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THE DOPPLER EFFECT AND SPECIAL RELATIVITY

INTRODUCTION:

Probably the centerpiece of modern cosmology is what is usually called Hubble’s
law, attributed to a classic 1929 paper by Edwin Hubble.* The law states that all the
distant galaxies are receding from us, with a recession velocity given by

v = Hr . (1.1)

Here
v ≡ recession velocity,

H ≡ the Hubble constant,

and r ≡ distance to galaxy.

Starting about 2011 there has been some degree of dispute about the attribution of
Hubble’s law, because it turns out that the law was stated clearly in 1927 by the Belgian
priest Georges Lemâıtre,† who deduced it theoretically from a model of an expanding
universe, and estimated a value for the expansion rate based on published astronomical
observations. It was certainly Hubble, however, who developed the observational case
for what we now call Hubble’s law. (We at MIT, however, have every reason to tout
the contributions of Lemâıtre, who in the same year, 1927, received a Ph.D. in physics
from MIT.) The controversy over the attribution of Hubble’s law has led to a fascinating
literature discussing paragraphs mysteriously missing from the English translation of
Lemâıtre’s 1927 paper, and ultimately the resolution of that mystery. The interested
reader can pursue the links provided in the footnotes.¶ In any case, it seems clear that

* Edwin Hubble, “A relation between distance and radial velocity among extra-galactic
nebulae,” Proceedings of the National Academy of Science, vol. 15, pp. 168-173 (1929).
† Georges Lemâıtre, “Un Univers homogène de masse constante et de rayon croissant,

rendant compte de la vitesse radiale des nébuleuses extra-galactiques,” Annales de la
Société Scientifique de Bruxelles, vol. A47, pp. 49-59 (1927). Translated into English
as “A homogeneous universe of constant mass and increasing radius accounting for the
radial velocity of extra-galactic nebulae,” Monthly Notices of the Royal Astronomical
Society, vol. 91, pp. 483-490 (1931).
¶ See, for example, “Edwin Hubble in translation trouble,” http://www.nature.com/

news/2011/110627/full/news.2011.385.html#B5, and also “Hubble cleared,” http://
www.nature.com/nature/journal/v479/n7372/full/479150a.html.

http://www.pnas.org/content/15/3/168
http://www.pnas.org/content/15/3/168
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1931MNRAS..91..483L&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1931MNRAS..91..483L&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf
http://www.nature.com/news/2011/110627/full/news.2011.385.html##B5
http://www.nature.com/news/2011/110627/full/news.2011.385.html##B5
http://www.nature.com/nature/journal/v479/n7372/full/479150a.html
http://www.nature.com/nature/journal/v479/n7372/full/479150a.html
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Hubble’s law will continue to be called Hubble’s law, and that seems right to me. The

question of whether the universe is expanding or not is really an observational one, and

it was Hubble who made the first of these observations.

Later we will begin to talk about the implications of Hubble’s law for cosmology,

but for now I just want to discuss how the two ingredients — velocities and distances —

are measured. Here we will consider the measurement of the velocities, which is done by

means of the Doppler shift. The other ingredient in Hubble’s law, the cosmic distance

ladder, is described in Chapter 2 of Weinberg’s The First Three Minutes, and will

not be discussed in these notes. (You are expected, however, to learn about it from

the reading assignment. It is also discussed in Sec. 7.4 of Ryden’s Introduction to

Cosmology, but we will not be reading that until later in the course, if at all.)

The Doppler shift formula for light requires special relativity, which is not a pre-

requisite for this course. For this course it will be sufficient for you to know the basic

consequences of special relativity, which will be stated in these notes. If you would like

to learn more about special relativity, however, you could look at Special Relativity,

by Anthony P. French, Introduction to Special Relativity, by Robert Resnick, or

Lecture Notes I and II of the 2009 Lecture Notes for this course.

THE NONRELATIVISTIC DOPPLER SHIFT:

It is a well-known fact that atoms emit and absorb radiation only at certain fixed

wavelengths (or equivalently, at certain fixed frequencies). This fact was not understood

until the development of quantum theory in the 1920’s, but it was known considerably

earlier. In 1814-15 the Munich optician Joseph Frauenhofer allowed sunlight to pass

through a slit and then a glass prism, and noticed that the spectrum which was formed

contained a pattern of hundreds of dark lines, which were always found at the same colors.

Today we attribute these dark lines to the selective absorption by the cooler atoms in

the atmosphere of the sun. In 1868 Sir William Huggins noticed that a very similar

pattern of lines could be seen in the spectra of some bright stars, but that the lines were

displaced from their usual positions by a small amount. He realized that this shift was

presumably caused by the Doppler effect, and used it as a measurement of the velocity

of these distant stars.

As long as the velocities of the stars in question are small compared to that of light,

it is sufficient to use a nonrelativistic analysis. We will begin with the nonrelativistic

case, and afterward we will discuss how the calculation is changed by the implications of

special relativity. To keep the language manifestly nonrelativistic for now, let us consider

first the Doppler shift of sound waves. Suppose for now that the source is moving and
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the observer is standing still (relative to the air), with all motion taking place along a
line. We will let

u ≡ velocity of sound waves,

v ≡ recession velocity of the source,

∆tS ≡ the period of the wave at the source,

∆tO ≡ the period of the wave as observed.

Now consider the following sequence, as illustrated below:

(1) The source emits a wave crest.
(2) At a time ∆tS later, the source emits a second wave crest. During this time

interval the source has moved a distance ∆` = v∆tS further away from the
observer.

(3) The stationary observer receives the first wave crest.
(4) At some time ∆tO after (3), the observer receives the second wave crest.

Our goal is to find ∆tO.

The time at which the first wave crest is received depends of course on the distance
between the source and the observer, which was not specified in the description above.
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We are interested, however, only in the time difference ∆tO between the reception of
the first and second wave crests. This time difference does not depend on the distance
between the source and the observer, since both wave crests have to travel this distance.
The second crest, however, has to travel an extra distance

∆` = v∆tS , (1.2)

since the source moves this distance between the emission of the two crests. The extra
time that it takes the second crest to travel this distance is ∆`/u, so the time between
the reception of the two crests is

∆tO = ∆tS +
∆`

u

= ∆tS +
v∆tS
u

=
(

1 +
v

u

)
∆tS .

(1.3)

The result is usually described in terms of the “redshift” z, which is defined by the
statement that the wavelength is increased by a factor of (1 + z). Since the wavelength
λ is related to the period ∆t by λ = u∆t, we can write the definition of redshift as

λO
λS

=
∆tO
∆tS

≡ 1 + z , (1.4)

where λS and λO are the wavelength as measured at the source and at the observer,
respectively. Combining this definition with Eq. (1.3), we find that the redshift for this
case is given by

z = v/u (nonrelativistic, source moving). (1.5)

Suppose now that the source stands still, but the observer is receding at a speed v:
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In this case, the sequence becomes

(1′) The source emits a wave crest.
(2′) At a time ∆tS later, the source emits a second wave crest. The source is

standing still.
(3′) The moving observer receives the first wave crest.
(4′) At a time ∆tO after (3′), the observer receives the second wave crest. During

the time interval between (3′) and (4′), the observer has moved a distance
∆` = v∆tO further from the source.

Using the same strategy as in the first case, we note that in this case, the second wave
crest must travel an extra distance ∆` = v∆tO. Thus,

∆tO = ∆tS +
∆`

u
= ∆tS +

v∆tO
u

. (1.6)

In this case ∆tO appears on both sides of the equation, but we can easily solve for ∆tO
to find

∆tO =
(

1− v

u

)−1
∆tS . (1.7)

Recalling the definition of z,

z =
∆tO
∆tS

− 1 =
1

1− (v/u)
− 1

=
v/u

1− (v/u)
(nonrelativistic, observer moving).

(1.8)
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Notice that the difference between the two cases is given by

zobserver moving − zsource moving =
(v/u)2

1− (v/u)
, (1.9)

which is proportional to (v/u)2. If the speed of recession is much smaller than the wave
speed, v/u� 1, then the difference between the two expressions for z is very small, since
it is proportional to the square of the small quantity v/u. Buf if the speed of recession
is comparable to the wave speed, then the difference between the two expressions can be
very significant.

THE DOPPLER SHIFT FOR LIGHT WAVES:

To derive the Doppler shift for light waves, one must decide which, if either, of the
above calculations is applicable.

During the 19th century physicists thought that the situation for light waves was
identical to that for sound waves. Sound waves propagate in air, and it was thought that
light waves propagate in a medium called the aether which permeates all of space. The
aether determines a privileged frame of reference, in which the laws of physics have their
simplest form. In particular, Maxwell’s equations were believed to have their usual form
only in this frame, and it is in this frame that the speed of light was thought to have its
standard value of c = 3.0 × 108 m/sec in all directions. In a frame of reference which is
moving with respect to the aether, the speed of light would be different. Light moving in
the same direction as the frame of reference would appear to move more slowly, since the
observer would be catching up to it. Light moving in the opposite direction would appear
to move faster than normal. Thus, if the source is moving with respect to the aether and
the observer is standing still, then the first calculation shown above would apply. If the
observer is moving with respect to the aether and the source is standing still, then the
second would apply. In either case one would of course replace the sound speed u by the
speed of light, c.

In 1905 Albert Einstein published his landmark paper, “On the Electrodynamics
of Moving Bodies”, in which the theory of special relativity was proposed. The entire
concept of the aether, after half a century of development, was removed from our picture
of nature. In its place was the principle of relativity: There exists no privileged frame
of reference. According to this principle, the speed of light will always be measured at
the standard value of c, independent of the velocity of the source or the observer. The
theory shook the very foundations of physics (which is in general a very risky thing to
do), but it has become clear over time that the principle of relativity accurately describes
the behavior of nature.

Since special relativity denies the existence of a privileged reference frame, it can
make no difference whether it is the source or the observer that is moving. The Doppler
shift, and for that matter any physically measurable effect, can depend only on the
relative velocity of source and observer.

https://einsteinpapers.press.princeton.edu/vol2-trans/154
https://einsteinpapers.press.princeton.edu/vol2-trans/154
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THE DEVELOPMENT OF SPECIAL RELATIVITY:

On the face of it, the principle of relativity appears to be self-contradictory. It does
not seem possible that the speed of light could be independent of the velocity of the
observer. Suppose, for example, that we observe a light pulse which passes us at speed
c. Suppose then that a second observer takes off after the light pulse in “super-space-
ship” that attains a speed of 0.5c relative to us. Surely, one would think, the space ship
observer would tend to catch up to the light pulse, and would measure its speed at 0.5c.
How could it possibly be otherwise?

The genius of Albert Einstein is that he was able to figure out how it could be
otherwise. The subtlety and the brilliance of the theory lie in the fact that it forces
us to change our most fundamental beliefs about the nature of space and time. We
have to accept the idea that at high velocities (i.e., velocities not negligible compared
to that of light), some of our ingrained intuitions about space and time are no longer
valid. In particular, we have to accept the notion that measurements of time intervals,
measurements of lengths, and judgments about the simultaneity of events can all depend
upon the velocity of the observer. We can, however, maintain our notion about what
it means for two events to coincide: if two events appear to occur at the same place
and time to one observer, then they will appear to occur at the same place and time
to any observer. (It is standard practice in relativity jargon to use the word “event”
to denote a point in spacetime— i.e., an ideal event occurs at a single point in space
and at a single instant of time.) In addition, we have no need to change the definition
of velocity, ~v = d~x/dt, or the resulting equation ∆~x = ~v∆t, which holds when ~v is a
constant. Furthermore, in contrast to the 19th century viewpoint, we now believe that
the fundamental laws of physics have the same form in any inertial reference frame. While
measurements of space and time depend on the observer, the fundamental laws of physics
are universal.

SUMMARY OF SPECIAL RELATIVITY:

We will not discuss the derivation of special relativity here, but the key consequences
of special relativity for kinematics — i.e., for measurements of time and distance — can be
summarized in three statements. Only the first of these — time dilation — will be needed
for the Doppler shift calculation, but I include all three effects for completeness. All three
statements use the word “appear,” the precise meaning of which will be described later.

(1) TIME DILATION: Any clock which is moving at speed v relative to a given
reference frame will “appear” (to an observer using that reference frame) to
run slower than normal by a factor denoted by the Greek letter γ (gamma),
and given by

γ ≡ 1√
1− β2

, β ≡ v/c . (1.10)
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(2) LORENTZ-FITZGERALD CONTRACTION: Any rod which is moving at
a speed v along its length relative to a given reference frame will “appear”
(to an observer using that reference frame) to be shorter than its normal
length by the same factor γ. A rod which is moving perpendicular to its
length does not undergo a change in apparent length.

(3) RELATIVITY OF SIMULTANEITY: Suppose a rod which has rest length
`0 is equipped with a clock at each end. The clocks can be synchronized in
the rest frame of the system by using light pulses. (That is, a light pulse
can be sent out from the center, and the clocks at both ends can be started
when they receive the pulses.) If the system moves at speed v along its
length, then the trailing clock will “appear” to read a time which is later
than the leading clock by an amount β`0/c. If, on the other hand, the
system moves perpendicular to its length, then the synchronization of the
clocks is not disturbed.

As mentioned above, the word “appear” in these statements has a special meaning.
In plain English, the word “appear” normally refers to the perception of the human eyes.
However, in these situations the perception of the human eyes would be very complicated.
The complication is that one sees with light, and the speed of light is not infinite. Thus,
when you look at an object, the light which you see coming from the parts of the object
that are near you has left the object more recently than the light which you see coming
from parts of the object that are further. Thus, you are seeing different parts of the object
as they were at different times in the past. If the object is static, this makes no difference,
but if it is moving, these effects can lead to complicated distortions. These distortions
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are not taken into account in the statements above. For purposes of interpreting these
statements, one can imagine that each reference frame is covered by an infinite number
of local observers, each of which observes only events so close that the time delay for
light travel is negligible. Each local observer is at rest in the frame, and carries a clock
that has been synchronized with the others by light pulses, taking into account the finite
speed of light. The “appearance” is then the description that is assembled after the fact
by combining the reports of these local observers.

The previous paragraph may sound more complicated then it is, so let’s consider
a simple example. Suppose that a straight rod is moving along the x-axis of a given
reference frame. Suppose further that the positions of the two endpoints of the rod are
measured by local observers, as a function of the reference frame time t, and found to
be x1(t) and x2(t). We would then say that the length of the rod at time t “appears” in
this reference frame to be

`(t) ≡ x2(t)− x1(t). (1.11)

If `(t) has some fixed value ` independent of t, then we would say that the rod “appears”
to have a fixed length `. We say that the rod “appears” to have this length even though
most observers would not actually see this length. For most observers the two ends of
the rod would not be equidistant, so the observer would see the location of the two ends
at different times.

To complete the summary, we must state that these rules hold only for inertial
reference frames — they do not hold for rotating or accelerating reference frames. Any
reference frame which moves at a uniform velocity relative to an inertial reference frame
is also an inertial reference frame.

THE RELATIVISTIC DOPPLER SHIFT:

We can now apply these ideas to the Doppler shift for light. We will first consider
the case in which the source is moving relative to our reference frame, with the observer
stationary. We will then consider the opposite possibility. The derivations will look very
different in these two cases, but the principle of relativity guarantees us that the results
must be the same — we are simply describing the same situation from the point of view
of two different reference frames.

For the case of the moving source, we can refer back to the nonrelativistic deriva-
tion. We describe everything from the point of view of the reference frame shown in the
diagrams, in which the observer is at rest. We will refer to this as “our” reference frame.
The sequence of events is the same as in the nonrelativistic case, except for step (2). The
source is a device that emits wave crests at fixed intervals in time, and hence it is a kind
of clock. Since it is moving relative to our frame, it will appear to us to be running slowly,
by a factor of γ. But ∆tS still refers to the time as measured on this clock, so the time
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interval between steps (1) and (2), as measured in our reference frame, is γ∆tS . Thus,
step (2) would read:

(2) At a time γ∆tS later, as measured on our clocks, the source emits a second
wave crest. During this time interval the source has moved a distance
∆` = γv∆tS further away from the observer.

If the two crests traveled the same distance, the time between their reception would
be the same as the time between their emission, which in our reference frame is γ∆tS .
Taking into account the extra distance ∆` = γv∆tS traveled by the second crest, and
setting the wave speed u equal to the speed of light c, the time between the reception of
the two crests is

∆tO = γ∆tS +
∆`

c
= γ∆tS +

γv∆tS
c

= γ
(

1 +
v

c

)
∆tS =

√
1 + β

1− β
∆tS .

(1.12)

Now consider the case in which the observer is moving, with the source stationary.
To describe this case we choose the reference frame of the diagrams (1′), etc., in which
the source is at rest. We let ∆t′ denote the time interval between the reception of the
first and second crest, as measured in our frame. The distance that the observer travels
between the receipt of the two crests is then given by ∆` = v∆t′. Following the same
strategy as in the nonrelativistic case, we can write ∆t′ as the sum of the time between
emissions plus the extra time needed for the second crest to travel the extra distances.
Thus,

∆t′ = ∆tS +
v∆t′

c
, (1.13)

which can be solved to give

∆t′ =
(

1− v

c

)−1
∆tS . (1.14)

But now we must take into account the fact that the clock used by the observer is moving
relative to our frame, so it will be running slowly compared to our clocks. Thus, the time
∆tO measured on the observer’s clock is given by

∆tO =
∆t′

γ
. (1.15)

Combining Eqs. (1.14) and (1.15), we find

∆tO =
1

γ

(
1− v

c

)−1
∆tS =

√
1 + β

1− β
∆tS . (1.16)
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As expected, the two answers agree. Eqs. (1.12) or (1.16) describe the relationship in
special relativity between the Doppler shift and the velocity of recession. Here v denotes
the relative speed between source and observer (assumed to lie on the line which joins
the source and observer), and it is impossible to know which of the two is actually in
motion. The quantity z is given by

z =

√
1 + β

1− β
− 1 (relativistic). (1.17)

Now that we have the answer, I mention an important warning. While it is worth-
while for us to understand the special-relativistic Doppler shift, it is not the final picture
for cosmology. The cosmological redshift involves also gravity, so it is properly described
only in the context of general relativity. The good news, however, is that we will learn
enough general relativity in this course to have a full understanding of the cosmological
redshift.

ACCELERATING CLOCKS:

I’ll close with a short discussion of accelerating clocks. Accelerating clocks are seldom
relevant to cosmology, but they often show up in elementary problems in special relativity.
There is a widespread rumor that special relativity describes clocks moving at a constant
velocity relative to an inertial frame, while general relativity is needed to properly describe
an accelerating clock. If you are a victim of this rumor, now is the time track down
whoever told it to you and straighten him/her out.

We have learned that special relativity predicts that a moving clock runs slower by
a factor of γ = 1/

√
1− β2, but what should we say about an accelerating clock? After

seeing the wondrous implications of special relativity for the behavior of moving clocks, it
is tempting to think that general relativity might give us equally powerful insights about
the effects of acceleration. A little common sense, however, is all that is needed to dispel
this temptation. Consider, for example, a concrete experiment involving the effects of
acceleration on a clock. To make the point, let us consider two clocks in particular. The
first is a digital wristwatch — for definiteness, let’s make it a data-bank-calculator-alarm-
chronograph. For a second clock, let’s think about an old-fashioned hourglass. To test
the effects of acceleration on these two clocks, we can imagine holding each clock two
feet above a concrete floor and then dropping it. (Is there anyone out there who still
thinks that general relativity is important to understand the results of this experiment?)
I’ll admit I haven’t actually tried this experiment, but I would guess that the hourglass
would smash to smithereens, but that the data-bank-calculator-alarm-chronograph would
probably survive the two foot drop.
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In case you haven’t gotten the drift, the conclusion is that the effects of acceleration
on a clock are complicated, and strongly dependent on the details of the clock mechanism.
In principle we can know the full equations of motion in our (inertial) reference frame, and
these equations can be solved to describe the evolution of both the hourglass clock and
the data-bank-calculator-alarm-chronograph as they hit the floor. While nature obeys a
symmetry — Lorentz invariance — which determines the effect of uniform motion on a
clock, there is no symmetry that determines the effect of acceleration.

It is possible to define an ideal clock, which runs at a rate that is unaffected by
acceleration. That is, one can define an ideal clock as one that runs at the same rate
as a nonaccelerating clock that is instantaneously moving at the same velocity. A truly
ideal clock is impossible to construct, but there is nothing in principle that prevents one
from coming arbitrarily close. Since acceleration (unlike uniform velocity) is detectable,
it is always possible in principle to design a device to compensate for any effects that
acceleration might otherwise produce. In any problem on a homework assignment or quiz
in 8.286, you should assume that any accelerating clock is an ideal one.


