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Summary and Motivation
Last class much importance has been given to symmetry principles

local gauge invariance can serve as a dynamical principle 

BUT in several areas we are still far from where we need to be

and we know that carriers of weak force are massive

 is hidden by circumstances

 infinite crystalline array of spin-1/2 magnetic dipoles

  distorting rotation invariance of the underlying interaction

Discussed:                                                           
connection between exact symmetries and conservation laws

to guide assembly of interacting field theories

E.G. gauge principle has lead us to theories 
in which all interactions are mediated by massless bosons

There are many situations in physics                                 
where exact symmetry of interaction 
Canonical example is that of a Heisenberg ferromagnet: 

Below Curie temperature ground state is completely ordered configuration
all dipoles are aligned in some arbitrary direction

It is thus of interest to learn how to deal with hidden symmetries 

⎈

⎈

⎈

⎈

⎈
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Paramagnetic Phase   
 Nearest-neighbor interaction between spins 

is invariant under group of spatial rotations

In disordered paramagnetic phase  
TC

 external field
-- which exists above      --     

medium displays exact symmetry in absence of 
spontaneous magnetization of system is zero                             
and there is no preferred direction in space

        invariance is manifestSO(3)

Privileged direction may be selected by imposing external   -field
               which tends to align spins in material

symmetry is hence broken down to an axial    SO(3) SO(2)

--symmetry of rotations around the external field direction --

Full symmetry is restored when external field is turned off

SO(3)
(or magnetic dipole moments) 

!B
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Ferromagnetic Phase

lowest energy configuration has non-zero spontaneous magnetization

system is in ordered ferromagnetic phase

symmetry is said to be spontaneously broken down to

do not depend upon its orientation                                     

TC✔

✔

✔

SO(3)

SO(2)

SO(3)

SO(3)

Ground state is thus infinitely degenerate

✔

by imposing external field which breaks         symmetry explicitly

Below      situation is rather different

In absence of an external field  ✔

direction of spontaneous magnetization is random 
Vestiges of original symmetry

measurable properties of infinite ferromagnet

Particular direction for spontaneous magnetization is chosen 

because nearest-neighbor force favors parallel alignment of spins
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Spontaneous symmetry breaking can arise                                
when Lagrangian of a system possesses symmetries               
which do not however hold for ground state of system

Higgs Mechanism
Contrasting paramagnetic case ☛ spontaneous magnetization 
does not return to zero when the external field is turned off 

For rotational invariance to be broken spontaneously 
it is crucial that ferromagnet be infinite in extent                    
so that rotation from one degenerate ground state to another 
would require impossible task                                            
of rotating infinite number of elementary dipoles

Higgs mechanism is a gauge theoretic realization               
of such spontaneous symmetry breaking
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Consider simple world consisting just of scalar particles 
described by Lagrangian

L = 1
2 (∂µφ) (∂

µφ)− V (φ)

study how particle spectrum depends on effective potentialV (φ)

if potential is even functional of scalar field V (φ) = V (−φ)
Lagrangian is invariant under symmetry operation

 which replaces

✿

φ by −φ

consider an explicit potential

V (φ) = 1
2µ

2φ2 + 1
4λφ

4

        so that energy is bounded from below

-potential 

♠

λ > 0

λφ4
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Vacuum expectation value

corresponding to manifest or spontaneously broken symmetry 
may be distinguished depending on sign of coefficient µ2

 potential has a unique minimum atIf µ2 > 0 φ = 0
corresponding to ground state -- a.k.a. vacuum --

Identification most easily seen in Hamiltonian formalism
substituting    into      ✿

H =
1

2

[
(∂0φ)

2 +
(
#∇φ

)2
]
+ V (φ)

H(x) = π(x) φ̇(x)− L(φ, ∂µφ)

state of lowest energy corresponds to  

value of constant       is determined by dynamics of theory

 it corresponds to absolute minimum (or minima) of potential V (φ)

 (We usually refer to       as vacuum expectation value of field   )

〈φ〉0

φ

Two qualitatively different cases 

φ = 〈φ〉0

〈φ〉0
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Hints for the calculation

L =
1
2
φ̇2 − 1

2
("∇φ)2 − V (φ)

=
1
2
(∂µφ)2 − V (φ)

π(x) ≡ ∂L
∂φ̇(x)

= φ̇

H = π(x)φ̇− L

=
1
2
[φ̇2 + (#∇φ)2] + V (φ)
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☛ vacuum obeys reflection symmetry of    with For 

Lagrangian symmetries
µ > 0 〈φ〉0 = 0

                consider    of a free particle with mass µ

L = 1
2 [(∂µφ)(∂

µφ)− µ2φ2]

term shows that field is self-interacting                          
because 4-particle

φ4

vertex exists with couplingλ

µ2 < 0 φ☛    has a mass term of wrong sign for fieldFor
potential has 2 minima satisfying φ(µ2 + λφ2) = 0

〈φ〉0 = ±v with v =
√

−µ2/λ
(Extremum         does not correspond to energy minimum) φ = 0

Potential has two degenerate lowest energy states

either of which may be chosen to be vacuum

physical consequences must be independent of this choice
because of parity invariance of Lagrangian 

To study small oscillations around this minimum
L

L

L
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Whatever is our choice ☛ symmetry of theory is spontaneously broken:

φ → −φparity transformation              is an invariant of Lagrangian  
but not of vacuum state

Vacuum symmetries

Take 〈φ〉0 = +v
Perturbative calculations involve expansions around classical minimum

φ(x) = v + η(x)
       represents quantum fluctuations about this minimumη(x)

substituting    into      +   

L′ = 1
2 (∂µη)(∂

µη)− λv2η2 − λvη3 − 1
4λη

4 + const

⚈

⚈ ✿

field    has a mass term of correct signη

 Identifying first two terms of L′ with

gives ☛ mη =
√
2λv2 =

√
−2µ2

L =
1

2
∂µφ ∂µφ− 1

2
m2φ2

Higher-order terms in    represent interaction of    field with itselfη η

⚑

♠
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(v + η)2 = v2 + 2vη + η2

Hints for the calculation

(v + η)4 = v4 + 4v3η + 6v2η2 + 4vη3 + η4

1

2
v3λ+v3λη +

1

2
v2η2λ−1

4
λv4−λv3η 3

2
λv2η2− −λvη3−

1

4
λη4
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Massive Scalar Particle
L and L′ are completely equivalent

A transformation of type    cannot change physics⚈

If we could solve two Lagrangians exactly                       
they must yield identical physics

☻
☻
☻

☻ In QFT we are not able to perform such a calculation
we do perturbation theory                                                      
and calculate fluctuations around minimum energy

☻ Using    we find out that perturbation series does not converge 
because we are trying to expand about unstable point

L
φ = 0

correct way to proceed is to adopt                                                  
and expand in    around stable vacuum

L′

η 〈φ〉0 = +v

☻ In perturbation theory      provides correct physical framework 
whereas    does not

L′

L

Therefore ☛ scalar particle                                                    
--described by in-principle-equivalent Lagrangians    and    --                
is massive

☻
L L′

Note that
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Complex Scalar Field
To approach our destination of generating a mass for gauge bosons

with Lagrangian density 

φ =
1√
2
(φ1 + iφ2)

L = (∂µφ)
∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2

which is invariant under transformation φ → eiαφ

    possesses a        global gauge symmetryL U(1)

By considering and   rewrite     asλ > 0 µ2 < 0

L = 1
2 (∂µφ1) (∂

µφ1) +
1
2 (∂µφ2) (∂

µφ2)− 1
2µ

2(φ2
1 + φ2

2)− 1
4λ(φ

2
1 + φ2

2)
2

✜

✜

duplicate procedure for a complex scalar field
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Mexican Hat
Circle of minima of potential V (φ) in φ1 φ2- plane of radius v

φ2
1 + φ2

2 = v2 v2 = −µ2/λwith

we translate field     to a minimum energy position               
without loss of generality we may take            and  φ1 = v

φ
φ2 = 0
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Goldstone Boson
We expand    around vacuum in terms of fields   and

by substituting

L η ξ

φ(x) =
√

1
2 [v + η(x) + iξ(x)]

into   ✜

L′ = 1
2 (∂µξ)

2 + 1
2 (∂µη)

2 + µ2η2 + const.+O(η3, ξ3) +O(η4, ξ4)

The third term has form of a mass term (−1

2
m2

ηη
2) for η field

η -mass is again mη =
√
−2µ2

First term in    stands for kinetic energy of                      but 
there is no corresponding mass term for   field

L′ ξ
ξ

Theory contains a massless scalar ☛ so-called Goldstone boson

In attempting to generate massive gauge boson                         
we have encountered a problem:                                        
spontaneously broken gauge theory                                       
seems to be plagued with its own massless scalar particle

♝

♜
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Goldstone Theorem
Potential in tangent   direction is flat ☛ implying massless mode

-- there is no resistance to excitations along    direction --ξ

ξ

Figure 2.1: The potential V (φ) for a complex scalar field, for the case µ2 < 0

and λ > 0.

the reason for its presence. As shown in Fig. 2.1, the potential in the tan-
gent ξ direction is flat, implying a massless mode; there is no resistance to
excitations along the ξ-direction.

The Lagrangian (2.3.70) is a simple example of the Goldstone theorem,
which states that in a spontaneous symmetry breaking the original symmetry
is still present, but nature manages to camouflage the symmetry in such a
way that its presence can be viewed only indirectly.11 In the ferromagnet
example, the analogue of our Goldstone boson is the long-range spin waves
which are oscillations of the spin alignment.

The final step of this section is to study spontaneous symmetry breaking
of a local U(1) gauge symmetry. To this end, we must start with a Lagrangian
that is invariant under a local U(1) transformation φ(x) → eiα(x)φ(x). This
is accomplished by replacing ∂µ by a covariant derivative Dµ = ∂µ + ieAµ,
where the gauge field transforms as Aµ(x) → Aµ(x) − ∂µα(x)/e. The gauge
invariant Lagrangian is thus

L = (∂µ − ieAµ)φ∗(∂µ + ieAµ)φ − µ2φ∗φ − λ(φ∗φ)2 − 1
4FµνF

µν . (2.3.71)

As usual there are two cases, depending upon the parameters of the effective
potential. If µ2 > 0, (aside from the φ4 self-interaction term) this is just

11J. Goldstone, Nuovo Cim. 19, 154 (1961); J. Goldstone, A. Salam and S. Weinberg,

Phys. Rev. 127, 965 (1962).

57

for a complex scalar field 
V (φ)

µ2 < 0 and λ > 0for case  

Potential        

Lagrangian    is a simple example of Goldstone Theorem:            
In spontaneous symmetry breaking original symmetry is still present 
but nature manages to camouflage symmetry in such a way          
that its presence can be viewed only indirectly
In ferromagnet example ☛ analogue of our Goldstone boson           
is long-range spin waves which are oscillations of spin alignment

♝

Intuitively it is easily seen reason for presence of Goldstone boson
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Spontaneous Symmetry Breaking of Local     Gauge Symmetry

Start with Lagrangian invariant under local transformationsU(1)

φ(x) → eiα(x)φ(x)

accomplished replacing     by covariant derivative∂µ Dµ = ∂µ + ieAµ

Recall gauge field transforms as Aµ(x) → Aµ(x)− ∂µα(x)/e

Gauge Invariant Lagrangian is then

L = (∂µ − ieAµ)φ∗(∂µ + ieAµ)φ− µ2φ∗φ− λ(φ∗φ)2 − 1
4FµνF

µν

Two cases depending upon parameters of effective potential
If          -- aside from     self-interaction term --                   
this is just QED Lagrangian for charged scalar particle of mass 

If          ☛ spontaneously broken symmetry  
this case demands a closer analysis

µ2 > 0 φ4

µ

µ2 < 0

✪

U(1)
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Counting Degrees of Freedom
Substituting                   (expression   ) into Lagrangian     ✪♜

Particle spectrum of    appears to be:                                      
massless Goldstone boson massive scalar      massive vector

L′

ξ η Aµ

♥

mξ = 0,mη =
√
2λv2 and mA = ev

We have generated mass for gauge field but still facing problem         

Because of presence of a term off-diagonal in fields Aµ∂
µξ

care must be taken in interpreting Lagrangian ♥
Particle spectrum we assigned before to    must be incorrectL′

Giving mass to     we have raised polarization degrees of freedom 
(from 2 to 3) because it can now have  longitudinal polarization

Aµ

We deduce  fields in    do not all correspond to distinct particlesL′

φ(η(x), iξ(x))

 occurrence of Goldstone boson

BUT translating field variables does not create degrees of freedom

L′ =
1
2
(∂µξ)2 +

1
2
(∂µη)2 − v2λη2 +

1
2
e2v2AµAµ + evAµ∂µξ − 1

4
F 2

µν

+ interaction terms
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Gauge Transformation
To find gauge transformation which eliminates field from
we first note that to lowest order in    (   )ξ

can be rewritten as

♜

φ !
√

1
2 (v + η) eiξ/v

This suggests we should substitute different set of real fields
H, θ,Aµ

φ →
√

1
2 [v +H(x)]eiθ(x)/v , Aµ → Aµ − 1

ev
∂µθ

into original Lagrangian ✪

This is a particular choice of gauge                         
with         chosen that  θ(x) is realH

We therefore anticipate that theory will be independent of θ

L′
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Higgs particle 

L” = 1
2 (∂µH)2 − λv2H2 + 1

2e
2v2A2

µ − λvH3 − 1
4λH

4

+ 1
2e

2A2
µH

2 + ve2A2
µH − 1

4FµνF
µν

Goldstone boson is not actually present in theory

Apparent extra degree of freedom is actually spurious
it corresponds only to freedom to make gauge transformation

Lagrangian describes just two interacting massive particles 
a vector gauge boson      and a massive scalar   
usually referred to as a Higgs particle

Aµ

Aµ

H

Unwanted massless Goldstone boson                         
has been turned into longitudinal polarization of

This is known as Higgs mechanism
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Standard Model of Particle Physics
Standard model of weak, electromagnetic, and strong interactions

SU(3)C × SU(2)L × U(1)Y

A single generation of quarks and leptons                                  
consists of five different representations of gauge group

QL(3, 2)1/6, UR(3, 1)2/3, DR(3, 1)−1/3, LL(1, 2)−1/2, ER(1, 1)−1

    -- sub-indices    and    indicate fermion chirality --L R
Notation:                                                                          
left-handed lepton field 

is based on the gauge group

LL is a singlet of          color groupSU(3)

doublet of         weak isospin

 and carries hypercharge       under      group

SU(2)

−1/2 U(1)

SM contains single higgs boson doublet               whose VEV  
breaks gauge symmetry into 

φ(1, 2)1/2
SU(3)C × U(1)EM

Thursday, September 29, 2011



Gauge Interactions

 strength of interactions are described by their coupling constants
gs, g, g′and

Gauge interactions arise through covariant derivative

Dµ = ∂µ − i

[
gs

8∑

a=1

Ga
µ t

C
a + g

3∑

i=1

Ai
µ t

L
i + 1

2g
′Bµ

]

taC = (λa/2;0)  for (quarks; lepton, Higgs) 

tiL = (τ i/2;0) for         (doublets; singlets)SU(2)

Interactions are mediated by:

SU(3) 8         color gluons Ga
µ(8, 1)0

         3         left chiral gauge bosonsSU(2) Ai
µ(1, 3)0

and 1         hypercharge gauge field U(1) Bµ(1, 1)0
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Anticipating a possible        structure for weak currents                 
we are led to construct an isospin triplet of weak currents

First focus attention on electroweak sector

Electroweak sector

SU(2)

J i
µ(x) =

1
2 ūL γµτi uL, with i = 1, 2, 3

for spinor operators

uL = LL =

(
νeL
e−L

)
, uL = QL =

(
uL

dL

)

whose corresponding charges                       T i =

∫
J i
0(x) d

3x

SU(2)L algebra [Ti, Tj ] = iεijkTkgenerate an
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Presence of mass terms for     destroy gauge invariance ofAi
µ

Higss Lagrangian

To approach goal of generating  mass for gauge bosons 
we entertain mechanism of spontaneous symmetry breaking
Consider complex scalar Higgs boson field                                 
in spinor representation of SU(2)L and has charge 1/2 U(1)Yunder

φ =

(
φ+

φ0

)
=

√
1
2

(
φ1 + iφ2

φ3 + iφ4

)

gauge invariant Lagrangian is thus

Lφ = (∂µφ)
†(∂µφ)− µ2 φ†φ− λ(φ†φ)2

Repeat procedure of translating field     to a true ground state

∂Lφ

∂(φ†φ)
= 0 ⇒ φ†φ ≡ 1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) = −µ2

2λ

Lφ

φ

VEV is obtained by looking at stationary points of

☫

⧯

L
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 values of (Re φ+, Im φ+, Re φ0, Im φ0)
range over surface of 4D sphere of radius v

v2 = −µ2/λsuch that and φ†φ = |φ+|2 + |φ0|2

This implies that Lagrangian ofφ
is invariant under rotations of this 4-dimensional sphere

SO(4) isomorphic to SU(2)× U(1) invariant under group 

 We must expand          about a particular minimumφ(x)

Without loss of generality                                            
define VEV of   to be real parameter in    directionφ0φ

φ1 = φ2 = φ4 = 0 , φ2
3 = −µ2/λ

We can now expand       about this particular vacuum φ(x)

〈φ〉 = 1√
2

(
0
v

)

Picking up the VEV
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Electroweak interactions
To introduce electroweak interactions with   φ

∂µ in Lagrangian (  )☫we replace     by covariant derivative      (  )   
and evaluate resulting kinetic term at VEV(Dµφ)

†(Dµφ) 〈φ〉
Relevant terms are: 

∆L =
1

2
(0 v)

(
1

2
gAj

µτj +
1

2
g′Bµ

) (
1

2
gAkµτk +

1

2
g′Bµ

)(
0
v

)

=
1

8
(0 v)




gA3

µ + g′Bµ g(A1
µ − iA2

µ)

g(A1
µ + iA2

µ) −gA3
µ + g′Bµ




2 (

0
v

)

=
1

8
v2[g2(A1

µ)
2 + g2(A2

µ)
2 + (−gA3

µ + g′Bµ)
2]

note that
1

8
v2[g2(A3

µ)
2 − 2gg′A3

µB
µ + g′2B2

µ] =
1

8
v2[gA3

µ − g′Bµ]
2 + 0[g′A3

µ + gBµ]
2

=
1

2
m2

zZ
2
µ +

1

2
mAA

2
µ

Dµ
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Gauge Bosons
There are three massive vector bosons:

The fourth vector field orthogonal to

remains massless

We identify this field with electromagnetic vector potential

W±
µ =

1√
2
(A1

µ ∓ iA2
µ)

Z0
µ =

1√
g2 + g′2

(gA3
µ − g′Bµ)

Z0
µ

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ)
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electroweak mass scale
Gauge fields have eaten up Goldstone bosons and become massive
Scalar degrees of freedom                                              
become longitudinal polarizations of massive vector bosons

Spontaneous symmetry breaking             
rotates 4                       gauge bosons 
to their mass eigenstates via gauge interaction term of Higgs fields

SU(2)L × U(1)Y

{A1
µ, A2

µ} →{ W+
µ , W−

µ } {A3
µ, Bµ} → Aµ, Z0

µand

In terms of weak mixing angle     (defined by                  ) θw tan θw = g′/g
(

Z0
µ

Aµ

)
=

(
cos θw − sin θw
sin θw cos θw

)(
A3

µ

Bµ

)

 at lowest order in perturbation theory

mW =
g v

2
=

g

2
√
2λ

mH and mZ =
mW

cos θw

 Higgs mass      sets electroweak mass scalemH
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Mass eigenstates
In terms of mass eigenstates covariant derivative      

Dµ = ∂µ − i
g√
2
(W+

µ T+ +W−
µ T−)− i

1√
g2 + g′2

Zµ(g
2T 3 − g′2Y )

− i
gg′√

g2 + g′2
Aµ(T

3 + Y )

becomes 

T± = T 1 ± iT 2

After identifying coefficient of electromagnetic interaction 

e =
gg′√

g2 + g′2
= g sin θw

with electron charge ☛ it becomes evident that:
electromagnetic interaction (      gauge symmetry with coupling  ) U(1) e

and weak hypercharge  (       symmetry with coupling    )
SU(2)L g

g′U(1)
sits across weak isospin (          symmetry with coupling  )   

Note that two couplings can be replaced byg g′ e θwand and
θw is to be determined by experiment

☯
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Hints for the calculation

Dµ = ∂µ − igAa
µT a − ig′Y Bµ
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Hypercharge and weak isospin charges
After identifying electric charge quantum number     Q = T 3 + Y

we can rewrite covariant derivative    

This uniquely determines coupling of       and     to fermions 

♻

W± Z0

once quantum numbers of fermion fields are specified

For right-handed fields ☛ T 3 = 0 and hence Y = Q

 combine with 

LL QL

Y = −1/2 Y = +1/6

For the left-handed fields     and      assignments    

electric charge assignmentsT 3 = ±1/2 to give 

Dµ = ∂µ − i
g√
2
(W+

µ T+ +W−
µ T−)− i

g

cos θw
Zµ(T

3 − sin2 θwQ)− ieAµQ
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g2T 3 − g′2Y = (g2 + g′2)T 3 − g′2Q

Hints for the calculation

 use following manipulation in the    coupling Z0
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If we ignore fermion masses                                   
Lagrangian for weak interactions of quarks and leptons          
follows directly from charge assignments given above

Fermionic kinetic energy terms are 

L = L̄L(i !D)LL + ĒR(i !D)ER + Q̄L(i !D)QL + ŪR(i !D)UR + D̄R(i !D)DR

To work out physical consequences of fermion-vector boson couplings            
we should write    in terms of vector boson mass eigenstates

⌘

⌘

Weak isospin & hypercharge quantum numbers
Table 2.1: Weak isospin, and hypercharge quantum numbers.

Lepton T T 3 Q Y Quark T T 3 Q Y

νe
1
2

1
2 0 −1

2 uL
1
2

1
2

2
3

1
6

e−L
1
2 −1

2 −1 −1
2 dL

1
2 −1

2 −1
3

1
6

uR 0 0 2
3

2
3

e−R 0 0 −1 −1 dR 0 0 −1
3 −1

3

The covariant derivative (2.4.91) uniquely determines the coupling of the
W± and Z0 fields to fermions, once the quantum numbers of the fermion
fields are specified. For the right-handed fields, T 3 = 0 and hence Y =
Q. For the left-handed fields, LL and QL, the assignments Y = −1/2 and
Y = +1/6, respectively, combine with T 3 = ±1/2 to give the correct electric
charge assignments. The weak isospin and hypercharge quantum numbers of
leptons and quarks are given in Table 2.1.

If we ignore fermion masses, the Lagrangian for the weak interactions of
quarks and leptons follows directly from the charge assignments given above.
The fermion kinetic energy terms are

L = L̄L(i "D)LL + ĒR(i "D)ER + Q̄L(i "D)QL + ŪR(i "D)UR + D̄R(i "D)DR.
(2.4.92)

To work out the physical consequences of the fermion-vector boson couplings,
we should write (2.4.92) in terms of the vector boson mass eigenstates. Using
the form of the covariant deivative (2.4.91) we can rewrite (2.4.92) as

L = L̄L(i"∂)LL + ĒR(i"∂)ER + Q̄L(i"∂)QL + ŪR(i"∂)UR + D̄R(i"∂)DR

+ g(W+
µ J+µ

W + W−
µ J−µ

W + Z0
µJ

µ
Z) + eAµjµ, (2.4.93)

where

J+µ
W =

1√
2
(ν̄L γµeL + ūL γµdL),

J−µ
W =

1√
2
(ēL γµνL + d̄L γµuL),

63
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J+µ
W =

1√
2
(ν̄L γµeL + ūL γµdL)

J−µ
W =

1√
2
(ēL γµνL + d̄L γµuL)

Jµ
Z =

[
ν̄L γµ

(
1

2

)
νL + ēL γµ

(
−1

2
+ sin2 θw

)
eL + ēR γµ

(
sin2 θw

)
eR

+ ūL γµ

(
1

2
− 2

3
sin2 θw

)
uL + ūR γµ

(
−2

3
sin2 θw

)
uR

+ d̄L γµ

(
−1

2
+

1

3
sin2 θw

)
dL + d̄R γµ

(
1

3
sin2 θw

)
dR

]
1

cos θw
,

jµ = ē γµ(−1)e+ ū γµ

(
+
2

3

)
u+ d̄ γµ

(
−1

3

)
d

where

L = L̄L(i!∂)LL + ĒR(i!∂ER + Q̄L(i!∂)QL + ŪR(i!∂)UR + D̄R(i!∂)DR

+ g(W+
µ J+µ

W +W−
µ J−µ

W + Z0
µJ

µ
Z) + eAµj

µ

Using last form of covariant derivative we rewrite Lagrangian as

and equivalent expressions hold for other two generations

Electroweak Currents
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obtained demanding invariance under local phase transformations to 

q Gµ
gs

Using    L = − 1
2Tr(FµνF

µν) + ψ(i "D−m)ψ we obtain

LQCD = q̄j(iγ
µ∂µ −m)qj + gs(q̄jγ

µtaqj)G
a
µ − 1

4G
a
µνG

µν
a

where         and    denote 3 color fields                           
and -- for simplicity -- we show just one quark flavor

q1, q2 q3

Because we can arbitrarily vary phase of three quark color fields 
it is not surprising that eight vector gluon fields are needed          
to compensate all possible phase changes

Just as for photon ☛ local invariance requires gluons to be massless

QCD

⌫

Gauge invariant QCD Lagrangian  
for interacting colored quarks   and vector gluons                      

-- with coupling specified by    --

q
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Gluon self-interactions
Field strength tensor       Ga

µν
[Gµ,Gν ]has remarkable new property on account of            term

Imposing gauge symmetry has required that:
LQCDkinetic energy term in         is not purely kinetic 

but includes an induced self-interaction between gauge bosons
This becomes clear if we rewrite          in symbolic form

LQCD = ”q̄q” + ”G2” + gs ”q̄qG” + gs ”G
3” + g2s ”G

4”

First 3 terms have QED analogues
They describe free propagation of    and    and         interaction

Remaining 2 terms show presence of QCD 3- and 4-gluon vertices  
and reflect fact that gluons themselves carry color charge

They have no analogue in QED                                         
and arise on account of non-Abelian character of gauge group

LQCD

q q −GG
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Yukawa Lagrangian
Since explicit fermion mass terms violate the gauge symmetries
masses of chiral fields arise from Yukawa interactions              
which couple a right-handed fermion with its left handed doublet 
and Higgs field after spontaneous symmetry breaking
For example to generate electron mass                                  
we include SU(2)× U(1) gauge invariant term in the Lagrangian

LYukawa
e = −Ye

[
(ν̄e, ē)L

(
φ+

φ0

)
eR + ēR(φ

−, φ̄0) (νe
e )L

]

     is Yukawa coupling constant of electronYe

Higgs doublet has exactly required                  quantum numbers to 
to couple to 

SU(2)× U(1)
ēLeR

We spontaneously break symmetry and substitute

φ =
√

1
2

(
0

v +H(x)

)

into 

⦾

⦾
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Lepton masses

neutral Higgs field        is only remnant of Higgs doublet       H(x)
After spontaneous symmetry breaking has taken place

The other three fields can be gauged away
On substitution of   Lagrangian becomesφ

LYukawa
e = − Ye√

2
v(ēLeR + ēReL)−

Ye√
2
(ēLeR + ēReL)H

We choose    so that Ye
me =

Ye v√
2

and thus generate required electron mass

LYukawa
e = −meēe−

me

v
ēeH

Note however since    is arbitrary                                   
actual mass of electron is not predicted

Ye

Besides mass term ☛ Lagrangian contains an interaction term
-- coupling  Higgs scalar to electron --
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Quark masses
Quark masses are generated in similar way
To generate a mass for upper member of quark doublet                   
we must construct complex conjugate of Higgs doublet

Because of special properties of  

  but has opposite weak hypercharge to    ☛  

SU(2)
φ̄

φ
φ

Y = −1/2
transforms identically to  

It can be used to construct a gauge invariant contribution to

LYukawa
q = −Yd(ū, d̄)L

(
φ+

φ0

)
dR + Yu(ū, d̄)L

(
−φ̄0

φ̄−

)
uR + h.c.

= −mdd̄d−muūu− md
v d̄dH − mu

v ūuH

 Yukawa Lagrangian then takes the form

ij

−LYukawa = Yd
ij QLi φDRj + Yu

ij QLi φ̄ URj + Ye
ij LLi φERj + h.c.

   are generation indices

φ̄ = iτ2φ∗ =
(
−φ̄0

φ−

)
−→︸︷︷︸

breaking

√
1
2

(
v+H
0

)
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Global Symmetries
Standard Model also comprises an accidental global symmetry

U(1)B × U(1)e × U(1)µ × U(1)τ
U(1)B is baryon number symmetry

U(1)e,µ,τ  are three lepton flavor symmetries
with total lepton number given by L = Le + Lµ + Lτ

It is an accidental symmetry because we do not impose it

consequence of gauge symmetries and low energy particle content

It is possible -- but not necessary --                                  
that effective interaction operators                                       
induced by high energy content of  underlying theory             
may violate sectors of global symmetry

⦁⦁

⦁⦁

⦁⦁
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To convey an impression of how theories developed             
and how SM has successfully confronted experiment 
we will describe a number of most important theoretical results

In real life                                                          
model of nature is usually uncovered in a less pristine fashion

looking forward

∎∎

∎∎

∎∎ We will start from most precisely tested theory in physics QED        
and carry on to QCD and electroweak theory

We have build SM from general group-theory considerations   
-- principles of symmetry and invariants --

∎∎
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