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Kepler's Laws

Johannes Kepler was the first astronomer
to correctly describe planetary motion in the Solar System
(in works published between 1609 and 1619)

[1 1. The planetary orbits are all ellipses which are confocal with the Sun
(i.e., the Sun lies on one of the focii of the ellipses)
[1 2. Each planet sweeps out an equal area in an equal time interval
[1 3. The squares of the orbital periods of the planets are proportional
to the cubes of their orbital major radii
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Conservation Theorems: First Integrals of Motion

Gravity is a conservative force

)

the gravitational force can be written

F=_VU

£ is actually the planet’s total energy per unit mass and ¥ = dv’/dt.
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Conservation Theorems: First Integrals of Motion (cont’d)

Gravity is also a central force

U

the angular momentum of our planet is a conserved quantity
h=7X7

U

the planet’s angular momentum per unit mass is constant in time

Taking the scalar product of the above equation with

—

h-T=20

h is a constant vector [J always points in the same direction

the motion of our planet is two-dimensional in nature
[I it is confined to some fixed plane which passes through the origin
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Polar Coordinates

It is helpful to define 2 unit vectors at the instantaneous position of the planet

[J one always points radially away from the origin ] e, = r/r
[1 the other is normal to e, in the direction of increasing 6 [1 ey =z X e,

The Cartesian components of e, and ey are

e, = (cosf, sinf) ep = (—sinb, cosb)
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Polar Coordinates (cont’d)

We can write the position vector of our planet as
r=re,

U

the planet’s velocity becomes

L odr :
vzaz’rer+rer

Differentiating e, with respect to time

é, =0 (—sinb, cosf) =0 ey

U

v=17re€,+1r0 ey
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Polar Coordinates (cont’d)

The planet’s acceleration is written as

dv  d°r

:E:E:fer+fér+(f9+ré)eg+r9ég

a

Differentiation of ey with respect to time yields

€ :9(—0089, —sinf) = e,

Y
a=(F—-10%) e+ (r6+270) ey
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Polar Coordinates (cont’d)

It follows that the equation of motion of our planet
(derived from Newton's Law)

d?r GM
BT e

can be re-written as

GM
2

a=(F—r0%)e, +(r0+276)es=—

er

e, and ey are mutually orthogonal

U

we can separately equate the coefficients
to give a radial equation of motion

GM

P—rf? = >
”

and a tangential equation of motion

rd+270=0
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|Conic Sectionsl
[J the ellipse

[1 the parabola = are collectively known as conic sections
[1 the hyperbola
(these 3 types of curve can be obtained by taking various plane sections of a cone)

Solutions of the radial and tangential equations of motion are all conic sections

U

appropriate to briefly review these curves
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‘Conic Sections (cont’d) I

An ellipse centered on the origin of major radius a and minor radius b
(aligned along the x- and y-axes)
satisfies the following well-known equation

ea a

D X

Ellipse
locus of points on a plane where
sum of distances from any point on the curve to two fix points is constant
the two fix points are called foci
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‘Conic Sections (cont’d) I

A parabola which is aligned along the +x-axis
and passes through the origin
satisfies

2 —bzr =0

Ob>0

Parabola
locus of points in a plane which are
equidistant from a given point (the focus) and a given line (the directrix)
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‘Conic Sections (cont’d) I

A hyperbola which is aligned along the 4 x-axis
and whose asymptotes intersect at the origin

satisfies

2 2
T
-5 =1
a b2

[1 a is the distance of closest approach to the origin
[0 The asymptotes subtend an angle ¢ = tan™'(b/a) with the z-axis
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‘Conic Sections (cont’d) I

Hyperbola

locus of points where
the difference in the distance to two fixed points (called the foci) is constant

[1 That fixed difference in distance is two times a
[I a is the distance from the center of the hyperbola
to the vertex of the nearest branch of the hyperbola
[I a is also known as the semi-major axis of the hyperbola
[1 The foci lie on the transverse axis and their midpoint is called the center
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‘Conic Sections (cont’d) I

It is not clear at this stage what
[ the ellipse
[1 the parabola
[1 the hyperbola
have have in common

the 3 curves can be represented as the locus of a movable point
whose distance from a fixed point is in a constant ratio
to its perpendicular distance to some fixed straight-line

Let the fixed point
(which is termed the focus of the ellipse/parabola/hyperbola)
lie at the origin and let the fixed line correspond to y = —d (with d > 0)
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‘Conic Sections (cont’d) I

The distance of a general point (z, y) from the origin is r; = \/z? + y?
(which lies to the right of the line y = —d)
the perpendicular distance of the point from the line y = —d is 1o = x4+ d

In plane polar coordinates [1 1 =7 and ro = r cos@ + d

U

the locus of a point for which ;1 and 74 are in a fixed ratio satisfies

/2 2
nn_ V7T tY = ! = e < e >0 isaconstant
9 x+d r cosf 4 d
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‘Conic Sections (cont’d) I

When expressed in terms of plane polar coordinates
the above equation can be rearranged to give
rrC

r= Sr.=ed
1 —ecosb ©

and when expressed in terms of Cartesian coordinates
the same equation can be rearranged to give

(z — 330)2 Y
This equation can be recognized as the equation of an ellipse
whose center lies at (x., 0)
and whose major and minor radii @ and b are aligned along the z- and y-axes

In changing variables [1 we have taken

,
b= —— =1+/1—-¢€2a
V1 —e?
_ere
Te= T 5 =€
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‘Conic Sections (cont’d) I

When expressed in terms of Cartesian coordinates
r VTt +yr o r B
T9 r+d  rcosf+d

can be rearranged to give

€

(z — 330)2 3/2

a? Cp?
equation of a hyperbola
whose asymptotes intersect at (., 0) and which is aligned along the +z-direction
In changing variables [1 we have taken

=]l e>1

a_e2—1
b= ¢ —\/e2_1gq
e2 —1
Te = — Zerc = —ea
e — 1

The asymptotes subtend an angle with the x-axis

¢ = tan~? (é> —tan"'(ve2 — 1)

a
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‘Conic Sections (cont’d) I

When again expressed in terms of Cartesian coordinates

e 8

€

To z+d  rcosf+d
can be rearranged to give
v  —2r.(r—x.)=0e=1
This is the equation of a parabola

passing through the point (x., 0) and aligned along the +z-direction
In changing variables [1 we have taken

Te = —T¢/2

Summing up
(1) is the polar equation of a general conic section confocal with the origin
[J for e < 1 I the conic section is an ellipse
[J for e =1 [ the conic section is a parabola
[ for e > 1 [0 the conic section is a hyperbola
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‘ Kepler's Second Law I

Multiplying our planet’s tangential equation of motion by r» we obtain
20 +2r76 =0
The above equation can be also written

d(r2 6)
dt
which implies that

=0

h=1r2%0

iIs constant in time

U

the angular momentum of our planet is a constant of its motion

this is the case because gravity is a central force
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‘Kepler’s Second Law (cont’d)l

Suppose that the radius vector connecting our planet to the origin
sweeps out an angle 46 between times t and t + 6t

The approximately triangular region swept out by the radius vector has the area

A~ 250,
2

(because the area of a triangle is half its base O 7 6 times its height [0 r)

U

the rate at which the radius vector sweeps out area is
dA 1 . r%40 r2d9_h

P S T M i
0

h is constant in time [J the r-vector sweeps out area at a constant rate
Kepler's Second Law [1 consequence of angular momentum conservation
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‘ Kepler’s First Law I

Our planet’s radial equation of motion can be combined with

h=r%0
to give
. h? GM
T_T_?,:_ r2 (i)

Define r = !

' du db d
T:—l:—fr2_u_—_h_u

u? do dt do
Likewise

2, 2
7.’::— d—uez—u2h2d_u

do? df?

U

(1) can be written as

dPu - GM
db? ~ h?
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‘Kepler’s First Law (cont’d)l

The general solution to the above equation takes the form

GM
u(f) = 72

[1 e and 6y are arbitrary constants
Without loss of generality [1 we can set 6y =0
(by rotating our coordinate system about the z-axis)

)
Te o h?
° GM

This the equation of a conic section which is confocal with the origin
(i.e., with the Sun)

for e < 1 [ equation of an ellipse which is confocal with the Sun

[1 — e cos(f —6y)]

r(6)

:1—60089

the orbit of our planet around the Sun is a confocal ellipse
Of course a planet cannot have a parabolic or a hyperbolic orbit

1

such orbits are only appropriate to objects
which are ultimately able to escape from the Sun’s graviational field
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‘ Kepler's Third Law I

We have seen that

[1 the radius vector connecting our planet to the origin
sweeps out area at the constant rate dA/dt = h/2
[1 the planetary orbit is an ellipse

Suppose that the major and minor radii of the ellipse are a and b

U

the area of the ellipse is A = mab
radius vector sweeps out the whole area of the ellipse in a single orbital period T

U
T A _2mab
B (dA/dt) h
U
472 a3
2 _
= GM

the square of the orbital period of our planet
is proportional to the cube of its orbital major radius
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‘Kepler's Third Law (cont’d)l

For an elliptical orbit

[1 the closest distance to the Sun (perihelion distance) is

1+e

Tp =a(l—e)

[0 the furthest distance from the Sun (aphelion distance) is

Te

Ta = T2 =a(l+e)
J
the major radius a is simply the mean of the perihelion and aphelion distances
_ Tpt+Te
T

The eccentricity 0 e = (rq — 1) /(10 + 7p)
measures the deviation of the orbit from circularity

U

e = 0 corresponds to a circular orbit
e — 1 corresponds to an infinitely elongated elliptical orbit
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| HaIIeyI

[] The English astronomer Edmund Halley was a good friend of Newton
[ In 1705 he used Newton’s theory of gravitation
to determine orbits of comets from their recorded positions in sky
(as a function of time)
[1 He found that the bright comets of
[1 1531
1 1607
[1 1682
had almost the same orbits
[1 when accounting for gravitational perturbation on the cometary orbits
(from Jupiter and Saturn)
he concluded that these were different appearances of the same comet

he predicted the return of this comet in 1758

[1 Halley did not live to see his prediction tested because he died in 1742

[J On Christmas night 1758 the comet destined everafter to bear Halley’'s name
reappeared in a spectacular vindication of Newton's gravitational theory
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Halley (cont’d)

]
|Ii
1510, 1585
e 200
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‘ Halley (cont’d) I

Tracing back in the historical records

it was concluded [1 Halley had been observed periodically as far back as 240 B.C.

the most recent return was in 1986

SKYWATCH |

Hal h.} s Comet Swings By

the predicted next appearance of Halley in the inner Solar System will be in 2061
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Halley (cont’d)

The comet moves in a highly eliptical orbit
[ eccentricity of 0.967
[1 period of 76 yr

Calculate its minimum and maximum distances from the Sun
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‘ Halley (cont’d) I

According to third Kepler’s law

GM@TZ 1/3
« = (%)
(667 x 10~ Nm?2 /kg?)(1.99 x 10% kg)(76 yr 7 x 107 s/yr)2]"°
N 472
= 2.68 x 10'? m

Perihelion distance
rp =a(l—e) =2.68x 10" m (1 —0.967) = 8.8 x 10'° m

Aphelion distance

re =a(l+e)=2.68x 10" m(1+0.967) =527 x 10* m
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‘ Orbital Energies I

Recall that

o v _GM
2 T

and that

the total energy per unit mass of an object in orbit around the Sun is

o120 GM

2 T
using
O h=r26 O u=r""!
O 7= —h fi—"g [0 r. O latus rectum of the orbit
O 7. = Gh—L O we =771
\

h2 | (du\®
= — _ —2 c
E 5 [(d@) +u uu]
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‘Orbital Energies (cont’d)l

Recall that
u(0) = ue (1 — e cosb)
4
uZh? , , GM
E = 5 (e —1) = T (e —1)

We conclude that

[0 elliptical orbits (¢ < 1) have negative total energies

[] parabolic orbits (e = 1) have zero total energies

[0 hyperbolic orbits (e > 1) have positive total energies

[0 This makes sense [J in a conservative system with U(oco) = 0 we expect
[1 bounded orbits to have negative total energies
[1 unbounded orbits to have positive total energies

[ elliptical orbits (which are bounded) should have negative total energies

[J hyperbolic orbits (which are unbounded) should have positive total energies

[1 Parabolic orbits are marginally bounded
(objects executing parabolic orbits just escapes from the Sun’s g-field)
[ have zero total energy
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‘ Orbital Dynamics I

Consider an artificial satellite in an elliptical orbit around the Sun
(the same considerations also apply to satellites in orbit around the Earth)

at perihelion

, v
F=0= L =v1+e
Ve
v =16 [1 satellite’s tangential velocity

ve. = /G M/r, O tangential velocity needed to maintain circular orbit at the
perihelion distance

at aphelion
Ut

=41 —e
fUC

ve = /G M/r, O tangential velocity that the satellite would need
in order to maintain a circular orbit at the aphelion distance
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‘Orbital Dynamics (cont’d)l

Suppose that our satellite is initially in a circular orbit of radius 4
we wish to transfer it into a circular orbit of radius 7o J 79 > 74

We can achieve this by temporarily placing the satellite in an elliptical orbit
whose perihelion distance is r; and whose aphelion distance is 75

U

the required eccentricity of the elliptical orbit is
ra — T
T2 + 71

e =

we can transfer our satellite from its initial circular orbit
into the temporary elliptical orbit by increasing its tangential velocity by a factor
(by briefly switching on the satellite’s rocket motor)

ar =+vV1+e

We must allow the satellite to execute half an orbit to attain its aphelion distance
and then boost the tangential velocity by a factor
1
1—e

The satellite will now be in a circular orbit at the aphelion distance o

oo =
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‘Orbital Dynamics (cont’d)l

we can transfer our satellite from a larger to a smaller circular orbit
by performing the above process in reverse
Since

ﬂ:\/1-|—e

Ue

if we increase the tangential velocity of a satellite in a circular orbit about the Sun
by a factor greater than v/2

U

we will transfer it into a hyperbolic orbit [1 ¢ > 1
and it will eventually escape from the Sun’s gravitational field
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Itsan exni?mg prospect; butis it for
real? An inside look at the science—
and the politics—of space travel
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‘Mission to Mars (cont’d)l

Mars at arrival

Mars at
departure

Walter Hohmann [J pioneer in space travel research propose in 1925
most energy efficient method of transferring between coplanar eliptical orbits
using only two velocity changes
The semimajor axis of the transfer ellipse

2a¢ =11 + 712
the energy transfer is then

GMy 1., GM
g =- Mo 1,
1+ 79 2 7 T
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‘Mission to Mars (cont'd)l
\/ZGM@ ( ro )
Ut,1 =
1 r1+ 7o

Avy = Ut,1 — U1

Likewise [1 to come back

Avg = vg — Ut,2

\/2GM@ ( - )
Vy,2 =
) 1+ 72

The total time required to make the transfer T
is half a period of the transfer orbit

L 32

T —
t =T GM@at
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‘Mission to Mars (cont’d)l

Example
Calculate the time needed for a spacecraft to make a Hohmann transfer
from Earth to Mars and the heliocentric transfer speed required
(assume both planets are in coplanar orbits)

1

ay = 5 (REarth—sun + RMars—Sun)

1
= (15 10" m + 2.28 x 10! m)

— 1.89x 10" m

T, = m(7.53 x107%s2/m*)¥/2(1.89 x 10''m)*/2
= 259 days

2(1.33 x 102°m3 /52)(2.28 x 101'm) 7"/

Vel (1.5 x 101 1m)(3.78 x 1011m
= 3.27 km/s

Fall 2006 . .
Classical Mechanics Luis Anchordoqui
UWM



40

‘Mission to Mars (cont’d)l

the orbital speed of the Earth is

 [1.33 x 1020m3/527"/?
1 1.5 x 101m
= 29.8 km/s

Hohmann transfer path represents the least energy expediture
it does not represent the shortest time
for a roundtrip to Mars the spacecraft would have to remain on Mars for 460 days
until the Earth and Mars were position correctly for the return trip

NATIONAL AERONAUTICS

the total trip [0 259 4 460 + 259 = 978 = 2.7 yr
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Mission to Mars (cont’d)

Earth departurc
Mars acrival
Mars departure
Earth arrival

Earth departure
Mars arrival
Moarsde partuic
Farth arnval

o Lad Bl =

{a] Minimum snergh missian (b)) Shorter mission reguires
requires lomg sTayover on more fuel and s closer
Mars before returning arhil to the sun
o Earth,

|. Earth departure

2 Mars arrival
Mars departurs
Wenus passage

. Earth arnival

o Tad

it} The shorter mission af {b)
can be turther improved
if Wenus is positioned for
1 gravity assist during fiyby,
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