Elastic
limit Breaking

point

Elastic
behavior

0.002 0.004 0.006 0.008 0.010

100

200

300

400

Stress
(MPa)

Strain

Figure 12.12  ​Stress-versus-strain 
curve for an elastic solid.

The shear
stress causes
the top face
of the block
to move to
the right 
relative to
the bottom.

–

�x
A

Fixed
face

h

F
S

F
S

a

F
S

fs
S

The shear
stress causes
the front
cover of the 
book to move 
to the right 
relative to the 
back cover.

b

P
h
ysics

fs
S

Figure 12.13  (a) A shear defor-
mation in which a rectangular 
block is distorted by two forces 
of equal magnitude but opposite 
directions applied to two parallel 
faces. (b) A book is under shear 
stress when a hand placed on the 
cover applies a horizontal force 
away from the spine.
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As we shall see in Chapter 14, such a uniform distribution of forces occurs when an 
object is immersed in a fluid. An object subject to this type of deformation undergoes 
a change in volume but no change in shape. The volume stress is defined as the ratio 
of the magnitude of the total force F exerted on a surface to the area A of the sur-
face. The quantity P 5 F/A is called pressure, which we shall study in more detail in 
Chapter 14. If the pressure on an object changes by an amount DP 5 DF/A, the object 
experiences a volume change DV. The volume strain is equal to the change in volume 
DV divided by the initial volume Vi. Therefore, from Equation 12.5, we can character-
ize a volume (“bulk”) compression in terms of the bulk modulus, which is defined as

	 B ;
volume stress
volume strain

5 2
DF/A
DV/Vi

5 2
DP

DV/Vi
	 (12.8)

A negative sign is inserted in this defining equation so that B is a positive number. 
This maneuver is necessary because an increase in pressure (positive DP) causes a 
decrease in volume (negative DV) and vice versa.
	 Table 12.1 lists bulk moduli for some materials. If you look up such values in a 
different source, you may find the reciprocal of the bulk modulus listed. The recip-
rocal of the bulk modulus is called the compressibility of the material.
	 Notice from Table 12.1 that both solids and liquids have a bulk modulus. No 
shear modulus and no Young’s modulus are given for liquids, however, because a 
liquid does not sustain a shearing stress or a tensile stress. If a shearing force or a 
tensile force is applied to a liquid, the liquid simply flows in response.

Q	 uick Quiz 12.4 ​ For the three parts of this Quick Quiz, choose from the fol-
lowing choices the correct answer for the elastic modulus that describes the 
relationship between stress and strain for the system of interest, which is in ital-
ics: (a) Young’s modulus (b) shear modulus (c) bulk modulus (d) none of those 
choices (i) A block of iron is sliding across a horizontal floor. The friction force 
between the sliding block and the floor causes the block to deform. (ii) A tra-
peze artist swings through a circular arc. At the bottom of the swing, the wires 
supporting the trapeze are longer than when the trapeze artist simply hangs 
from the trapeze due to the increased tension in them. (iii) A spacecraft carries 
a steel sphere to a planet on which atmospheric pressure is much higher than on 
the Earth. The higher pressure causes the radius of the sphere to decrease.

Prestressed Concrete
If the stress on a solid object exceeds a certain value, the object fractures. The max-
imum stress that can be applied before fracture occurs—called the tensile strength, 
compressive strength, or shear strength—depends on the nature of the material and 
on the type of applied stress. For example, concrete has a tensile strength of about  
2 3 106 N/m2, a compressive strength of 20 3 106 N/m2, and a shear strength of  
2 3 106 N/m2. If the applied stress exceeds these values, the concrete fractures. It is 
common practice to use large safety factors to prevent failure in concrete structures.
	 Concrete is normally very brittle when it is cast in thin sections. Therefore, concrete 
slabs tend to sag and crack at unsupported areas as shown in Figure 12.15a. The slab 
can be strengthened by the use of steel rods to reinforce the concrete as illustrated 
in Figure 12.15b. Because concrete is much stronger under compression (squeezing) 
than under tension (stretching) or shear, vertical columns of concrete can support 

WW Bulk modulus

Figure 12.14  A cube is under 
uniform pressure and is therefore 
compressed on all sides by forces 
normal to its six faces. The arrow-
heads of force vectors on the sides 
of the cube that are not visible are 
hidden by the cube.

Vi

Vi � �V

Ftop
S

Fback
S

Fright
S

Fbottom
S

Ffront
S

Fleft
S

The cube undergoes a change in 
volume but no change in shape.

a b c

Concrete Cracks

Load force Steel
reinforcing

rod

Steel rod
under

tension

Figure 12.15  ​(a) A concrete  
slab with no reinforcement tends  
to crack under a heavy load.  
(b) The strength of the concrete is 
increased by using steel reinforce-
ment rods. (c) The concrete is fur-
ther strengthened by prestressing 
it with steel rods under tension.
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376	C hapter 12  Static Equilibrium and Elasticity

Substitute numerical values: DV 5 2
10.50 m3 2 12.0 3 107 N/m2 2 1.0 3 105 N/m2 2

6.1 3 1010 N/m2

5   21.6 3 1024 m3

The negative sign indicates that the volume of the sphere decreases.

very heavy loads, whereas horizontal beams of concrete tend to sag and crack. A sig-
nificant increase in shear strength is achieved, however, if the reinforced concrete is 
prestressed as shown in Figure 12.15c. As the concrete is being poured, the steel rods 
are held under tension by external forces. The external forces are released after the 
concrete cures; the result is a permanent tension in the steel and hence a compressive 
stress on the concrete. The concrete slab can now support a much heavier load.

Example 12.5	     Stage Design

In Example 8.2, we analyzed a cable used to support an actor as he swings onto the stage. Now suppose the tension in 
the cable is 940 N as the actor reaches the lowest point. What diameter should a 10-m-long steel cable have if we do not 
want it to stretch more than 0.50 cm under these conditions?

Conceptualize  ​Look back at Example 8.2 to recall what is happening in this situation. We ignored any stretching of 
the cable there, but we wish to address this phenomenon in this example.

Categorize  ​We perform a simple calculation involving Equation 12.6, so we categorize this example as a substitution 
problem.

S o l u ti  o n

Solve Equation 12.6 for the cross-sectional 
area of the cable:

A 5
FLi

Y DL

Assuming the cross section is circular, find the 
diameter of the cable from d 5 2r and A 5 pr 2:

d 5 2r 5 2Å
A
p

5 2Å
FLi

pYDL

Substitute numerical values: d 5 2Å
1940 N 2 110 m 2

p 120 3 1010 N/m2 2 10.005 0 m 2 5 3.5 3 1023 m 5 3.5 mm

To provide a large margin of safety, you would probably use a flexible cable made up of many smaller wires having a 
total cross-sectional area substantially greater than our calculated value.

Example 12.6	     Squeezing a Brass Sphere

A solid brass sphere is initially surrounded by air, and the air pressure exerted on it is 1.0 3 105 N/m2 (normal atmo-
spheric pressure). The sphere is lowered into the ocean to a depth where the pressure is 2.0 3 107 N/m2. The volume of 
the sphere in air is 0.50 m3. By how much does this volume change once the sphere is submerged?

Conceptualize  ​Think about movies or television shows you have seen in which divers go to great depths in the water 
in submersible vessels. These vessels must be very strong to withstand the large pressure under water. This pressure 
squeezes the vessel and reduces its volume.

Categorize  ​We perform a simple calculation involving Equation 12.8, so we categorize this example as a substitution 
problem.

S o l u ti  o n

Solve Equation 12.8 for the volume change of the sphere: DV 5 2
Vi DP

 B
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	 2.	 A rod 7.0 m long is pivoted at a point 2.0 m from the 
left end. A downward force of 50 N acts at the left 
end, and a downward force of 200 N acts at the right 
end. At what distance to the right of the pivot can a 
third force of 300 N acting upward be placed to pro-
duce rotational equilibrium? Note: Neglect the weight 
of the rod. (a) 1.0 m (b)  2.0  m (c)  3.0 m (d) 4.0 m  
(e) 3.5 m

	 3.	 Consider the object in Figure OQ12.3. A single force is 
exerted on the object. The line of action of the force 
does not pass through the object’s center of mass. The 
acceleration of the object’s center of mass due to this 
force (a) is the same as if the force were applied at the 

	 1.	 The acceleration due to gravity becomes weaker by 
about three parts in ten million for each meter of 
increased elevation above the Earth’s surface. Suppose 
a skyscraper is 100 stories tall, with the same floor plan 
for each story and with uniform average density. Com-
pare the location of the building’s center of mass and 
the location of its center of gravity. Choose one: (a) Its 
center of mass is higher by a distance of several meters. 
(b) Its center of mass is higher by a distance of several 
millimeters. (c) Its center of mass and its center of grav-
ity are in the same location. (d) Its center of gravity is 
higher by a distance of several millimeters. (e) Its cen-
ter of gravity is higher by a distance of several meters.

Summary

Definitions

  The gravitational force exerted on 
an object can be considered as acting 
at a single point called the center of 
gravity. An object’s center of gravity 
coincides with its center of mass if 
the object is in a uniform gravita-
tional field.

  We can describe the elastic properties of a substance using the con-
cepts of stress and strain. Stress is a quantity proportional to the force 
producing a deformation; strain is a measure of the degree of deforma-
tion. Stress is proportional to strain, and the constant of proportionality 
is the elastic modulus:

	 Elastic modulus ;
stress
strain

	 (12.5)

Concepts and Principles

  Three common types of deformation are represented by (1) the resistance of a solid to elongation under a load, 
characterized by Young’s modulus Y; (2) the resistance of a solid to the motion of internal planes sliding past each 
other, characterized by the shear modulus S; and (3) the resistance of a solid or fluid to a volume change, character-
ized by the bulk modulus B.

Analysis Model for Problem Solving

  Rigid Object in Equilibrium ​ A rigid object in equilibrium exhibits no translational 
or angular acceleration. The net external force acting on it is zero, and the net external 
torque on it is zero about any axis:

	 a F
S

ext 5 0	 (12.1)

	 a tSext 5 0	 (12.2)

The first condition is the condition for translational equilibrium, and the second is the 
condition for rotational equilibrium.

a � 0
�Fx � 0

a � 0
�tz � 0

�Fy � 0

O

y

x

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guidewww.as
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378	C hapter 12  Static Equilibrium and Elasticity

A through E, where E 
is the center of mass 
of the frame. Rank the 
torques tA, tB, tC , tD , 
and tE from largest to 
smallest, noting that 
zero is greater than a 
negative quantity. If 
two torques are equal, 
note their equality in 
your ranking.

	 8.	 In analyzing the equi-
librium of a flat, rigid object, you are about to choose 
an axis about which you will calculate torques. Which 
of the following describes the choice you should make?  
(a) The axis should pass through the object’s center of 
mass. (b) The axis should pass through one end of the 
object. (c) The axis should be either the x axis or the  
y axis. (d) The axis should pass through any point 
within the object. (e) Any axis within or outside the 
object can be chosen.

	 9.	 A certain wire, 3 m long, stretches by 1.2 mm when 
under tension 200 N. (i) Does an equally thick wire 6 m 
long, made of the same material and under the same 
tension, stretch by (a) 4.8 mm, (b) 2.4 mm, (c) 1.2 mm,  
(d) 0.6 mm, or (e) 0.3 mm? (ii) A wire with twice the 
diameter, 3 m long, made of the same material and 
under the same tension, stretches by what amount? 
Choose from the same possibilities (a) through (e).

	10.	The center of gravity of an ax is on the centerline  
of the handle, close to the head. Assume you saw across 
the handle through the center of gravity and weigh the  
two parts. What will you discover? (a) The handle 
side is heavier than the head side. (b) The head side 
is heavier than the handle side. (c) The two parts are 
equally heavy. (d) Their comparative weights cannot 
be predicted.

center of mass, (b)  is larger 
than the acceleration would 
be if the force were applied 
at the center of mass, (c) is 
smaller than the accelera-
tion would be if the force 
were applied at the center of 
mass, or (d) is zero because 
the force causes only angu-
lar acceleration about the 
center of mass.

	 4.	 Two forces are acting on an object. Which of the fol-
lowing statements is correct? (a) The object is in equi-
librium if the forces are equal in magnitude and oppo-
site in direction. (b) The object is in equilibrium if the 
net torque on the object is zero. (c)  The object is in 
equilibrium if the forces act at the same point on the 
object. (d) The object is in equilibrium if the net force 
and the net torque on the object are both zero. (e) The 
object cannot be in equilibrium because more than 
one force acts on it.

	 5.	 In the cabin of a ship, a soda can rests in a saucer-
shaped indentation in a built-in counter. The can tilts 
as the ship slowly rolls. In which case is the can most 
stable against tipping over? (a) It is most stable when it 
is full. (b) It is most stable when it is half full. (c) It is 
most stable when it is empty. (d) It is most stable in two 
of these cases. (e) It is equally stable in all cases.

	 6.	 A 20.0-kg horizontal plank 4.00 m long rests on two sup-
ports, one at the left end and a second 1.00 m from the 
right end. What is the magnitude of the force exerted on 
the plank by the support near the right end? (a) 32.0 N  
(b) 45.2 N (c) 112 N (d) 131 N (e) 98.2 N

	 7.	 Assume a single 300-N force is exerted on a bicycle 
frame as shown in Figure OQ12.7. Consider the torque 
produced by this force about axes perpendicular to 
the plane of the paper and through each of the points 

E

A

B

C

300 N

D

Figure OQ12.7

CM

F
S

 

Figure OQ12.3

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 A ladder stands on the ground, leaning against a wall. 
Would you feel safer climbing up the ladder if you 
were told that the ground is frictionless but the wall 
is rough or if you were told that the wall is frictionless 
but the ground is rough? Explain your answer.

	 2.	 The center of gravity of an object may be located out-
side the object. Give two examples for which that is the 
case.

	 3.	 (a) Give an example in which the net force acting on 
an object is zero and yet the net torque is nonzero.  
(b) Give an example in which the net torque acting on 
an object is zero and yet the net force is nonzero.

	 4.	 Stand with your back against a wall. Why can’t you put 
your heels firmly against the wall and then bend for-
ward without falling?

	 5.	 An arbitrarily shaped piece of plywood can be suspended 
from a string attached to the ceiling. Explain how you 
could use a plumb bob to find its center of gravity.

	 6.	 A girl has a large, docile dog she wishes to weigh on a 
small bathroom scale. She reasons that she can deter-
mine her dog’s weight with the following method. 
First she puts the dog’s two front feet on the scale and 
records the scale reading. Then she places only the 
dog’s two back feet on the scale and records the read-
ing. She thinks that the sum of the readings will be the 
dog’s weight. Is she correct? Explain your answer.

	 7.	 Can an object be in equilibrium if it is in motion? 
Explain.

	 8.	 What kind of deformation does a cube of Jell-O exhibit 
when it jiggles?
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	 4.	 Consider the following distribution of objects: a  
5.00-kg object with its center of gravity at (0, 0) m, a  
3.00-kg object at (0,  4.00) m, and a 4.00-kg object 
at (3.00, 0) m. Where should a fourth object of mass  
8.00 kg be placed so that the center of gravity of the 
four-object arrangement will be at (0, 0)?

	 5.	 Pat builds a track for his model car out of solid wood 
as shown in Figure P12.5. The track is 5.00 cm wide,  
1.00 m high, and 3.00 m long. The runway is cut so that 
it forms a parabola with the equation y 5 (x 2 3)2/9. 
Locate the horizontal coordinate of the center of grav-
ity of this track.

y

3.00 m 
5.00 cm

x

y � 
(x � 3)2

9

1.00 m

Figure P12.5

	 6.	 A circular pizza of radius R has a circular piece of 
radius R/2 removed from one side as shown in Fig-
ure P12.6. The center of gravity has moved from C to 
C9 along the x axis. Show that the distance from C to C9 
is R/6. Assume the thickness and density of the pizza 
are uniform throughout.

C C�

Figure P12.6

	 7.	 Figure P12.7 on page 380 shows three uniform objects: a 
rod with m1 5 6.00 kg, a right triangle with m2 5 3.00 kg,  
and a square with m3 5 5.00 kg. Their coordinates in 
meters are given. Determine the center of gravity for 
the three-object system.

M

S

Section 12.1 ​ Analysis Model: Rigid Object in Equilibrium

	 1.	 What are the necessary condi-
tions for equilibrium of the 
object shown in Figure P12.1? 
Calculate torques about an 
axis through point O.

	 2.	 Why is the following situation 
impossible? A uniform beam of 
mass mb 5 3.00 kg and length 
,  5 1.00 m supports blocks 
with masses m1 5 5.00 kg and 
m2 5 15.0 kg at two positions 
as shown in Figure P12.2. The beam rests on two trian-
gular blocks, with point P a distance d 5 0.300 m to the 
right of the center of gravity of the beam. The position of 
the object of mass m2 is adjusted along the length of the 
beam until the normal force on the beam at O is zero.

d

P

x

O

�
2

�

CG

m1
m2

Figure P12.2

Section 12.2 ​ More on the Center of Gravity

Problems 45, 48, 49, and 92 in Chapter 9 can also be 
assigned with this section.

	 3.	 A carpenter’s square has the shape of an L as shown in 
Figure P12.3. Locate its center of gravity.

S

W

	  P roblems	 379

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S

Fx

Fy

Rx O

Ry

�

u

Fg
S

Figure P12.1

12.0 cm

18.0 cm

4.0 cm

4.0 cm

Figure P12.3
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Sam Joe

1.00 m 2.00 m

7.60 m

Figure P12.11

	12.	A vaulter holds a 29.4-N pole in equilibrium by exert-
ing an upward force U

S
 with her leading hand and a 

downward force D
S

 with her trailing hand as shown in 
Figure P12.12. Point C is the center of gravity of the 
pole. What are the magnitudes of (a) U

S
 and (b) D

S
?

2.25 m
0.750 m

A

1.50 m

B
C

gF
S

 

U
S

 

D
S

Figure P12.12

	13.	A 15.0-m uniform ladder weighing 500 N rests against 
a frictionless wall. The ladder makes a 60.08 angle 
with the horizontal. (a) Find the horizontal and verti-
cal forces the ground exerts on the base of the ladder 
when an 800-N firefighter has climbed 4.00 m along 
the ladder from the bottom. (b) If the ladder is just 
on the verge of slipping when the firefighter is 9.00 m 
from the bottom, what is the coefficient of static fric-
tion between ladder and ground?

	14.	A uniform ladder of length L and mass m1 rests against 
a frictionless wall. The ladder makes an angle u with 
the horizontal. (a) Find the horizontal and vertical 
forces the ground exerts on the base of the ladder 
when a firefighter of mass m2 has climbed a distance 
x along the ladder from the bottom. (b) If the ladder 
is just on the verge of slipping when the firefighter is 
a distance d along the ladder from the bottom, what 
is the coefficient of static friction between ladder and 
ground?

	15.	A flexible chain weighing 40.0 N hangs between two 
hooks located at the same height (Fig. P12.15). At each 
hook, the tangent to the chain makes an angle u 5 
42.08 with the horizontal. Find (a) the magnitude of 
the force each hook exerts on the chain and (b) the 

AMT
M

S

(4, 1)

(2, 7)
(8, 5)

(9, 7)

(–2, 2)

(–5, 5)

y (m)

x (m)

m1

m3 m2

Figure P12.7

Section 12.3 ​ Examples of Rigid Objects in Static Equilibrium

Problems 14, 26, 27, 28, 31, 33, 34, 60, 66, 85, 89, 97, and 
100 in Chapter 5 can also be assigned with this section.

	 8.	 A 1 500-kg automobile has a wheel base (the distance 
between the axles) of 3.00 m. The automobile’s center 
of mass is on the centerline at a point 1.20 m behind 
the front axle. Find the force exerted by the ground on 
each wheel.

	 9.	 Find the mass m of the counterweight needed to bal-
ance a truck with mass M 5 1 500 kg on an incline of 
u 5 458 (Fig. P12.9). Assume both pulleys are friction-
less and massless.

3r
r

u

m
M

Figure P12.9

	10.	A mobile is constructed of light rods, light strings, and 
beach souvenirs as shown in Figure P12.10. If m4 5  
12.0 g, find values for (a) m1, (b) m2, and (c) m3.

3.00 cm

5.00 cm2.00 cm

4.00 cm 6.00 cm

m1

m4

m2

4.00 cm m3

Figure P12.10

	11.	 A uniform beam of length 7.60 m and weight 4.50 3 
102 N is carried by two workers, Sam and Joe, as shown 
in Figure P12.11. Determine the force that each person 
exerts on the beam.
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Figure P12.15
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vertical component of this force. Now solve the same 
problem from the force diagram from part (a) by com-
puting torques around the junction between the cable 
and the beam at the right-hand end of the beam. Find 
(e) the vertical component of the force exerted by the 
pole on the beam, (f) the tension in the cable, and  
(g) the horizontal component of the force exerted 
by the pole on the beam. (h) Compare the solution 
to parts (b) through (d) with the solution to parts  
(e) through (g). Is either solution more accurate?

	19.	Sir Lost-a-Lot dons his armor and sets out from the 
castle on his trusty steed (Fig. P12.19). Usually, the 
drawbridge is lowered to a horizontal position so that 
the end of the bridge rests on the stone ledge. Unfor-
tunately, Lost-a-Lot’s squire didn’t lower the draw-
bridge far enough and stopped it at u 5 20.08 above 
the horizontal. The knight and his horse stop when 
their combined center of mass is d 5 1.00 m from the 
end of the bridge. The uniform bridge is , 5 8.00 m 
long and has mass 2 000 kg. The lift cable is attached 
to the bridge 5.00 m from the hinge at the castle end 
and to a point on the castle wall h 5 12.0 m above the 
bridge. Lost-a-Lot’s mass combined with his armor 
and steed is 1 000 kg. Determine (a) the tension in the 
cable and (b) the horizontal and (c) the vertical force 
components acting on the bridge at the hinge.

u

h

d

�

Figure P12.19  Problems 19 and 20.

	20.	Review. While Lost-a-Lot ponders his next move in 
the situation described in Problem 19 and illustrated 
in Figure P12.19, the enemy attacks! An incoming 
projectile breaks off the stone ledge so that the end 
of the drawbridge can be lowered past the wall where 
it usually rests. In addition, a fragment of the projec-
tile bounces up and cuts the drawbridge cable! The 
hinge between the castle wall and the bridge is fric-
tionless, and the bridge swings down freely until it is 
vertical and smacks into the vertical castle wall below 
the castle entrance. (a) How long does Lost-a-Lot stay 
in contact with the bridge while it swings downward?  
(b) Find the angular acceleration of the bridge just 
as it starts to move. (c) Find the angular speed of the 
bridge when it strikes the wall below the hinge. Find 
the force exerted by the hinge on the bridge (d) imme-
diately after the cable breaks and (e) immediately 
before it strikes the castle wall.

tension in the chain at its midpoint. Suggestion: For part 
(b), make a force diagram for half of the chain.

	16.	A uniform beam of length L 
and mass m shown in Figure 
P12.16 is inclined at an angle 
u to the horizontal. Its upper 
end is connected to a wall by 
a rope, and its lower end rests 
on a rough, horizontal sur-
face. The coefficient of static 
friction between the beam 
and surface is ms. Assume 
the angle u is such that the static friction force is at its 
maximum value. (a) Draw a force diagram for the beam.  
(b) Using the condition of rotational equilibrium, 
find an expression for the tension T in the rope in 
terms of m, g, and u. (c) Using the condition of trans-
lational equilibrium, find a second expression for T in 
terms of ms , m, and g. (d) Using the results from parts  
(a) through (c), obtain an expression for ms involv-
ing only the angle u. (e) What happens if the ladder 
is lifted upward and its base is placed back on the 
ground slightly to the left of its position in Figure 
P12.16? Explain.

	17.	 Figure P12.17 shows a claw hammer being used to pull 
a nail out of a horizontal board. The mass of the ham-
mer is 1.00 kg. A force of 150 N is exerted horizontally 
as shown, and the nail does not yet move relative to  
the board. Find (a) the force exerted by the hammer 
claws on the nail and (b) the force exerted by the sur-
face on the point of contact with the hammer head. 
Assume the force the hammer exerts on the nail is par-
allel to the nail.

Single point
of contact

5.00 cm

30.0�

30.0 cm

F
S

 

Figure P12.17

	18.	A 20.0-kg floodlight in a park is 
supported at the end of a horizon-
tal beam of negligible mass that is 
hinged to a pole as shown in Figure 
P12.18. A cable at an angle of u  5 
30.08 with the beam helps support 
the light. (a) Draw a force diagram 
for the beam. By computing torques 
about an axis at the hinge at the left-
hand end of the beam, find (b) the 
tension in the cable, (c) the horizontal component of 
the force exerted by the pole on the beam, and (d) the 

u

L

Figure P12.16
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Figure P12.18
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382	C hapter 12  Static Equilibrium and Elasticity

and makes an angle of u 5 60.08 
with the ground. The upper and 
lower ends of the ladder rest on 
frictionless surfaces. The lower 
end is connected to the wall by a 
horizontal rope that is frayed and 
can support a maximum tension 
of only 80.0  N. (a)  Draw a force 
diagram for the ladder. (b)  Find 
the normal force exerted on the 
bottom of the ladder. (c) Find the 
tension in the rope when the monkey is two-thirds of 
the way up the ladder. (d) Find the maximum distance 
d that the monkey can climb up the ladder before the 
rope breaks. (e) If the horizontal surface were rough 
and the rope were removed, how would your analysis 
of the problem change? What other information would 
you need to answer parts (c) and (d)?

	25.	A uniform plank of length 2.00 m and mass 30.0 kg is 
supported by three ropes as indicated by the blue vec-
tors in Figure P12.25. Find the tension in each rope 
when a 700-N person is d 5 0.500 m from the left end.

2.00 m
d

T3
S

T2
S

T1
S

40.0�

Figure P12.25

Section 12.4 ​ Elastic Properties of Solids

	26.	A steel wire of diameter 1 mm can support a tension 
of 0.2 kN. A steel cable to support a tension of 20 kN 
should have diameter of what order of magnitude?

	27.	 The deepest point in the ocean is in the Mariana Trench, 
about 11 km deep, in the Pacific. The pressure at this 
depth is huge, about 1.13 3 108 N/m2. (a) Calculate the 
change in volume of 1.00 m3 of seawater carried from 
the surface to this deepest point. (b) The density of sea-
water at the surface is 1.03 3 103 kg/m3. Find its density 
at the bottom. (c) Explain whether or when it is a good 
approximation to think of water as incompressible.

	28.	Assume Young’s modulus for bone is 1.50 3 1010 N/m2. 
The bone breaks if stress greater than 1.50 3 108 N/m2 
is imposed on it. (a) What is the maximum force that 
can be exerted on the femur bone in the leg if it has 
a minimum effective diameter of 2.50 cm? (b) If this 
much force is applied compressively, by how much does 
the 25.0-cm-long bone shorten?

	29.	A child slides across a floor in a pair of rubber-soled 
shoes. The friction force acting on each foot is 20.0 N. 
The footprint area of each shoe sole is 14.0 cm2, and 
the thickness of each sole is 5.00 mm. Find the hori-
zontal distance by which the upper and lower surfaces 
of each sole are offset. The shear modulus of the rub-
ber is 3.00 MN/m2.

Q/C

BIO

	21.	 John is pushing his daughter Rachel in a wheelbarrow 
when it is stopped by a brick 8.00 cm high (Fig. P12.21). 
The handles make an angle of u 5 15.08 with the 
ground. Due to the weight of Rachel and the wheelbar-
row, a downward force of 400 N is exerted at the center 
of the wheel, which has a radius of 20.0 cm. (a) What 
force must John apply along the handles to just start the 
wheel over the brick? (b) What is the force (magnitude 
and direction) that the brick exerts on the wheel just as 
the wheel begins to lift over the brick? In both parts, 
assume the brick remains fixed and does not slide 
along the ground. Also assume the force applied by 
John is directed exactly toward the center of the wheel.

u

Figure P12.21  Problems 21 and 22.

	22.	John is pushing his daughter Rachel in a wheelbarrow 
when it is stopped by a brick of height h (Fig. P12.21). 
The handles make an angle of u with the ground. Due 
to the weight of Rachel and the wheelbarrow, a down-
ward force mg is exerted at the center of the wheel, 
which has a radius R. (a) What force F must John apply 
along the handles to just start the wheel over the brick? 
(b) What are the components of the force that the 
brick exerts on the wheel just as the wheel begins to lift 
over the brick? In both parts, assume the brick remains 
fixed and does not slide along the ground. Also assume 
the force applied by John is directed exactly toward the 
center of the wheel.

	23.	One end of a uniform 4.00-m-long rod of weight Fg is 
supported by a cable at an angle of u 5 378 with the rod. 
The other end rests against the wall, where it is held by 
friction as shown in Figure P12.23. The coefficient of 
static friction between the wall and the rod is ms 5 0.500. 
Determine the minimum distance x from point A at 
which an additional object, also with the same weight Fg , 
can be hung without causing the rod to slip at point A.

B

Fg

x
A

u

Figure P12.23

	24.	A 10.0-kg monkey climbs a uniform ladder with 
weight 1.20 3 102 N and length L 5 3.00 m as shown 
in Figure P12.24. The ladder rests against the wall 
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Figure P12.24
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end exerts a normal force n1 on the beam, and the sec-
ond pivot located a distance , 5 4.00 m from the left 
end exerts a normal force n2. A woman of mass m 5  
55.0 kg steps onto the left end of the beam and begins 
walking to the right as in Figure P12.38. The goal is to 
find the woman’s position when the beam begins to tip. 
(a) What is the appropriate analysis model for the beam 
before it begins to tip? (b) Sketch a force diagram for 
the beam, labeling the gravitational and normal forces 
acting on the beam and placing the woman a distance  
x to the right of the first pivot, which is the origin.  
(c) Where is the woman when the normal force n1 is the 
greatest? (d) What is n1 when the beam is about to  
tip? (e) Use Equation 12.1 to find the value of n2 when 
the beam is about to tip. (f) Using the result of part  
(d) and Equation 12.2, with torques computed around 
the second pivot, find the woman’s position x when the 
beam is about to tip. (g) Check the answer to part (e) by 
computing torques around the first pivot point.

L

x
m

M

Figure P12.38

	39.	In exercise physiology studies, it is sometimes impor-
tant to determine the location of a person’s center 
of mass. This determination can be done with the 
arrangement shown in Figure P12.39. A light plank 
rests on two scales, which read Fg1 5 380 N and Fg 2 5 
320 N. A distance of 1.65 m separates the scales. How 
far from the woman’s feet is her center of mass?

F g 1

1.65 m

F g 2

Figure P12.39

	40.	The lintel of prestressed reinforced concrete in Fig-
ure  P12.40 is 1.50 m long. The concrete encloses 
one steel reinforcing rod with cross-sectional area 
1.50  cm2. The rod joins two strong end plates. The 
cross-sectional area of the concrete perpendicular to 
the rod is 50.0 cm2. Young’s modulus for the concrete 
is 30.0 3 109 N/m2. After the concrete cures and the 
original tension T1 in the rod is released, the con-
crete is to be under compres-
sive stress 8.00 3 106 N/m2.  
(a) By what distance will the 
rod compress the concrete 
when the original tension in 
the rod is released? (b) What 

W
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	30.	Evaluate Young’s modulus for the material whose 
stress–strain curve is shown in Figure 12.12.

	31.	 Assume if the shear stress in steel exceeds about 4.00 3 
108  N/m2, the steel ruptures. Determine the shear-
ing force necessary to (a) shear a steel bolt 1.00 cm in 
diameter and (b) punch a 1.00-cm-diameter hole in a 
steel plate 0.500 cm thick.

	32.	When water freezes, it expands by about 9.00%. What 
pressure increase would occur inside your automobile 
engine block if the water in it froze? (The bulk modu-
lus of ice is 2.00 3 109 N/m2.)

	33.	A 200-kg load is hung on a wire of length 4.00 m, cross-
sectional area 0.200 3 1024 m2, and Young’s modulus 
8.00 3 1010 N/m2. What is its increase in length?

	34.	A walkway suspended across a hotel lobby is supported at 
numerous points along its edges by a vertical cable above 
each point and a vertical column underneath. The steel 
cable is 1.27 cm in diameter and is 5.75 m long before 
loading. The aluminum column is a hollow cylinder 
with an inside diameter of 16.14 cm, an outside diameter 
of 16.24 cm, and an unloaded length of 3.25 m. When 
the walkway exerts a load force of 8 500 N on one of the 
support points, how much does the point move down?

	35.	Review. A 2.00-m-long cylindrical 
steel wire with a cross-sectional diam-
eter of 4.00 mm is placed over a light, 
frictionless pulley. An object of mass 
m1 5 5.00 kg is hung from one end of 
the wire and an object of mass m2 5 
3.00 kg from the other end as shown 
in Figure P12.35. The objects are 
released and allowed to move freely. 
Compared with its length before the 
objects were attached, by how much 
has the wire stretched while the objects are in motion?

	36.	Review. A 30.0-kg hammer, moving with speed 20.0 m/s, 
strikes a steel spike 2.30 cm in diameter. The hammer 
rebounds with speed 10.0 m/s after 0.110 s. What is the 
average strain in the spike during the impact?

Additional Problems

	37.	 A bridge of length 50.0 m and mass 8.00 3 104 kg is 
supported on a smooth pier at each end as shown in 
Figure P12.37. A truck of mass 3.00 3 104 kg is located 
15.0 m from one end. What are the forces on the bridge 
at the points of support?

A B

15.0 m
50.0 m

Figure P12.37

	38.	A uniform beam resting on two pivots has a length L 5 
6.00 m and mass M 5 90.0 kg. The pivot under the left 

M

M
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Figure P12.35
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384	C hapter 12  Static Equilibrium and Elasticity

form, weighs 200 N, and is 6.00 m long, and it is sup-
ported by a wire at an angle of u 5 60.0°. The basket 
weighs 80.0 N. (a) Draw a force diagram for the beam. 
(b) When the bear is at x 5 1.00 m, find the tension 
in the wire supporting the beam and the components 
of the force exerted by the wall on the left end of the 
beam. (c) What If? If the wire can withstand a maxi-
mum tension of 900 N, what is the maximum distance 
the bear can walk before the wire breaks?

	44.	The following equations are obtained from a force 
diagram of a rectangular farm gate, supported by two 
hinges on the left-hand side. A bucket of grain is hang-
ing from the latch.

	 2A  1 C 5 0

	 1B 2 392 N 2 50.0 N 5 0

	 A(0) 1 B(0) 1 C(1.80 m) 2 392 N(1.50 m)

2 50.0 N(3.00 m) 5 0

		  (a) Draw the force diagram and complete the statement 
of the problem, specifying the unknowns. (b) Deter-
mine the values of the unknowns and state the physical 
meaning of each.

	45.	A uniform sign of weight Fg and width 2L hangs from 
a light, horizontal beam hinged at the wall and sup-
ported by a cable (Fig. P12.45). Determine (a) the 
tension in the cable and (b) the components of the 
reaction force exerted by the wall on the beam in 
terms of Fg , d, L, and u.

u

d

2L

Lulu and Lisa’s 
Cafe

Figure P12.45
	46.	A 1 200-N uniform boom at f 5 658 to the vertical is 

supported by a cable at an angle u 5 25.08 to the hori-
zontal as shown in Figure P12.46. The boom is pivoted 
at the bottom, and an object of weight m 5 2 000 N 
hangs from its top. Find (a) the tension in the support 
cable and (b) the components of the reaction force 
exerted by the floor on the boom.

�3
4 �

u

m

f

Figure P12.46

	47.	 A crane of mass m1 5 3 000 kg supports a load of mass 
m2 5 10 000 kg as shown in Figure P12.47. The crane 

S

is the new tension T2 in the rod? (c)  The rod will 
then be how much longer than its unstressed length? 
(d)  When the concrete was poured, the rod should 
have been stretched by what extension distance from 
its unstressed length? (e)  Find the required original 
tension T1 in the rod.

	41.	The arm in Figure P12.41 weighs 41.5 N. The gravita-
tional force on the arm acts through point A. Deter-
mine the magnitudes of the tension force F

S

t in the  
deltoid muscle and the force F

S

s exerted by the shoul-
der on the humerus (upper-arm bone) to hold the arm 
in the position shown.

Fs
S

Ft
S

Fg
S

29.0 cm
8.00 cm

12.0�

O
A

Figure P12.41

	42.	When a person stands on tiptoe on one foot (a strenu-
ous position), the position of the foot is as shown in 
Figure P12.42a. The total gravitational force  F

S

g on the 
body is supported by the normal force nS exerted by the 
floor on the toes of one foot. A mechanical model of 
the situation is shown in Figure P12.42b, where  T

S
 is 

the force exerted on the foot by the Achilles tendon 
and  R

S
 is the force exerted on the foot by the tibia. 

Find the values of T, R, and u when Fg 5 700 N.

18.0 cm
25.0 cm

15.0�

Tibia

Achilles
tendon

a b

nS

R
S T

S
u

Figure P12.42

	43.	A hungry bear weighing 700  N walks out on a beam 
in an attempt to retrieve a basket of goodies hanging 
at the end of the beam (Fig. P12.43). The beam is uni-
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Figure P12.43
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shown in Figure P12.50a. The rope make an angle u 5 
37.08 with the floor and is tied h1 5 10.0 cm from the 
bottom of the cabinet. The uniform rectangular cabi-
net has height , 5 100 cm and width w 5 60.0 cm, and 
it weighs 400 N. The cabinet slides with constant speed 
when a force F 5 300 N is applied through the rope. 
The worker tires of walking backward. He fastens the 
rope to a point on the cabinet h2  5 65.0 cm off the 
floor and lays the rope over his shoulder so that he can 
walk forward and pull as shown in Figure P12.50b. In 
this way, the rope again makes an angle of u 5 37.08 
with the horizontal and again has a tension of 300 N. 
Using this technique, the worker is able to slide the 
cabinet over a long distance on the floor without tiring.

a

F
S

b

h2

u
F
Sw

�

h1

u

w

�

Figure P12.50  Problems 50 and 62.

	51.	 A uniform beam of mass m is inclined at an angle u to 
the horizontal. Its upper end (point P) produces a 908 
bend in a very rough rope tied to a wall, and its lower 
end rests on a rough floor (Fig. P12.51). Let ms repre-
sent the coefficient of static friction between beam 
and floor. Assume ms is less than the cotangent of u.  
(a) Find an expression for the maximum mass M that 
can be suspended from the top before the beam slips. 
Determine (b) the magnitude of the reaction force at 
the floor and (c) the magnitude of the force exerted 
by the beam on the rope at P in terms of m, M, and ms.

P

m

u

M

Figure P12.51

	52.	The large quadriceps muscle in the upper leg terminates 
at its lower end in a tendon attached to the upper end of 
the tibia (Fig. P12.52a, page 386). The forces on the lower 
leg when the leg is extended are modeled as in Figure 
P12.52b, where  T

S
 is the force in the tendon,  F

S

g,leg is 
the gravitational force acting on the lower leg, and  
F
S

g,foot is the gravitational force acting on the foot. Find 
T when the tendon is at an angle of f 5 25.08 with the 
tibia, assuming Fg,leg 5 30.0 N, Fg,foot 5 12.5 N, and the 
leg is extended at an angle u  5 40.08 with respect to  
the vertical. Also assume the center of gravity of the 

S
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is pivoted with a frictionless pin at A and rests against 
a smooth support at B. Find the reaction forces at 
(a) point A and (b) point B.

B

A

2.00 m
6.00 m

m2

1.00 m
Sm1g

Figure P12.47

	48.	Assume a person bends forward to lift a load “with his 
back” as shown in Figure P12.48a. The spine pivots 
mainly at the fifth lumbar vertebra, with the princi-
pal supporting force provided by the erector spinalis 
muscle in the back. To see the magnitude of the forces 
involved, consider the model shown in Figure P12.48b 
for a person bending forward to lift a 200-N object. The 
spine and upper body are represented as a uniform hor-
izontal rod of weight 350 N, pivoted at the base of the 
spine. The erector spinalis muscle, attached at a point 
two-thirds of the way up the spine, maintains the posi-
tion of the back. The angle between the spine and this 
muscle is u 5 12.08. Find (a) the tension T in the back 
muscle and (b) the compressional force in the spine. 
(c) Is this method a good way to lift a load? Explain 
your answer, using the results of parts (a) and (b).  
(d) Can you suggest a better method to lift a load?

a b

Pivot

Back muscle

Ry

Rx

12.0�

200 N
350 N

T
S

Figure P12.48

	49.	A 10 000-N shark is supported 
by a rope attached to a 4.00-m 
rod that can pivot at the base. 
(a) Calculate the tension in 
the cable between the rod 
and the wall, assuming the 
cable is holding the system  
in the position shown in Fig-
ure P12.49. Find (b) the hori-
zontal force and (c) the verti-
cal force exerted on the base 
of the rod. Ignore the weight 
of the rod.

	50.	Why is the following situation impossible? A worker in a 
factory pulls a cabinet across the floor using a rope as 

Q/C
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M 20.0�

60.0�
10 000 N

Figure P12.49
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386	C hapter 12  Static Equilibrium and Elasticity

are smooth. (a) Given u1 5 30.0° and u2 5 45.08, find 
nA and nC. (b) One can show that the force any strut 
exerts on a pin must be directed along the length of 
the strut as a force of tension or compression. Use that 
fact to identify the directions of the forces that the 
struts exert on the pins joining them. Find the force of 
tension or of compression in each of the three bars.

B

CA

F
S

nC
S

nA
S

u1 u2

Figure P12.54

	55.	One side of a plant shelf 
is supported by a bracket 
mounted on a vertical wall 
by a single screw as shown 
in Figure  P12.55. Ignore 
the weight of the bracket. 
(a) Find the horizontal 
component of the force 
that the screw exerts on 
the bracket when an 80.0 N 
vertical force is applied as 
shown. (b) As your grand-
father waters his geraniums, the 80.0-N load force is 
increasing at the rate 0.150 N/s. At what rate is the 
force exerted by the screw changing? Suggestion: Imag-
ine that the bracket is slightly loose.

	56.	A stepladder of negligible 
weight is constructed as 
shown in Figure P12.56, 
with AC 5 BC 5 , 5 4.00 m.  
A painter of mass m 5  
70.0 kg stands on the lad-
der d  5 3.00  m from the 
bottom. Assuming the floor 
is frictionless, find (a)  the 
tension in the horizon-
tal bar DE connecting the 
two halves of the ladder,  
(b) the normal forces at 
A and B, and (c) the com-
ponents of the reaction 
force at the single hinge C 
that the left half of the ladder exerts on the right half.  
Suggestion: Treat the ladder as a single object, but also 
treat each half of the ladder separately.

	57.	 A stepladder of negligible weight is constructed as 
shown in Figure P12.56, with AC 5 BC 5 ,. A painter 
of mass m stands on the ladder a distance d from the 
bottom. Assuming the floor is frictionless, find (a) the 
tension in the horizontal bar DE connecting the two 

M

S

tibia is at its geometric center and the tendon attaches 
to the lower leg at a position one-fifth of the way down 
the leg.

Tibia

Quadriceps
Tendon

a

T
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Fg,leg
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Fg,foot
S

u

b

f

Tibia

Quadriceps
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T
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Fg,foot
S

u

b

f

Figure P12.52

	53.	When a gymnast performing on the rings executes the 
iron cross, he maintains the position at rest shown in 
Figure P12.53a. In this maneuver, the gymnast’s feet 
(not shown) are off the floor. The primary muscles 
involved in supporting this position are the latissimus 
dorsi (“lats”) and the pectoralis major (“pecs”). One 
of the rings exerts an upward force F

S

h on a hand as 
shown in Figure P12.53b. The force F

S

s is exerted by the  
shoulder joint on the arm. The latissimus dorsi and 
pectoralis major muscles exert a total force F

S

m on the 
arm. (a) Using the information in the figure, find the 
magnitude of the force F

S

m for an athlete of weight  
750 N. (b) Suppose an athlete in training cannot per-
form the iron cross but can hold a position similar to 
the figure in which the arms make a 458 angle with the 
horizontal rather than being horizontal. Why is this 
position easier for the athlete?

Figure P12.53
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	54.	Figure P12.54 shows a light truss formed from three 
struts lying in a plane and joined by three smooth 
hinge pins at their ends. The truss supports a down-
ward force of F

S
 5 1 000  N applied at the point B. 

The truss has negligible weight. The piers at A and C 

Q/C
BIO

A

D
d

E

B

Cm

2
�

2
�

2
�

Figure P12.56   
Problems 56 and 57.

80.0 N
5.00 cm

3.00 cm

6.00 cm

Figure P12.55
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	 Problems	 387

nents of force exerted on the left end of the rod by 
the hinge.

	64.	A steel cable 3.00 cm2 in cross-sectional area has a 
mass of 2.40 kg per meter of length. If 500 m of the 
cable is hung over a vertical cliff, how much does the 
cable stretch under its own weight? Take Ysteel 5 2.00 3 
1011 N/m2.

Challenge Problems

	65.	A uniform pole is propped between the floor and the 
ceiling of a room. The height of the room is 7.80 ft, 
and the coefficient of static friction between the pole 
and the ceiling is 0.576. The coefficient of static fric-
tion between the pole and the floor is greater than that 
between the pole and the ceiling. What is the length 
of the longest pole that can be propped between the 
floor and the ceiling?

	66.	In the What If? section of Example 12.2, let d repre-
sent the distance in meters between the person and 
the hinge at the left end of the beam. (a) Show that 
the cable tension is given by T 5 93.9d 1 125, with T 
in newtons. (b) Show that the direction angle u of the 
hinge force is described by

tan u 5 a 32
3d 1 4

2 1b tan 53.08

		  (c) Show that the magnitude of the hinge force is given 
by

R 5 "8.82 3 103d2 2 9.65 3 104d 1 4.96 3 105

		  (d) Describe how the changes in T, u, and R as d 
increases differ from one another.

	67.	 Figure P12.67 shows a vertical force 
applied tangentially to a uniform cyl-
inder of weight Fg . The coefficient of 
static friction between the cylinder 
and all surfaces is 0.500. The force 
P
S

 is increased in magnitude until 
the cylinder begins to rotate. In 
terms of Fg, find the maximum force 
magnitude P that can be applied 
without causing the cylinder to rotate. Suggestion: Show 
that both friction forces will be at their maximum  
values when the cylinder is on the verge of slipping.

	68.	A uniform rod of weight Fg and length L is supported 
at its ends by a frictionless trough as shown in Fig-
ure P12.68. (a) Show that the center of gravity of the 
rod must be vertically over point O when the rod is in 
equilibrium. (b)  Determine the equilibrium value of 
the angle u. (c) Is the equilibrium of the rod stable or 
unstable?

u

60.0�30.0�

O

Figure P12.68

P
S

Figure P12.67

Q/C

halves of the ladder, (b) the normal forces at A and B, 
and (c) the components of the reaction force at the 
single hinge C that the left half of the ladder exerts on 
the right half. Suggestion: Treat the ladder as a single 
object, but also treat each half of the ladder separately.

	58.	(a) Estimate the force with which a karate master strikes 
a board, assuming the hand’s speed at the moment of 
impact is 10.0 m/s and decreases to 1.00 m/s during a 
0.002 00-s time interval of contact between the hand 
and the board. The mass of his hand and arm is 1.00 kg. 
(b) Estimate the shear stress, assuming this force is 
exerted on a 1.00-cm-thick pine board that is 10.0 cm 
wide. (c) If the maximum shear stress a pine board can 
support before breaking is 3.60 3 106 N/m2, will the 
board break?

	59.	Two racquetballs, each having a 
mass of 170 g, are placed in a glass 
jar as shown in Figure P12.59. 
Their centers lie on a straight line 
that makes a 458 angle with the 
horizontal. (a)  Assume the walls 
are frictionless and determine 
P1, P2, and P3. (b) Determine the 
magnitude of the force exerted by 
the left ball on the right ball.

	60.	Review. A wire of length L, 
Young’s modulus Y, and cross-sectional area A is 
stretched elastically by an amount DL. By Hooke’s law, 
the restoring force is 2k DL. (a) Show that k 5 YA/L. 
(b) Show that the work done in stretching the wire by 
an amount DL is W 5 1

2YA 1DL 22/L .

	61.	 Review. An aluminum wire is 0.850 m long and has 
a circular cross section of diameter 0.780 mm. Fixed 
at the top end, the wire supports a 1.20-kg object that 
swings in a horizontal circle. Determine the angular 
speed of the object required to produce a strain of  
1.00 3 1023.

	62.	Consider the rectangular cabinet of Problem 50 shown 
in Figure P12.50, but with a force F

S
 applied horizon-

tally at the upper edge. (a) What is the minimum 
force required to start to tip the cabinet? (b) What is 
the minimum coefficient of static friction required for 
the cabinet not to slide with the application of a force 
of this magnitude? (c) Find the magnitude and direc-
tion of the minimum force required to tip the cabinet 
if the point of application can be chosen anywhere on 
the cabinet.

	63.	A 500-N uniform rectangular 
sign 4.00 m wide and 3.00  m  
high is suspended from a hori-
zontal, 6.00-m-long, uniform, 
100-N rod as indicated in Figure 
P12.63. The left end of the rod 
is supported by a hinge, and the 
right end is supported by a thin 
cable making a 30.0° angle with 
the vertical. (a)  Find the ten-
sion T in the cable. (b)  Find the 
horizontal and vertical compo-

P1
S

P2
S

P3
S

45�

Figure P12.59

S

M

30.0°
T

ICE CREAM
SHOP

Figure P12.63
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c h a p t e r 

13
13.1	 Newton’s Law of  

Universal Gravitation

13.2	 Free-Fall Acceleration and 
the Gravitational Force

13.3	 Analysis Model: Particle in 
a Field (Gravitational) 

13.4	 Kepler’s Laws and the 
Motion of Planets

13.5	 Gravitational  
Potential Energy

13.6	 Energy Considerations  
in Planetary and  
Satellite Motion

Universal Gravitation

Hubble Space Telescope image of 
the Whirlpool Galaxy, M51, taken 
in 2005. The arms of this spiral 
galaxy compress hydrogen gas 
and create new clusters of stars. 
Some astronomers believe that the 
arms are prominent due to a close 
encounter with the small, yellow 
galaxy, NGC 5195, at the tip of one 
of its arms. (NASA, Hubble Heritage Team, 

(STScI/AURA), ESA, S. Beckwith (STScI). 

Additional Processing: Robert Gendler)

Before 1687, a large amount of data had been collected on the motions of the Moon and 
the planets, but a clear understanding of the forces related to these motions was not available. 
In that year, Isaac Newton provided the key that unlocked the secrets of the heavens. He knew, 
from his first law, that a net force had to be acting on the Moon because without such a force 
the Moon would move in a straight-line path rather than in its almost circular orbit. Newton 
reasoned that this force was the gravitational attraction exerted by the Earth on the Moon. He 
realized that the forces involved in the Earth–Moon attraction and in the Sun–planet attrac-
tion were not something special to those systems, but rather were particular cases of a general 
and universal attraction between objects. In other words, Newton saw that the same force of 
attraction that causes the Moon to follow its path around the Earth also causes an apple to 
fall from a tree. It was the first time that “earthly” and “heavenly” motions were unified.
	 In this chapter, we study the law of universal gravitation. We emphasize a description of 
planetary motion because astronomical data provide an important test of this law’s validity. 
We then show that the laws of planetary motion developed by Johannes Kepler follow from 
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	 13.1  Newton’s Law of Universal Gravitation	 389

the law of universal gravitation and the principle of conservation of angular momentum 
for an isolated system. We conclude by deriving a general expression for the gravitational 
potential energy of a system and examining the energetics of planetary and satellite motion.

13.1	 Newton’s Law of Universal Gravitation
You may have heard the legend that, while napping under a tree, Newton was struck 
on the head by a falling apple. This alleged accident supposedly prompted him to 
imagine that perhaps all objects in the Universe were attracted to each other in the 
same way the apple was attracted to the Earth. Newton analyzed astronomical data 
on the motion of the Moon around the Earth. From that analysis, he made the bold 
assertion that the force law governing the motion of planets was the same as the 
force law that attracted a falling apple to the Earth.
	 In 1687, Newton published his work on the law of gravity in his treatise Mathemati-
cal Principles of Natural Philosophy. Newton’s law of universal gravitation states that

every particle in the Universe attracts every other particle with a force that 
is directly proportional to the product of their masses and inversely propor-
tional to the square of the distance between them.

If the particles have masses m1 and m2 and are separated by a distance r, the magni-
tude of this gravitational force is

	 Fg 5 G 
m1m 2

r 2 	 (13.1)

where G is a constant, called the universal gravitational constant. Its value in SI units is

	 G 5 6.674 3 10211 N ? m2/kg2	 (13.2)

	 The universal gravitational constant G was first evaluated in the late nineteenth 
century, based on results of an important experiment by Sir Henry Cavendish (1731–
1810) in 1798. The law of universal gravitation was not expressed by Newton in the 
form of Equation 13.1, and Newton did not mention a constant such as G. In fact, 
even by the time of Cavendish, a unit of force had not yet been included in the exist-
ing system of units. Cavendish’s goal was to measure the density of the Earth. His 
results were then used by other scientists 100 years later to generate a value for G. 
	 Cavendish’s apparatus consists of two small spheres, each of mass m, fixed to the 
ends of a light, horizontal rod suspended by a fine fiber or thin metal wire as illus-
trated in Figure 13.1. When two large spheres, each of mass M, are placed near the 
smaller ones, the attractive force between smaller and larger spheres causes the rod 
to rotate and twist the wire suspension to a new equilibrium orientation. The angle 
of rotation is measured by the deflection of a light beam reflected from a mirror 
attached to the vertical suspension.
	 The form of the force law given by Equation 13.1 is often referred to as an 
inverse-square law because the magnitude of the force varies as the inverse square 
of the separation of the particles.1 We shall see other examples of this type of force 
law in subsequent chapters. We can express this force in vector form by defining a 
unit vector r̂12 (Fig. 13.2). Because this unit vector is directed from particle 1 toward 
particle 2, the force exerted by particle 1 on particle 2 is

	 F
S

12 5 2G 
m 1m 2

r 2  r̂12	 (13.3)

WW �The law of universal 
gravitation

Mirror

r
m

Light
source

The dashed line represents the 
original position of the rod.

M

Figure 13.1  ​Cavendish apparatus 
for measuring gravitational forces.

1An inverse proportionality between two quantities x and y is one in which y 5 k/x, where k is a constant. A direct pro-
portion between x and y exists when y 5 kx.

Figure 13.2  The gravitational 
force between two particles is 
attractive. The unit vector r̂12 is 
directed from particle 1 toward 
particle 2.

m1

m2
r

r̂12

F21
S

F12
S

Consistent with Newton’s 
third law, F21 � �F12.  
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390	C hapter 13  Universal Gravitation

Example 13.1	     Billiards, Anyone?

Three 0.300-kg billiard balls are placed on a table at the corners of a right triangle 
as shown in Figure 13.3. The sides of the triangle are of lengths a 5 0.400 m, b 5 
0.300 m, and c 5 0.500 m. Calculate the gravitational force vector on the cue ball 
(designated m1) resulting from the other two balls as well as the magnitude and direc-
tion of this force.

Conceptualize  ​Notice in Figure 13.3 that the cue ball is 
attracted to both other balls by the gravitational force. We 
can see graphically that the net force should point upward 
and toward the right. We locate our coordinate axes as 
shown in Figure 13.3, placing our origin at the position of 
the cue ball.

Categorize  ​This problem involves evaluating the gravitational forces on the cue ball using Equation 13.3. Once these 
forces are evaluated, it becomes a vector addition problem to find the net force.

S o l u t i o n

where the negative sign indicates that particle 2 is attracted to particle 1; hence, 
the force on particle 2 must be directed toward particle 1. By Newton’s third law, 
the force exerted by particle 2 on particle 1, designated  F

S

21, is equal in magni-
tude to  F

S

12 and in the opposite direction. That is, these forces form an action–
reaction pair, and F

S

21 5 2 F
S

12.
	 Two features of Equation 13.3 deserve mention. First, the gravitational force is a 
field force that always exists between two particles, regardless of the medium that 
separates them. Second, because the force varies as the inverse square of the dis-
tance between the particles, it decreases rapidly with increasing separation.
	 Equation 13.3 can also be used to show that the gravitational force exerted by a 
finite-size, spherically symmetric mass distribution on a particle outside the distri-
bution is the same as if the entire mass of the distribution were concentrated at the 
center. For example, the magnitude of the force exerted by the Earth on a particle 
of mass m near the Earth’s surface is

	 Fg 5 G 
MEm

RE
2 	 (13.4)

where ME is the Earth’s mass and RE its radius. This force is directed toward the 
center of the Earth.

Q	 uick Quiz 13.1 ​ A planet has two moons of equal mass. Moon 1 is in a circular 
orbit of radius r. Moon 2 is in a circular orbit of radius 2r. What is the magnitude 
of the gravitational force exerted by the planet on Moon 2? (a) four times as large 
as that on Moon 1 (b) twice as large as that on Moon 1 (c) equal to that on Moon 1  
(d) half as large as that on Moon 1 (e) one-fourth as large as that on Moon 1

Pitfall Prevention 13.1 
Be Clear on g and G  The symbol g  
represents the magnitude of the 
free-fall acceleration near a planet. 
At the surface of the Earth, g has 
an average value of 9.80 m/s2.  
On the other hand, G is a uni-
versal constant that has the same 
value everywhere in the Universe.

a

m2

c

m1 b m3

x
21

31u

y

F
S F

S

F
SFigure 13.3  ​(Example 

13.1) The resultant gravita-
tional force acting on the 
cue ball is the vector sum 
F
S

21 1 F
S

31.

Analyze  ​Find the force exerted by m2 on the cue ball: F
S

21 5 G 
m2m1

a2   ĵ 

 5 16.674 3 10211 N # m2/kg2 2  10.300 kg 2 10.300 kg 2
10.400 m 22   ĵ

 5 3.75 3 10211
  ĵ N

Find the force exerted by m3 on the cue ball: F
S

31 5 G 
m3m1

b2   î 

 5 16.674 3 10211 N # m2/kg2 2  10.300 kg 2 10.300 kg 2
10.300 m 22   î

 5 6.67 3 10211
  î N
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	 13.2  Free-Fall Acceleration and the Gravitational Force	 391

13.2	 �Free-Fall Acceleration and the  
Gravitational Force

We have called the magnitude of the gravitational force on an object near the 
Earth’s surface the weight of the object, where the weight is given by Equation 5.6. 
Equation 13.4 is another expression for this force. Therefore, we can set Equations 
5.6 and 13.4 equal to each other to obtain

	 mg 5 G 
MEm

RE
2 	

	 g 5 G 
ME

RE
2	 (13.5)

Equation 13.5 relates the free-fall acceleration g to physical parameters of the 
Earth—its mass and radius—and explains the origin of the value of 9.80 m/s2 that 
we have used in earlier chapters. Now consider an object of mass m located a dis-
tance h above the Earth’s surface or a distance r from the Earth’s center, where r 5 
RE 1 h. The magnitude of the gravitational force acting on this object is

Fg 5 G 
MEm

r 2 5 G 
MEm

1RE 1 h 2 2

The magnitude of the gravitational force acting on the object at this position is also 
Fg 5 mg, where g is the value of the free-fall acceleration at the altitude h. Substitut-
ing this expression for Fg into the last equation shows that g is given by

	 g 5
GME

r 2 5
GME

1RE 1 h 22 	 (13.6)

Therefore, it follows that g decreases with increasing altitude. Values of g for the Earth 
at various altitudes are listed in Table 13.1. Because an object’s weight is mg, we see 
that as r S ,̀ the weight of the object approaches zero.

Q	 uick Quiz 13.2 ​ Superman stands on top of a very tall mountain and throws a 
baseball horizontally with a speed such that the baseball goes into a circular 
orbit around the Earth. While the baseball is in orbit, what is the magnitude of 
the acceleration of the ball? (a) It depends on how fast the baseball is thrown. 
(b) It is zero because the ball does not fall to the ground. (c) It is slightly less 
than 9.80 m/s2. (d) It is equal to 9.80 m/s2.

WW Variation of g with altitude

Finalize  ​The result for F shows that the gravitational forces between everyday objects have extremely small magnitudes.

Find the net gravitational force on the cue ball by add-
ing these force vectors:

F
S

5 F
S

31 1 F
S

21 5 16.67  î 1 3.75  ĵ 2 3 10211 N

Find the magnitude of this force: F 5 "F31
2 1 F21

2 5 "16.67 22 1 13.75 22 3 10211 N

5   7.66 3 10211 N

Find the tangent of the angle u for the net force vector: tan u 5
Fy

Fx
5

F21

F31
5

3.75 3 10211 N
6.67 3 10211 N

5 0.562

Evaluate the angle u: u 5 tan21 (0.562) 5   29.4° 

Table 13.1 Free-Fall 
Acceleration g at  
Various Altitudes Above  
the Earth’s Surface
	Altitude h (km)	 g (m/s2)

	 1 000	 7.33
	 2 000	 5.68
	 3 000	 4.53
	 4 000	 3.70
	 5 000	 3.08
	 6 000	 2.60
	 7 000	 2.23
	 8 000	 1.93
	 9 000	 1.69
	 10 000	 1.49
	 50 000	 0.13
	 `	 0

	

▸ 13.1 c o n t i n u e d
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392	C hapter 13  Universal Gravitation

	

Example 13.2	     The Density of the Earth

Using the known radius of the Earth and that g 5 9.80 m/s2 at the Earth’s surface, find the average density of the Earth.

Conceptualize  ​Assume the Earth is a perfect sphere. The density of material in the Earth varies, but let’s adopt a sim-
plified model in which we assume the density to be uniform throughout the Earth. The resulting density is the average 
density of the Earth.

Categorize  ​This example is a relatively simple substitution problem.

S o l u t i o n

Using Equation 13.5, solve for the mass 
of the Earth:

ME 5
gRE

2

G

Substitute this mass and the volume of  
a sphere into the definition of density 
(Eq. 1.1):

rE 5
ME

VE
5

gRE
2/G

4
3pRE

3 5 3
4 

g

pGRE

5 34 
9.80 m/s2

p 16.674 3 10211 N # m2/kg2 2 16.37 3 106 m2 5 5.50 3 103 kg/m3

What if you were told that a typical density of granite at the Earth’s surface is 2.75 3 103 kg/m3? What 
would you conclude about the density of the material in the Earth’s interior?

Answer  ​Because this value is about half the density we calculated as an average for the entire Earth, we would con-
clude that the inner core of the Earth has a density much higher than the average value. It is most amazing that the 
Cavendish experiment—which can be used to determine G and can be done today on a tabletop—combined with 
simple free-fall measurements of g provides information about the core of the Earth!

What If ?

13.3	 Analysis Model: Particle in a Field (Gravitational)
When Newton published his theory of universal gravitation, it was considered a 
success because it satisfactorily explained the motion of the planets. It represented 
strong evidence that the same laws that describe phenomena on the Earth can be 
used on large objects like planets and throughout the Universe. Since 1687, New-
ton’s theory has been used to account for the motions of comets, the deflection of 
a Cavendish balance, the orbits of binary stars, and the rotation of galaxies. Nev-
ertheless, both Newton’s contemporaries and his successors found it difficult to 
accept the concept of a force that acts at a distance. They asked how it was possible 
for two objects such as the Sun and the Earth to interact when they were not in con-
tact with each other. Newton himself could not answer that question.
	 An approach to describing interactions between objects that are not in contact 
came well after Newton’s death. This approach enables us to look at the gravita-
tional interaction in a different way, using the concept of a gravitational field that 
exists at every point in space. When a particle is placed at a point where the gravita-
tional field exists, the particle experiences a gravitational force. In other words, we 
imagine that the field exerts a force on the particle rather than consider a direct 
interaction between two particles. The gravitational field gS is defined as

	 gS ;
F
S

g

m 0
	 (13.7)

That is, the gravitational field at a point in space equals the gravitational force  F
S

g 
experienced by a test particle placed at that point divided by the mass m0 of the test 
particle. We call the object creating the field the source particle. (Although the Earth 

Gravitational field 
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is not a particle, it is possible to show that we can model the Earth as a particle for 
the purpose of finding the gravitational field that it creates.) Notice that the pres-
ence of the test particle is not necessary for the field to exist: the source particle 
creates the gravitational field. We can detect the presence of the field and measure 
its strength by placing a test particle in the field and noting the force exerted on it. 
In essence, we are describing the “effect” that any object (in this case, the Earth) 
has on the empty space around itself in terms of the force that would be present if a 
second object were somewhere in that space.2

	 The concept of a field is at the heart of the particle in a field analysis model. 
In the general version of this model, a particle resides in an area of space in which 
a field exists. Because of the existence of the field and a property of the particle, 
the particle experiences a force. In the gravitational version of the particle in a 
field model discussed here, the type of field is gravitational, and the property of 
the particle that results in the force is the particle’s mass m. The mathematical 
representation of the gravitational version of the particle in a field model is Equa-
tion 5.5:

	 F
S

g 5 mgS 	 (5.5)

In future chapters, we will see two other versions of the particle in a field model. In 
the electric version, the property of a particle that results in a force is electric charge : 
when a charged particle is placed in an electric field, it experiences a force. The mag-
nitude of the force is the product of the electric charge and the field, in analogy 
with the gravitational force in Equation 5.5. In the magnetic version of the particle 
in a field model, a charged particle is placed in a magnetic field. One other property 
of this particle is required for the particle to experience a force: the particle must 
have a velocity at some nonzero angle to the magnetic field. The electric and mag-
netic versions of the particle in a field model are critical to the understanding of 
the principles of electromagnetism, which we will study in Chapters 23–34.
	 Because the gravitational force acting on the object has a magnitude GMEm/r 2 
(see Eq. 13.4), the gravitational field gS at a distance r from the center of the Earth is

	 gS 5
F
S

g

m
5 2

GME

r 2  r̂	 (13.8)

where r̂ is a unit vector pointing radially outward from the Earth and the negative 
sign indicates that the field points toward the center of the Earth as illustrated 
in Figure 13.4a. The field vectors at different points surrounding the Earth vary 
in both direction and magnitude. In a small region near the Earth’s surface, the 
downward field gS is approximately constant and uniform as indicated in Figure 
13.4b. Equation 13.8 is valid at all points outside the Earth’s surface, assuming the 
Earth is spherical. At the Earth’s surface, where r 5 RE, gS has a magnitude of 
9.80 N/kg. (The unit N/kg is the same as m/s2.)

2We shall return to this idea of mass affecting the space around it when we discuss Einstein’s theory of gravitation in 
Chapter 39.

a

b

The field vectors point in the 
direction of the acceleration a 
particle would experience if it 
were placed in the field. The 
magnitude of the field vector at 
any location is the magnitude 
of the free-fall acceleration at 
that location.

Figure 13.4  ​(a) The gravitational 
field vectors in the vicinity of a 
uniform spherical mass such as the 
Earth vary in both direction and 
magnitude. (b) The gravitational 
field vectors in a small region near 
the Earth’s surface are uniform in 
both direction and magnitude.

Analysis Model	    Particle in a Field (Gravitational)

Imagine an object with mass that we call a source particle. The source particle establishes a gravita-
tional field gS  throughout space. The gravitational field is evaluated by measuring the force on a 
test particle of mass m 0 and then using Equation 13.7. Now imagine a particle of mass m is placed 
in that field. The particle interacts with the gravitational field so that it experiences a gravitational 
force given by

	 F
S

g 5 mgS 	 (5.5)

mgS 

Fg � mg
S S

continued
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Example 13.3	     The Weight of the Space Station 

The International Space Station operates at an altitude of 350 km. Plans for the final construction show that material 
of weight 4.22 3 106 N, measured at the Earth’s surface, will have been lifted off the surface by various spacecraft dur-
ing the construction process. What is the weight of the space station when in orbit?

Conceptualize  The mass of the space station is fixed; it is independent of its location. Based on the discussions in this 
section and Section 13.2, we realize that the value of g will be reduced at the height of the space station’s orbit. There-
fore, the weight of the Space Station will be smaller than that at the surface of the Earth.

Categorize  We model the Space Station as a particle in a gravitational field.

AM

S o l u t i o n

13.4	 Kepler’s Laws and the Motion of Planets
Humans have observed the movements of the planets, stars, and other celestial 
objects for thousands of years. In early history, these observations led scientists to 
regard the Earth as the center of the Universe. This geocentric model was elaborated 
and formalized by the Greek astronomer Claudius Ptolemy (c. 100–c. 170) in the 
second century and was accepted for the next 1400 years. In 1543, Polish astrono-
mer Nicolaus Copernicus (1473–1543) suggested that the Earth and the other plan-
ets revolved in circular orbits around the Sun (the heliocentric model).
	 Danish astronomer Tycho Brahe (1546–1601) wanted to determine how the 
heavens were constructed and pursued a project to determine the positions of both 

Analysis Model	    Particle in a Field (Gravitational) (continued)

Examples: 

•	 an object of mass m near the surface of the Earth has a weight, which is the result of the gravitational field estab-
lished in space by the Earth

•	 a planet in the solar system is in orbit around the Sun, due to the gravitational force on the planet exerted by the 
gravitational field established by the Sun

•	 an object near a black hole is drawn into the black hole, never to escape, due to the tremendous gravitational field 
established by the black hole (Section 13.6)

•	 in the general theory of relativity, the gravitational field of a massive object is imagined to be described by a curva-
ture of space–time (Chapter 39)

•	 the gravitational field of a massive object is imagined to be mediated by particles called gravitons, which have 
never been detected (Chapter 46)

Analyze  From the particle in a field model, 
find the mass of the space station from its 
weight at the surface of the Earth:

m 5
Fg

g
5

4.22 3 106 N
9.80 m/s2 5 4.31 3 105 kg

Use Equation 13.6 with h 5 350 km to find 
the magnitude of the gravitational field at 
the orbital location:

g 5
GME

1RE 1 h 22

5
16.674 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2

16.37 3 106 m 1 0.350 3 106 m 22 5 8.82 m/s2

Use the particle in a field model again to 
find the space station’s weight in orbit:

Fg 5 mg 5 (4.31 3 105 kg)(8.82 m/s2) 5   3.80 3 106 N 

Finalize  Notice that the weight of the Space Station is less when it is in orbit, as we expected. It has about 10% less 
weight than it has when on the Earth’s surface, representing a 10% decrease in the magnitude of the gravitational field.www.as
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stars and planets. Those observations of the planets and 777 stars visible to the 
naked eye were carried out with only a large sextant and a compass. (The telescope 
had not yet been invented.)
	 German astronomer Johannes Kepler was Brahe’s assistant for a short while 
before Brahe’s death, whereupon he acquired his mentor’s astronomical data and 
spent 16 years trying to deduce a mathematical model for the motion of the plan-
ets. Such data are difficult to sort out because the moving planets are observed 
from a moving Earth. After many laborious calculations, Kepler found that Brahe’s 
data on the revolution of Mars around the Sun led to a successful model.
	 Kepler’s complete analysis of planetary motion is summarized in three state-
ments known as Kepler’s laws:

1. � All planets move in elliptical orbits with the Sun at one focus.
2. � The radius vector drawn from the Sun to a planet sweeps out equal areas 

in equal time intervals.
3. � The square of the orbital period of any planet is proportional to the cube 

of the semimajor axis of the elliptical orbit.

Kepler’s First Law
The geocentric and original heliocentric models of the solar system both suggested 
circular orbits for heavenly bodies. Kepler’s first law indicates that the circular orbit 
is a very special case and elliptical orbits are the general situation. This notion was 
difficult for scientists of the time to accept because they believed that perfect circu-
lar orbits of the planets reflected the perfection of heaven.
	 Figure 13.5 shows the geometry of an ellipse, which serves as our model for the 
elliptical orbit of a planet. An ellipse is mathematically defined by choosing two 
points F1 and F2, each of which is a called a focus, and then drawing a curve through 
points for which the sum of the distances r1 and r2 from F1 and F2, respectively, is a 
constant. The longest distance through the center between points on the ellipse (and 
passing through each focus) is called the major axis, and this distance is 2a. In Fig-
ure 13.5, the major axis is drawn along the x direction. The distance a is called the 
semimajor axis. Similarly, the shortest distance through the center between points 
on the ellipse is called the minor axis of length 2b, where the distance b is the semi-
minor axis. Either focus of the ellipse is located at a distance c from the center of the 
ellipse, where a2 5 b2 1 c2. In the elliptical orbit of a planet around the Sun, the Sun 
is at one focus of the ellipse. There is nothing at the other focus.
	 The eccentricity of an ellipse is defined as e 5 c/a, and it describes the general 
shape of the ellipse. For a circle, c 5 0, and the eccentricity is therefore zero. The 
smaller b is compared with a, the shorter the ellipse is along the y direction com-
pared with its extent in the x direction in Figure 13.5. As b decreases, c increases 
and the eccentricity e increases. Therefore, higher values of eccentricity correspond 
to longer and thinner ellipses. The range of values of the eccentricity for an ellipse 
is 0 , e , 1.
	 Eccentricities for planetary orbits vary widely in the solar system. The eccentricity 
of the Earth’s orbit is 0.017, which makes it nearly circular. On the other hand, the 
eccentricity of Mercury’s orbit is 0.21, the highest of the eight planets. Figure 13.6a 
on page 396 shows an ellipse with an eccentricity equal to that of Mercury’s orbit. 
Notice that even this highest-eccentricity orbit is difficult to distinguish from a circle, 
which is one reason Kepler’s first law is an admirable accomplishment. The eccen-
tricity of the orbit of Comet Halley is 0.97, describing an orbit whose major axis is 
much longer than its minor axis, as shown in Figure 13.6b. As a result, Comet Halley 
spends much of its 76-year period far from the Sun and invisible from the Earth. It is 
only visible to the naked eye during a small part of its orbit when it is near the Sun.
	 Now imagine a planet in an elliptical orbit such as that shown in Figure 13.5, with 
the Sun at focus F2. When the planet is at the far left in the diagram, the distance  

WW Kepler’s laws

Johannes Kepler
German astronomer (1571–1630)
Kepler is best known for developing the
laws of planetary motion based on the  
careful observations of Tycho Brahe.
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Figure 13.5  Plot of an ellipse.

a

c b

F2F1

r1

r2

y

x

The semimajor axis has 
length a, and the semiminor 
axis has length b.

Each focus is located at a 
distance c from the center.

Pitfall Prevention 13.2
Where Is the Sun?  The Sun is 
located at one focus of the ellip-
tical orbit of a planet. It is not 
located at the center of the ellipse.
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between the planet and the Sun is a 1 c. At this point, called the aphelion, the 
planet is at its maximum distance from the Sun. (For an object in orbit around the 
Earth, this point is called the apogee.) Conversely, when the planet is at the right end 
of the ellipse, the distance between the planet and the Sun is a 2 c. At this point, 
called the perihelion (for an Earth orbit, the perigee), the planet is at its minimum 
distance from the Sun.
	 Kepler’s first law is a direct result of the inverse-square nature of the gravita-
tional force. Circular and elliptical orbits correspond to objects that are bound to 
the gravitational force center. These objects include planets, asteroids, and comets 
that move repeatedly around the Sun as well as moons orbiting a planet. There 
are also unbound objects, such as a meteoroid from deep space that might pass by 
the Sun once and then never return. The gravitational force between the Sun and 
these objects also varies as the inverse square of the separation distance, and the 
allowed paths for these objects include parabolas (e 5 1) and hyperbolas (e . 1).

Kepler’s Second Law
Kepler’s second law can be shown to be a result of the isolated system model for 
angular momentum. Consider a planet of mass Mp moving about the Sun in an 
elliptical orbit (Fig. 13.7a). Let’s consider the planet as a system. We model the Sun 
to be so much more massive than the planet that the Sun does not move. The gravi-
tational force exerted by the Sun on the planet is a central force, always along the 
radius vector, directed toward the Sun (Fig. 13.7a). The torque on the planet due to 
this central force about an axis through the Sun is zero because F

S

g is parallel to rS.
	 Therefore, because the external torque on the planet is zero, it is modeled as 
an isolated system for angular momentum, and the angular momentum L

S
 of the 

planet is a constant of the motion:

	 D L
S

 5 0   S   L
S

 5 constant	

Evaluating L
S

 for the planet,

	 L
S

 5 rS 3 pS 5 Mp rS 3 vS   S   L 5 Mp 0 rS 3  vS 0 	 (13.9)

	 We can relate this result to the following geometric consideration. In a time inter-
val dt, the radius vector rS in Figure 13.7b sweeps out the area dA, which equals half 
the area 0 rS 3  d rS 0  of the parallelogram formed by the vectors rS and d rS. Because 
the displacement of the planet in the time interval dt is given by d rS 5 vS dt,

	 dA 5 1
2 0 rS 3  d rS 0 5 1

2 0 rS 3  vSdt 0 5 1
2 0 rS 3  vS 0 dt	

Substitute for the absolute value of the cross product from Equation 13.9:

	 dA 5 1
2a

L
Mp

bdt	

The Sun is located at a focus of the ellipse. There is 
nothing physical located at the center (the black dot) or 
the other focus (the blue dot).

Sun

Center

Sun

CenterOrbit of
Mercury

Orbit of
Comet Halley

Comet Halley

a b

Figure 13.6  ​(a) The shape of 
the orbit of Mercury, which has 
the highest eccentricity (e 5 0.21) 
among the eight planets in the 
solar system. (b) The shape of the 
orbit of Comet Halley. The shape 
of the orbit is correct; the comet 
and the Sun are shown larger 
than in reality for clarity.

Figure 13.7  (a) The gravita-
tional force acting on a planet  
is directed toward the Sun.  
(b) During a time interval dt,  
a parallelogram is formed by the 
vectors rS and d rS 5 vS dt.

Sun

MS

Mp

Sun

dA

Fg
S

rS
d  �  dtrS vS

vS

The area swept out by r in 
a time interval dt is half the 
area of the parallelogram.

S

a

b
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Divide both sides by dt to obtain

	  
dA
dt

 5
L

2Mp
	 (13.10)

where L and Mp are both constants. This result shows that that the derivative dA/dt 
is constant—the radius vector from the Sun to any planet sweeps out equal areas in 
equal time intervals as stated in Kepler’s second law.
	 This conclusion is a result of the gravitational force being a central force, which 
in turn implies that angular momentum of the planet is constant. Therefore, the law 
applies to any situation that involves a central force, whether inverse square or not.

Kepler’s Third Law
Kepler’s third law can be predicted from the inverse-square law for circular orbits 
and our analysis models. Consider a planet of mass Mp that is assumed to be moving 
about the Sun (mass MS) in a circular orbit as in Figure 13.8. Because the gravita-
tional force provides the centripetal acceleration of the planet as it moves in a cir-
cle, we model the planet as a particle under a net force and as a particle in uniform 
circular motion and incorporate Newton’s law of universal gravitation,

	 Fg 5 Mpa  S   
GMSMp

r 2 5 Mp a
v 2

r
b	

The orbital speed of the planet is 2pr/T, where T is the period; therefore, the pre-
ceding expression becomes

	
GMS

r 2 5
12pr/T 2 2

r
	

	 T 2 5 a 4p2

GMS
br 3 5 KSr 3	

where KS is a constant given by

	 KS 5
4p2

GMS
5 2.97 3 10219 s2/m3	

This equation is also valid for elliptical orbits if we replace r with the length a of the 
semimajor axis (Fig. 13.5):

	 T 2 5 a 4p2

GMS
ba3 5 KSa

3	 (13.11)

Equation 13.11 is Kepler’s third law: the square of the period is proportional to 
the cube of the semimajor axis. Because the semimajor axis of a circular orbit is its 
radius, this equation is valid for both circular and elliptical orbits. Notice that the 
constant of proportionality KS is independent of the mass of the planet.3 Equation 
13.11 is therefore valid for any planet. If we were to consider the orbit of a satellite 
such as the Moon about the Earth, the constant would have a different value, with 
the Sun’s mass replaced by the Earth’s mass; that is, KE 5 4p2/GME.
	 Table 13.2 on page 398 is a collection of useful data for planets and other objects 
in the solar system. The far-right column verifies that the ratio T 2/r 3 is constant for 
all objects orbiting the Sun. The small variations in the values in this column are 
the result of uncertainties in the data measured for the periods and semimajor axes 
of the objects.
	 Recent astronomical work has revealed the existence of a large number of solar 
system objects beyond the orbit of Neptune. In general, these objects lie in the Kuiper 
belt, a region that extends from about 30 AU (the orbital radius of Neptune) to 50 AU.  
(An AU is an astronomical unit, equal to the radius of the Earth’s orbit.) Current  

WW Kepler’s third law

3Equation 13.11 is indeed a proportion because the ratio of the two quantities T 2 and a3 is a constant. The variables 
in a proportion are not required to be limited to the first power only.

r

MS

Mp

vS

Figure 13.8  ​A planet of mass Mp 
moving in a circular orbit around 
the Sun. The orbits of all planets 
except Mercury are nearly circular.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



398	C hapter 13  Universal Gravitation

estimates identify at least 70 000 objects in this region with diameters larger than 
100 km. The first Kuiper belt object (KBO) is Pluto, discovered in 1930 and for-
merly classified as a planet. Starting in 1992, many more have been detected. Sev-
eral have diameters in the 1 000-km range, such as Varuna (discovered in 2000), 
Ixion (2001), Quaoar (2002), Sedna (2003), Haumea (2004), Orcus (2004), and 
Makemake (2005). One KBO, Eris, discovered in 2005, is believed to be signifi-
cantly larger than Pluto. Other KBOs do not yet have names, but are currently indi-
cated by their year of discovery and a code, such as 2009 YE7 and 2010 EK139.
	 A subset of about 1 400 KBOs are called “Plutinos” because, like Pluto, they 
exhibit a resonance phenomenon, orbiting the Sun two times in the same time 
interval as Neptune revolves three times. The contemporary application of Kepler’s 
laws and such exotic proposals as planetary angular momentum exchange and 
migrating planets suggest the excitement of this active area of current research.

Q	 uick Quiz 13.3 ​ An asteroid is in a highly eccentric elliptical orbit around the 
Sun. The period of the asteroid’s orbit is 90 days. Which of the following state-
ments is true about the possibility of a collision between this asteroid and the 
Earth? (a) There is no possible danger of a collision. (b) There is a possibility of 
a collision. (c) There is not enough information to determine whether there is 
danger of a collision.

Table 13.2 Useful Planetary Data
		  Mean	 Period of	 Mean Distance
Body	 Mass (kg)	 Radius (m)	 Revolution (s)	 from the Sun (m)

	
T 2

r 3
1s2/m3 2

Mercury	 3.30 3 1023	 2.44 3 106	 7.60 3 106	 5.79 3 1010	 2.98 3 10219

Venus	 4.87 3 1024	 6.05 3 106	 1.94 3 107	 1.08 3 1011	 2.99 3 10219

Earth	 5.97 3 1024	 6.37 3 106	 3.156 3 107	 1.496 3 1011	 2.97 3 10219

Mars	 6.42 3 1023	 3.39 3 106	 5.94 3 107	 2.28 3 1011	 2.98 3 10219

Jupiter	 1.90 3 1027	 6.99 3 107	 3.74 3 108	 7.78 3 1011	 2.97 3 10219

Saturn	 5.68 3 1026	 5.82 3 107	 9.29 3 108	 1.43 3 1012	 2.95 3 10219

Uranus	 8.68 3 1025	 2.54 3 107	 2.65 3 109	 2.87 3 1012	 2.97 3 10219

Neptune	 1.02 3 1026	 2.46 3 107	 5.18 3 109	 4.50 3 1012	 2.94 3 10219

Plutoa	 1.25 3 1022	 1.20 3 106	 7.82 3 109	 5.91 3 1012	 2.96 3 10219

Moon	 7.35 3 1022	 1.74 3 106	 —	 —	 —
Sun	 1.989 3 1030	 6.96 3 108	 —	 —	 —

aIn August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight planets. Pluto is now defined as 
a “dwarf planet” like the asteroid Ceres.

Example 13.4	     The Mass of the Sun

Calculate the mass of the Sun, noting that the period of the Earth’s orbit around the Sun is 3.156 3 107 s and its dis-
tance from the Sun is 1.496 3 1011 m.

Conceptualize  ​Based on the mathematical representation of Kepler’s third law expressed in Equation 13.11, we realize 
that the mass of the central object in a gravitational system is related to the orbital size and period of objects in orbit 
around the central object.

Categorize  ​This example is a relatively simple substitution problem.

S o l u t i o n

Solve Equation 13.11 for the mass of the Sun: MS 5
4p2r 3

GT 2

Substitute the known values: MS 5
4p2 11.496 3 1011 m 23

16.674 3 10211 N # m2/kg2 2 13.156 3 107 s 22 5  1.99 3 1030 kg
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In Example 13.2, an understanding of gravitational forces enabled us to find out something about the density of the 
Earth’s core, and now we have used this understanding to determine the mass of the Sun!

▸ 13.4 c o n t i n u e d

	

Example 13.5	     A Geosynchronous Satellite 

Consider a satellite of mass m moving in a circular orbit around the Earth at a constant 
speed v and at an altitude h above the Earth’s surface as illustrated in Figure 13.9.

(A)  Determine the speed of satellite in terms of G, h, RE (the radius of the Earth), 
and ME (the mass of the Earth).

Conceptualize  ​Imagine the satellite moving around the Earth in a circular orbit 
under the influence of the gravitational force. This motion is similar to that of the 
International Space Station, the Hubble Space Telescope, and other objects in orbit 
around the Earth.

Categorize  ​The satellite moves in a circular orbit at a constant speed. Therefore, we 
categorize the satellite as a particle in uniform circular motion as well as a particle under 
a net force.

Analyze  ​The only external force acting on the satellite is the gravitational force 
from the Earth, which acts toward the center of the Earth and keeps the satellite in 
its circular orbit.

AM

S o l u t i o n RE

Fg
S

vS

m

r

h

Figure 13.9  ​(Example 13.5) A 
satellite of mass m moving around 
the Earth in a circular orbit of 
radius r with constant speed v. 
The only force acting on the satel-
lite is the gravitational force  F

S

g . 
(Not drawn to scale.)

Apply the particle under a net force and particle in uni-
form circular motion models to the satellite:

Fg 5 ma  S   G 
MEm

r 2 5 m av2

r
b

Solve for v, noting that the distance r from the center of 
the Earth to the satellite is r 5 RE 1 h:

(1)   v 5 Å
GME

r
5 Å

GME

RE 1 h

(B)  ​If the satellite is to be geosynchronous (that is, appearing to remain over a fixed position on the Earth), how fast is 
it moving through space?

To appear to remain over a fixed position on the Earth, the period of the satellite must be 24 h 5 86 400 s and the 
satellite must be in orbit directly over the equator.

S o l u t i o n

Solve Kepler’s third law (Equation 13.11, with  
a 5 r and MS S ME) for r :

r 5 aGMET
2

4p2 b
1/3

Substitute numerical values: r 5 c
16.674 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2 186 400 s 22

4p2 d
1/3

5 4.22 3 107 m

continued

Use Equation (1) to find the speed of the satellite:  v 5 Å
16.674 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2

4.22 3 107 m

5   3.07 3 103 m/s

Finalize  ​The value of r calculated here translates to a height of the satellite above the surface of the Earth of almost 
36 000 km. Therefore, geosynchronous satellites have the advantage of allowing an earthbound antenna to be aimed 
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400	C hapter 13  Universal Gravitation

13.5	 Gravitational Potential Energy
In Chapter 8, we introduced the concept of gravitational potential energy, which is 
the energy associated with the configuration of a system of objects interacting via the 
gravitational force. We emphasized that the gravitational potential energy function 
U 5 mgy for a particle–Earth system is valid only when the particle of mass m is near 
the Earth’s surface, where the gravitational force is independent of y. This expression 
for the gravitational potential energy is also restricted to situations where a very mas-
sive object (such as the Earth) establishes a gravitational field of magnitude g and a 
particle of much smaller mass m resides in that field. Because the gravitational force 
between two particles varies as 1/r 2, we expect that a more general potential energy 
function—one that is valid without the restrictions mentioned above—will be differ-
ent from U 5 mgy.
	 Recall from Equation 7.27 that the change in the potential energy of a system 
associated with a given displacement of a member of the system is defined as 
the negative of the internal work done by the force on that member during the 
displacement:

	 DU 5 Uf 2 Ui 5 23
rf

ri

 F 1r 2  dr 	 (13.12)

We can use this result to evaluate the general gravitational potential energy func-
tion. Consider a particle of mass m moving between two points A and B above the 
Earth’s surface (Fig. 13.10). The particle is subject to the gravitational force given 
by Equation 13.1. We can express this force as

	 F 1r 2 5 2
GMEm

r 2 	

where the negative sign indicates that the force is attractive. Substituting this 
expression for F(r) into Equation 13.12, we can compute the change in the gravi-
tational potential energy function for the particle–Earth system as the separation 
distance r changes:

 Uf 2 Ui 5 GMEm 3
rf

ri

  
dr
r 2 5 GMEm c2 1

r
d

rf

ri

 

	  Uf 2 Ui 5 2GMEm a1
rf

2
1
ri
b	 (13.13)

As always, the choice of a reference configuration for the potential energy is com-
pletely arbitrary. It is customary to choose the reference configuration for zero 

▸ 13.5 c o n t i n u e d

in a fixed direction, but there is a disadvantage in that the signals between the Earth and the satellite must travel a 
long distance. It is difficult to use geosynchronous satellites for optical observation of the Earth’s surface because of 
their high altitude.

​What if the satellite motion in part (A) were taking place at height h above the surface of another planet 
more massive than the Earth but of the same radius? Would the satellite be moving at a higher speed or a lower speed 
than it does around the Earth?

Answer  ​If the planet exerts a larger gravitational force on the satellite due to its larger mass, the satellite must move 
with a higher speed to avoid moving toward the surface. This conclusion is consistent with the predictions of Equa-
tion (1), which shows that because the speed v is proportional to the square root of the mass of the planet, the speed 
increases as the mass of the planet increases.

What If ?

	

A

B

m

rf

ri

ME

RE

Fg
S

Fg
S

Figure 13.10  ​As a particle of 
mass m moves from A to B above 
the Earth’s surface, the gravi-
tational potential energy of the 
particle–Earth system changes 
according to Equation 13.12.
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potential energy to be the same as that for which the force is zero. Taking Ui 5 0 at 
ri 5 ,̀ we obtain the important result

	 U 1r 2 5 2
GMEm

r
	 (13.14)

This expression applies when the particle is separated from the center of the Earth 
by a distance r, provided that r $ RE. The result is not valid for particles inside the 
Earth, where r , RE. Because of our choice of Ui, the function U is always negative 
(Fig. 13.11).
	 Although Equation 13.14 was derived for the particle–Earth system, a similar 
form of the equation can be applied to any two particles. That is, the gravitational 
potential energy associated with any pair of particles of masses m1 and m2 sepa-
rated by a distance r is

	 U 5 2
Gm1m 2

r
	 (13.15)

This expression shows that the gravitational potential energy for any pair of par-
ticles varies as 1/r, whereas the force between them varies as 1/r 2. Furthermore, 
the potential energy is negative because the force is attractive and we have chosen 
the potential energy as zero when the particle separation is infinite. Because the 
force between the particles is attractive, an external agent must do positive work to 
increase the separation between the particles. The work done by the external agent 
produces an increase in the potential energy as the two particles are separated. 
That is, U becomes less negative as r increases.
	 When two particles are at rest and separated by a distance r, an external agent has 
to supply an energy at least equal to 1Gm1m2/r to separate the particles to an infinite 
distance. It is therefore convenient to think of the absolute value of the potential 
energy as the binding energy of the system. If the external agent supplies an energy 
greater than the binding energy, the excess energy of the system is in the form of 
kinetic energy of the particles when the particles are at an infinite separation.
	 We can extend this concept to three or more particles. In this case, the total 
potential energy of the system is the sum over all pairs of particles. Each pair con-
tributes a term of the form given by Equation 13.15. For example, if the system con-
tains three particles as in Figure 13.12,

	 Utotal 5 U12 1 U13 1 U23 5 2G am1m2

r12
1

m1m3

r13
1

m2m3

r23
b	

The absolute value of Utotal represents the work needed to separate the particles by 
an infinite distance.

WW �Gravitational potential energy 
of the Earth–particle system

Earth

R E

O

GME m

U

r

R E

ME

�

The potential 
energy goes to 
zero as r 
approaches 
infinity.

Figure 13.11  ​Graph of the grav-
itational potential energy U versus 
r for the system of an object above 
the Earth’s surface. 

1

2

3r 13

r 12 r 23

Figure 13.12  ​Three interacting 
particles.

Example 13.6	     The Change in Potential Energy

A particle of mass m is displaced through a small vertical distance Dy near the Earth’s surface. Show that in this situ-
ation the general expression for the change in gravitational potential energy given by Equation 13.13 reduces to the 
familiar relationship DU 5 mg Dy.

Conceptualize  ​Compare the two different situations for which we have developed expressions for gravitational poten-
tial energy: (1) a planet and an object that are far apart for which the energy expression is Equation 13.14 and (2) a 
small object at the surface of a planet for which the energy expression is Equation 7.19. We wish to show that these two 
expressions are equivalent.

S o l u t i o n

continued
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402	C hapter 13  Universal Gravitation

Evaluate rf 2 ri and rirf  if both the initial and final posi-
tions of the particle are close to the Earth’s surface:

rf 2 ri 5 Dy ri rf < R E
2

Substitute these expressions into Equation (1): DU <
GMEm

RE
2  Dy 5 mg Dy

where g 5 GME/RE
2 (Eq. 13.5).

▸ 13.6 c o n t i n u e d

Combine the fractions in Equation 13.13: (1)   DU 5 2GMEm a1
rf

2
1
ri
b 5 GMEm a

rf 2 ri

ri rf
b

Categorize  ​This example is a substitution problem.

​Suppose you are performing upper-atmosphere studies and are asked by your supervisor to find the 
height in the Earth’s atmosphere at which the “surface equation” DU 5 mg Dy gives a 1.0% error in the change in the 
potential energy. What is this height?

Answer  ​Because the surface equation assumes a constant value for g, it will give a DU value that is larger than the value 
given by the general equation, Equation 13.13.

What If ?

Set up a ratio reflecting a 1.0% error: DUsurface

DUgeneral
5 1.010

Substitute the expressions for each of these 
changes DU :

mg Dy

GMEm 1Dy/ri rf 2
5

gri rf

GME
5 1.010

Substitute for ri, rf , and g from Equation 13.5:
1GME/RE

2 2RE 1RE 1 Dy 2
GME

5
RE 1 Dy

RE
5 1 1

Dy

RE
5 1.010

13.6	 �Energy Considerations in Planetary  
and Satellite Motion

Given the general expression for gravitational potential energy developed in Sec-
tion 13.5, we can now apply our energy analysis models to gravitational systems. 
Consider an object of mass m moving with a speed v in the vicinity of a massive 
object of mass M, where M .. m. The system might be a planet moving around the 
Sun, a satellite in orbit around the Earth, or a comet making a one-time flyby of  
the Sun. If we assume the object of mass M is at rest in an inertial reference frame, 
the total mechanical energy E of the two-object system when the objects are sepa-
rated by a distance r is the sum of the kinetic energy of the object of mass m and the 
potential energy of the system, given by Equation 13.15:

	 E 5 K 1 U	

	 E 5 1
2mv2 2

GMm
r

	 (13.16)

If the system of objects of mass m and M is isolated, and there are no nonconserva-
tive forces acting within the system, the mechanical energy of the system given by 
Equation 13.16 is the total energy of the system and this energy is conserved:

	 DE system 5 0   S   DK 1 DUg 5 0   S   Ei 5 Ef	

Therefore, as the object of mass m moves from A to B in Figure 13.10, the total 
energy remains constant and Equation 13.16 gives

	 1
2mvi

2 2
GMm

ri
5 1

2mvf 2 2
GMm

rf
	 (13.17)

Solve for Dy: Dy 5 0.010RE 5 0.010 16.37 3 106 m 2 5 6.37 3 104 m 5 63.7 km
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	 13.6  Energy Considerations in Planetary and Satellite Motion	 403

Combining this statement of energy conservation with our earlier discussion of 
conservation of angular momentum, we see that both the total energy and the total 
angular momentum of a gravitationally bound, two-object system are constants of 
the motion.
	 Equation 13.16 shows that E may be positive, negative, or zero, depending on the 
value of v. For a bound system such as the Earth–Sun system, however, E is necessar-
ily less than zero because we have chosen the convention that U S 0 as r S .̀
	 We can easily establish that E , 0 for the system consisting of an object of mass 
m moving in a circular orbit about an object of mass M .. m (Fig. 13.13). Modeling 
the object of mass m as a particle under a net force and a particle in uniform circu-
lar motion gives

	 Fg 5 ma  S   
GMm

r 2 5
mv2

r
	

Multiplying both sides by r and dividing by 2 gives

	 1
2mv2 5

GMm
2r

	 (13.18)

Substituting this equation into Equation 13.16, we obtain

	 E 5
GMm

2r
2

GMm
r

	

	 E 5 2
GMm

2r
 1circular orbits 2 	 (13.19)

This result shows that the total mechanical energy is negative in the case of circular 
orbits. Notice that the kinetic energy is positive and equal to half the absolute value 
of the potential energy. The absolute value of E is also equal to the binding energy 
of the system because this amount of energy must be provided to the system to 
move the two objects infinitely far apart.
	 The total mechanical energy is also negative in the case of elliptical orbits. The 
expression for E for elliptical orbits is the same as Equation 13.19 with r replaced by 
the semimajor axis length a:

	 E 5 2
GMm

2a
 1elliptical orbits 2 	 (13.20)

Q	 uick Quiz 13.4 ​ A comet moves in an elliptical orbit around the Sun. Which 
point in its orbit (perihelion or aphelion) represents the highest value of (a) the 
speed of the comet, (b) the potential energy of the comet–Sun system, (c) the 
kinetic energy of the comet, and (d) the total energy of the comet–Sun system?

WW �Total energy for circular 
orbits of an object of  
mass m around an object of 
mass M g m

WW �Total energy for elliptical 
orbits of an object of  
mass m around an object of  
mass M g m

r

M

m

vS

Figure 13.13  ​An object of mass 
m moving in a circular orbit about 
a much larger object of mass M.

Example 13.7	     Changing the Orbit of a Satellite

A space transportation vehicle releases a 470-kg communications satellite while in an orbit 280 km above the surface 
of the Earth. A rocket engine on the satellite boosts it into a geosynchronous orbit. How much energy does the engine 
have to provide?

Conceptualize  ​Notice that the height of 280 km is much lower than that for a geosynchronous satellite, 36 000 km, as 
mentioned in Example 13.5. Therefore, energy must be expended to raise the satellite to this much higher position.

Categorize  ​This example is a substitution problem.

S o l u t i o n

Find the initial radius of the satellite’s orbit when it is 
still in the vehicle’s cargo bay:

ri 5 RE 1 280 km 5 6.65 3 106 m
continued
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404	C hapter 13  Universal Gravitation

Escape Speed
Suppose an object of mass m is projected vertically upward from the Earth’s surface 
with an initial speed vi as illustrated in Figure 13.14. We can use energy considerations 
to find the value of the initial speed needed to allow the object to reach a certain dis-
tance away from the center of the Earth. Equation 13.16 gives the total energy of the 
system for any configuration. As the object is projected upward from the surface of 
the Earth, v 5 vi and r 5 ri 5 RE. When the object reaches its maximum altitude, v 5  
vf 5 0 and r 5 rf 5 rmax. Because the object–Earth system is isolated, we substitute 
these values into the isolated-system model expression given by Equation 13.17:

	 1
2mvi

2 2
GME m

RE
5 2

GMEm
rmax

	

Solving for vi
2 gives

	 vi
2 5 2GME a 1

RE
2

1
rmax

b	 (13.21)

For a given maximum altitude h 5 rmax 2 RE , we can use this equation to find the 
required initial speed.
	 We are now in a position to calculate the escape speed, which is the minimum 
speed the object must have at the Earth’s surface to approach an infinite separa-
tion distance from the Earth. Traveling at this minimum speed, the object contin-
ues to move farther and farther away from the Earth as its speed asymptotically 
approaches zero. Letting rmax S ` in Equation 13.21 and identifying vi as vesc gives

	 vesc 5 Å
2GME

RE
 	 (13.22)

This expression for vesc is independent of the mass of the object. In other words, 
a spacecraft has the same escape speed as a molecule. Furthermore, the result is 
independent of the direction of the velocity and ignores air resistance.
	 If the object is given an initial speed equal to vesc, the total energy of the system 
is equal to zero. Notice that when r S ,̀ the object’s kinetic energy and the poten-
tial energy of the system are both zero. If vi is greater than vesc, however, the total 
energy of the system is greater than zero and the object has some residual kinetic 
energy as r S .̀

Escape speed from 
the Earth

Use Equation 13.19 to find the difference in ener-
gies for the satellite–Earth system with the satellite 
at the initial and final radii:

DE 5 Ef 2 Ei 5 2
GMEm

2rf
2 a2

GMEm
2ri

b 5 2
GMEm

2
 a1

rf
2

1
ri
b

Substitute numerical values, using rf 5 4.22 3 107 m 
from Example 13.5:

DE 5 2
16.674 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2 1470 kg 2

2
3

a 1
4.22 3 107 m

2
1

6.65 3 106 m
b 5   1.19 3 1010 J

which is the energy equivalent of 89 gal of gasoline. NASA engineers must account for the changing mass of the space-
craft as it ejects burned fuel, something we have not done here. Would you expect the calculation that includes the 
effect of this changing mass to yield a greater or a lesser amount of energy required from the engine?

	

▸ 13.7 c o n t i n u e d

M  E

R E

h

m

rmax

� 0vf
S

vi
S

Figure 13.14  ​An object of  
mass m projected upward from 
the Earth’s surface with an initial 
speed vi reaches a maximum  
altitude h.

Example 13.8	     Escape Speed of a Rocket

Calculate the escape speed from the Earth for a 5 000-kg spacecraft and determine the kinetic energy it must have at 
the Earth’s surface to move infinitely far away from the Earth.

Pitfall Prevention 13.3
You Can’t Really Escape  Although 
Equation 13.22 provides the 
“escape speed” from the Earth, 
complete escape from the Earth’s 
gravitational influence is impos-
sible because the gravitational 
force is of infinite range. 
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	 Equations 13.21 and 13.22 can be applied to objects projected from any planet. 
That is, in general, the escape speed from the surface of any planet of mass M and 
radius R is

	 vesc 5 Å
2GM

R
	 (13.23)

	 Escape speeds for the planets, the Moon, and the Sun are provided in Table 13.3. 
The values vary from 2.3 km/s for the Moon to about 618 km/s for the Sun. These 
results, together with some ideas from the kinetic theory of gases (see Chapter 21), 
explain why some planets have atmospheres and others do not. As we shall see later, 
at a given temperature the average kinetic energy of a gas molecule depends only 
on the mass of the molecule. Lighter molecules, such as hydrogen and helium, have 
a higher average speed than heavier molecules at the same temperature. When the 
average speed of the lighter molecules is not much less than the escape speed of a 
planet, a significant fraction of them have a chance to escape.
	 This mechanism also explains why the Earth does not retain hydrogen mole-
cules and helium atoms in its atmosphere but does retain heavier molecules, such 
as oxygen and nitrogen. On the other hand, the very large escape speed for Jupiter 
enables that planet to retain hydrogen, the primary constituent of its atmosphere.

Black Holes
In Example 11.7, we briefly described a rare event called a supernova, the cata-
strophic explosion of a very massive star. The material that remains in the central 
core of such an object continues to collapse, and the core’s ultimate fate depends 
on its mass. If the core has a mass less than 1.4 times the mass of our Sun, it gradu-
ally cools down and ends its life as a white dwarf star. If the core’s mass is greater 
than this value, however, it may collapse further due to gravitational forces. What 

WW �Escape speed from the sur-
face of a planet of mass M 
and radius R

Conceptualize  ​Imagine projecting the spacecraft from the Earth’s surface so that it moves farther and farther away, 
traveling more and more slowly, with its speed approaching zero. Its speed will never reach zero, however, so the object 
will never turn around and come back.

Categorize  ​This example is a substitution problem.

S o l u t i o n

Use Equation 13.22 to find the escape speed: vesc 5 Å
2GME

RE
5 Å

2 16.674 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2
6.37 3 106 m

5   1.12 3 104 m/s

Evaluate the kinetic energy of the spacecraft 
from Equation 7.16:

K 5 1
2mv2

esc 5 1
2 15.00 3 103 kg 2 11.12 3 104 m/s 22

5   3.13 3 1011 J

The calculated escape speed corresponds to about 25 000 mi/h. The kinetic energy of the spacecraft is equivalent to 
the energy released by the combustion of about 2 300 gal of gasoline.

What if you want to launch a 1 000-kg spacecraft at the escape speed? How much energy would that 
require?

Answer  ​In Equation 13.22, the mass of the object moving with the escape speed does not appear. Therefore, the 
escape speed for the 1 000-kg spacecraft is the same as that for the 5 000-kg spacecraft. The only change in the kinetic 
energy is due to the mass, so the 1 000-kg spacecraft requires one-fifth of the energy of the 5 000-kg spacecraft:

K 5 1
5 13.13 3 1011 J 2 5 6.25 3 1010 J

What If ?

▸ 13.8 c o n t i n u e d

Table 13.3 Escape 
Speeds from the Surfaces 
of the Planets, Moon,  
and Sun
Planet	 vesc (km/s)

Mercury	 4.3
Venus	 10.3
Earth	 11.2
Mars	 5.0
Jupiter	 60
Saturn	 36
Uranus	 22
Neptune	 24
Moon	 2.3
Sun	 618
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406	C hapter 13  Universal Gravitation

remains is a neutron star, discussed in Example 11.7, in which the mass of a star is 
compressed to a radius of about 10 km. (On the Earth, a teaspoon of this material 
would weigh about 5 billion tons!)
	 An even more unusual star death may occur when the core has a mass greater 
than about three solar masses. The collapse may continue until the star becomes 
a very small object in space, commonly referred to as a black hole. In effect, black 
holes are remains of stars that have collapsed under their own gravitational force. If 
an object such as a spacecraft comes close to a black hole, the object experiences an 
extremely strong gravitational force and is trapped forever.
	 The escape speed for a black hole is very high because of the concentration of 
the star’s mass into a sphere of very small radius (see Eq. 13.23). If the escape speed 
exceeds the speed of light c, radiation from the object (such as visible light) cannot 
escape and the object appears to be black (hence the origin of the terminology 
“black hole”). The critical radius R S at which the escape speed is c is called the 
Schwarzschild radius (Fig. 13.15). The imaginary surface of a sphere of this radius 
surrounding the black hole is called the event horizon, which is the limit of how 
close you can approach the black hole and hope to escape.
	 There is evidence that supermassive black holes exist at the centers of galaxies, 
with masses very much larger than the Sun. (There is strong evidence of a super-
massive black hole of mass 2–3 million solar masses at the center of our galaxy.)

Dark Matter
Equation (1) in Example 13.5 shows that the speed of an object in orbit around the 
Earth decreases as the object is moved farther away from the Earth:

	 v 5 Å
GME

r
	 (13.24)

Using data in Table 13.2 to find the speeds of planets in their orbits around the 
Sun, we find the same behavior for the planets. Figure 13.16 shows this behavior for 
the eight planets of our solar system. The theoretical prediction of the planet speed 
as a function of distance from the Sun is shown by the red-brown curve, using Equa-
tion 13.24 with the mass of the Earth replaced by the mass of the Sun. Data for the 
individual planets lie right on this curve. This behavior results from the vast major-
ity of the mass of the solar system being concentrated in a small space, i.e., the Sun.
	 Extending this concept further, we might expect the same behavior in a galaxy. 
Much of the visible galactic mass, including that of a supermassive black hole, is 
near the central core of a galaxy. The opening photograph for this chapter shows 
the central core of the Whirlpool galaxy as a very bright area surrounded by the 
“arms” of the galaxy, which contain material in orbit around the central core. Based 
on this distribution of matter in the galaxy, the speed of an object in the outer part 
of the galaxy would be smaller than that for objects closer to the center, just like for 
the planets of the solar system.
	 That is not what is observed, however. Figure 13.17 shows the results of measure-
ments of the speeds of objects in the Andromeda galaxy as a function of distance 
from the galaxy’s center.4 The red-brown curve shows the expected speeds for these 
objects if they were traveling in circular orbits around the mass concentrated in the 
central core. The data for the individual objects in the galaxy shown by the black 
dots are all well above the theoretical curve. These data, as well as an extensive 
amount of data taken over the past half century, show that for objects outside the 
central core of the galaxy, the curve of speed versus distance from the center of the 
galaxy is approximately flat rather than decreasing at larger distances. Therefore, 
these objects (including our own Solar System in the Milky Way) are rotating faster 
than can be accounted for by gravity due to the visible galaxy! This surprising 

4V. C. Rubin and W. K. Ford, “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions,” 
Astrophysical Journal 159: 379–403 (1970).

Event
horizon

Black
hole

RS

Any event occurring within the  
event horizon is invisible to an 
outside observer.

Figure 13.15  ​A black hole. The 
distance RS equals the Schwarzs-
child radius.

Mercury
v (km/s)

r (1012 m)

Venus
Earth
Mars Jupiter

Saturn
Uranus

20

20

40

4

Neptune

Figure 13.16  ​The orbital speed 
v as a function of distance r from 
the Sun for the eight planets of 
the solar system. The theoretical 
curve is in red-brown, and the data 
points for the planets are in black.
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	   Summary	 407

result means that there must be additional mass in a more extended distribution, 
causing these objects to orbit so fast, and has led scientists to propose the existence 
of dark matter. This matter is proposed to exist in a large halo around each galaxy 
(with a radius up to 10 times as large as the visible galaxy’s radius). Because it is not 
luminous (i.e., does not emit electromagnetic radiation) it must be either very cold 
or electrically neutral. Therefore, we cannot “see” dark matter, except through its 
gravitational effects.
	 The proposed existence of dark matter is also implied by earlier observations 
made on larger gravitationally bound structures known as galaxy clusters.5 These 
observations show that the orbital speeds of galaxies in a cluster are, on average, 
too large to be explained by the luminous matter in the cluster alone. The speeds 
of the individual galaxies are so high, they suggest that there is 50 times as much 
dark matter in galaxy clusters as in the galaxies themselves!
	 Why doesn’t dark matter affect the orbital speeds of planets like it does those 
of a galaxy? It seems that a solar system is too small a structure to contain enough 
dark matter to affect the behavior of orbital speeds. A galaxy or galaxy cluster, on 
the other hand, contains huge amounts of dark matter, resulting in the surprising 
behavior.
	 What, though, is dark matter? At this time, no one knows. One theory claims 
that dark matter is based on a particle called a weakly interacting massive particle, 
or WIMP. If this theory is correct, calculations show that about 200 WIMPs pass 
through a human body at any given time. The new Large Hadron Collider in Europe 
(see Chapter 46) is the first particle accelerator with enough energy to possibly gen-
erate and detect the existence of WIMPs, which has generated much current interest 
in dark matter. Keeping an eye on this research in the future should be exciting.

5F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae,” Astrophysical Journal 86: 217–246 (1937).

v (km/s)

r (1019 m)
20 40 60 800

200

400

600 Central
core

Figure 13.17  ​The orbital speed 
v of a galaxy object as a function 
of distance r from the center of 
the central core of the Androm-
eda galaxy. The theoretical curve 
is in red-brown, and the data 
points for the galaxy objects are 
in black. No data are provided 
on the left because the behavior 
inside the central core of the gal-
axy is more complicated.

Summary

Definitions

  The gravitational field at a point in space is defined as the gravitational force F
S

g  experienced by any test particle 
located at that point divided by the mass m0 of the test particle:

	 gS ;
F
S

g

m0
	 (13.7)

Concepts and Principles

  Newton’s law of universal gravitation states that the 
gravitational force of attraction between any two par-
ticles of masses m1 and m2 separated by a distance r has 
the magnitude

	 Fg 5 G 
m1m2

r 2 	 (13.1)

where G 5 6.674 3 10211 N ? m2/kg2 is the universal 
gravitational constant. This equation enables us to 
calculate the force of attraction between masses under 
many circumstances.

  An object at a distance h above the Earth’s surface 
experiences a gravitational force of magnitude mg, 
where g is the free-fall acceleration at that elevation:

	 g 5
GME

r 2 5
GME

1RE 1 h 22	 (13.6)

In this expression, ME is the mass of the Earth and RE  
is its radius. Therefore, the weight of an object 
decreases as the object moves away from the Earth’s 
surface.
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408	C hapter 13  Universal Gravitation

  Kepler’s laws of planetary motion state:

	 1.	All planets move in elliptical orbits with the Sun 
at one focus.

	 2.	The radius vector drawn from the Sun to a planet 
sweeps out equal areas in equal time intervals.

	 3.	The square of the orbital period of any planet is 
proportional to the cube of the semimajor axis of 
the elliptical orbit.

Kepler’s third law can be expressed as

	 T 2 5 a 4p2

GMS
ba 3	 (13.11)

where MS is the mass of the Sun and a is the semimajor 
axis. For a circular orbit, a can be replaced in Equation 
13.11 by the radius r. Most planets have nearly circular 
orbits around the Sun.

  The gravitational potential energy associated with a 
system of two particles of mass m1 and m2 separated by 
a distance r is

	 U 5 2
Gm1m2

r
	 (13.15)

where U is taken to be zero as r S .̀

  If an isolated system consists of an object of mass m 
moving with a speed v in the vicinity of a massive object 
of mass M, the total energy E of the system is the sum 
of the kinetic and potential energies:

	 E 5 1
2mv2 2

GMm
r

	 (13.16)

The total energy of the system is a constant of the 
motion. If the object moves in an elliptical orbit of 
semimajor axis a around the massive object and  
M .. m, the total energy of the system is

	 E 5 2
GMm

2a
	 (13.20)

For a circular orbit, this same equation applies with  
a 5 r.

  The escape speed for an object projected from the 
surface of a planet of mass M and radius R is

	 vesc 5 Å
2GM

R
	 (13.23)

Analysis Model for Problem Solving

  Particle in a Field (Gravitational)  A source particle with some mass establishes a gravitational 
field gS throughout space. When a particle of mass m is placed in that field, it experiences a gravita-
tional force given by

	 F
S

g 5 mgS 	 (5.5)

mgS 

Fg � mg
S S

true? (a) No force acts on the satellite. (b) The satellite 
moves at constant speed and hence doesn’t accelerate. 
(c) The satellite has an acceleration directed away from 
the Earth. (d) The satellite has an acceleration directed 
toward the Earth. (e) Work is done on the satellite by 
the gravitational force.

	 4.	 Suppose the gravitational acceleration at the surface 
of a certain moon A of Jupiter is 2 m/s2. Moon B has 
twice the mass and twice the radius of moon A. What 
is the gravitational acceleration at its surface? Neglect 
the gravitational acceleration due to Jupiter. (a) 8 m/s2 
(b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2

	 1.	 A system consists of five particles. How many terms 
appear in the expression for the total gravitational 
potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 
(e) 25

	 2.	 Rank the following quantities of energy from largest to 
smallest. State if any are equal. (a) the absolute value 
of the average potential energy of the Sun–Earth sys-
tem (b) the average kinetic energy of the Earth in its 
orbital motion relative to the Sun (c) the absolute value 
of the total energy of the Sun–Earth system

	 3.	 A satellite moves in a circular orbit at a constant speed 
around the Earth. Which of the following statements is 

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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	 Conceptual Questions	 409

September (autumnal) equinox (which contains the 
summer solstice) longer than the interval from the 
September to the March equinox rather than being 
equal to that interval? Choose one of the following 
reasons. (a) They are really the same, but the Earth 
spins faster during the “summer” interval, so the 
days are shorter. (b) Over the “summer” interval, the 
Earth moves slower because it is farther from the Sun. 
(c) Over the March-to-September interval, the Earth 
moves slower because it is closer to the Sun. (d) The 
Earth has less kinetic energy when it is warmer. 
(e)  The Earth has less orbital angular momentum 
when it is warmer.

	 9.	 Rank the magnitudes of the following gravitational 
forces from largest to smallest. If two forces are equal, 
show their equality in your list. (a) the force exerted by 
a 2-kg object on a 3-kg object 1 m away (b) the force 
exerted by a 2-kg object on a 9-kg object 1 m away  
(c) the force exerted by a 2-kg object on a 9-kg object  
2 m away (d) the force exerted by a 9-kg object on a 
2-kg object 2 m away (e) the force exerted by a 4-kg 
object on another 4-kg object 2 m away

	10.	The gravitational force exerted on an astronaut on 
the Earth’s surface is 650 N directed downward. When 
she is in the space station in orbit around the Earth, 
is the gravitational force on her (a) larger, (b) exactly 
the same, (c) smaller, (d) nearly but not exactly zero, or  
(e) exactly zero?

	11.	 Halley’s comet has a period of approximately 76 years, 
and it moves in an elliptical orbit in which its distance 
from the Sun at closest approach is a small fraction of 
its maximum distance. Estimate the comet’s maximum 
distance from the Sun in astronomical units (AUs) 
(the distance from the Earth to the Sun). (a) 6 AU  
(b) 12 AU (c) 20 AU (d) 28 AU (e) 35 AU

	 5.	 Imagine that nitrogen and other atmospheric gases 
were more soluble in water so that the atmosphere of 
the Earth is entirely absorbed by the oceans. Atmo-
spheric pressure would then be zero, and outer space 
would start at the planet’s surface. Would the Earth 
then have a gravitational field? (a) Yes, and at the sur-
face it would be larger in magnitude than 9.8 N/kg. 
(b) Yes, and it would be essentially the same as the 
current value. (c) Yes, and it would be somewhat less 
than 9.8 N/kg. (d) Yes, and it would be much less than  
9.8 N/kg. (e) No, it would not.

	 6.	 An object of mass m is located on the surface of a 
spherical planet of mass M and radius R . The escape 
speed from the planet does not depend on which 
of the following? (a) M (b) m (c) the density of the 
planet (d) R (e) the acceleration due to gravity on 
that planet

	 7.	 A satellite originally moves in a circular orbit of radius 
R around the Earth. Suppose it is moved into a circu-
lar orbit of radius 4R . (i) What does the force exerted 
on the satellite then become? (a) eight times larger  
(b) four times larger (c) one-half as large (d) one-
eighth as large (e)  one-sixteenth as large (ii) What 
happens to the satellite’s speed? Choose from the 
same possibilities (a) through (e). (iii)  What hap-
pens to its period? Choose from the same possibilities  
(a) through (e).

	 8.	 The vernal equinox and the autumnal equinox are 
associated with two points 180° apart in the Earth’s 
orbit. That is, the Earth is on precisely opposite sides 
of the Sun when it passes through these two points. 
From the vernal equinox, 185.4 days elapse before 
the autumnal equinox. Only 179.8  days elapse from 
the autumnal equinox until the next vernal equinox. 
Why is the interval from the March (vernal) to the 

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Each Voyager spacecraft was accelerated toward escape 
speed from the Sun by the gravitational force exerted by 
Jupiter on the spacecraft. (a) Is the gravitational force 
a conservative or a nonconservative force? (b) Does the 
interaction of the spacecraft with Jupiter meet the defi-
nition of an elastic collision? (c) How could the space-
craft be moving faster after the collision?

	 2.	 In his 1798 experiment, Cavendish was said to have 
“weighed the Earth.” Explain this statement.

	 3.	 Why don’t we put a geosynchronous weather satellite in 
orbit around the 45th parallel? Wouldn’t such a satel-
lite be more useful in the United States than one in 
orbit around the equator?

	 4.	 (a) Explain why the force exerted on a particle by a 
uniform sphere must be directed toward the center 
of the sphere. (b) Would this statement be true if the 
mass distribution of the sphere were not spherically 
symmetric? Explain.

	 5.	 (a) At what position in its elliptical orbit is the speed of 
a planet a maximum? (b) At what position is the speed 
a minimum?

	 6.	 You are given the mass and radius of planet X. How 
would you calculate the free-fall acceleration on this 
planet’s surface?

	 7.	 (a) If a hole could be dug to the center of the Earth, 
would the force on an object of mass m still obey Equa-
tion 13.1 there? (b) What do you think the force on m 
would be at the center of the Earth?

	 8.	 Explain why it takes more fuel for a spacecraft to travel 
from the Earth to the Moon than for the return trip. 
Estimate the difference.

	 9.	 A satellite in low-Earth orbit is not truly traveling 
through a vacuum. Rather, it moves through very thin 
air. Does the resulting air friction cause the satellite to 
slow down?
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410	C hapter 13  Universal Gravitation

magnitude of the gravitational force exerted by one 
particle on the other?

	 8.	 Why is the following situation impossible? The centers of two 
homogeneous spheres are 1.00 m apart. The spheres 
are each made of the same element from the peri- 
odic table. The gravitational force between the spheres 
is 1.00 N.

	 9.	 Two objects attract each other with a gravitational 
force of magnitude 1.00 3 1028 N when separated by 
20.0 cm. If the total mass of the two objects is 5.00 kg, 
what is the mass of each?

	10.	Review. A student proposes to study the gravita-
tional force by suspending two 100.0-kg spherical 
objects at the lower ends of cables from the ceiling 
of a tall cathedral and measuring the deflection of 
the cables from the vertical. The 45.00-m-long cables 
are attached to the ceiling 1.000 m apart. The first 
object is suspended, and its position is carefully mea-
sured. The second object is suspended, and the two 
objects attract each other gravitationally. By what dis-
tance has the first object moved horizontally from its 
initial position due to the gravitational attraction to 
the other object? Suggestion: Keep in mind that this 
distance will be very small and make appropriate 
approximations.

Section 13.2 Free-Fall Acceleration and  
the Gravitational Force

	11.	 When a falling meteoroid is at a distance above the 
Earth’s surface of 3.00 times the Earth’s radius, what is 
its acceleration due to the Earth’s gravitation?

	12.	The free-fall acceleration on the surface of the Moon 
is about one-sixth that on the surface of the Earth. 
The radius of the Moon is about 0.250RE (RE 5 Earth’s 
radius 5 6.37 3 106 m). Find the ratio of their average 
densities, rMoon/rEarth.

	13.	Review. Miranda, a satellite of Uranus, is shown in Fig-
ure P13.13a. It can be modeled as a sphere of radius 
242 km and mass 6.68 3 1019 kg. (a) Find the free-fall 
acceleration on its surface. (b) A cliff on Miranda is 
5.00 km high. It appears on the limb at the 11 o’clock 
position in Figure P13.13a and is magnified in Figure 
P13.13b. If a devotee of extreme sports runs horizon-
tally off the top of the cliff at 8.50 m/s, for what time 
interval is he in flight? (c) How far from the base of the 
vertical cliff does he strike the icy surface of Miranda? 
(d) What will be his vector impact velocity?

W
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W

Section 13.1 Newton’s Law of Universal Gravitation

Problem 12 in Chapter 1 can also be assigned with this 
section.

	 1.	 In introductory physics laboratories, a typical Caven-
dish balance for measuring the gravitational constant 
G uses lead spheres with masses of 1.50 kg and 15.0 g 
whose centers are separated by about 4.50 cm. Calcu-
late the gravitational force between these spheres, treat-
ing each as a particle located at the sphere’s center.

	 2.	 Determine the order of magnitude of the gravitational 
force that you exert on another person 2 m away. In 
your solution, state the quantities you measure or esti-
mate and their values.

	 3.	 A 200-kg object and a 500-kg object are separated by 
4.00  m. (a) Find the net gravitational force exerted 
by these objects on a 50.0-kg object placed midway 
between them. (b) At what position (other than an infi-
nitely remote one) can the 50.0-kg object be placed so 
as to experience a net force of zero from the other two 
objects?

	 4.	 During a solar eclipse, the Moon, the Earth, and the 
Sun all lie on the same line, with the Moon between 
the Earth and the Sun. (a) What force is exerted by 
the Sun on the Moon? (b) What force is exerted by the 
Earth on the Moon? (c) What force is exerted by the 
Sun on the Earth? (d) Compare the answers to parts 
(a) and (b). Why doesn’t the Sun capture the Moon 
away from the Earth?

	 5.	 Two ocean liners, each with a mass of 40 000 metric 
tons, are moving on parallel courses 100 m apart. What 
is the magnitude of the acceleration of one of the lin-
ers toward the other due to their mutual gravitational 
attraction? Model the ships as particles.

	 6.	 Three uniform spheres of 
masses m1 5 2.00 kg, m2 5 
4.00  kg, and m3 5 6.00 kg 
are placed at the corners of 
a right triangle as shown in 
Figure P13.6. Calculate the 
resultant gravitational force 
on the object of mass m2, 
assuming the spheres are 
isolated from the rest of the 
Universe.

	 7.	 Two identical isolated particles, each of mass 2.00 kg, 
are separated by a distance of 30.0 cm. What is the 
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Figure P13.6
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Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 Problems	 411

tional fields acting on the occupants in the nose of the 
ship and on those in the rear of the ship, farthest from 
the black hole? (This difference in accelerations grows 
rapidly as the ship approaches the black hole. It puts 
the body of the ship under extreme tension and even-
tually tears it apart.)

10.0 km100 m

Black hole

Figure P13.16

Section 13.4 Kepler’s Laws and the Motion of Planets

	17.	 An artificial satellite circles the Earth in a circular orbit 
at a location where the acceleration due to gravity is  
9.00 m/s2. Determine the orbital period of the satellite.

	18.	Io, a satellite of Jupiter, has an orbital period of 1.77 days  
and an orbital radius of 4.22 3 105 km. From these 
data, determine the mass of Jupiter.

	19.	 A minimum-energy transfer orbit to an outer planet 
consists of putting a spacecraft on an elliptical trajec-
tory with the departure planet corresponding to the 
perihelion of the ellipse, or the closest point to the Sun, 
and the arrival planet at the aphelion, or the farthest 
point from the Sun. (a) Use Kepler’s third law to calcu-
late how long it would take to go from Earth to Mars on 
such an orbit as shown in Figure P13.19. (b) Can such 
an orbit be undertaken at any time? Explain.

Sun

Earth orbit

Mars orbit
Transfer orbit

Arrival at
Mars

Launch from
the Earth

Figure P13.19

	20.	A particle of mass m moves along a straight line with 
constant velocity vS0 in the x direction, a distance b from 
the x axis (Fig. P13.20). (a) Does the particle possess any 
angular momentum about the origin? (b) Explain why 
the amount of its angular momentum should change or 
should stay constant. (c) Show that Kepler’s second law 
is satisfied by showing that the two shaded triangles in 
the figure have the same area when tD 2 tC 5 tB 2 tA.

Q/C

Q/C
S

Section 13.3 ​ Analysis Model: Particle in a Field (Gravitational)

	14.	(a) Compute the vector gravitational field at a point P 
on the perpendicular bisector of the line joining two 
objects of equal mass separated by a distance 2a as 
shown in Figure P13.14. (b) Explain physically why the 
field should approach zero as r S 0. (c) Prove math-
ematically that the answer to part (a) behaves in this 
way. (d) Explain physically why the magnitude of the 
field should approach 2GM/r 2 as r S .̀ (e) Prove math-
ematically that the answer to part (a) behaves correctly 
in this limit.

a

M

M

Pr

a

Figure P13.14

	15.	Three objects of equal mass are located at three cor-
ners of a square of edge length , as shown in Figure 
P13.15. Find the magnitude and direction of the gravi-
tational field at the fourth corner due to these objects.

�

O x

y

m

m�m

Figure P13.15

	16.	A spacecraft in the shape of a long cylinder has a length 
of 100 m, and its mass with occupants is 1 000 kg.  
It has strayed too close to a black hole having a mass 
100 times that of the Sun (Fig. P13.16). The nose of 
the spacecraft points toward the black hole, and the 
distance between the nose and the center of the black 
hole is 10.0 km. (a) Determine the total force on the 
spacecraft. (b) What is the difference in the gravita-
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412	C hapter 13  Universal Gravitation

	21.	 Plaskett’s binary system consists of two stars that revolve 
in a circular orbit about a center of mass midway between 
them. This statement implies that the masses of the two 
stars are equal (Fig. P13.21). Assume the orbital speed 
of each star is 0 vS 0  5 220 km/s and the orbital period 
of each is 14.4 days. Find the mass M of each star. (For 
comparison, the mass of our Sun is 1.99 3 1030 kg.)

M

M

CM

vS

vS

Figure P13.21

	22.	Two planets X and Y travel counterclockwise in circu-
lar orbits about a star as shown in Figure P13.22. The 
radii of their orbits are in the ratio 3:1. At one moment, 
they are aligned as shown in Figure P13.22a, making a 
straight line with the star. During the next five years, 
the angular displacement of planet X is 90.0° as shown 
in Figure P13.22b. What is the angular displacement of 
planet Y at this moment?

X

Y

X

a b

Y

Figure P13.22

	23.	Comet Halley (Fig. P13.23) approaches the Sun to 
within 0.570 AU, and its orbital period is 75.6 yr. (AU is 
the symbol for astronomical unit, where 1 AU 5 1.50 3 
1011 m is the mean Earth–Sun distance.) How far from 
the Sun will Halley’s comet travel before it starts its 
return journey?

Sun

0.570 AU

2a

x

Figure P13.23  (Orbit is not drawn 
to scale.)

	24.	The Explorer VIII satellite, placed into orbit November 3,  
1960, to investigate the ionosphere, had the following 

M

W

orbit parameters: perigee, 459 km; apogee, 2 289 km 
(both distances above the Earth’s surface); period, 
112.7 min. Find the ratio vp/va of the speed at perigee to 
that at apogee.

	25.	Use Kepler’s third law to determine how many days it 
takes a spacecraft to travel in an elliptical orbit from a 
point 6 670 km from the Earth’s center to the Moon, 
385 000 km from the Earth’s center.

	26.	Neutron stars are extremely dense objects formed from 
the remnants of supernova explosions. Many rotate 
very rapidly. Suppose the mass of a certain spherical 
neutron star is twice the mass of the Sun and its radius 
is 10.0 km. Determine the greatest possible angular 
speed it can have so that the matter at the surface of 
the star on its equator is just held in orbit by the gravi-
tational force.

	27.	A synchronous satellite, which always remains above 
the same point on a planet’s equator, is put in orbit 
around Jupiter to study that planet’s famous red spot. 
Jupiter rotates once every 9.84 h. Use the data of Table 
13.2 to find the altitude of the satellite above the sur-
face of the planet.

	28.	(a) Given that the period of the Moon’s orbit about the 
Earth is 27.32 days and the nearly constant distance 
between the center of the Earth and the center of the 
Moon is 3.84 3 108 m, use Equation 13.11 to calculate 
the mass of the Earth. (b) Why is the value you calcu-
late a bit too large?

	29.	Suppose the Sun’s gravity were switched off. The plan-
ets would leave their orbits and fly away in straight lines 
as described by Newton’s first law. (a) Would Mercury 
ever be farther from the Sun than Pluto? (b) If so, find 
how long it would take Mercury to achieve this passage. 
If not, give a convincing argument that Pluto is always 
farther from the Sun than is Mercury.

Section 13.5 ​ Gravitational Potential Energy

Note: In Problems 30 through 50, assume U 5 0 at r 5 .̀

	30.	A satellite in Earth orbit has a mass of 100 kg and is 
at an altitude of 2.00 3 106 m. (a) What is the poten-
tial energy of the satellite–Earth system? (b) What is 
the magnitude of the gravitational force exerted by the 
Earth on the satellite? (c) What If? What force, if any, 
does the satellite exert on the Earth?

	31.	 How much work is done by the Moon’s gravitational 
field on a 1 000-kg meteor as it comes in from outer 
space and impacts on the Moon’s surface?

	32.	How much energy is required to move a 1 000-kg 
object from the Earth’s surface to an altitude twice the 
Earth’s radius?

	33.	After the Sun exhausts its nuclear fuel, its ultimate fate 
will be to collapse to a white dwarf state. In this state, 
it would have approximately the same mass as it has 
now, but its radius would be equal to the radius of the 
Earth. Calculate (a) the average density of the white 
dwarf, (b) the surface free-fall acceleration, and (c) the 
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sphere will produce only a beautiful meteor shower. The 
astronaut finds that the density of the spherical asteroid 
is equal to the average density of the Earth. To ensure its 
pulverization, she incorporates into the explosives the 
rocket fuel and oxidizer intended for her return journey. 
What maximum radius can the asteroid have for her to 
be able to leave it entirely simply by jumping straight up? 
On Earth she can jump to a height of 0.500 m.

	42.	Derive an expression for the work required to move an 
Earth satellite of mass m from a circular orbit of radius 
2RE to one of radius 3RE.

	43.	(a) Determine the amount of work that must be done 
on a 100-kg payload to elevate it to a height of 1 000 km 
above the Earth’s surface. (b) Determine the amount 
of additional work that is required to put the payload 
into circular orbit at this elevation.

	44.	(a) What is the minimum speed, relative to the Sun, 
necessary for a spacecraft to escape the solar system if 
it starts at the Earth’s orbit? (b) Voyager 1 achieved a 
maximum speed of 125 000 km/h on its way to pho-
tograph Jupiter. Beyond what distance from the Sun is 
this speed sufficient to escape the solar system?

	45.	A satellite of mass 200 kg is placed into Earth orbit 
at a height of 200 km above the surface. (a) Assum-
ing a circular orbit, how long does the satellite take to 
complete one orbit? (b) What is the satellite’s speed?  
(c) Starting from the satellite on the Earth’s surface, 
what is the minimum energy input necessary to place 
this satellite in orbit? Ignore air resistance but include 
the effect of the planet’s daily rotation.

	46.	A satellite of mass m, originally on the surface of 
the Earth, is placed into Earth orbit at an altitude h.  
(a) Assuming a circular orbit, how long does the sat-
ellite take to complete one orbit? (b) What is the sat-
ellite’s speed? (c) What is the minimum energy input 
necessary to place this satellite in orbit? Ignore air 
resistance but include the effect of the planet’s daily 
rotation. Represent the mass and radius of the Earth as 
ME and RE, respectively.

	47.	 Ganymede is the largest of Jupiter’s moons. Consider 
a rocket on the surface of Ganymede, at the point far-
thest from the planet (Fig. P13.47). Model the rocket as 
a particle. (a) Does the presence of Ganymede make 
Jupiter exert a larger, smaller, or same size force on the 
rocket compared with the force it would exert if Gany-
mede were not interposed? (b) Determine the escape 
speed for the rocket from the planet–satellite system. 
The radius of Ganymede is 2.64 3 106 m, and its mass 
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gravitational potential energy associated with a 1.00-kg  
object at the surface of the white dwarf.

	34.	An object is released from rest at an altitude h above the 
surface of the Earth. (a) Show that its speed at a distance 
r from the Earth’s center, where RE # r # RE 1 h, is

v 5 Å2GME a1
r

2
1

R E 1 h
b

		  (b) Assume the release altitude is 500 km. Perform the 
integral

Dt 5 3
f

i
dt 5 2 3

f

i

dr
v

		  to find the time of fall as the object moves from the 
release point to the Earth’s surface. The negative sign 
appears because the object is moving opposite to the 
radial direction, so its speed is v 5 2dr/dt. Perform the 
integral numerically.

	35.	A system consists of three particles, each of mass 5.00 g, 
located at the corners of an equilateral triangle with 
sides of 30.0 cm. (a) Calculate the potential energy 
of the system. (b) Assume the particles are released 
simultaneously. Describe the subsequent motion of 
each. Will any collisions take place? Explain.

Section 13.6 ​ Energy Considerations in Planetary  
and Satellite Motion
	36.	A space probe is fired as a projectile from the Earth’s 

surface with an initial speed of 2.00 3 104 m/s. What will 
its speed be when it is very far from the Earth? Ignore 
atmospheric friction and the rotation of the Earth.

	37.	 A 500-kg satellite is in a circular orbit at an altitude of 
500 km above the Earth’s surface. Because of air fric-
tion, the satellite eventually falls to the Earth’s surface, 
where it hits the ground with a speed of 2.00 km/s. How 
much energy was transformed into internal energy by 
means of air friction?

	38.	A “treetop satellite” moves in a circular orbit just above 
the surface of a planet, assumed to offer no air resis-
tance. Show that its orbital speed v and the escape speed 
from the planet are related by the expression vesc 5 !2v.

	39.	A 1 000-kg satellite orbits the Earth at a constant alti-
tude of 100 km. (a) How much energy must be added 
to the system to move the satellite into a circular orbit 
with altitude 200 km? What are the changes in the sys-
tem’s (b) kinetic energy and (c) potential energy?

	40.	A comet of mass 1.20 3 1010 kg moves in an elliptical 
orbit around the Sun. Its distance from the Sun ranges 
between 0.500 AU and 50.0 AU. (a) What is the eccen-
tricity of its orbit? (b) What is its period? (c) At aphelion, 
what is the potential energy of the comet–Sun system?  
Note: 1 AU 5 one astronomical unit 5 the average dis-
tance from the Sun to the Earth 5 1.496 3 1011 m.

	41.	 An asteroid is on a collision course with Earth. An astro-
naut lands on the rock to bury explosive charges that 
will blow the asteroid apart. Most of the small fragments 
will miss the Earth, and those that fall into the atmo-
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414	C hapter 13  Universal Gravitation

around the hub axis, which is connected to the rest of 
the spacecraft to generate artificial gravity in the cab-
ins. A space traveler lies in a bed parallel to the outer 
wall as shown in Figure P13.56. (a) With r 5 10.0 m, 
what would the angular speed of the 60.0-kg traveler 
need to be if he is to experience half his normal Earth 
weight? (b) If the astronaut stands up perpendicular 
to the bed, without holding on to anything with his 
hands, will his head be moving at a faster, a slower, or 
the same tangential speed as his feet? Why? (c) Why is 
the action in part (b) dangerous?

r

ω

Figure P13.56

	57.	 (a) A space vehicle is launched vertically upward from 
the Earth’s surface with an initial speed of 8.76 km/s, 
which is less than the escape speed of 11.2 km/s. What 
maximum height does it attain? (b) A meteoroid falls 
toward the Earth. It is essentially at rest with respect to 
the Earth when it is at a height of 2.51 3 107 m above 
the Earth’s surface. With what speed does the meteor-
ite (a meteoroid that survives to impact the Earth’s sur-
face) strike the Earth?

	58.	(a) A space vehicle is launched vertically upward from 
the Earth’s surface with an initial speed of vi that is 
comparable to but less than the escape speed vesc. What 
maximum height does it attain? (b) A meteoroid falls 
toward the Earth. It is essentially at rest with respect 
to the Earth when it is at a height h above the Earth’s 
surface. With what speed does the meteorite (a meteor-
oid that survives to impact the Earth’s surface) strike 
the Earth? (c) What If? Assume a baseball is tossed up 
with an initial speed that is very small compared to the 
escape speed. Show that the result from part (a) is con-
sistent with Equation 4.12.

	59.	Assume you are agile enough to run across a horizon-
tal surface at 8.50 m/s, independently of the value of 
the gravitational field. What would be (a) the radius 
and (b)  the mass of an airless spherical asteroid of 
uniform density 1.10 3 103 kg/m3 on which you could 
launch yourself into orbit by running? (c) What would 
be your period? (d) Would your running significantly 
affect the rotation of the asteroid? Explain.

	60.	Two spheres having masses M and 2M and radii R and 
3R, respectively, are simultaneously released from 
rest when the distance between their centers is 12R. 
Assume the two spheres interact only with each other 
and we wish to find the speeds with which they collide. 
(a) What two isolated system models are appropriate for 
this system? (b) Write an equation from one of the mod-
els and solve it for vS1, the velocity of the sphere of mass 
M at any time after release in terms of vS2, the veloc-

S
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is 1.495 3 1023 kg. The distance between Jupiter and 
Ganymede is 1.071 3 109 m, and the mass of Jupiter is 
1.90 3 1027 kg. Ignore the motion of Jupiter and Gany-
mede as they revolve about their center of mass.

	48.	A satellite moves around the Earth in a circular orbit 
of radius r. (a) What is the speed vi of the satellite?  
(b) Suddenly, an explosion breaks the satellite into 
two pieces, with masses m and 4m. Immediately after 
the explosion, the smaller piece of mass m is stationary 
with respect to the Earth and falls directly toward the 
Earth. What is the speed v of the larger piece immedi-
ately after the explosion? (c) Because of the increase in 
its speed, this larger piece now moves in a new ellipti-
cal orbit. Find its distance away from the center of the 
Earth when it reaches the other end of the ellipse.

	49.	At the Earth’s surface, a projectile is launched straight 
up at a speed of 10.0 km/s. To what height will it rise? 
Ignore air resistance.

Additional Problems

	50.	A rocket is fired straight up through the atmosphere 
from the South Pole, burning out at an altitude of  
250 km when traveling at 6.00 km/s. (a) What maxi-
mum distance from the Earth’s surface does it travel 
before falling back to the Earth? (b) Would its maxi-
mum distance from the surface be larger if the same 
rocket were fired with the same fuel load from a launch 
site on the equator? Why or why not?

	51.	 Review. A cylindrical habitat in space 6.00 km in diam-
eter and 30.0 km long has been proposed (by G. K. 
O’Neill, 1974). Such a habitat would have cities, land, 
and lakes on the inside surface and air and clouds in 
the center. They would all be held in place by rotation 
of the cylinder about its long axis. How fast would the 
cylinder have to rotate to imitate the Earth’s gravita-
tional field at the walls of the cylinder?

	52.	Voyager 1 and Voyager 2 surveyed the surface of Jupiter’s 
moon Io and photographed active volcanoes spewing 
liquid sulfur to heights of 70 km above the surface of 
this moon. Find the speed with which the liquid sul-
fur left the volcano. Io’s mass is 8.9 3 1022 kg, and its 
radius is 1 820 km.

	53.	A satellite is in a circular orbit around the Earth at an 
altitude of 2.80 3 106 m. Find (a) the period of the 
orbit, (b) the speed of the satellite, and (c) the accel-
eration of the satellite.

	54.	Why is the following situation impossible? A spacecraft is 
launched into a circular orbit around the Earth and 
circles the Earth once an hour.

	55.	Let DgM represent the difference in the gravitational 
fields produced by the Moon at the points on the 
Earth’s surface nearest to and farthest from the Moon. 
Find the fraction DgM/g, where g is the Earth’s gravi-
tational field. (This difference is responsible for the 
occurrence of the lunar tides on the Earth.)

	56.	A sleeping area for a long space voyage consists of two 
cabins each connected by a cable to a central hub as 
shown in Figure P13.56. The cabins are set spinning 
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potential energy of the object–ring system when the 
object is at A. (b) Calculate the gravitational potential 
energy of the system when the object is at B. (c) Calcu-
late the speed of the object as it passes through B.

	64.	A spacecraft of mass 1.00 3 104 kg is in a circular orbit 
at an altitude of 500 km above the Earth’s surface. Mis-
sion Control wants to fire the engines in a direction 
tangent to the orbit so as to put the spacecraft in an 
elliptical orbit around the Earth with an apogee of 
2.00 3 104 km, measured from the Earth’s center. How 
much energy must be used from the fuel to achieve 
this orbit? (Assume that all the fuel energy goes into 
increasing the orbital energy. This model will give a 
lower limit to the required energy because some of the 
energy from the fuel will appear as internal energy in 
the hot exhaust gases and engine parts.)

	65.	Review. As an astronaut, you observe a small planet 
to be spherical. After landing on the planet, you set 
off, walking always straight ahead, and find yourself 
returning to your spacecraft from the opposite side 
after completing a lap of 25.0 km. You hold a hammer 
and a falcon feather at a height of 1.40 m, release them, 
and observe that they fall together to the surface in 
29.2 s. Determine the mass of the planet.

	66.	A certain quaternary star system consists of three stars, 
each of mass m, moving in the same circular orbit 
of radius r about a central star of mass M. The stars 
orbit in the same sense and are positioned one-third 
of a revolution apart from one another. Show that the 
period of each of the three stars is given by

T 5 2p Å
r 3

G 1M 1 m/"3 2
	67.	 Studies of the relationship of the Sun to our galaxy—

the Milky Way—have revealed that the Sun is located 
near the outer edge of the galactic disc, about 30 000 ly  
(1 ly 5 9.46 3 1015 m) from the center. The Sun has 
an orbital speed of approximately 250 km/s around 
the galactic center. (a) What is the period of the Sun’s 
galactic motion? (b) What is the order of magnitude of 
the mass of the Milky Way galaxy? (c) Suppose the gal-
axy is made mostly of stars of which the Sun is typical. 
What is the order of magnitude of the number of stars 
in the Milky Way?

	68.	Review. Two identical hard spheres, each of mass m 
and radius r, are released from rest in otherwise empty 
space with their centers separated by the distance R. 
They are allowed to collide under the influence of 
their gravitational attraction. (a) Show that the mag-
nitude of the impulse received by each sphere before 
they make contact is given by [Gm3(1/2r 2 1/R)]1/2. 
(b) What If? Find the magnitude of the impulse each 
receives during their contact if they collide elastically.

	69.	The maximum distance from the Earth to the Sun (at 
aphelion) is 1.521 3 1011 m, and the distance of closest 
approach (at perihelion) is 1.471 3 1011 m. The Earth’s 
orbital speed at perihelion is 3.027 3 104 m/s. Deter-
mine (a) the Earth’s orbital speed at aphelion and the 
kinetic and potential energies of the Earth–Sun system 

AMT

S

S

ity of 2M. (c) Write an equation from the other model 
and solve it for speed v1 in terms of speed v2 when the 
spheres collide. (d) Combine the two equations to find 
the two speeds v1 and v2 when the spheres collide.

	61.	 Two hypothetical planets of masses m1 and m2 and 
radii r1 and r2, respectively, are nearly at rest when they 
are an infinite distance apart. Because of their gravi-
tational attraction, they head toward each other on a 
collision course. (a) When their center-to-center separa-
tion is d, find expressions for the speed of each planet 
and for their relative speed. (b) Find the kinetic ener-
gy of each planet just before they collide, taking m1 5  
2.00 3 1024 kg, m2 5 8.00 3 1024 kg, r1 5 3.00 3 106 m,  
and r2 5 5.00 3 106 m. Note: Both the energy and mo-
mentum of the isolated two-planet system are constant.

	62.	(a) Show that the rate of change of the free-fall accel-
eration with vertical position near the Earth’s surface is

dg

dr
5 2

2GME

R E
3

		  This rate of change with position is called a gradient. 
(b) Assuming h is small in comparison to the radius of 
the Earth, show that the difference in free-fall accel-
eration between two points separated by vertical dis-
tance h is

0Dg 0 5
2GMEh

R E
3

		  (c) Evaluate this difference for h 5 6.00 m, a typical 
height for a two-story building.

	63.	A ring of matter is a familiar structure in planetary and 
stellar astronomy. Examples include Saturn’s rings and 
a ring nebula. Consider a uniform ring of mass 2.36 3  
1020  kg and radius 1.00 3 108 m. An object of mass  
1 000 kg is placed at a point A on the axis of the ring, 
2.00 3 108 m from the center of the ring (Fig. P13.63). 
When the object is released, the attraction of the ring 
makes the object move along the axis toward the cen-
ter of the ring (point B). (a) Calculate the gravitational 

M
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416	C hapter 13  Universal Gravitation

particles, isolated from the rest of the Universe. (a) Find 
the magnitude of the acceleration arel with which each 
starts to move relative to the other as a function of m. 
Evaluate the acceleration (b) for m 5 5.00 kg, (c) for m 5  
2 000 kg, and (d) for m 5 2.00 3 1024 kg. (e) Describe 
the pattern of variation of arel with m.

	77.	 As thermonuclear fusion proceeds in its core, the Sun 
loses mass at a rate of 3.64 3 109 kg/s. During the  
5 000-yr period of recorded history, by how much has 
the length of the year changed due to the loss of mass 
from the Sun? Suggestions: Assume the Earth’s orbit is 
circular. No external torque acts on the Earth–Sun 
system, so the angular momentum of the Earth is 
constant.

Challenge Problems

	78.	The Solar and Heliospheric Observatory (SOHO) 
spacecraft has a special orbit, located between the 
Earth and the Sun along the line joining them, and 
it is always close enough to the Earth to transmit data 
easily. Both objects exert gravitational forces on the 
observatory. It moves around the Sun in a near-circular  
orbit that is smaller than the Earth’s circular orbit. Its 
period, however, is not less than 1 yr but just equal to  
1 yr. Show that its distance from the Earth must be  
1.48 3 109 m. In 1772, Joseph Louis Lagrange deter-
mined theoretically the special location allowing this 
orbit. Suggestions: Use data that are precise to four dig-
its. The mass of the Earth is 5.974 3 1024 kg. You will 
not be able to easily solve the equation you generate; 
instead, use a computer to verify that 1.48 3 109 m is 
the correct value.

	79.	The oldest artificial satellite still in orbit is Vanguard I, 
launched March 3, 1958. Its mass is 1.60 kg. Neglecting 
atmospheric drag, the satellite would still be in its ini-
tial orbit, with a minimum distance from the center of 
the Earth of 7.02 Mm and a speed at this perigee point 
of 8.23 km/s. For this orbit, find (a) the total energy of  
the satellite–Earth system and (b) the magnitude of 
the angular momentum of the satellite. (c) At apo-
gee, find the satellite’s speed and its distance from the 
center of the Earth. (d) Find the semimajor axis of its 
orbit. (e) Determine its period.

	80.	A spacecraft is approaching Mars after a long trip 
from the Earth. Its velocity is such that it is traveling 
along a parabolic trajectory under the influence of the 
gravitational force from Mars. The distance of closest 
approach will be 300 km above the Martian surface. At 
this point of closest approach, the engines will be fired 
to slow down the spacecraft and place it in a circular 
orbit 300 km above the surface. (a) By what percentage 
must the speed of the spacecraft be reduced to achieve 
the desired orbit? (b) How would the answer to part 
(a) change if the distance of closest approach and the 
desired circular orbit altitude were 600 km instead of 
300 km? (Note: The energy of the spacecraft–Mars sys-
tem for a parabolic orbit is E 5 0.)

(b) at perihelion and (c) at aphelion. (d) Is the total 
energy of the system constant? Explain. Ignore the 
effect of the Moon and other planets.

	70.	Many people assume air resistance acting on a mov-
ing object will always make the object slow down. It 
can, however, actually be responsible for making the 
object speed up. Consider a 100-kg Earth satellite in 
a circular orbit at an altitude of 200 km. A small force 
of air resistance makes the satellite drop into a circu-
lar orbit with an altitude of 100 km. (a) Calculate the 
satellite’s initial speed. (b) Calculate its final speed 
in this process. (c) Calculate the initial energy of the  
satellite–Earth system. (d) Calculate the final energy 
of the system. (e) Show that the system has lost 
mechanical energy and find the amount of the loss 
due to friction. (f) What force makes the satellite’s 
speed increase? Hint: You will find a free-body dia-
gram useful in explaining your answer.

	71.	X-ray pulses from Cygnus X-1, the first black hole to 
be identified and a celestial x-ray source, have been 
recorded during high-altitude rocket flights. The sig-
nals can be interpreted as originating when a blob 
of ionized matter orbits a black hole with a period of  
5.0 ms. If the blob is in a circular orbit about a black 
hole whose mass is 20MSun, what is the orbit radius?

	72.	Show that the minimum period for a satellite in orbit 
around a spherical planet of uniform density r is

Tmin 5 Å
3p

Gr

		  independent of the planet’s radius.

	73.	Astronomers detect a distant meteoroid moving along 
a straight line that, if extended, would pass at a dis-
tance 3RE from the center of the Earth, where RE is the 
Earth’s radius. What minimum speed must the meteor-
oid have if it is not to collide with the Earth?

	74.	Two stars of masses M and 
m, separated by a distance 
d, revolve in circular orbits 
about their center of mass 
(Fig. P13.74). Show that each 
star has a period given by

T 2 5
4p2d 3

G 1M 1 m 2
	75.	Two identical particles, each 

of mass 1 000 kg, are coast-
ing in free space along the same path, one in front of 
the other by 20.0 m. At the instant their separation 
distance has this value, each particle has precisely the 
same velocity of 800  î m/s. What are their precise veloc-
ities when they are 2.00 m apart?

	76.	Consider an object of mass m, not necessarily small  
compared with the mass of the Earth, released at a dis-
tance of 1.20 3 107 m from the center of the Earth. 
Assume the Earth and the object behave as a pair of 
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Fish congregate around a reef in 
Hawaii searching for food. How do 
fish such as the lined butterflyfish 
(Chaetodon lineolatus) at the upper 
left control their movements up and 
down in the water? We’ll find out in 
this chapter.  (Vlad61/Shutterstock.com) 
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Matter is normally classified as being in one of three states: solid, liquid, or gas. From 
everyday experience we know that a solid has a definite volume and shape, a liquid has a 
definite volume but no definite shape, and an unconfined gas has neither a definite volume 
nor a definite shape. These descriptions help us picture the states of matter, but they are 
somewhat artificial. For example, asphalt and plastics are normally considered solids, but 
over long time intervals they tend to flow like liquids. Likewise, most substances can be a 
solid, a liquid, or a gas (or a combination of any of these three), depending on the tempera-
ture and pressure. In general, the time interval required for a particular substance to change 
its shape in response to an external force determines whether we treat the substance as a 
solid, a liquid, or a gas.
	 A fluid is a collection of molecules that are randomly arranged and held together by 
weak cohesive forces and by forces exerted by the walls of a container. Both liquids and 
gases are fluids.
	 In our treatment of the mechanics of fluids, we’ll be applying principles and analysis 
models that we have already discussed. First, we consider the mechanics of a fluid at rest, 
that is, fluid statics, and then study fluids in motion, that is, fluid dynamics.

14.1	 Pressure
Fluids do not sustain shearing stresses or tensile stresses such as those discussed in 
Chapter 12; therefore, the only stress that can be exerted on an object submerged in 
a static fluid is one that tends to compress the object from all sides. In other words, 
the force exerted by a static fluid on an object is always perpendicular to the surfaces 
of the object as shown in Figure 14.1. We discussed this situation in Section 12.4.

At any point on the surface of 
the object, the force exerted by 
the fluid is perpendicular to the 
surface of the object.

Figure 14.1  ​The forces exerted 
by a fluid on the surfaces of a sub-
merged object.
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418	C hapter 14  Fluid Mechanics

Find the volume of the water filling the mattress: V 5 (2.00 m)(2.00 m)(0.300 m) 5 1.20 m3

Use Equation 1.1 and the density of fresh water (see 
Table 14.1) to find the mass of the water bed:

M 5 rV 5 (1 000 kg/m3)(1.20 m3) 5 1.20 3 103 kg

Find the weight of the bed: Mg 5 (1.20 3 103 kg)(9.80 m/s2) 5  1.18 3 104 N

	 The pressure in a fluid can be measured with the device pictured in Figure 14.2. 
The device consists of an evacuated cylinder that encloses a light piston connected 
to a spring. As the device is submerged in a fluid, the fluid presses on the top of 
the piston and compresses the spring until the inward force exerted by the fluid 
is balanced by the outward force exerted by the spring. The fluid pressure can be 
measured directly if the spring is calibrated in advance. If F is the magnitude of the 
force exerted on the piston and A is the surface area of the piston, the pressure P of 
the fluid at the level to which the device has been submerged is defined as the ratio 
of the force to the area:

	 P ;
F
A

 	 (14.1)

Pressure is a scalar quantity because it is proportional to the magnitude of the force 
on the piston.
	 If the pressure varies over an area, the infinitesimal force dF on an infinitesimal 
surface element of area dA is

	 dF 5 P dA	 (14.2)

where P is the pressure at the location of the area dA. To calculate the total force 
exerted on a surface of a container, we must integrate Equation 14.2 over the surface.
	 The units of pressure are newtons per square meter (N/m2) in the SI system. 
Another name for the SI unit of pressure is the pascal (Pa):

	 1 Pa ; 1 N/m2	 (14.3)

	 For a tactile demonstration of the definition of pressure, hold a tack between 
your thumb and forefinger, with the point of the tack on your thumb and the 
head of the tack on your forefinger. Now gently press your thumb and forefinger 
together. Your thumb will begin to feel pain immediately while your forefinger will 
not. The tack is exerting the same force on both your thumb and forefinger, but 
the pressure on your thumb is much larger because of the small area over which 
the force is applied.

Q	 uick Quiz 14.1 ​ Suppose you are standing directly behind someone who steps 
back and accidentally stomps on your foot with the heel of one shoe. Would you 
be better off if that person were (a) a large, male professional basketball player 
wearing sneakers or (b) a petite woman wearing spike-heeled shoes?

Vacuum

A

F
S

Figure 14.2  ​A simple device for 
measuring the pressure exerted 
by a fluid.

Pitfall Prevention 14.1
Force and Pressure  Equations 
14.1 and 14.2 make a clear distinc-
tion between force and pressure. 
Another important distinction 
is that force is a vector and pressure 
is a scalar. There is no direction 
associated with pressure, but the 
direction of the force associated 
with the pressure is perpendicular 
to the surface on which the pres-
sure acts.

Example 14.1	     The Water Bed

The mattress of a water bed is 2.00 m long by 2.00 m wide and 30.0 cm deep.

(A)  ​Find the weight of the water in the mattress.

Conceptualize  ​Think about carrying a jug of water and how heavy it is. Now imagine a sample of water the size of a 
water bed. We expect the weight to be relatively large.

Categorize  ​This example is a substitution problem.

S o l u t i o n

which is approximately 2 650 lb. (A regular bed, including mattress, box spring, and metal frame, weighs approximately 
300 lb.) Because this load is so great, it is best to place a water bed in the basement or on a sturdy, well- supported floor.
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	 14.2  Variation of Pressure with Depth	 419

(B)  ​Find the pressure exerted by the water bed on the floor when the bed rests in its normal position. Assume the 
entire lower surface of the bed makes contact with the floor.

S o l u t i o n

When the water bed is in its normal position, the area in 
contact with the floor is 4.00 m2. Use Equation 14.1 to 
find the pressure:

P 5
1.18 3 104 N

4.00 m2 5 2.94 3 103 Pa

​What if the water bed is replaced by a 300-lb regular bed that is supported by four legs? Each leg has a 
circular cross section of radius 2.00 cm. What pressure does this bed exert on the floor?

Answer  ​The weight of the regular bed is distributed over four circular cross sections at the bottom of the legs. There-
fore, the pressure is

 P 5
F
A

5
mg

4 1pr 2 2  5
300 lb

4p 10.020 0 m 22 a 1 N
0.225 lb

b

 5 2.65 3 105 Pa

This result is almost 100 times larger than the pressure due to the water bed! The weight of the regular bed, even 
though it is much less than the weight of the water bed, is applied over the very small area of the four legs. The high 
pressure on the floor at the feet of a regular bed could cause dents in wood floors or permanently crush carpet pile.

What If ?

14.2	 Variation of Pressure with Depth
As divers well know, water pressure increases with depth. Likewise, atmospheric 
pressure decreases with increasing altitude; for this reason, aircraft flying at high 
altitudes must have pressurized cabins for the comfort of the passengers.
	 We now show how the pressure in a liquid increases with depth. As Equation 1.1 
describes, the density of a substance is defined as its mass per unit volume; Table 
14.1 lists the densities of various substances. These values vary slightly with temper-
ature because the volume of a substance is dependent on temperature (as shown in 
Chapter 19). Under standard conditions (at 08C and at atmospheric pressure), the 
densities of gases are about 1

1 000 the densities of solids and liquids. This difference 
in densities implies that the average molecular spacing in a gas under these condi-
tions is about ten times greater than that in a solid or liquid.

Table 14.1 Densities of Some Common Substances at Standard 
Temperature (08C) and Pressure (Atmospheric)
Substance	 r (kg/m3)	 Substance	 r (kg/m3)

Air	 1.29	
Air (at 20°C and 
  atmospheric pressure)	 1.20
Aluminum	 2.70 3 103

Benzene	 0.879 3 103

Brass	 8.4 3 103

Copper	 8.92 3 103

Ethyl alcohol	 0.806 3 103

Fresh water	 1.00 3 103

Glycerin	 1.26 3 103

Gold	 19.3 3 103

Helium gas	 1.79 3 1021

Hydrogen gas	 8.99 3 1022

Ice	 0.917 3 103

Iron	 7.86 3 103

Lead	 11.3 3 103

Mercury	 13.6 3 103

Nitrogen gas	 1.25
Oak	 0.710 3 103

Osmium	 22.6 3 103

Oxygen gas	 1.43
Pine	 0.373 3 103

Platinum	 21.4 3 103

Seawater	 1.03 3 103

Silver	 10.5 3 103

Tin	 7.30 3 103

Uranium	 19.1 3 103

	

▸ 14.1 c o n t i n u e d
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420	C hapter 14  Fluid Mechanics

Figure 14.4  ​(a) Diagram of 
a hydraulic press. (b) A vehicle 
undergoing repair is supported  
by a hydraulic lift in a garage.

A1
�x1

�x2

F1
S

F2
S

Because the increase in 
pressure is the same on 
the two sides, a small
force F1 at the left 
produces a much greater 
force F2 at the right.
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	 Now consider a liquid of density r at rest as shown in Figure 14.3. We assume r 
is uniform throughout the liquid, which means the liquid is incompressible. Let us 
select a parcel of the liquid contained within an imaginary block of cross-sectional 
area A extending from depth d to depth d 1 h. The liquid external to our parcel 
exerts forces at all points on the surface of the parcel, perpendicular to the surface. 
The pressure exerted by the liquid on the bottom face of the parcel is P, and the pres-
sure on the top face is P0. Therefore, the upward force exerted by the outside fluid on 
the bottom of the parcel has a magnitude PA, and the downward force exerted on the 
top has a magnitude P0A. The mass of liquid in the parcel is M 5 rV 5 rAh; therefore, 
the weight of the liquid in the parcel is Mg 5 rAhg. Because the parcel is at rest and 
remains at rest, it can be modeled as a particle in equilibrium, so that the net force 
acting on it must be zero. Choosing upward to be the positive y direction, we see that

	 a F
S

5 PA ĵ 2 P0A ĵ 2 Mg ĵ 5 0	

or

	 PA 2 P0A 2 rAhg 5 0	

	 P 5 P0 1 rgh	 (14.4)

That is, the pressure P at a depth h below a point in the liquid at which the pressure 
is P0 is greater by an amount rgh. If the liquid is open to the atmosphere and P0 is 
the pressure at the surface of the liquid, then P0 is atmospheric pressure. In our 
calculations and working of end-of-chapter problems, we usually take atmospheric 
pressure to be

	 P0 5 1.00 atm 5 1.013 3 105 Pa	

Equation 14.4 implies that the pressure is the same at all points having the same 
depth, independent of the shape of the container.
	 Because the pressure in a fluid depends on depth and on the value of P0, any 
increase in pressure at the surface must be transmitted to every other point in the 
fluid. This concept was first recognized by French scientist Blaise Pascal (1623–
1662) and is called Pascal’s law: a change in the pressure applied to a fluid is trans-
mitted undiminished to every point of the fluid and to the walls of the container.
	 An important application of Pascal’s law is the hydraulic press illustrated 
in Figure 14.4a. A force of magnitude F1 is applied to a small piston of surface 
area A1. The pressure is transmitted through an incompressible liquid to a larger 
piston of surface area A2. Because the pressure must be the same on both sides,  
P 5 F1/A1 5 F2/A2. Therefore, the force F2 is greater than the force F1 by a factor of  
A2/A1. By designing a hydraulic press with appropriate areas A1 and A2, a large out-

� Variation of pressure 
with depth

Pascal’s law 

�Mg PA j

�P0A j

d

d � h 

ˆ

ˆĵ

The parcel of fluid is in 
equilibrium, so the net 
force on it is zero.

Figure 14.3  ​A parcel of fluid in a 
larger volume of fluid is singled out.
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put force can be applied by means of a small input force. Hydraulic brakes, car lifts, 
hydraulic jacks, and forklifts all make use of this principle (Fig. 14.4b).
	 Because liquid is neither added to nor removed from the system, the volume of liq-
uid pushed down on the left in Figure 14.4a as the piston moves downward through a 
displacement Dx1 equals the volume of liquid pushed up on the right as the right pis-
ton moves upward through a displacement Dx2. That is, A1 Dx1 5 A2 Dx2; therefore, 
A2/A1 5 Dx1/Dx2. We have already shown that A2/A1 5 F2/F1. Therefore, F2/F1 5 
Dx1/Dx2, so F1 Dx1 5 F2 Dx2. Each side of this equation is the work done by the force 
on its respective piston. Therefore, the work done by  F

S

1 on the input piston equals 
the work done by  F

S

2 on the output piston, as it must to conserve energy. (The process 
can be modeled as a special case of the nonisolated system model: the nonisolated 
system in steady state. There is energy transfer into and out of the system, but these 
energy transfers balance, so that there is no net change in the  energy of the system.)

Q	 uick Quiz 14.2 ​ The pressure at the bottom of a filled glass of water (r 5  
1 000 kg/m3) is P. The water is poured out, and the glass is filled with ethyl alco-
hol (r 5 806 kg/m3). What is the pressure at the bottom of the glass? (a) smaller 
than P   (b) equal to P   (c) larger than P   (d) indeterminate

Example 14.2	     The Car Lift

In a car lift used in a service station, compressed air exerts a force on a small piston that has a circular cross section of 
radius 5.00 cm. This pressure is transmitted by a liquid to a piston that has a radius of 15.0 cm. 

(A)  What force must the compressed air exert to lift a car weighing 13 300 N?

Conceptualize  ​Review the material just discussed about Pascal’s law to understand the operation of a car lift.

Categorize  ​This example is a substitution problem.

S o l u t i o n

Solve F1/A1 5 F2/A2 for F1:  F1 5 aA1

A2
bF2 5

p 15.00 3 1022 m 22

p 115.0 3 1022 m 22 11.33 3 104 N 2

5  1.48 3 103 N

Use Equation 14.1 to find the air pressure that produces 
this force:

S o l u t i o n

 P 5
F1

A1
5

1.48 3 103 N
p 15.00 3 1022 m 22

5  1.88 3 105 Pa

This pressure is approximately twice atmospheric pressure.

Example 14.3	     A Pain in Your Ear

Estimate the force exerted on your eardrum due to the water when you are swimming at the bottom of a pool that is 
5.0 m deep.

Conceptualize  ​As you descend in the water, the pressure increases. You may have noticed this increased pressure in 
your ears while diving in a swimming pool, a lake, or the ocean. We can find the pressure difference exerted on the 

S o l u t i o n

	

(B)  What air pressure produces this force?

continued
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422	C hapter 14  Fluid Mechanics

eardrum from the depth given in the problem; then, after estimating the ear drum’s surface area, we can determine 
the net force the water exerts on it.

Categorize  ​This example is a substitution problem.
The air inside the middle ear is normally at atmospheric pressure P0. Therefore, to find the net force on the eardrum, 
we must consider the difference between the total pressure at the bottom of the pool and atmospheric pressure. Let’s 
estimate the surface area of the eardrum to be approximately 1 cm2 5 1 3 1024 m2.

Use Equation 14.4 to find this pressure 
difference:

Pbot 2 P0 5 rgh

5 (1.00 3 103 kg/m3)(9.80 m/s2)(5.0 m) 5 4.9 3 104 Pa

Use Equation 14.1 to find the magnitude of the 
net force on the ear:

F 5 (Pbot 2 P0)A 5 (4.9 3 104 Pa)(1 3 1024 m2) <  5 N

Because a force of this magnitude on the eardrum is extremely uncomfortable, swimmers often “pop their ears” while 
under water, an action that pushes air from the lungs into the middle ear. Using this technique equalizes the pressure 
on the two sides of the eardrum and relieves the discomfort.

Example 14.4	     The Force on a Dam

Water is filled to a height H behind a dam of width w (Fig. 14.5). Determine the 
resultant force exerted by the water on the dam.

Conceptualize  ​Because pressure varies with depth, we cannot calculate the 
force simply by multiplying the area by the pressure. As the pressure in the water 
increases with depth, the force on the adjacent portion of the dam also increases.

Categorize  ​Because of the variation of pressure with depth, we must use integra-
tion to solve this example, so we categorize it as an analysis problem.

Analyze  ​Let’s imagine a vertical y axis, with y 5 0 at the bottom of the dam. We 
divide the face of the dam into narrow horizontal strips at a distance y above the 
bottom, such as the red strip in Figure 14.5. The pressure on each such strip is 
due only to the water; atmospheric pressure acts on both sides of the dam.

S o l u t i o n

O

dy

y

h

w

H

y

x

Figure 14.5  ​(Example 14.4) Water 
exerts a force on a dam.

Use Equation 14.4 to calculate the pressure due to the 
water at the depth h :

P 5 rgh 5 rg(H 2 y)

Use Equation 14.2 to find the force exerted on the 
shaded strip of area dA 5 w dy :

dF 5 P dA 5 rg(H 2 y)w dy

Integrate to find the total force on the dam: F 5 3P dA 5 3
H

0
rg 1H 2 y 2w dy 5 1

2rgwH 2

Finalize  ​Notice that the thickness of the dam shown in Figure 14.5 increases with depth. This design accounts for the 
greater force the water exerts on the dam at greater depths.

What if you were asked to find this force without using calculus? How could you determine its value?

Answer  ​We know from Equation 14.4 that pressure varies linearly with depth. Therefore, the average pressure due to 
the water over the face of the dam is the average of the pressure at the top and the pressure at the bottom:

Pavg 5
Ptop 1 Pbottom

2
5

0 1 rgH

2
5 1

2rgH

What If ?

	

▸ 14.3 c o n t i n u e d
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14.3	 Pressure Measurements
During the weather report on a television news program, the barometric pressure is 
often provided. This reading is the current local pressure of the atmosphere, which 
varies over a small range from the standard value provided earlier. How is this pres-
sure measured?
	 One instrument used to measure atmospheric pressure is the common barom-
eter, invented by Evangelista Torricelli (1608–1647). A long tube closed at one end 
is filled with mercury and then inverted into a dish of mercury (Fig. 14.6a). The 
closed end of the tube is nearly a vacuum, so the pressure at the top of the mer-
cury column can be taken as zero. In Figure 14.6a, the pressure at point A, due 
to the column of mercury, must equal the pressure at point B, due to the atmo-
sphere. If that were not the case, there would be a net force that would move mer-
cury from one point to the other until equilibrium is established. Therefore, P0 5 
rHggh, where rHg is the density of the mercury and h is the height of the mercury 
column. As atmospheric pressure varies, the height of the mercury column varies, 
so the height can be calibrated to measure atmospheric pressure. Let us determine 
the height of a mercury column for one atmosphere of pressure, P0 5 1 atm 5  
1.013 3 105 Pa:

	 P0 5 rHggh S h 5
P0

rHgg
5

1.013 3 105 Pa
113.6 3 103 kg/m3 2 19.80 m/s2 2 5 0.760 m

Based on such a calculation, one atmosphere of pressure is defined to be the pres-
sure equivalent of a column of mercury that is exactly 0.760 0 m in height at 08C.
	 A device for measuring the pressure of a gas contained in a vessel is the open-
tube manometer illustrated in Figure 14.6b. One end of a U-shaped tube containing 
a liquid is open to the atmosphere, and the other end is connected to a container of 
gas at pressure P. In an equilibrium situation, the pressures at points A and B must 
be the same (otherwise, the curved portion of the liquid would experience a net 
force and would accelerate), and the pressure at A is the unknown pressure of the 
gas. Therefore, equating the unknown pressure P to the pressure at point B, we see 
that P 5 P0 1 rgh. Again, we can calibrate the height h to the pressure P.
	 The difference in the pressures in each part of Figure 14.6 (that is, P 2 P0) is 
equal to rgh. The pressure P is called the absolute pressure, and the difference 
P 2 P0 is called the gauge pressure. For example, the pressure you measure in your 
bicycle tire is gauge pressure.

Q	 uick Quiz 14.3 ​ Several common barometers are built, with a variety of fluids. 
For which of the following fluids will the column of fluid in the barometer be 
the highest? (a) mercury   (b) water   (c) ethyl alcohol   (d) benzene

14.4	 Buoyant Forces and Archimedes’s Principle
Have you ever tried to push a beach ball down under water (Fig. 14.7a, p. 424)? It 
is extremely difficult to do because of the large upward force exerted by the water 
on the ball. The upward force exerted by a fluid on any immersed object is called 

The total force on the dam is equal to the product of the average pressure and the area of the face of the dam:

F 5 PavgA 5 11
2rgH 2 1Hw 2 5 1

2rgwH 2

which is the same result we obtained using calculus.

a

P � 0

P

P0

P0

A B

h

h

A B

b

Figure 14.6  ​Two devices for 
measuring pressure: (a) a mercury 
barometer and (b) an open-tube 
manometer.

	

▸ 14.4 c o n t i n u e d
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424	C hapter 14  Fluid Mechanics

a buoyant force. We can determine the magnitude of a buoyant force by applying 
some logic. Imagine a beach ball–sized parcel of water beneath the water surface 
as in Figure 14.7b. Because this parcel is in equilibrium, there must be an upward 
force that balances the downward gravitational force on the parcel. This upward 
force is the buoyant force, and its magnitude is equal to the weight of the water in 
the parcel. The buoyant force is the resultant force on the parcel due to all forces 
applied by the fluid surrounding the parcel.
	 Now imagine replacing the beach ball–sized parcel of water with a beach ball 
of the same size. The net force applied by the fluid surrounding the beach ball is 
the same, regardless of whether it is applied to a beach ball or to a parcel of water. 
Consequently, the magnitude of the buoyant force on an object always equals the 
weight of the fluid displaced by the object. This statement is known as Archime-
des’s principle.
	 With the beach ball under water, the buoyant force, equal to the weight of a 
beach ball–sized parcel of water, is much larger than the weight of the beach ball. 
Therefore, there is a large net upward force, which explains why it is so hard to hold 
the beach ball under the water. Note that Archimedes’s principle does not refer to 
the makeup of the object experiencing the buoyant force. The object’s composition 
is not a factor in the buoyant force because the buoyant force is exerted by the sur-
rounding fluid.
	 To better understand the origin of the buoyant force, consider a cube of solid 
material immersed in a liquid as in Figure 14.8. According to Equation 14.4, the 
pressure Pbot at the bottom of the cube is greater than the pressure Ptop at the top 
by an amount rfluidgh, where h is the height of the cube and rfluid is the density of 
the fluid. The pressure at the bottom of the cube causes an upward force equal to 
PbotA, where A is the area of the bottom face. The pressure at the top of the cube 
causes a downward force equal to PtopA. The resultant of these two forces is the 
buoyant force B

S
 with magnitude

	 B 5 (Pbot 2 Ptop)A 5 (rfluidgh)A	

	 B 5 rfluidgVdisp	 (14.5)

where Vdisp 5 Ah is the volume of the fluid displaced by the cube. Because the prod-
uct rfluidVdisp is equal to the mass of fluid displaced by the object,

	 B 5 Mg	

where Mg is the weight of the fluid displaced by the cube. This result is consistent 
with our initial statement about Archimedes’s principle above, based on the discus-
sion of the beach ball.
	 Under normal conditions, the weight of a fish in the opening photograph for 
this chapter is slightly greater than the buoyant force on the fish. Hence, the fish 
would sink if it did not have some mechanism for adjusting the buoyant force. The 

a b

The buoyant force B 
on a beach ball that 
replaces this parcel 
of water is exactly the 
same as the buoyant 
force on the parcel.

B
S

Fg
S

S

Figure 14.7  ​(a) A swimmer pushes a beach ball under water. (b) The forces on a beach ball–sized 
parcel of water.

Archimedes
Greek Mathematician, Physicist, and 
Engineer (c. 287–212 BC)
Archimedes was perhaps the greatest 
scientist of antiquity. He was the first 
to compute accurately the ratio of a 
circle’s circumference to its diameter, 
and he also showed how to calcu-
late the volume and surface area of 
spheres, cylinders, and other geometric 
shapes. He is well known for discover-
ing the nature of the buoyant force and 
was also a gifted inventor. One of his 
practical inventions, still in use today, 
is Archimedes’s screw, an inclined, 
rotating, coiled tube used originally to 
lift water from the holds of ships. He 
also invented the catapult and devised 
systems of levers, pulleys, and weights 
for raising heavy loads. Such inventions 
were successfully used to defend his 
native city, Syracuse, during a two-year 
siege by Romans.
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The buoyant force on the 
cube is the resultant of the 
forces exerted on its top and 
bottom faces by the liquid.

Figure 14.8  ​The external forces 
acting on an immersed cube are 
the gravitational force  F

S

g and the 
buoyant force B

S
.
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fish accomplishes that by internally regulating the size of its air-filled swim bladder 
to increase its volume and the magnitude of the buoyant force acting on it, accord-
ing to Equation 14.5. In this manner, fish are able to swim to various depths.
	 Before we proceed with a few examples, it is instructive to discuss two common 
situations: a totally submerged object and a floating (partly submerged) object.
	 Case 1: Totally Submerged Object  When an object is totally submerged in a fluid 
of density rfluid, the volume Vdisp of the displaced fluid is equal to the volume Vobj of 
the object; so, from Equation 14.5, the magnitude of the upward buoyant force is 
B 5 rfluidgVobj. If the object has a mass M and density robj, its weight is equal to Fg 5 
Mg 5 robjgVobj, and the net force on the object is B 2 Fg 5 (rfluid 2 robj)gVobj. Hence, 
if the density of the object is less than the density of the fluid, the downward gravi-
tational force is less than the buoyant force and the unsupported object accelerates 
upward (Fig. 14.9a). If the density of the object is greater than the density of the 
fluid, the upward buoyant force is less than the downward gravitational force and 
the unsupported object sinks (Fig. 14.9b). If the density of the submerged object 
equals the density of the fluid, the net force on the object is zero and the object 
remains in equilibrium. Therefore, the direction of motion of an object submerged 
in a fluid is determined only by the densities of the object and the fluid.
	 Case 2: Floating Object  Now consider an object of volume Vobj and density robj ,  
rfluid in static equilibrium floating on the surface of a fluid, that is, an object that 
is only partially submerged (Fig. 14.10). In this case, the upward buoyant force is 
balanced by the downward gravitational force acting on the object. If Vdisp is the 
volume of the fluid displaced by the object (this volume is the same as the volume 
of that part of the object beneath the surface of the fluid), the buoyant force has a 
magnitude B 5 rfluidgVdisp. Because the weight of the object is Fg 5 Mg 5 robjgVobj 
and because Fg 5 B, we see that rfluidgVdisp 5 robjgVobj, or

	
Vdisp

Vobj
5

robj

rfluid
	 (14.6)

This equation shows that the fraction of the volume of a floating object that is 
below the fluid surface is equal to the ratio of the density of the object to that of 
the fluid.

Q	 uick Quiz 14.4 ​ You are shipwrecked and floating in the middle of the ocean on 
a raft. Your cargo on the raft includes a treasure chest full of gold that you found 
before your ship sank, and the raft is just barely afloat. To keep you floating as 
high as possible in the water, should you (a) leave the treasure chest on top of 
the raft, (b) secure the treasure chest to the underside of the raft, or (c) hang 
the treasure chest in the water with a rope attached to the raft? (Assume throw-
ing the treasure chest overboard is not an option you wish to consider.)

Figure 14.9  (a) A totally submerged object that is less dense than 
the fluid in which it is submerged experiences a net upward force 
and rises to the surface after it is released. (b) A totally submerged 
object that is denser than the fluid experiences a net downward 
force and sinks.

aS 
Fg
S

B
S

aS 

Fg
S

B
S

a b

robj � rfluid robj � rfluid

Figure 14.10  An object floating on the 
surface of a fluid experiences two forces, 
the gravitational force  F

S

g and the buoyant 
force  B

S
.

Fg
S

B
S

Because the object f loats 
in equilibrium, B � Fg .

Pitfall Prevention 14.2
Buoyant Force Is Exerted by the 
Fluid  Remember that the buoyant 
force is exerted by the fluid. It is 
not determined by properties of 
the object except for the amount 
of fluid displaced by the object. 
Therefore, if several objects of 
different densities but the same 
volume are immersed in a fluid, 
they will all experience the same 
buoyant force. Whether they sink 
or float is determined by the 
relationship between the buoyant 
force and the gravitational force.
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426	C hapter 14  Fluid Mechanics

Example 14.5	     Eureka! 

Archimedes supposedly was asked to determine whether a crown 
made for the king consisted of pure gold. According to legend, he 
solved this problem by weighing the crown first in air and then 
in water as shown in Figure 14.11. Suppose the scale read 7.84 N 
when the crown was in air and 6.84 N when it was in water. What 
should Archimedes have told the king?

Conceptualize  ​Figure 14.11 helps us imagine what is happening 
in this example. Because of the buoyant force, the scale reading is 
smaller in Figure 14.11b than in Figure 14.11a.

Categorize  ​This problem is an example of Case 1 discussed ear-
lier because the crown is completely submerged. The scale read-
ing is a measure of one of the forces on the crown, and the crown 
is stationary. Therefore, we can categorize the crown as a particle 
in equilibrium.

Analyze  ​When the crown is suspended in air, the scale reads the 
true weight T1 5 Fg (neglecting the small buoyant force due to the 
surrounding air). When the crown is immersed in water, the buoy-
ant force B

S
 reduces the scale reading to an apparent weight of  

T2 5 Fg 2 B.

AM

S o l u t i o n

B
S

Fg
S

T2
S

T1
S

Fg
S

a b

Figure 14.11  ​(Example 14.5) (a) When the crown 
is suspended in air, the scale reads its true weight 
because T1 5 Fg (the buoyancy of air is negligible). 
(b) When the crown is immersed in water, the buoyant 
force  B

S
 changes the scale reading to a lower value  

T 2 5 Fg 2 B.

Apply the particle in equilibrium model to the crown in 
water:

o F 5 B 1 T2 2 Fg 5 0

Solve for B : B 5 Fg 2 T2

Because this buoyant force is equal in magnitude to the weight of the displaced water, B 5 rw gVdisp, where Vdisp is the 
volume of the displaced water and rw is its density. Also, the volume of the crown Vc is equal to the volume of the dis-
placed water because the crown is completely submerged, so B 5 rw gVc.

Find the density of the crown from Equation 1.1:  rc 5
mc

Vc
5

mcg

Vc g
5

mc g

1B/rw 2
5

mc g rw

B
5

mc g rw

Fg 2 T2

Substitute numerical values: rc 5
17.84 N 2 11 000 kg/m3 2

7.84 N 2 6.84 N
5 7.84 3 103 kg/m3

Finalize  ​From Table 14.1, we see that the density of gold is 19.3 3 103 kg/m3. Therefore, Archimedes should have 
reported that the king had been cheated. Either the crown was hollow, or it was not made of pure gold.

​Suppose the crown has the same weight but is indeed pure gold and not hollow. What would the scale 
reading be when the crown is immersed in water?
What If ?

Answer  ​Find the buoyant force on the crown:  B 5 rw gVw 5 rw gVc 5 rw g amc

rc
b 5 rwa

mc g
rc

b

Substitute numerical values: B 5 11.00 3 103 kg/m3 2 7.84 N
19.3 3 103 kg/m3 5 0.406 N

Find the tension in the string hanging from the scale: T2 5 Fg 2 B 5 7.84 N 2 0.406 N 5 7.43 N
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Example 14.6	     A Titanic Surprise

An iceberg floating in seawater as shown in Figure 14.12a 
is extremely dangerous because most of the ice is below 
the surface. This hidden ice can damage a ship that is 
still a considerable distance from the visible ice. What 
fraction of the iceberg lies below the water level?

Conceptualize  ​You are likely familiar with the phrase, 
“That’s only the tip of the iceberg.” The origin of this 
popular saying is that most of the volume of a floating 
iceberg is beneath the surface of the water (Fig. 14.12b).

Categorize  ​This example corresponds to Case 2 because only part of the iceberg is underneath the water. It is also a 
simple substitution problem involving Equation 14.6.

S o l u t i o n
a b

.
 M

ar
k 
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rr

as
s/

Co
rb

is

Figure 14.12  ​(Example 14.6) (a) Much of the volume of this 
iceberg is beneath the water. (b) A ship can be damaged even 
when it is not near the visible ice.

Evaluate Equation 14.6 using the densities of ice and 
seawater (Table 14.1):

f 5
Vdisp

Vice
5

rice

rseawater
5

917 kg/m3

1 030 kg/m3 5   0.890 or 89.0%

Therefore, the visible fraction of ice above the water’s surface is about 11%. It is the unseen 89% below the water that 
represents the danger to a passing ship.

14.5	 Fluid Dynamics
Thus far, our study of fluids has been restricted to fluids at rest. We now turn our 
attention to fluids in motion. When fluid is in motion, its flow can be characterized 
as being one of two main types. The flow is said to be steady, or laminar, if each 
particle of the fluid follows a smooth path such that the paths of different particles 
never cross each other as shown in Figure 14.13. In steady flow, every fluid particle 
arriving at a given point in space has the same velocity.
	 Above a certain critical speed, fluid flow becomes turbulent. Turbulent flow is 
irregular flow characterized by small whirlpool-like regions as shown in Figure 14.14.
	 The term viscosity is commonly used in the description of fluid flow to charac-
terize the degree of internal friction in the fluid. This internal friction, or viscous 
force, is associated with the resistance that two adjacent layers of fluid have to mov-
ing relative to each other. Viscosity causes part of the fluid’s kinetic energy to be 
transformed to internal energy. This mechanism is similar to the one by which the 
kinetic energy of an object sliding over a rough, horizontal surface decreases as 
discussed in Sections 8.3 and 8.4.
	 Because the motion of real fluids is very complex and not fully understood, we 
make some simplifying assumptions in our approach. In our simplification model 
of ideal fluid flow, we make the following four assumptions:

	 1.	 The fluid is nonviscous. In a nonviscous fluid, internal friction is neglected. 
An object moving through the fluid experiences no viscous force.

	 2.	 The flow is steady. In steady (laminar) flow, all particles passing through a 
point have the same velocity.

	 3.	 The fluid is incompressible. The density of an incompressible fluid is 
constant.

	 4.	 The flow is irrotational. In irrotational flow, the fluid has no angular 
momentum about any point. If a small paddle wheel placed anywhere in the 
fluid does not rotate about the wheel’s center of mass, the flow is irrotational.

Figure 14.13  ​Laminar flow 
around an automobile in a test 
wind tunnel.
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Figure 14.14  ​Hot gases from a 
cigarette made visible by smoke 
particles. The smoke first moves 
in laminar flow at the bottom and 
then in turbulent flow above.
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428	C hapter 14  Fluid Mechanics

	 The path taken by a fluid particle under steady flow is called a streamline. The 
velocity of the particle is always tangent to the streamline as shown in Figure 14.15. 
A set of streamlines like the ones shown in Figure 14.15 form a tube of flow. Fluid 
particles cannot flow into or out of the sides of this tube; if they could, the stream-
lines would cross one another.
	 Consider ideal fluid flow through a pipe of nonuniform size as illustrated in Fig-
ure 14.16. Let’s focus our attention on a segment of fluid in the pipe. Figure 14.16a 
shows the segment at time t 5 0 consisting of the gray portion between point 1 and 
point 2 and the short blue portion to the left of point 1. At this time, the fluid in the 
short blue portion is flowing through a cross section of area A1 at speed v1. During 
the time interval Dt, the small length Dx1 of fluid in the blue portion moves past 
point 1. During the same time interval, fluid at the right end of the segment moves 
past point 2 in the pipe. Figure 14.16b shows the situation at the end of the time 
interval Dt. The blue portion at the right end represents the fluid that has moved 
past point 2 through an area A2 at a speed v2.
	 The mass of fluid contained in the blue portion in Figure 14.16a is given by m1 5 
rA1 Dx1 5 rA1v1 Dt, where r is the (unchanging) density of the ideal fluid. Similarly, 
the fluid in the blue portion in Figure 14.16b has a mass m2 5 rA2 Dx2 5 rA2v2 Dt. 
Because the fluid is incompressible and the flow is steady, however, the mass of fluid 
that passes point 1 in a time interval Dt must equal the mass that passes point 2 in 
the same time interval. That is, m1 5 m2 or rA1v1 Dt 5 rA2v2 Dt, which means that

	 A1v1 5 A2v2 5 constant	 (14.7)

This expression is called the equation of continuity for fluids. It states that the 
product of the area and the fluid speed at all points along a pipe is constant for an 
incompressible fluid. Equation 14.7 shows that the speed is high where the tube 
is constricted (small A) and low where the tube is wide (large A). The product Av, 
which has the dimensions of volume per unit time, is called either the volume flux or 
the flow rate. The condition Av 5 constant is equivalent to the statement that the vol-
ume of fluid that enters one end of a tube in a given time interval equals the volume 
leaving the other end of the tube in the same time interval if no leaks are present.
	 You demonstrate the equation of continuity each time you water your garden 
with your thumb over the end of a garden hose as in Figure 14.17. By partially block-

Equation of Continuity 
for Fluids

Figure 14.17  ​The speed of water spraying from 
the end of a garden hose increases as the size of 
the opening is decreased with the thumb.©
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At each point along its path, 
the particle’s velocity is 
tangent to the streamline.

Figure 14.15  ​A particle 
in laminar flow follows a 
streamline.

v2

v1

At t � 0, fluid in the blue
portion is moving past
point 1 at velocity v1.

After a time interval �t,
the fluid in the blue 
portion is moving past 
point 2 at velocity v2.

�x1

�x2

Point 2

Point 1

A1

A2

a

S

S

S

S

b

Figure 14.16  ​A fluid moving 
with steady flow through a pipe  
of varying cross-sectional area.  
(a) At t 5 0, the small blue-
colored portion of the fluid at the 
left is moving through area A1.  
(b) After a time interval Dt, the 
blue-colored portion shown 
here is that fluid that has moved 
through area A2.
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Example 14.7	     Watering a Garden 

A gardener uses a water hose to fill a 30.0-L bucket. The gardener notes that it takes 1.00 min to fill the bucket. A nozzle 
with an opening of cross-sectional area 0.500 cm2 is then attached to the hose. The nozzle is held so that water is pro-
jected horizontally from a point 1.00 m above the ground. Over what horizontal distance can the water be projected?

Conceptualize  ​Imagine any past experience you have with projecting water from a horizontal hose or a pipe using 
either your thumb or a nozzle, which can be attached to the end of the hose. The faster the water is traveling as it leaves 
the hose, the farther it will land on the ground from the end of the hose.

Categorize  ​Once the water leaves the hose, it is in free fall. Therefore, we categorize a given element of the water as a 
projectile. The element is modeled as a particle under constant acceleration (due to gravity) in the vertical direction and a 
particle under constant velocity in the horizontal direction. The horizontal distance over which the element is projected 
depends on the speed with which it is projected. This example involves a change in area for the pipe, so we also catego-
rize it as one in which we use the continuity equation for fluids.

Analyze

AM

S o l u t i o n

Express the volume flow rate R in terms of area and 
speed of the water in the hose: 

R 5 A1v1

Solve for the speed of the water in the hose: v1 5 
R
A1

We have labeled this speed v1 because we identify point 1 within the hose. We identify point 2 in the air just outside the 
nozzle. We must find the speed v2 5 vxi with which the water exits the nozzle. The subscript i anticipates that it will be 
the initial velocity component of the water projected from the hose, and the subscript x indicates that the initial veloc-
ity vector of the projected water is horizontal.

Solve the continuity equation for fluids for v2: (1)   v2 5 vxi 5
A1

A2
 v1 5 

A1

A2
aR

A1
b 5

R
A2

We now shift our thinking away from fluids and to projectile motion. In the vertical direction, an element of the water 
starts from rest and falls through a vertical distance of 1.00 m.

Use Equation 2.7 to find the horizontal position of the 
element at this time, modeled as a particle under con-
stant velocity:

xf 5 xi 1 vxit 5 0 1 v2t 5 v2t

Substitute from Equations (1) and (2): xf 5
R
A 2 Å

22yf

g

Substitute numerical values: xf 5
30.0 L/min
0.500 cm2 Å

22 121.00 m 2
9.80 m/s2 a103 cm3

1 L
b a1 min

60 s
b 5 452 cm 5 4.52 m

Call the initial position of the water yi 5 0 and recognize 
that the water begins with a vertical velocity component 
of zero. Solve for the time at which the water reaches the 
ground:

(2)   yf 5 0 1 0 2 1
2gt 2   S   t 5 Å

22yf

g

Write Equation 2.16 for the vertical position of an ele-
ment of water, modeled as a particle under constant 
acceleration:

yf 5 yi 1 vyi t 2 1
2gt 2

ing the opening with your thumb, you reduce the cross-sectional area through 
which the water passes. As a result, the speed of the water increases as it exits the 
hose, and the water can be sprayed over a long distance.
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