Prof. Anchordoqui

Problems set # 12

Physics 541-735

November 29, 2011

1.(i) Show that the muon decay rate is given by (G.0.14).

(*ii*) What is the decay rate of the semileptonic process $\tau^- \to \pi^- \nu_{\tau}$. [Hint: see Y. S. Tsai, Phys. Rev. D 4, 2821 (1971); Erratum-ibid. D 13, 771 (1976)].

2.(i) Estimate the relative rates for the following three decay modes of the $D^0(c\bar{u})$ meson: $D^0 \to K^- \pi^+, \ \pi^- \pi^+, \ K^+ \pi^-.$

(ii) Given the partial rate

$$\Gamma(K^+ \to \pi^0 e^+ \nu) = 4 \times 10^{-6} \text{ s}^{-1}$$

calculate the rate for $D^0 \to K^- e^+ \nu$. Hence, estimate the lifetime of the D^0 meson.

3.(i) Assuming the standard model coupling, show that

$$\Gamma(Z \to \nu_e \bar{\nu}_e) = \frac{g^2}{96\pi \cos^2 \theta_w M_Z}.$$

Given that $\sin^2 \theta_w = 0.25$ and $M_Z = 90$ GeV, predict the numerical value of the partial decay width.

(ii) Calculate the partial widths of the three decay modes $Z \to e^+e^-$, $\bar{u}u$, $\bar{d}d$. Hence predict the total width of the Z in the standard model, assuming $\sin^2 \theta_w = 1/4$ and $M_Z = 90$ GeV. Do not forget color.

4.(i) Predict the numerical value of the partial decay width $W^+ \to e^+ \nu_e$.

(ii) Calculate the partial widths of the two decay modes $W^+ \to \bar{d}u$, $\bar{s}u$. Predict the total width of the W^+ in the standard model.

5.(i) Integrate (5.4.74) over Ω and find an expression for the ratio $R_{\mu} = \sigma(e^+e^- \to \mu^+\mu^-)/\sigma_0$, where σ_0 is the QED cross section of (3.3.53).

(*ii*) Using the couplings in the standard model, calculate R_{μ} at $s = M_Z^2$.

6. It is relevant to ask what electroweak effects occur in $e^+e^- \rightarrow \bar{q}q$. They are not the same as in $e^+e^- \rightarrow \mu^+\mu^-$, since $c_{V,A}^q \neq c_{V,A}^{\mu}$. However, the calculation proceeds in a similar fashion. For example, the counterpart to (5.4.71) is

$$\left. \frac{d\sigma}{d\Omega} \right|_{e_L^- e_R^+ \to q_L^- q_R^+} = 3 \frac{\alpha^2}{4s} (1 + \cos\theta)^2 \left[e_q + r c_L^q c_L^e \right]^2 \,,$$

where e_q is the charge of the quark and the factor 3 is for color. Following through the calculation obtain an expression for the ratio $R_q = \sigma(e^+e^- \rightarrow \mu^+\mu^-)/\sigma_0$, and calculate R_u and R_d at $s = M_Z^2$. Hence, calculate $\sigma(e^+e^- \rightarrow hadrons)$ at the Z resonance.