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Figure 25.1 Image seen as a result of reflection of light on a plane smooth surface. (credit: NASA Goddard Photo and Video, via Flickr)

Learning Objectives
25.1. The Ray Aspect of Light

• List the ways by which light travels from a source to another location.
25.2. The Law of Reflection

• Explain reflection of light from polished and rough surfaces.
25.3. The Law of Refraction

• Determine the index of refraction, given the speed of light in a medium.
25.4. Total Internal Reflection

• Explain the phenomenon of total internal reflection.
• Describe the workings and uses of fiber optics.
• Analyze the reason for the sparkle of diamonds.

25.5. Dispersion: The Rainbow and Prisms
• Explain the phenomenon of dispersion and discuss its advantages and disadvantages.

25.6. Image Formation by Lenses
• List the rules for ray tracking for thin lenses.
• Illustrate the formation of images using the technique of ray tracking.
• Determine power of a lens given the focal length.

25.7. Image Formation by Mirrors
• Illustrate image formation in a flat mirror.
• Explain with ray diagrams the formation of an image using spherical mirrors.
• Determine focal length and magnification given radius of curvature, distance of object and image.

Introduction to Geometric Optics

Geometric Optics
Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this photograph. Mirrors,
like lenses, can also form images that in turn are captured by your eye.
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Our lives are filled with light. Through vision, the most valued of our senses, light can evoke spiritual emotions, such as when we view a magnificent
sunset or glimpse a rainbow breaking through the clouds. Light can also simply amuse us in a theater, or warn us to stop at an intersection. It has
innumerable uses beyond vision. Light can carry telephone signals through glass fibers or cook a meal in a solar oven. Life itself could not exist
without light’s energy. From photosynthesis in plants to the sun warming a cold-blooded animal, its supply of energy is vital.

Figure 25.2 Double Rainbow over the bay of Pocitos in Montevideo, Uruguay. (credit: Madrax, Wikimedia Commons)

We already know that visible light is the type of electromagnetic waves to which our eyes respond. That knowledge still leaves many questions
regarding the nature of light and vision. What is color, and how do our eyes detect it? Why do diamonds sparkle? How does light travel? How do
lenses and mirrors form images? These are but a few of the questions that are answered by the study of optics. Optics is the branch of physics that
deals with the behavior of visible light and other electromagnetic waves. In particular, optics is concerned with the generation and propagation of light
and its interaction with matter. What we have already learned about the generation of light in our study of heat transfer by radiation will be expanded
upon in later topics, especially those on atomic physics. Now, we will concentrate on the propagation of light and its interaction with matter.

It is convenient to divide optics into two major parts based on the size of objects that light encounters. When light interacts with an object that is
several times as large as the light’s wavelength, its observable behavior is like that of a ray; it does not prominently display its wave characteristics.
We call this part of optics “geometric optics.” This chapter will concentrate on such situations. When light interacts with smaller objects, it has very
prominent wave characteristics, such as constructive and destructive interference. Wave Optics will concentrate on such situations.

25.1 The Ray Aspect of Light
There are three ways in which light can travel from a source to another location. (See Figure 25.3.) It can come directly from the source through
empty space, such as from the Sun to Earth. Or light can travel through various media, such as air and glass, to the person. Light can also arrive
after being reflected, such as by a mirror. In all of these cases, light is modeled as traveling in straight lines called rays. Light may change direction
when it encounters objects (such as a mirror) or in passing from one material to another (such as in passing from air to glass), but it then continues in
a straight line or as a ray. The word ray comes from mathematics and here means a straight line that originates at some point. It is acceptable to
visualize light rays as laser rays (or even science fiction depictions of ray guns).

Ray

The word “ray” comes from mathematics and here means a straight line that originates at some point.

Figure 25.3 Three methods for light to travel from a source to another location. (a) Light reaches the upper atmosphere of Earth traveling through empty space directly from
the source. (b) Light can reach a person in one of two ways. It can travel through media like air and glass. It can also reflect from an object like a mirror. In the situations shown
here, light interacts with objects large enough that it travels in straight lines, like a ray.

Experiments, as well as our own experiences, show that when light interacts with objects several times as large as its wavelength, it travels in straight
lines and acts like a ray. Its wave characteristics are not pronounced in such situations. Since the wavelength of light is less than a micron (a
thousandth of a millimeter), it acts like a ray in the many common situations in which it encounters objects larger than a micron. For example, when
light encounters anything we can observe with unaided eyes, such as a mirror, it acts like a ray, with only subtle wave characteristics. We will
concentrate on the ray characteristics in this chapter.

Since light moves in straight lines, changing directions when it interacts with materials, it is described by geometry and simple trigonometry. This part
of optics, where the ray aspect of light dominates, is therefore called geometric optics. There are two laws that govern how light changes direction
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when it interacts with matter. These are the law of reflection, for situations in which light bounces off matter, and the law of refraction, for situations in
which light passes through matter.

Geometric Optics

The part of optics dealing with the ray aspect of light is called geometric optics.

25.2 The Law of Reflection
Whenever we look into a mirror, or squint at sunlight glinting from a lake, we are seeing a reflection. When you look at this page, too, you are seeing
light reflected from it. Large telescopes use reflection to form an image of stars and other astronomical objects.

The law of reflection is illustrated in Figure 25.4, which also shows how the angles are measured relative to the perpendicular to the surface at the
point where the light ray strikes. We expect to see reflections from smooth surfaces, but Figure 25.5 illustrates how a rough surface reflects light.
Since the light strikes different parts of the surface at different angles, it is reflected in many different directions, or diffused. Diffused light is what
allows us to see a sheet of paper from any angle, as illustrated in Figure 25.6. Many objects, such as people, clothing, leaves, and walls, have rough
surfaces and can be seen from all sides. A mirror, on the other hand, has a smooth surface (compared with the wavelength of light) and reflects light
at specific angles, as illustrated in Figure 25.7. When the moon reflects from a lake, as shown in Figure 25.8, a combination of these effects takes
place.

Figure 25.4 The law of reflection states that the angle of reflection equals the angle of incidence— θr = θi . The angles are measured relative to the perpendicular to the

surface at the point where the ray strikes the surface.

Figure 25.5 Light is diffused when it reflects from a rough surface. Here many parallel rays are incident, but they are reflected at many different angles since the surface is
rough.

Figure 25.6 When a sheet of paper is illuminated with many parallel incident rays, it can be seen at many different angles, because its surface is rough and diffuses the light.
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Figure 25.7 A mirror illuminated by many parallel rays reflects them in only one direction, since its surface is very smooth. Only the observer at a particular angle will see the
reflected light.

Figure 25.8 Moonlight is spread out when it is reflected by the lake, since the surface is shiny but uneven. (credit: Diego Torres Silvestre, Flickr)

The law of reflection is very simple: The angle of reflection equals the angle of incidence.

The Law of Reflection

The angle of reflection equals the angle of incidence.

When we see ourselves in a mirror, it appears that our image is actually behind the mirror. This is illustrated in Figure 25.9. We see the light coming
from a direction determined by the law of reflection. The angles are such that our image is exactly the same distance behind the mirror as we stand
away from the mirror. If the mirror is on the wall of a room, the images in it are all behind the mirror, which can make the room seem bigger. Although
these mirror images make objects appear to be where they cannot be (like behind a solid wall), the images are not figments of our imagination. Mirror
images can be photographed and videotaped by instruments and look just as they do with our eyes (optical instruments themselves). The precise
manner in which images are formed by mirrors and lenses will be treated in later sections of this chapter.

Figure 25.9 Our image in a mirror is behind the mirror. The two rays shown are those that strike the mirror at just the correct angles to be reflected into the eyes of the person.
The image appears to be in the direction the rays are coming from when they enter the eyes.

Take-Home Experiment: Law of Reflection

Take a piece of paper and shine a flashlight at an angle at the paper, as shown in Figure 25.6. Now shine the flashlight at a mirror at an angle.
Do your observations confirm the predictions in Figure 25.6 and Figure 25.7? Shine the flashlight on various surfaces and determine whether
the reflected light is diffuse or not. You can choose a shiny metallic lid of a pot or your skin. Using the mirror and flashlight, can you confirm the
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law of reflection? You will need to draw lines on a piece of paper showing the incident and reflected rays. (This part works even better if you use
a laser pencil.)

25.3 The Law of Refraction
It is easy to notice some odd things when looking into a fish tank. For example, you may see the same fish appearing to be in two different places.
(See Figure 25.10.) This is because light coming from the fish to us changes direction when it leaves the tank, and in this case, it can travel two
different paths to get to our eyes. The changing of a light ray’s direction (loosely called bending) when it passes through variations in matter is called
refraction. Refraction is responsible for a tremendous range of optical phenomena, from the action of lenses to voice transmission through optical
fibers.

Refraction

The changing of a light ray’s direction (loosely called bending) when it passes through variations in matter is called refraction.

Speed of Light

The speed of light c not only affects refraction, it is one of the central concepts of Einstein’s theory of relativity. As the accuracy of the
measurements of the speed of light were improved, c was found not to depend on the velocity of the source or the observer. However, the
speed of light does vary in a precise manner with the material it traverses. These facts have far-reaching implications, as we will see in Special
Relativity. It makes connections between space and time and alters our expectations that all observers measure the same time for the same
event, for example. The speed of light is so important that its value in a vacuum is one of the most fundamental constants in nature as well as
being one of the four fundamental SI units.

Figure 25.10 Looking at the fish tank as shown, we can see the same fish in two different locations, because light changes directions when it passes from water to air. In this
case, the light can reach the observer by two different paths, and so the fish seems to be in two different places. This bending of light is called refraction and is responsible for
many optical phenomena.

Why does light change direction when passing from one material (medium) to another? It is because light changes speed when going from one
material to another. So before we study the law of refraction, it is useful to discuss the speed of light and how it varies in different media.

The Speed of Light
Early attempts to measure the speed of light, such as those made by Galileo, determined that light moved extremely fast, perhaps instantaneously.
The first real evidence that light traveled at a finite speed came from the Danish astronomer Ole Roemer in the late 17th century. Roemer had noted
that the average orbital period of one of Jupiter’s moons, as measured from Earth, varied depending on whether Earth was moving toward or away
from Jupiter. He correctly concluded that the apparent change in period was due to the change in distance between Earth and Jupiter and the time it

took light to travel this distance. From his 1676 data, a value of the speed of light was calculated to be 2.26×108 m/s (only 25% different from
today’s accepted value). In more recent times, physicists have measured the speed of light in numerous ways and with increasing accuracy. One
particularly direct method, used in 1887 by the American physicist Albert Michelson (1852–1931), is illustrated in Figure 25.11. Light reflected from a
rotating set of mirrors was reflected from a stationary mirror 35 km away and returned to the rotating mirrors. The time for the light to travel can be
determined by how fast the mirrors must rotate for the light to be returned to the observer’s eye.
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Figure 25.11 A schematic of early apparatus used by Michelson and others to determine the speed of light. As the mirrors rotate, the reflected ray is only briefly directed at the
stationary mirror. The returning ray will be reflected into the observer's eye only if the next mirror has rotated into the correct position just as the ray returns. By measuring the
correct rotation rate, the time for the round trip can be measured and the speed of light calculated. Michelson’s calculated value of the speed of light was only 0.04% different
from the value used today.

The speed of light is now known to great precision. In fact, the speed of light in a vacuum c is so important that it is accepted as one of the basic
physical quantities and has the fixed value

(25.1)c = 2.9972458×108 m/s ≈ 3.00×108 m/s,

where the approximate value of 3.00×108 m/s is used whenever three-digit accuracy is sufficient. The speed of light through matter is less than it
is in a vacuum, because light interacts with atoms in a material. The speed of light depends strongly on the type of material, since its interaction with
different atoms, crystal lattices, and other substructures varies. We define the index of refraction n of a material to be

(25.2)n = cv,
where v is the observed speed of light in the material. Since the speed of light is always less than c in matter and equals c only in a vacuum, the
index of refraction is always greater than or equal to one.

Value of the Speed of Light
(25.3)c = 2.9972458×108 m/s ≈ 3.00×108 m/s

Index of Refraction
(25.4)n = cv

That is, n ≥ 1 . Table 25.1 gives the indices of refraction for some representative substances. The values are listed for a particular wavelength of

light, because they vary slightly with wavelength. (This can have important effects, such as colors produced by a prism.) Note that for gases, n is
close to 1.0. This seems reasonable, since atoms in gases are widely separated and light travels at c in the vacuum between atoms. It is common to

take n = 1 for gases unless great precision is needed. Although the speed of light v in a medium varies considerably from its value c in a
vacuum, it is still a large speed.
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Table 25.1 Index of Refraction
in Various Media

Medium n

Gases at 0ºC , 1 atm

Air 1.000293

Carbon dioxide 1.00045

Hydrogen 1.000139

Oxygen 1.000271

Liquids at 20ºC
Benzene 1.501

Carbon disulfide 1.628

Carbon tetrachloride 1.461

Ethanol 1.361

Glycerine 1.473

Water, fresh 1.333

Solids at 20ºC
Diamond 2.419

Fluorite 1.434

Glass, crown 1.52

Glass, flint 1.66

Ice at 20ºC 1.309

Polystyrene 1.49

Plexiglas 1.51

Quartz, crystalline 1.544

Quartz, fused 1.458

Sodium chloride 1.544

Zircon 1.923

Example 25.1 Speed of Light in Matter

Calculate the speed of light in zircon, a material used in jewelry to imitate diamond.

Strategy

The speed of light in a material, v , can be calculated from the index of refraction n of the material using the equation n = c / v .

Solution

The equation for index of refraction states that n = c / v . Rearranging this to determine v gives

(25.5)v = cn.
The index of refraction for zircon is given as 1.923 in Table 25.1, and c is given in the equation for speed of light. Entering these values in the
last expression gives

(25.6)v = 3.00×108 m/s
1.923

= 1.56×108 m/s.
Discussion

This speed is slightly larger than half the speed of light in a vacuum and is still high compared with speeds we normally experience. The only
substance listed in Table 25.1 that has a greater index of refraction than zircon is diamond. We shall see later that the large index of refraction
for zircon makes it sparkle more than glass, but less than diamond.

Law of Refraction
Figure 25.12 shows how a ray of light changes direction when it passes from one medium to another. As before, the angles are measured relative to
a perpendicular to the surface at the point where the light ray crosses it. (Some of the incident light will be reflected from the surface, but for now we
will concentrate on the light that is transmitted.) The change in direction of the light ray depends on how the speed of light changes. The change in
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the speed of light is related to the indices of refraction of the media involved. In the situations shown in Figure 25.12, medium 2 has a greater index
of refraction than medium 1. This means that the speed of light is less in medium 2 than in medium 1. Note that as shown in Figure 25.12(a), the
direction of the ray moves closer to the perpendicular when it slows down. Conversely, as shown in Figure 25.12(b), the direction of the ray moves
away from the perpendicular when it speeds up. The path is exactly reversible. In both cases, you can imagine what happens by thinking about
pushing a lawn mower from a footpath onto grass, and vice versa. Going from the footpath to grass, the front wheels are slowed and pulled to the
side as shown. This is the same change in direction as for light when it goes from a fast medium to a slow one. When going from the grass to the
footpath, the front wheels can move faster and the mower changes direction as shown. This, too, is the same change in direction as for light going
from slow to fast.

Figure 25.12 The change in direction of a light ray depends on how the speed of light changes when it crosses from one medium to another. The speed of light is greater in
medium 1 than in medium 2 in the situations shown here. (a) A ray of light moves closer to the perpendicular when it slows down. This is analogous to what happens when a
lawn mower goes from a footpath to grass. (b) A ray of light moves away from the perpendicular when it speeds up. This is analogous to what happens when a lawn mower
goes from grass to footpath. The paths are exactly reversible.

The amount that a light ray changes its direction depends both on the incident angle and the amount that the speed changes. For a ray at a given
incident angle, a large change in speed causes a large change in direction, and thus a large change in angle. The exact mathematical relationship is
the law of refraction, or “Snell’s Law,” which is stated in equation form as

(25.7)n1 sin θ1 = n2 sin θ2.

Here n1 and n2 are the indices of refraction for medium 1 and 2, and θ1 and θ2 are the angles between the rays and the perpendicular in

medium 1 and 2, as shown in Figure 25.12. The incoming ray is called the incident ray and the outgoing ray the refracted ray, and the associated
angles the incident angle and the refracted angle. The law of refraction is also called Snell’s law after the Dutch mathematician Willebrord Snell
(1591–1626), who discovered it in 1621. Snell’s experiments showed that the law of refraction was obeyed and that a characteristic index of
refraction n could be assigned to a given medium. Snell was not aware that the speed of light varied in different media, but through experiments he
was able to determine indices of refraction from the way light rays changed direction.

The Law of Refraction
(25.8)n1 sin θ1 = n2 sin θ2

Take-Home Experiment: A Broken Pencil

A classic observation of refraction occurs when a pencil is placed in a glass half filled with water. Do this and observe the shape of the pencil
when you look at the pencil sideways, that is, through air, glass, water. Explain your observations. Draw ray diagrams for the situation.

Example 25.2 Determine the Index of Refraction from Refraction Data

Find the index of refraction for medium 2 in Figure 25.12(a), assuming medium 1 is air and given the incident angle is 30.0º and the angle of

refraction is 22.0º .

Strategy

The index of refraction for air is taken to be 1 in most cases (and up to four significant figures, it is 1.000). Thus n1 = 1.00 here. From the given

information, θ1 = 30.0º and θ2 = 22.0º . With this information, the only unknown in Snell’s law is n2 , so that it can be used to find this

unknown.

Solution

Snell’s law is

(25.9)n1 sin θ1 = n2 sin θ2.
Rearranging to isolate n2 gives
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(25.10)n2 = n1
sin θ1
sin θ2

.

Entering known values,

(25.11)n2 = 1.00sin 30.0º
sin 22.0º = 0.500

0.375
= 1.33.

Discussion

This is the index of refraction for water, and Snell could have determined it by measuring the angles and performing this calculation. He would
then have found 1.33 to be the appropriate index of refraction for water in all other situations, such as when a ray passes from water to glass.
Today we can verify that the index of refraction is related to the speed of light in a medium by measuring that speed directly.

Example 25.3 A Larger Change in Direction

Suppose that in a situation like that in Example 25.2, light goes from air to diamond and that the incident angle is 30.0º . Calculate the angle of

refraction θ2 in the diamond.

Strategy

Again the index of refraction for air is taken to be n1 = 1.00 , and we are given θ1 = 30.0º . We can look up the index of refraction for

diamond in Table 25.1, finding n2 = 2.419 . The only unknown in Snell’s law is θ2 , which we wish to determine.

Solution

Solving Snell’s law for sin θ2 yields

(25.12)sin θ2 = n1n2sin θ1.

Entering known values,

(25.13)sin θ2 = 1.00
2.419sin 30.0º=⎛⎝0.413⎞⎠(0.500) = 0.207.

The angle is thus

(25.14)θ2 = sin−10.207 = 11.9º.
Discussion

For the same 30º angle of incidence, the angle of refraction in diamond is significantly smaller than in water ( 11.9º rather than 22º —see the
preceding example). This means there is a larger change in direction in diamond. The cause of a large change in direction is a large change in
the index of refraction (or speed). In general, the larger the change in speed, the greater the effect on the direction of the ray.

25.4 Total Internal Reflection
A good-quality mirror may reflect more than 90% of the light that falls on it, absorbing the rest. But it would be useful to have a mirror that reflects all
of the light that falls on it. Interestingly, we can produce total reflection using an aspect of refraction.

Consider what happens when a ray of light strikes the surface between two materials, such as is shown in Figure 25.13(a). Part of the light crosses
the boundary and is refracted; the rest is reflected. If, as shown in the figure, the index of refraction for the second medium is less than for the first,
the ray bends away from the perpendicular. (Since n1 > n2 , the angle of refraction is greater than the angle of incidence—that is, θ1 > θ2 .) Now

imagine what happens as the incident angle is increased. This causes θ2 to increase also. The largest the angle of refraction θ2 can be is 90º , as

shown in Figure 25.13(b).The critical angle θc for a combination of materials is defined to be the incident angle θ1 that produces an angle of

refraction of 90º . That is, θc is the incident angle for which θ2 = 90º . If the incident angle θ1 is greater than the critical angle, as shown in

Figure 25.13(c), then all of the light is reflected back into medium 1, a condition called total internal reflection.

Critical Angle

The incident angle θ1 that produces an angle of refraction of 90º is called the critical angle, θc .
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Figure 25.13 (a) A ray of light crosses a boundary where the speed of light increases and the index of refraction decreases. That is, n2 < n1 . The ray bends away from the

perpendicular. (b) The critical angle θc is the one for which the angle of refraction is . (c) Total internal reflection occurs when the incident angle is greater than the critical

angle.

Snell’s law states the relationship between angles and indices of refraction. It is given by

(25.15)n1 sin θ1 = n2 sin θ2.

When the incident angle equals the critical angle ( θ1 = θc ), the angle of refraction is 90º ( θ2 = 90º ). Noting that sin 90º=1 , Snell’s law in this

case becomes

(25.16)n1 sin θ1 = n2.

The critical angle θc for a given combination of materials is thus

(25.17)θc = sin−1⎛⎝n2 / n1
⎞⎠ for n1 > n2.

Total internal reflection occurs for any incident angle greater than the critical angle θc , and it can only occur when the second medium has an index

of refraction less than the first. Note the above equation is written for a light ray that travels in medium 1 and reflects from medium 2, as shown in the
figure.

Example 25.4 How Big is the Critical Angle Here?

What is the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air?

Strategy
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The index of refraction for polystyrene is found to be 1.49 in Figure 25.14, and the index of refraction of air can be taken to be 1.00, as before.
Thus, the condition that the second medium (air) has an index of refraction less than the first (plastic) is satisfied, and the equation

θc = sin−1⎛⎝n2 / n1
⎞⎠ can be used to find the critical angle θc . Here, then, n2 = 1.00 and n1 = 1.49 .

Solution

The critical angle is given by

(25.18)θc = sin−1⎛⎝n2 / n1
⎞⎠.

Substituting the identified values gives

(25.19)θc = sin−1(1.00 / 1.49) = sin−1(0.671)
42.2º.

Discussion

This means that any ray of light inside the plastic that strikes the surface at an angle greater than 42.2º will be totally reflected. This will make
the inside surface of the clear plastic a perfect mirror for such rays without any need for the silvering used on common mirrors. Different
combinations of materials have different critical angles, but any combination with n1 > n2 can produce total internal reflection. The same

calculation as made here shows that the critical angle for a ray going from water to air is 48.6º , while that from diamond to air is 24.4º , and

that from flint glass to crown glass is 66.3º . There is no total reflection for rays going in the other direction—for example, from air to
water—since the condition that the second medium must have a smaller index of refraction is not satisfied. A number of interesting applications
of total internal reflection follow.

Fiber Optics: Endoscopes to Telephones
Fiber optics is one application of total internal reflection that is in wide use. In communications, it is used to transmit telephone, internet, and cable TV
signals. Fiber optics employs the transmission of light down fibers of plastic or glass. Because the fibers are thin, light entering one is likely to strike
the inside surface at an angle greater than the critical angle and, thus, be totally reflected (See Figure 25.14.) The index of refraction outside the fiber
must be smaller than inside, a condition that is easily satisfied by coating the outside of the fiber with a material having an appropriate refractive
index. In fact, most fibers have a varying refractive index to allow more light to be guided along the fiber through total internal refraction. Rays are
reflected around corners as shown, making the fibers into tiny light pipes.

Figure 25.14 Light entering a thin fiber may strike the inside surface at large or grazing angles and is completely reflected if these angles exceed the critical angle. Such rays
continue down the fiber, even following it around corners, since the angles of reflection and incidence remain large.

Bundles of fibers can be used to transmit an image without a lens, as illustrated in Figure 25.15. The output of a device called an endoscope is
shown in Figure 25.15(b). Endoscopes are used to explore the body through various orifices or minor incisions. Light is transmitted down one fiber
bundle to illuminate internal parts, and the reflected light is transmitted back out through another to be observed. Surgery can be performed, such as
arthroscopic surgery on the knee joint, employing cutting tools attached to and observed with the endoscope. Samples can also be obtained, such as
by lassoing an intestinal polyp for external examination.

Fiber optics has revolutionized surgical techniques and observations within the body. There are a host of medical diagnostic and therapeutic uses.
The flexibility of the fiber optic bundle allows it to navigate around difficult and small regions in the body, such as the intestines, the heart, blood
vessels, and joints. Transmission of an intense laser beam to burn away obstructing plaques in major arteries as well as delivering light to activate
chemotherapy drugs are becoming commonplace. Optical fibers have in fact enabled microsurgery and remote surgery where the incisions are small
and the surgeon’s fingers do not need to touch the diseased tissue.
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Figure 25.15 (a) An image is transmitted by a bundle of fibers that have fixed neighbors. (b) An endoscope is used to probe the body, both transmitting light to the interior and
returning an image such as the one shown. (credit: Med_Chaos, Wikimedia Commons)

Fibers in bundles are surrounded by a cladding material that has a lower index of refraction than the core. (See Figure 25.16.) The cladding prevents
light from being transmitted between fibers in a bundle. Without cladding, light could pass between fibers in contact, since their indices of refraction
are identical. Since no light gets into the cladding (there is total internal reflection back into the core), none can be transmitted between clad fibers
that are in contact with one another. The cladding prevents light from escaping out of the fiber; instead most of the light is propagated along the
length of the fiber, minimizing the loss of signal and ensuring that a quality image is formed at the other end. The cladding and an additional
protective layer make optical fibers flexible and durable.

Figure 25.16 Fibers in bundles are clad by a material that has a lower index of refraction than the core to ensure total internal reflection, even when fibers are in contact with
one another. This shows a single fiber with its cladding.

Cladding

The cladding prevents light from being transmitted between fibers in a bundle.

Special tiny lenses that can be attached to the ends of bundles of fibers are being designed and fabricated. Light emerging from a fiber bundle can be
focused and a tiny spot can be imaged. In some cases the spot can be scanned, allowing quality imaging of a region inside the body. Special minute
optical filters inserted at the end of the fiber bundle have the capacity to image tens of microns below the surface without cutting the surface—non-
intrusive diagnostics. This is particularly useful for determining the extent of cancers in the stomach and bowel.

Most telephone conversations and Internet communications are now carried by laser signals along optical fibers. Extensive optical fiber cables have
been placed on the ocean floor and underground to enable optical communications. Optical fiber communication systems offer several advantages
over electrical (copper) based systems, particularly for long distances. The fibers can be made so transparent that light can travel many kilometers
before it becomes dim enough to require amplification—much superior to copper conductors. This property of optical fibers is called low loss. Lasers
emit light with characteristics that allow far more conversations in one fiber than are possible with electric signals on a single conductor. This property
of optical fibers is called high bandwidth. Optical signals in one fiber do not produce undesirable effects in other adjacent fibers. This property of
optical fibers is called reduced crosstalk. We shall explore the unique characteristics of laser radiation in a later chapter.

Corner Reflectors and Diamonds
A light ray that strikes an object consisting of two mutually perpendicular reflecting surfaces is reflected back exactly parallel to the direction from
which it came. This is true whenever the reflecting surfaces are perpendicular, and it is independent of the angle of incidence. Such an object, shown
in Figure 25.52, is called a corner reflector, since the light bounces from its inside corner. Many inexpensive reflector buttons on bicycles, cars, and
warning signs have corner reflectors designed to return light in the direction from which it originated. It was more expensive for astronauts to place
one on the moon. Laser signals can be bounced from that corner reflector to measure the gradually increasing distance to the moon with great
precision.
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Figure 25.17 (a) Astronauts placed a corner reflector on the moon to measure its gradually increasing orbital distance. (credit: NASA) (b) The bright spots on these bicycle
safety reflectors are reflections of the flash of the camera that took this picture on a dark night. (credit: Julo, Wikimedia Commons)

Corner reflectors are perfectly efficient when the conditions for total internal reflection are satisfied. With common materials, it is easy to obtain a
critical angle that is less than 45º . One use of these perfect mirrors is in binoculars, as shown in Figure 25.18. Another use is in periscopes found in
submarines.

Figure 25.18 These binoculars employ corner reflectors with total internal reflection to get light to the observer’s eyes.

The Sparkle of Diamonds
Total internal reflection, coupled with a large index of refraction, explains why diamonds sparkle more than other materials. The critical angle for a
diamond-to-air surface is only 24.4º , and so when light enters a diamond, it has trouble getting back out. (See Figure 25.19.) Although light freely

enters the diamond, it can exit only if it makes an angle less than 24.4º . Facets on diamonds are specifically intended to make this unlikely, so that
the light can exit only in certain places. Good diamonds are very clear, so that the light makes many internal reflections and is concentrated at the few
places it can exit—hence the sparkle. (Zircon is a natural gemstone that has an exceptionally large index of refraction, but not as large as diamond,
so it is not as highly prized. Cubic zirconia is manufactured and has an even higher index of refraction ( ≈ 2.17 ), but still less than that of diamond.)
The colors you see emerging from a sparkling diamond are not due to the diamond’s color, which is usually nearly colorless. Those colors result from
dispersion, the topic of Dispersion: The Rainbow and Prisms. Colored diamonds get their color from structural defects of the crystal lattice and the
inclusion of minute quantities of graphite and other materials. The Argyle Mine in Western Australia produces around 90% of the world’s pink, red,
champagne, and cognac diamonds, while around 50% of the world’s clear diamonds come from central and southern Africa.
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Figure 25.19 Light cannot easily escape a diamond, because its critical angle with air is so small. Most reflections are total, and the facets are placed so that light can exit only
in particular ways—thus concentrating the light and making the diamond sparkle.

PhET Explorations: Bending Light

Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending
angle. Play with prisms of different shapes and make rainbows.

Figure 25.20 Bending Light (http://cnx.org/content/m42462/1.5/bending-light_en.jar)

25.5 Dispersion: The Rainbow and Prisms
Everyone enjoys the spectacle of a rainbow glimmering against a dark stormy sky. How does sunlight falling on clear drops of rain get broken into the
rainbow of colors we see? The same process causes white light to be broken into colors by a clear glass prism or a diamond. (See Figure 25.21.)

Figure 25.21 The colors of the rainbow (a) and those produced by a prism (b) are identical. (credit: Alfredo55, Wikimedia Commons; NASA)

We see about six colors in a rainbow—red, orange, yellow, green, blue, and violet; sometimes indigo is listed, too. Those colors are associated with
different wavelengths of light, as shown in Figure 25.22. When our eye receives pure-wavelength light, we tend to see only one of the six colors,
depending on wavelength. The thousands of other hues we can sense in other situations are our eye’s response to various mixtures of wavelengths.
White light, in particular, is a fairly uniform mixture of all visible wavelengths. Sunlight, considered to be white, actually appears to be a bit yellow
because of its mixture of wavelengths, but it does contain all visible wavelengths. The sequence of colors in rainbows is the same sequence as the
colors plotted versus wavelength in Figure 25.22. What this implies is that white light is spread out according to wavelength in a rainbow. Dispersion
is defined as the spreading of white light into its full spectrum of wavelengths. More technically, dispersion occurs whenever there is a process that
changes the direction of light in a manner that depends on wavelength. Dispersion, as a general phenomenon, can occur for any type of wave and
always involves wavelength-dependent processes.
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Dispersion

Dispersion is defined to be the spreading of white light into its full spectrum of wavelengths.

Figure 25.22 Even though rainbows are associated with seven colors, the rainbow is a continuous distribution of colors according to wavelengths.

Refraction is responsible for dispersion in rainbows and many other situations. The angle of refraction depends on the index of refraction, as we saw
in The Law of Refraction. We know that the index of refraction n depends on the medium. But for a given medium, n also depends on
wavelength. (See Table 25.2. Note that, for a given medium, n increases as wavelength decreases and is greatest for violet light. Thus violet light is
bent more than red light, as shown for a prism in Figure 25.23(b), and the light is dispersed into the same sequence of wavelengths as seen in
Figure 25.21 and Figure 25.22.

Making Connections: Dispersion

Any type of wave can exhibit dispersion. Sound waves, all types of electromagnetic waves, and water waves can be dispersed according to
wavelength. Dispersion occurs whenever the speed of propagation depends on wavelength, thus separating and spreading out various
wavelengths. Dispersion may require special circumstances and can result in spectacular displays such as in the production of a rainbow. This is
also true for sound, since all frequencies ordinarily travel at the same speed. If you listen to sound through a long tube, such as a vacuum
cleaner hose, you can easily hear it is dispersed by interaction with the tube. Dispersion, in fact, can reveal a great deal about what the wave has
encountered that disperses its wavelengths. The dispersion of electromagnetic radiation from outer space, for example, has revealed much
about what exists between the stars—the so-called empty space.

Table 25.2 Index of Refraction n in Selected Media at Various Wavelengths
Medium Red (660 nm) Orange (610 nm) Yellow (580 nm) Green (550 nm) Blue (470 nm) Violet (410 nm)

Water 1.331 1.332 1.333 1.335 1.338 1.342

Diamond 2.410 2.415 2.417 2.426 2.444 2.458

Glass, crown 1.512 1.514 1.518 1.519 1.524 1.530

Glass, flint 1.662 1.665 1.667 1.674 1.684 1.698

Polystyrene 1.488 1.490 1.492 1.493 1.499 1.506

Quartz, fused 1.455 1.456 1.458 1.459 1.462 1.468
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Figure 25.23 (a) A pure wavelength of light falls onto a prism and is refracted at both surfaces. (b) White light is dispersed by the prism (shown exaggerated). Since the index
of refraction varies with wavelength, the angles of refraction vary with wavelength. A sequence of red to violet is produced, because the index of refraction increases steadily
with decreasing wavelength.

Rainbows are produced by a combination of refraction and reflection. You may have noticed that you see a rainbow only when you look away from
the sun. Light enters a drop of water and is reflected from the back of the drop, as shown in Figure 25.24. The light is refracted both as it enters and
as it leaves the drop. Since the index of refraction of water varies with wavelength, the light is dispersed, and a rainbow is observed, as shown in
Figure 25.25 (a). (There is no dispersion caused by reflection at the back surface, since the law of reflection does not depend on wavelength.) The
actual rainbow of colors seen by an observer depends on the myriad of rays being refracted and reflected toward the observer’s eyes from numerous
drops of water. The effect is most spectacular when the background is dark, as in stormy weather, but can also be observed in waterfalls and lawn
sprinklers. The arc of a rainbow comes from the need to be looking at a specific angle relative to the direction of the sun, as illustrated in Figure
25.25 (b). (If there are two reflections of light within the water drop, another “secondary” rainbow is produced. This rare event produces an arc that
lies above the primary rainbow arc—see Figure 25.25 (c).)

Rainbows

Rainbows are produced by a combination of refraction and reflection.

Figure 25.24 Part of the light falling on this water drop enters and is reflected from the back of the drop. This light is refracted and dispersed both as it enters and as it leaves
the drop.
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Figure 25.25 (a) Different colors emerge in different directions, and so you must look at different locations to see the various colors of a rainbow. (b) The arc of a rainbow
results from the fact that a line between the observer and any point on the arc must make the correct angle with the parallel rays of sunlight to receive the refracted rays. (c)
Double rainbow. (credit: Nicholas, Wikimedia Commons)

Dispersion may produce beautiful rainbows, but it can cause problems in optical systems. White light used to transmit messages in a fiber is
dispersed, spreading out in time and eventually overlapping with other messages. Since a laser produces a nearly pure wavelength, its light
experiences little dispersion, an advantage over white light for transmission of information. In contrast, dispersion of electromagnetic waves coming to
us from outer space can be used to determine the amount of matter they pass through. As with many phenomena, dispersion can be useful or a
nuisance, depending on the situation and our human goals.

PhET Explorations: Geometric Optics

How does a lens form an image? See how light rays are refracted by a lens. Watch how the image changes when you adjust the focal length of
the lens, move the object, move the lens, or move the screen.
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Figure 25.26 Geometric Optics (http://cnx.org/content/m42466/1.5/geometric-optics_en.jar)

25.6 Image Formation by Lenses
Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera’s zoom lens. In this section,
we will use the law of refraction to explore the properties of lenses and how they form images.

The word lens derives from the Latin word for a lentil bean, the shape of which is similar to the convex lens in Figure 25.27. The convex lens shown
has been shaped so that all light rays that enter it parallel to its axis cross one another at a single point on the opposite side of the lens. (The axis is
defined to be a line normal to the lens at its center, as shown in Figure 25.27.) Such a lens is called a converging (or convex) lens for the
converging effect it has on light rays. An expanded view of the path of one ray through the lens is shown, to illustrate how the ray changes direction
both as it enters and as it leaves the lens. Since the index of refraction of the lens is greater than that of air, the ray moves towards the perpendicular
as it enters and away from the perpendicular as it leaves. (This is in accordance with the law of refraction.) Due to the lens’s shape, light is thus bent
toward the axis at both surfaces. The point at which the rays cross is defined to be the focal point F of the lens. The distance from the center of the
lens to its focal point is defined to be the focal length f of the lens. Figure 25.28 shows how a converging lens, such as that in a magnifying glass,

can converge the nearly parallel light rays from the sun to a small spot.

Figure 25.27 Rays of light entering a converging lens parallel to its axis converge at its focal point F. (Ray 2 lies on the axis of the lens.) The distance from the center of the
lens to the focal point is the lens’s focal length f . An expanded view of the path taken by ray 1 shows the perpendiculars and the angles of incidence and refraction at both

surfaces.

Converging or Convex Lens

The lens in which light rays that enter it parallel to its axis cross one another at a single point on the opposite side with a converging effect is
called converging lens.

Focal Point F

The point at which the light rays cross is called the focal point F of the lens.

Focal Length f

The distance from the center of the lens to its focal point is called focal length f .
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Figure 25.28 Sunlight focused by a converging magnifying glass can burn paper. Light rays from the sun are nearly parallel and cross at the focal point of the lens. The more
powerful the lens, the closer to the lens the rays will cross.

The greater effect a lens has on light rays, the more powerful it is said to be. For example, a powerful converging lens will focus parallel light rays
closer to itself and will have a smaller focal length than a weak lens. The light will also focus into a smaller and more intense spot for a more powerful
lens. The power P of a lens is defined to be the inverse of its focal length. In equation form, this is

(25.20)P = 1
f .

Power P
The power P of a lens is defined to be the inverse of its focal length. In equation form, this is

(25.21)P = 1
f .

where f is the focal length of the lens, which must be given in meters (and not cm or mm). The power of a lens P has the unit diopters (D),

provided that the focal length is given in meters. That is, 1 D = 1 / m , or 1 m−1 . (Note that this power (optical power, actually) is not the same
as power in watts defined in Work, Energy, and Energy Resources. It is a concept related to the effect of optical devices on light.) Optometrists
prescribe common spectacles and contact lenses in units of diopters.

Example 25.5 What is the Power of a Common Magnifying Glass?

Suppose you take a magnifying glass out on a sunny day and you find that it concentrates sunlight to a small spot 8.00 cm away from the lens.
What are the focal length and power of the lens?

Strategy

The situation here is the same as those shown in Figure 25.27 and Figure 25.28. The Sun is so far away that the Sun’s rays are nearly parallel
when they reach Earth. The magnifying glass is a convex (or converging) lens, focusing the nearly parallel rays of sunlight. Thus the focal length
of the lens is the distance from the lens to the spot, and its power is the inverse of this distance (in m).

Solution

The focal length of the lens is the distance from the center of the lens to the spot, given to be 8.00 cm. Thus,

(25.22)f = 8.00 cm.
To find the power of the lens, we must first convert the focal length to meters; then, we substitute this value into the equation for power. This
gives

(25.23)P = 1
f = 1

0.0800 m = 12.5 D.

Discussion

This is a relatively powerful lens. The power of a lens in diopters should not be confused with the familiar concept of power in watts. It is an
unfortunate fact that the word “power” is used for two completely different concepts. If you examine a prescription for eyeglasses, you will note
lens powers given in diopters. If you examine the label on a motor, you will note energy consumption rate given as a power in watts.

Figure 25.29 shows a concave lens and the effect it has on rays of light that enter it parallel to its axis (the path taken by ray 2 in the figure is the axis
of the lens). The concave lens is a diverging lens, because it causes the light rays to bend away (diverge) from its axis. In this case, the lens has
been shaped so that all light rays entering it parallel to its axis appear to originate from the same point, F , defined to be the focal point of a diverging

lens. The distance from the center of the lens to the focal point is again called the focal length f of the lens. Note that the focal length and power of
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a diverging lens are defined to be negative. For example, if the distance to F in Figure 25.29 is 5.00 cm, then the focal length is f = –5.00 cm
and the power of the lens is P = –20 D . An expanded view of the path of one ray through the lens is shown in the figure to illustrate how the shape
of the lens, together with the law of refraction, causes the ray to follow its particular path and be diverged.

Figure 25.29 Rays of light entering a diverging lens parallel to its axis are diverged, and all appear to originate at its focal point F . The dashed lines are not rays—they

indicate the directions from which the rays appear to come. The focal length f of a diverging lens is negative. An expanded view of the path taken by ray 1 shows the

perpendiculars and the angles of incidence and refraction at both surfaces.

Diverging Lens

A lens that causes the light rays to bend away from its axis is called a diverging lens.

As noted in the initial discussion of the law of refraction in The Law of Refraction, the paths of light rays are exactly reversible. This means that the
direction of the arrows could be reversed for all of the rays in Figure 25.27 and Figure 25.29. For example, if a point light source is placed at the
focal point of a convex lens, as shown in Figure 25.30, parallel light rays emerge from the other side.

Figure 25.30 A small light source, like a light bulb filament, placed at the focal point of a convex lens, results in parallel rays of light emerging from the other side. The paths
are exactly the reverse of those shown in Figure 25.27. This technique is used in lighthouses and sometimes in traffic lights to produce a directional beam of light from a
source that emits light in all directions.

Ray Tracing and Thin Lenses
Ray tracing is the technique of determining or following (tracing) the paths that light rays take. For rays passing through matter, the law of refraction
is used to trace the paths. Here we use ray tracing to help us understand the action of lenses in situations ranging from forming images on film to
magnifying small print to correcting nearsightedness. While ray tracing for complicated lenses, such as those found in sophisticated cameras, may
require computer techniques, there is a set of simple rules for tracing rays through thin lenses. A thin lens is defined to be one whose thickness
allows rays to refract, as illustrated in Figure 25.27, but does not allow properties such as dispersion and aberrations. An ideal thin lens has two
refracting surfaces but the lens is thin enough to assume that light rays bend only once. A thin symmetrical lens has two focal points, one on either
side and both at the same distance from the lens. (See Figure 25.31.) Another important characteristic of a thin lens is that light rays through its
center are deflected by a negligible amount, as seen in Figure 25.32.

Thin Lens

A thin lens is defined to be one whose thickness allows rays to refract but does not allow properties such as dispersion and aberrations.

Take-Home Experiment: A Visit to the Optician

Look through your eyeglasses (or those of a friend) backward and forward and comment on whether they act like thin lenses.
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Figure 25.31 Thin lenses have the same focal length on either side. (a) Parallel light rays entering a converging lens from the right cross at its focal point on the left. (b)
Parallel light rays entering a diverging lens from the right seem to come from the focal point on the right.

Figure 25.32 The light ray through the center of a thin lens is deflected by a negligible amount and is assumed to emerge parallel to its original path (shown as a shaded line).

Using paper, pencil, and a straight edge, ray tracing can accurately describe the operation of a lens. The rules for ray tracing for thin lenses are
based on the illustrations already discussed:

1. A ray entering a converging lens parallel to its axis passes through the focal point F of the lens on the other side. (See rays 1 and 3 in Figure
25.27.)

2. A ray entering a diverging lens parallel to its axis seems to come from the focal point F. (See rays 1 and 3 in Figure 25.29.)
3. A ray passing through the center of either a converging or a diverging lens does not change direction. (See Figure 25.32, and see ray 2 in

Figure 25.27 and Figure 25.29.)
4. A ray entering a converging lens through its focal point exits parallel to its axis. (The reverse of rays 1 and 3 in Figure 25.27.)
5. A ray that enters a diverging lens by heading toward the focal point on the opposite side exits parallel to the axis. (The reverse of rays 1 and 3 in

Figure 25.29.)

Rules for Ray Tracing
1. A ray entering a converging lens parallel to its axis passes through the focal point F of the lens on the other side.
2. A ray entering a diverging lens parallel to its axis seems to come from the focal point F.
3. A ray passing through the center of either a converging or a diverging lens does not change direction.
4. A ray entering a converging lens through its focal point exits parallel to its axis.
5. A ray that enters a diverging lens by heading toward the focal point on the opposite side exits parallel to the axis.
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Image Formation by Thin Lenses
In some circumstances, a lens forms an obvious image, such as when a movie projector casts an image onto a screen. In other cases, the image is
less obvious. Where, for example, is the image formed by eyeglasses? We will use ray tracing for thin lenses to illustrate how they form images, and
we will develop equations to describe the image formation quantitatively.

Consider an object some distance away from a converging lens, as shown in Figure 25.33. To find the location and size of the image formed, we
trace the paths of selected light rays originating from one point on the object, in this case the top of the person’s head. The figure shows three rays
from the top of the object that can be traced using the ray tracing rules given above. (Rays leave this point going in many directions, but we
concentrate on only a few with paths that are easy to trace.) The first ray is one that enters the lens parallel to its axis and passes through the focal
point on the other side (rule 1). The second ray passes through the center of the lens without changing direction (rule 3). The third ray passes through
the nearer focal point on its way into the lens and leaves the lens parallel to its axis (rule 4). The three rays cross at the same point on the other side
of the lens. The image of the top of the person’s head is located at this point. All rays that come from the same point on the top of the person’s head
are refracted in such a way as to cross at the point shown. Rays from another point on the object, such as her belt buckle, will also cross at another
common point, forming a complete image, as shown. Although three rays are traced in Figure 25.33, only two are necessary to locate the image. It is
best to trace rays for which there are simple ray tracing rules. Before applying ray tracing to other situations, let us consider the example shown in
Figure 25.33 in more detail.

Figure 25.33 Ray tracing is used to locate the image formed by a lens. Rays originating from the same point on the object are traced—the three chosen rays each follow one
of the rules for ray tracing, so that their paths are easy to determine. The image is located at the point where the rays cross. In this case, a real image—one that can be
projected on a screen—is formed.

The image formed in Figure 25.33 is a real image, meaning that it can be projected. That is, light rays from one point on the object actually cross at
the location of the image and can be projected onto a screen, a piece of film, or the retina of an eye, for example. Figure 25.34 shows how such an
image would be projected onto film by a camera lens. This figure also shows how a real image is projected onto the retina by the lens of an eye. Note
that the image is there whether it is projected onto a screen or not.

Real Image

The image in which light rays from one point on the object actually cross at the location of the image and can be projected onto a screen, a piece
of film, or the retina of an eye is called a real image.
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Figure 25.34 Real images can be projected. (a) A real image of the person is projected onto film. (b) The converging nature of the multiple surfaces that make up the eye
result in the projection of a real image on the retina.

Several important distances appear in Figure 25.33. We define do to be the object distance, the distance of an object from the center of a lens.

Image distance di is defined to be the distance of the image from the center of a lens. The height of the object and height of the image are given

the symbols ho and hi , respectively. Images that appear upright relative to the object have heights that are positive and those that are inverted

have negative heights. Using the rules of ray tracing and making a scale drawing with paper and pencil, like that in Figure 25.33, we can accurately
describe the location and size of an image. But the real benefit of ray tracing is in visualizing how images are formed in a variety of situations. To
obtain numerical information, we use a pair of equations that can be derived from a geometric analysis of ray tracing for thin lenses. The thin lens
equations are

(25.24)1
do

+ 1
di

= 1
f

and

(25.25)hi
ho

= − di
do

= m.

We define the ratio of image height to object height ( hi / ho ) to be the magnification m . (The minus sign in the equation above will be discussed

shortly.) The thin lens equations are broadly applicable to all situations involving thin lenses (and “thin” mirrors, as we will see later). We will explore
many features of image formation in the following worked examples.

Image Distance

The distance of the image from the center of the lens is called image distance.

Thin Lens Equations and Magnification
(25.26)1

do
+ 1

di
= 1

f
(25.27)hi

ho
= − di

do
= m

Example 25.6 Finding the Image of a Light Bulb Filament by Ray Tracing and by the Thin Lens Equations

A clear glass light bulb is placed 0.750 m from a convex lens having a 0.500 m focal length, as shown in Figure 25.35. Use ray tracing to get an
approximate location for the image. Then use the thin lens equations to calculate (a) the location of the image and (b) its magnification. Verify
that ray tracing and the thin lens equations produce consistent results.
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Figure 25.35 A light bulb placed 0.750 m from a lens having a 0.500 m focal length produces a real image on a poster board as discussed in the example above. Ray
tracing predicts the image location and size.

Strategy and Concept

Since the object is placed farther away from a converging lens than the focal length of the lens, this situation is analogous to those illustrated in
Figure 25.33 and Figure 25.34. Ray tracing to scale should produce similar results for di . Numerical solutions for di and m can be obtained

using the thin lens equations, noting that do = 0.750 m and f = 0.500 m .

Solutions (Ray tracing)

The ray tracing to scale in Figure 25.35 shows two rays from a point on the bulb’s filament crossing about 1.50 m on the far side of the lens.
Thus the image distance di is about 1.50 m. Similarly, the image height based on ray tracing is greater than the object height by about a factor

of 2, and the image is inverted. Thus m is about –2. The minus sign indicates that the image is inverted.

The thin lens equations can be used to find di from the given information:

(25.28)1
do

+ 1
di

= 1
f .

Rearranging to isolate di gives

(25.29)1
di

= 1
f − 1

do
.

Entering known quantities gives a value for 1 / di :

(25.30)1
di

= 1
0.500 m − 1

0.750 m = 0.667m .

This must be inverted to find di :

(25.31)di = m
0.667 = 1.50 m.

Note that another way to find di is to rearrange the equation:

(25.32)1
di

= 1
f − 1

do
.

This yields the equation for the image distance as:

(25.33)di = fdo
do − f .

Note that there is no inverting here.

The thin lens equations can be used to find the magnification m , since both di and do are known. Entering their values gives

(25.34)m = – di
do

= – 1.50 m
0.750 m = – 2.00.

Discussion

Note that the minus sign causes the magnification to be negative when the image is inverted. Ray tracing and the use of the thin lens equations
produce consistent results. The thin lens equations give the most precise results, being limited only by the accuracy of the given information. Ray
tracing is limited by the accuracy with which you can draw, but it is highly useful both conceptually and visually.

Real images, such as the one considered in the previous example, are formed by converging lenses whenever an object is farther from the lens than
its focal length. This is true for movie projectors, cameras, and the eye. We shall refer to these as case 1 images. A case 1 image is formed when
do > f and f is positive, as in Figure 25.36(a). (A summary of the three cases or types of image formation appears at the end of this section.)
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A different type of image is formed when an object, such as a person's face, is held close to a convex lens. The image is upright and larger than the
object, as seen in Figure 25.36(b), and so the lens is called a magnifier. If you slowly pull the magnifier away from the face, you will see that the
magnification steadily increases until the image begins to blur. Pulling the magnifier even farther away produces an inverted image as seen in Figure
25.36(a). The distance at which the image blurs, and beyond which it inverts, is the focal length of the lens. To use a convex lens as a magnifier, the
object must be closer to the converging lens than its focal length. This is called a case 2 image. A case 2 image is formed when do < f and f is

positive.

Figure 25.36 (a) When a converging lens is held farther away from the face than the lens’s focal length, an inverted image is formed. This is a case 1 image. Note that the
image is in focus but the face is not, because the image is much closer to the camera taking this photograph than the face. (credit: DaMongMan, Flickr) (b) A magnified image
of a face is produced by placing it closer to the converging lens than its focal length. This is a case 2 image. (credit: Casey Fleser, Flickr)

Figure 25.37 uses ray tracing to show how an image is formed when an object is held closer to a converging lens than its focal length. Rays coming
from a common point on the object continue to diverge after passing through the lens, but all appear to originate from a point at the location of the
image. The image is on the same side of the lens as the object and is farther away from the lens than the object. This image, like all case 2 images,
cannot be projected and, hence, is called a virtual image. Light rays only appear to originate at a virtual image; they do not actually pass through
that location in space. A screen placed at the location of a virtual image will receive only diffuse light from the object, not focused rays from the lens.
Additionally, a screen placed on the opposite side of the lens will receive rays that are still diverging, and so no image will be projected on it. We can
see the magnified image with our eyes, because the lens of the eye converges the rays into a real image projected on our retina. Finally, we note that
a virtual image is upright and larger than the object, meaning that the magnification is positive and greater than 1.
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Figure 25.37 Ray tracing predicts the image location and size for an object held closer to a converging lens than its focal length. Ray 1 enters parallel to the axis and exits
through the focal point on the opposite side, while ray 2 passes through the center of the lens without changing path. The two rays continue to diverge on the other side of the
lens, but both appear to come from a common point, locating the upright, magnified, virtual image. This is a case 2 image.

Virtual Image

An image that is on the same side of the lens as the object and cannot be projected on a screen is called a virtual image.

Example 25.7 Image Produced by a Magnifying Glass

Suppose the book page in Figure 25.37 (a) is held 7.50 cm from a convex lens of focal length 10.0 cm, such as a typical magnifying glass might
have. What magnification is produced?

Strategy and Concept

We are given that do = 7.50 cm and f = 10.0 cm , so we have a situation where the object is placed closer to the lens than its focal length.

We therefore expect to get a case 2 virtual image with a positive magnification that is greater than 1. Ray tracing produces an image like that
shown in Figure 25.37, but we will use the thin lens equations to get numerical solutions in this example.

Solution

To find the magnification m , we try to use magnification equation, m = –di / do . We do not have a value for di , so that we must first find the

location of the image using lens equation. (The procedure is the same as followed in the preceding example, where do and f were known.)

Rearranging the magnification equation to isolate di gives

(25.35)1
di

= 1
f − 1

do
.

Entering known values, we obtain a value for 1/di :

(25.36)1
di

= 1
10.0 cm − 1

7.50 cm = −0.0333cm .

This must be inverted to find di :

(25.37)di = − cm
0.0333 = −30.0 cm.

Now the thin lens equation can be used to find the magnification m , since both di and do are known. Entering their values gives

(25.38)m = − di
do

= −−30.0 cm
10.0 cm = 3.00.
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Discussion

A number of results in this example are true of all case 2 images, as well as being consistent with Figure 25.37. Magnification is indeed positive
(as predicted), meaning the image is upright. The magnification is also greater than 1, meaning that the image is larger than the object—in this
case, by a factor of 3. Note that the image distance is negative. This means the image is on the same side of the lens as the object. Thus the
image cannot be projected and is virtual. (Negative values of di occur for virtual images.) The image is farther from the lens than the object,

since the image distance is greater in magnitude than the object distance. The location of the image is not obvious when you look through a
magnifier. In fact, since the image is bigger than the object, you may think the image is closer than the object. But the image is farther away, a
fact that is useful in correcting farsightedness, as we shall see in a later section.

A third type of image is formed by a diverging or concave lens. Try looking through eyeglasses meant to correct nearsightedness. (See Figure
25.38.) You will see an image that is upright but smaller than the object. This means that the magnification is positive but less than 1. The ray
diagram in Figure 25.39 shows that the image is on the same side of the lens as the object and, hence, cannot be projected—it is a virtual image.
Note that the image is closer to the lens than the object. This is a case 3 image, formed for any object by a negative focal length or diverging lens.

Figure 25.38 A car viewed through a concave or diverging lens looks upright. This is a case 3 image. (credit: Daniel Oines, Flickr)

Figure 25.39 Ray tracing predicts the image location and size for a concave or diverging lens. Ray 1 enters parallel to the axis and is bent so that it appears to originate from
the focal point. Ray 2 passes through the center of the lens without changing path. The two rays appear to come from a common point, locating the upright image. This is a
case 3 image, which is closer to the lens than the object and smaller in height.

Example 25.8 Image Produced by a Concave Lens

Suppose an object such as a book page is held 7.50 cm from a concave lens of focal length –10.0 cm. Such a lens could be used in eyeglasses
to correct pronounced nearsightedness. What magnification is produced?

Strategy and Concept

This example is identical to the preceding one, except that the focal length is negative for a concave or diverging lens. The method of solution is
thus the same, but the results are different in important ways.
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Solution

To find the magnification m , we must first find the image distance di using thin lens equation

(25.39)1
di

= 1
f − 1

do
,

or its alternative rearrangement

(25.40)di = fdo
do − f .

We are given that f = –10.0 cm and do = 7.50 cm . Entering these yields a value for 1/di :

(25.41)1
di

= 1
−10.0 cm − 1

7.50 cm = −0.2333cm .

This must be inverted to find di :

(25.42)di = − cm
0.2333 = −4.29 cm.

Or

(25.43)di = (7.5)(−10)
⎛⎝7.5 − (−10)⎞⎠

= −75 / 17.5 = −4.29 cm.

Now the magnification equation can be used to find the magnification m , since both di and do are known. Entering their values gives

(25.44)m = − di
do

= −−4.29 cm
7.50 cm = 0.571.

Discussion

A number of results in this example are true of all case 3 images, as well as being consistent with Figure 25.39. Magnification is positive (as
predicted), meaning the image is upright. The magnification is also less than 1, meaning the image is smaller than the object—in this case, a little
over half its size. The image distance is negative, meaning the image is on the same side of the lens as the object. (The image is virtual.) The
image is closer to the lens than the object, since the image distance is smaller in magnitude than the object distance. The location of the image is
not obvious when you look through a concave lens. In fact, since the image is smaller than the object, you may think it is farther away. But the
image is closer than the object, a fact that is useful in correcting nearsightedness, as we shall see in a later section.

Table 25.3 summarizes the three types of images formed by single thin lenses. These are referred to as case 1, 2, and 3 images. Convex
(converging) lenses can form either real or virtual images (cases 1 and 2, respectively), whereas concave (diverging) lenses can form only virtual
images (always case 3). Real images are always inverted, but they can be either larger or smaller than the object. For example, a slide projector
forms an image larger than the slide, whereas a camera makes an image smaller than the object being photographed. Virtual images are always
upright and cannot be projected. Virtual images are larger than the object only in case 2, where a convex lens is used. The virtual image produced by
a concave lens is always smaller than the object—a case 3 image. We can see and photograph virtual images only by using an additional lens to
form a real image.

Table 25.3 Three Types of Images Formed By Thin Lenses

Type Formed when Image type di m

Case 1 f positive, do > f real positive negative

Case 2 f positive, do < f virtual negative positive m > 1

Case 3 f negative virtual negative positive m < 1

In Image Formation by Mirrors, we shall see that mirrors can form exactly the same types of images as lenses.

Take-Home Experiment: Concentrating Sunlight

Find several lenses and determine whether they are converging or diverging. In general those that are thicker near the edges are diverging and
those that are thicker near the center are converging. On a bright sunny day take the converging lenses outside and try focusing the sunlight
onto a piece of paper. Determine the focal lengths of the lenses. Be careful because the paper may start to burn, depending on the type of lens
you have selected.

Problem-Solving Strategies for Lenses
Step 1. Examine the situation to determine that image formation by a lens is involved.
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Step 2. Determine whether ray tracing, the thin lens equations, or both are to be employed. A sketch is very useful even if ray tracing is not
specifically required by the problem. Write symbols and values on the sketch.

Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).

Step 4. Make alist of what is given or can be inferred from the problem as stated (identify the knowns). It is helpful to determine whether the situation
involves a case 1, 2, or 3 image. While these are just names for types of images, they have certain characteristics (given in Table 25.3) that can be of
great use in solving problems.

Step 5. If ray tracing is required, use the ray tracing rules listed near the beginning of this section.

Step 6. Most quantitative problems require the use of the thin lens equations. These are solved in the usual manner by substituting knowns and
solving for unknowns. Several worked examples serve as guides.

Step 7. Check to see if the answer is reasonable: Does it make sense? If you have identified the type of image (case 1, 2, or 3), you should assess
whether your answer is consistent with the type of image, magnification, and so on.

Misconception Alert

We do not realize that light rays are coming from every part of the object, passing through every part of the lens, and all can be used to form the
final image.

We generally feel the entire lens, or mirror, is needed to form an image. Actually, half a lens will form the same, though a fainter, image.

25.7 Image Formation by Mirrors
We only have to look as far as the nearest bathroom to find an example of an image formed by a mirror. Images in flat mirrors are the same size as
the object and are located behind the mirror. Like lenses, mirrors can form a variety of images. For example, dental mirrors may produce a magnified
image, just as makeup mirrors do. Security mirrors in shops, on the other hand, form images that are smaller than the object. We will use the law of
reflection to understand how mirrors form images, and we will find that mirror images are analogous to those formed by lenses.

Figure 25.40 helps illustrate how a flat mirror forms an image. Two rays are shown emerging from the same point, striking the mirror, and being
reflected into the observer’s eye. The rays can diverge slightly, and both still get into the eye. If the rays are extrapolated backward, they seem to
originate from a common point behind the mirror, locating the image. (The paths of the reflected rays into the eye are the same as if they had come
directly from that point behind the mirror.) Using the law of reflection—the angle of reflection equals the angle of incidence—we can see that the
image and object are the same distance from the mirror. This is a virtual image, since it cannot be projected—the rays only appear to originate from a
common point behind the mirror. Obviously, if you walk behind the mirror, you cannot see the image, since the rays do not go there. But in front of the
mirror, the rays behave exactly as if they had come from behind the mirror, so that is where the image is situated.

Figure 25.40 Two sets of rays from common points on an object are reflected by a flat mirror into the eye of an observer. The reflected rays seem to originate from behind the
mirror, locating the virtual image.

Now let us consider the focal length of a mirror—for example, the concave spherical mirrors in Figure 25.41. Rays of light that strike the surface
follow the law of reflection. For a mirror that is large compared with its radius of curvature, as in Figure 25.41(a), we see that the reflected rays do not
cross at the same point, and the mirror does not have a well-defined focal point. If the mirror had the shape of a parabola, the rays would all cross at
a single point, and the mirror would have a well-defined focal point. But parabolic mirrors are much more expensive to make than spherical mirrors.
The solution is to use a mirror that is small compared with its radius of curvature, as shown in Figure 25.41(b). (This is the mirror equivalent of the
thin lens approximation.) To a very good approximation, this mirror has a well-defined focal point at F that is the focal distance f from the center of

the mirror. The focal length f of a concave mirror is positive, since it is a converging mirror.
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Figure 25.41 (a) Parallel rays reflected from a large spherical mirror do not all cross at a common point. (b) If a spherical mirror is small compared with its radius of curvature,
parallel rays are focused to a common point. The distance of the focal point from the center of the mirror is its focal length f . Since this mirror is converging, it has a positive

focal length.

Just as for lenses, the shorter the focal length, the more powerful the mirror; thus, P = 1 / f for a mirror, too. A more strongly curved mirror has a

shorter focal length and a greater power. Using the law of reflection and some simple trigonometry, it can be shown that the focal length is half the
radius of curvature, or

(25.45)f = R
2 ,

where R is the radius of curvature of a spherical mirror. The smaller the radius of curvature, the smaller the focal length and, thus, the more powerful
the mirror.

The convex mirror shown in Figure 25.42 also has a focal point. Parallel rays of light reflected from the mirror seem to originate from the point F at
the focal distance f behind the mirror. The focal length and power of a convex mirror are negative, since it is a diverging mirror.

Figure 25.42 Parallel rays of light reflected from a convex spherical mirror (small in size compared with its radius of curvature) seem to originate from a well-defined focal point
at the focal distance f behind the mirror. Convex mirrors diverge light rays and, thus, have a negative focal length.

Ray tracing is as useful for mirrors as for lenses. The rules for ray tracing for mirrors are based on the illustrations just discussed:

1. A ray approaching a concave converging mirror parallel to its axis is reflected through the focal point F of the mirror on the same side. (See rays
1 and 3 in Figure 25.41(b).)

2. A ray approaching a convex diverging mirror parallel to its axis is reflected so that it seems to come from the focal point F behind the mirror.
(See rays 1 and 3 in Figure 25.42.)

3. Any ray striking the center of a mirror is followed by applying the law of reflection; it makes the same angle with the axis when leaving as when
approaching. (See ray 2 in Figure 25.43.)

4. A ray approaching a concave converging mirror through its focal point is reflected parallel to its axis. (The reverse of rays 1 and 3 in Figure
25.41.)
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5. A ray approaching a convex diverging mirror by heading toward its focal point on the opposite side is reflected parallel to the axis. (The reverse
of rays 1 and 3 in Figure 25.42.)

We will use ray tracing to illustrate how images are formed by mirrors, and we can use ray tracing quantitatively to obtain numerical information. But
since we assume each mirror is small compared with its radius of curvature, we can use the thin lens equations for mirrors just as we did for lenses.

Consider the situation shown in Figure 25.43, concave spherical mirror reflection, in which an object is placed farther from a concave (converging)
mirror than its focal length. That is, f is positive and do > f , so that we may expect an image similar to the case 1 real image formed by a

converging lens. Ray tracing in Figure 25.43 shows that the rays from a common point on the object all cross at a point on the same side of the
mirror as the object. Thus a real image can be projected onto a screen placed at this location. The image distance is positive, and the image is
inverted, so its magnification is negative. This is a case 1 image for mirrors. It differs from the case 1 image for lenses only in that the image is on the
same side of the mirror as the object. It is otherwise identical.

Figure 25.43 A case 1 image for a mirror. An object is farther from the converging mirror than its focal length. Rays from a common point on the object are traced using the
rules in the text. Ray 1 approaches parallel to the axis, ray 2 strikes the center of the mirror, and ray 3 goes through the focal point on the way toward the mirror. All three rays
cross at the same point after being reflected, locating the inverted real image. Although three rays are shown, only two of the three are needed to locate the image and
determine its height.

Example 25.9 A Concave Reflector

Electric room heaters use a concave mirror to reflect infrared (IR) radiation from hot coils. Note that IR follows the same law of reflection as
visible light. Given that the mirror has a radius of curvature of 50.0 cm and produces an image of the coils 3.00 m away from the mirror, where
are the coils?

Strategy and Concept

We are given that the concave mirror projects a real image of the coils at an image distance di = 3.00 m . The coils are the object, and we are

asked to find their location—that is, to find the object distance do . We are also given the radius of curvature of the mirror, so that its focal length

is f = R / 2 = 25.0 cm (positive since the mirror is concave or converging). Assuming the mirror is small compared with its radius of

curvature, we can use the thin lens equations, to solve this problem.

Solution

Since di and f are known, thin lens equation can be used to find do :

(25.46)1
do

+ 1
di

= 1
f .

Rearranging to isolate do gives

(25.47)1
do

= 1
f − 1

di
.

Entering known quantities gives a value for 1/do :

(25.48)1
do

= 1
0.250 m − 1

3.00 m = 3.667m .

This must be inverted to find do :

(25.49)do = 1 m
3.667 = 27.3 cm.

Discussion

Note that the object (the filament) is farther from the mirror than the mirror’s focal length. This is a case 1 image ( do > f and f positive),

consistent with the fact that a real image is formed. You will get the most concentrated thermal energy directly in front of the mirror and 3.00 m
away from it. Generally, this is not desirable, since it could cause burns. Usually, you want the rays to emerge parallel, and this is accomplished
by having the filament at the focal point of the mirror.

Note that the filament here is not much farther from the mirror than its focal length and that the image produced is considerably farther away.
This is exactly analogous to a slide projector. Placing a slide only slightly farther away from the projector lens than its focal length produces an
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image significantly farther away. As the object gets closer to the focal distance, the image gets farther away. In fact, as the object distance
approaches the focal length, the image distance approaches infinity and the rays are sent out parallel to one another.

Example 25.10 Solar Electric Generating System

One of the solar technologies used today for generating electricity is a device (called a parabolic trough or concentrating collector) that
concentrates the sunlight onto a blackened pipe that contains a fluid. This heated fluid is pumped to a heat exchanger, where its heat energy is
transferred to another system that is used to generate steam—and so generate electricity through a conventional steam cycle. Figure 25.44
shows such a working system in southern California. Concave mirrors are used to concentrate the sunlight onto the pipe. The mirror has the
approximate shape of a section of a cylinder. For the problem, assume that the mirror is exactly one-quarter of a full cylinder.

a. If we wish to place the fluid-carrying pipe 40.0 cm from the concave mirror at the mirror’s focal point, what will be the radius of curvature of
the mirror?

b. Per meter of pipe, what will be the amount of sunlight concentrated onto the pipe, assuming the insolation (incident solar radiation) is

0.900 kW/m2 ?
c. If the fluid-carrying pipe has a 2.00-cm diameter, what will be the temperature increase of the fluid per meter of pipe over a period of one

minute? Assume all the solar radiation incident on the reflector is absorbed by the pipe, and that the fluid is mineral oil.

Strategy

To solve an Integrated Concept Problem we must first identify the physical principles involved. Part (a) is related to the current topic. Part (b)
involves a little math, primarily geometry. Part (c) requires an understanding of heat and density.

Solution to (a)

To a good approximation for a concave or semi-spherical surface, the point where the parallel rays from the sun converge will be at the focal
point, so R = 2 f = 80.0 cm .

Solution to (b)

The insolation is 900 W/m2 . We must find the cross-sectional area A of the concave mirror, since the power delivered is 900 W/m2×A .

The mirror in this case is a quarter-section of a cylinder, so the area for a length L of the mirror is A = 1
4(2πR)L . The area for a length of 1.00

m is then

(25.50)A = π
2R(1.00 m) = (3.14)

2 (0.800 m)(1.00 m) = 1.26 m2.

The insolation on the 1.00-m length of pipe is then

(25.51)⎛⎝9.00×102 W
m2

⎞⎠⎛⎝1.26 m2⎞⎠ = 1130 W.

Solution to (c)

The increase in temperature is given by Q = mcΔT . The mass m of the mineral oil in the one-meter section of pipe is

(25.52)
m = ρV = ρπ⎛⎝d

2
⎞⎠
2

(1.00 m)

= ⎛⎝8.00×102 kg/m3⎞⎠(3.14)(0.0100 m)2 (1.00 m)
= 0.251 kg.

Therefore, the increase in temperature in one minute is

(25.53)ΔT = Q / mc
= (1130 W)(60.0 s)

(0.251 kg)(1670 J·kg/ºC)
= 162ºC.

Discussion for (c)

An array of such pipes in the California desert can provide a thermal output of 250 MW on a sunny day, with fluids reaching temperatures as high
as 400ºC . We are considering only one meter of pipe here, and ignoring heat losses along the pipe.
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Figure 25.44 Parabolic trough collectors are used to generate electricity in southern California. (credit: kjkolb, Wikimedia Commons)

What happens if an object is closer to a concave mirror than its focal length? This is analogous to a case 2 image for lenses ( do < f and f
positive), which is a magnifier. In fact, this is how makeup mirrors act as magnifiers. Figure 25.45(a) uses ray tracing to locate the image of an
object placed close to a concave mirror. Rays from a common point on the object are reflected in such a manner that they appear to be coming
from behind the mirror, meaning that the image is virtual and cannot be projected. As with a magnifying glass, the image is upright and larger
than the object. This is a case 2 image for mirrors and is exactly analogous to that for lenses.

Figure 25.45 (a) Case 2 images for mirrors are formed when a converging mirror has an object closer to it than its focal length. Ray 1 approaches parallel to the axis, ray
2 strikes the center of the mirror, and ray 3 approaches the mirror as if it came from the focal point. (b) A magnifying mirror showing the reflection. (credit: Mike Melrose,
Flickr)

All three rays appear to originate from the same point after being reflected, locating the upright virtual image behind the mirror and showing it to
be larger than the object. (b) Makeup mirrors are perhaps the most common use of a concave mirror to produce a larger, upright image.

A convex mirror is a diverging mirror ( f is negative) and forms only one type of image. It is a case 3 image—one that is upright and smaller

than the object, just as for diverging lenses. Figure 25.46(a) uses ray tracing to illustrate the location and size of the case 3 image for mirrors.
Since the image is behind the mirror, it cannot be projected and is thus a virtual image. It is also seen to be smaller than the object.
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Figure 25.46 Case 3 images for mirrors are formed by any convex mirror. Ray 1 approaches parallel to the axis, ray 2 strikes the center of the mirror, and ray 3
approaches toward the focal point. All three rays appear to originate from the same point after being reflected, locating the upright virtual image behind the mirror and
showing it to be smaller than the object. (b) Security mirrors are convex, producing a smaller, upright image. Because the image is smaller, a larger area is imaged
compared to what would be observed for a flat mirror (and hence security is improved). (credit: Laura D’Alessandro, Flickr)

Example 25.11 Image in a Convex Mirror

A keratometer is a device used to measure the curvature of the cornea, particularly for fitting contact lenses. Light is reflected from the cornea,
which acts like a convex mirror, and the keratometer measures the magnification of the image. The smaller the magnification, the smaller the
radius of curvature of the cornea. If the light source is 12.0 cm from the cornea and the image’s magnification is 0.0320, what is the cornea’s
radius of curvature?

Strategy

If we can find the focal length of the convex mirror formed by the cornea, we can find its radius of curvature (the radius of curvature is twice the
focal length of a spherical mirror). We are given that the object distance is do = 12.0 cm and that m = 0.0320 . We first solve for the image

distance di , and then for f .

Solution

m = –di / do . Solving this expression for di gives

(25.54)di = −mdo.
Entering known values yields

(25.55)di = – (0.0320)(12.0 cm) = –0.384 cm.
(25.56)1

f = 1
do

+ 1
di

Substituting known values,

(25.57)1
f = 1

12.0 cm + 1
−0.384 cm = −2.52cm .

This must be inverted to find f :

(25.58)f = cm
– 2.52 = –0.400 cm.
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converging lens:

converging mirror:

corner reflector:

critical angle:

dispersion:

diverging lens:

diverging mirror:

fiber optics:

focal length:

focal point:

geometric optics:

index of refraction:

law of reflection:

law of reflection:

magnification:

mirror:

power:

rainbow:

ray:

real image:

refraction:

virtual image:

The radius of curvature is twice the focal length, so that

(25.59)R = 2 ∣ f ∣ = 0.800 cm.
Discussion

Although the focal length f of a convex mirror is defined to be negative, we take the absolute value to give us a positive value for R . The

radius of curvature found here is reasonable for a cornea. The distance from cornea to retina in an adult eye is about 2.0 cm. In practice, many
corneas are not spherical, complicating the job of fitting contact lenses. Note that the image distance here is negative, consistent with the fact
that the image is behind the mirror, where it cannot be projected. In this section’s Problems and Exercises, you will show that for a fixed object
distance, the smaller the radius of curvature, the smaller the magnification.

The three types of images formed by mirrors (cases 1, 2, and 3) are exactly analogous to those formed by lenses, as summarized in the table at
the end of Image Formation by Lenses. It is easiest to concentrate on only three types of images—then remember that concave mirrors act like
convex lenses, whereas convex mirrors act like concave lenses.

Take-Home Experiment: Concave Mirrors Close to Home

Find a flashlight and identify the curved mirror used in it. Find another flashlight and shine the first flashlight onto the second one, which is turned
off. Estimate the focal length of the mirror. You might try shining a flashlight on the curved mirror behind the headlight of a car, keeping the
headlight switched off, and determine its focal length.

Problem-Solving Strategy for Mirrors
Step 1. Examine the situation to determine that image formation by a mirror is involved.

Step 2. Refer to the Problem-Solving Strategies for Lenses. The same strategies are valid for mirrors as for lenses with one qualification—use the
ray tracing rules for mirrors listed earlier in this section.

Glossary
a convex lens in which light rays that enter it parallel to its axis converge at a single point on the opposite side

a concave mirror in which light rays that strike it parallel to its axis converge at one or more points along the axis

an object consisting of two mutually perpendicular reflecting surfaces, so that the light that enters is reflected back exactly
parallel to the direction from which it came

incident angle that produces an angle of refraction of 90º

spreading of white light into its full spectrum of wavelengths

a concave lens in which light rays that enter it parallel to its axis bend away (diverge) from its axis

a convex mirror in which light rays that strike it parallel to its axis bend away (diverge) from its axis

transmission of light down fibers of plastic or glass, applying the principle of total internal reflection

distance from the center of a lens or curved mirror to its focal point

for a converging lens or mirror, the point at which converging light rays cross; for a diverging lens or mirror, the point from which
diverging light rays appear to originate

part of optics dealing with the ray aspect of light

for a material, the ratio of the speed of light in vacuum to that in the material

angle of reflection equals the angle of incidence

angle of reflection equals the angle of incidence

ratio of image height to object height

smooth surface that reflects light at specific angles, forming an image of the person or object in front of it

inverse of focal length

dispersion of sunlight into a continuous distribution of colors according to wavelength, produced by the refraction and reflection of
sunlight by water droplets in the sky

straight line that originates at some point

image that can be projected

changing of a light ray’s direction when it passes through variations in matter

image that cannot be projected
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