Quantum Mechanics

Luis A. Anchordoqui

Department of Physics and Astronomy
Lehman College, City University of New York

Lesson VII
March 26, 2019

Table of Contents

(1) Particle in a one-dimensional lattice

- δ-function potential well
- Bound state wave function for δ-function potential well
- Scattering off the δ-function potential well
- δ-function potential barrier
- Double δ-function potential well
- Kronig-Penney-Dirac model
- A δ-function is infinitely high, infinitesimally narrow spike at $x=a$
- If $a=0$ potential of form

$$
V(x)=-\alpha \delta(x)
$$

α some constant of appropriate dimension

- Schrödinger equation for δ-function potentail well reads

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)-\alpha \delta(x) \psi(x)=E \psi(x)
$$

- In region I and III Schrödinger equation is

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)=E \psi(x)
$$

or

$$
\frac{\partial^{2}}{\partial x^{2}} \psi(x)=-\frac{2 m E}{\hbar^{2}} \psi(x)=-k^{2} \psi(x)
$$

- It has a solution of the form $\psi(x)=A e^{\lambda x}$
- Plugging this back into Schrödinger equation reveals that $\lambda= \pm i k$
- If $E<0$ is imaginary so we write

$$
k=\sqrt{\frac{2 m E}{\hbar^{2}}}=\sqrt{-\frac{2 m|E|}{\hbar^{2}}}=i \kappa
$$

and the solution becomes

$$
\begin{array}{cc}
\psi_{I}(x)=A e^{+\kappa x}+B e^{-\kappa x} & x<0 \\
\psi_{I I I}(x)=F e^{+\kappa x}+G e^{-\kappa x} & x>0
\end{array}
$$

- Region I: $E<0$ solution blows up as $x \rightarrow-\infty$ unless $B=0$
- Region III: $E>0$ solution blows up as $x \rightarrow+\infty$ unless $F=0$
- This means that solutions in regions I and III are:

$$
\begin{array}{cc}
\psi_{I}(x)=A e^{+\kappa x} & x<0 \\
\psi_{I I I}(x)=G e^{-\kappa x} & x>0
\end{array}
$$

- Recall wave function must be continuous
to have meaning as a probability amplitude
- For δ-function potential where region II has no real width wave function in regions I and III must have same value at $x=0$
- This requires that $A=G$ so solution to Schrödinger's equation is

$$
\begin{aligned}
\psi_{I}(x) & =A e^{\kappa x} \quad x<0 \\
\psi_{I I I}(x) & =A e^{-\kappa x} \quad x>0
\end{aligned}
$$

- Equivalently

$$
\psi_{I, I I I}(x)=A e^{-\kappa|x|}
$$

- Second condition on wave function solution to Schrödinger eq.: first derivative of wave function
must be continuous for piecewise-continuous potentials
- BUT δ-function potential is not piecewise continuous but infinite
- Look carefully at requirement imposed on first derivative of wave function by Schrödinger equation
- Integrate Schrödinger eq. with respect to x over small interval $\Delta \epsilon$

$$
-\frac{\hbar}{2 m} \int_{x_{0}-\epsilon}^{x_{0}+\epsilon} \frac{\partial^{2} \psi(x)}{\partial x^{2}} d x+\int_{x_{0}-\epsilon}^{x_{0}+\epsilon} V(x) \psi(x) d x=E \int_{x_{0}-\epsilon}^{x_{0}+\epsilon} \psi(x) d x
$$

- If $\Delta \epsilon \rightarrow 0$ integral over wave function must go to zero because $\psi(x)$ is a continuous single-valued function
- Integral of $\psi^{\prime \prime}(x)$ is just $\psi^{\prime}(x)$ so that we are left with

$$
\left.\lim _{\Delta \epsilon \rightarrow 0} \frac{\partial \psi(x)}{\partial x}\right|_{x_{0}-\epsilon} ^{x_{0}+\epsilon}=\lim _{\Delta \epsilon \rightarrow 0} \frac{2 m}{\hbar^{2}} \int_{x_{0}-\epsilon}^{x_{0}+\epsilon} V(x) \psi(x) d x
$$

- Using definition of δ-function we evaluate integral

$$
\left.\lim _{\Delta \epsilon \rightarrow 0} \frac{\partial \psi(x)}{\partial x}\right|_{-\epsilon} ^{+\epsilon}=\lim _{\Delta \epsilon \rightarrow 0} \frac{2 m}{\hbar^{2}} \int_{-\epsilon}^{+\epsilon}-\alpha \delta(x) \psi(x) d x=-\frac{2 m \alpha}{\hbar^{2}} \psi(0)
$$

which we rewrite as

$$
\lim _{\Delta \epsilon \rightarrow 0}\left(\left.\frac{\partial \psi(x)}{\partial x}\right|_{+\epsilon}-\left.\frac{\partial \psi(x)}{\partial x}\right|_{-\epsilon}\right)=-\frac{2 m \alpha}{\hbar^{2}} \psi(0)=-\frac{2 m \alpha}{\hbar^{2}} A
$$

- Now first partial derivative is evaluated in region $x>0$ while second partial is evaluated in region $x<0$ giving

$$
\lim _{\Delta \epsilon \rightarrow 0}\left(-\left.\kappa A e^{-\kappa x}\right|_{+\epsilon}-\left.\left(+\kappa A e^{+\kappa x}\right)\right|_{-\epsilon}\right)=-\frac{2 m \alpha}{\hbar^{2}} A
$$

- Limit as $\epsilon \rightarrow 0$ fixes value of κ

$$
\lim _{\Delta \epsilon \rightarrow 0}\left(-2 \kappa A e^{-\kappa \epsilon}\right)=-2 m \alpha \hbar^{2} A
$$

and therefore of energy E according to equation

$$
\kappa=\frac{m \alpha}{\hbar^{2}}=\sqrt{\frac{2 m|E|}{\hbar^{2}}}
$$

- We see that there is only one allowed energy given by

$$
E=-\frac{m^{2} \alpha^{2}}{\hbar^{4}} \frac{\hbar^{2}}{2 m}=-\frac{m \alpha^{2}}{2 \hbar^{2}}
$$

α "depth" of δ-function potential

$$
\begin{gathered}
\int_{-\infty}^{0} A^{2} e^{+2 \kappa x} d x+\int_{0}^{+\infty} A^{2} e^{-2 \kappa x} d x=1 \\
\left.\frac{A^{2} e^{+2 \kappa x}}{+2 \kappa}\right|_{-\infty} ^{0}+\left.\frac{A^{2} e^{-2 \kappa x}}{-2 \kappa}\right|_{0} ^{+\infty}=1 \\
\frac{A^{2}}{\kappa}=1 \Rightarrow A=\sqrt{\kappa}
\end{gathered}
$$

- For δ-function potential we have only one eigenstate corresponding to energy $E<0$ given by

$$
\psi_{E}(x)=\sqrt{\kappa} e^{-\kappa|x|} \quad E=-\frac{m \alpha^{2}}{2 \hbar^{2}}
$$

- In region I and III the Schrödinger equation is again

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)=E \psi(x)
$$

or

$$
\frac{\partial^{2}}{\partial x^{2}} \psi(x)=-\frac{2 m E}{\hbar^{2}} \psi(x)=-k^{2} \psi(x)
$$

- It has a solution of the form $\psi(x)=A e^{\lambda x}$
- Plugging this back into Schrödinger equation reveals that $\lambda= \pm i k$
- If $E>0$ is real given by

$$
k=\sqrt{\frac{2 m E}{\hbar^{2}}}
$$

and the solution becomes

$$
\begin{array}{cc}
\psi_{I}(x)=A e^{+i k x}+B e^{-i k x} & x<0 \\
\psi_{I I I}(x)=F e^{+i k x}+G e^{-i k x} & x>0
\end{array}
$$

- Time-dependent have form of two traveling sinusoidal waves moving in opposite directions
- Assume particles originate in negative half-plane region $x<0$
- Particles moving from left encounter δ-function potential at $x=0$: will either continue moving in $+x$ direction
(i.e., they are transmitted through the region of potential change) or will be reflected and move back in $-x$ direction
- If $x<0$ we must allow for possibility of 2 opposite going waves but in region where $x>0$ there is only one possibility
wave moves only in $+x$ direction
- Based upon the initial conditions $G=0$ and so

$$
\begin{array}{rlrl}
\psi_{I}(x) & =A^{+i k x}+B^{-i k x} & x<0 \\
\psi_{I I I}(x) & =F e^{+i k x} & & x>0
\end{array}
$$

- Since wave function must be continuous these two equations must be equal at $x=0$ giving the condition

$$
A+B=F
$$

- Second condition on wave function solution to Schrödinger eq.: first derivative of wave function
must be continuous for piecewise-continuous potentials
- BUT again potential is not piecewise continuous but infinite.
- As before we integrate Schrödinger eq. over small interval $\Delta \epsilon$

$$
-\frac{\hbar}{2 m} \int_{x_{0}-\epsilon}^{x_{0}+\epsilon} \frac{\partial^{2} \psi(x)}{\partial x^{2}} d x+\int_{x_{0}-\epsilon}^{x_{0}+\epsilon} V(x) \psi(x) d x=E \int_{x_{0}-\epsilon}^{x_{0}+\epsilon} \psi(x) d x
$$

- If $\Delta \epsilon \rightarrow 0$ integral over wave function must go to zero because $\psi(x)$ is a continuous single-valued function
- Integral of $\psi^{\prime \prime}(x)$ is just $\psi^{\prime}(x)$ so that we are left with

$$
\left.\lim _{\Delta \epsilon \rightarrow 0} \frac{\partial \psi(x)}{\partial x}\right|_{x_{0}-\epsilon} ^{x_{0}+\epsilon}=\lim _{\Delta \epsilon \rightarrow 0} \frac{2 m}{\hbar^{2}} \int_{x_{0}-\epsilon}^{x_{0}+\epsilon} V(x) \psi(x) d x
$$

- Using definition of δ-function we evaluate integral

$$
\left.\lim _{\Delta \epsilon \rightarrow 0} \frac{\partial \psi(x)}{\partial x}\right|_{-\epsilon} ^{+\epsilon}=\lim _{\Delta \epsilon \rightarrow 0} \frac{2 m}{\hbar^{2}} \int_{-\epsilon}^{+\epsilon}-\alpha \delta(x) \psi(x) d x=-\frac{2 m \alpha}{\hbar^{2}} \psi(0)
$$

which we rewrite as

$$
\lim _{\Delta \epsilon \rightarrow 0}\left(\left.\frac{\partial \psi(x)}{\partial x}\right|_{+\epsilon}-\left.\frac{\partial \psi(x)}{\partial x}\right|_{-\epsilon}\right)=-\frac{2 m \alpha}{\hbar^{2}} \psi(0)=-\frac{2 m \alpha}{\hbar^{2}}(A+B)
$$

- Now first partial derivative is evaluated in region $x>0$ while second partial is evaluated in region $x<0$ giving

$$
\lim _{\Delta \epsilon \rightarrow 0}\left\{\left.i k F e^{+i k x}\right|_{+\epsilon}-\left.\left[i k A e^{+i k x}+(-i k) B e^{-i k x}\right]\right|_{-\epsilon}\right\}=-\frac{2 m \alpha}{\hbar^{2}}(A+B)
$$

- In the limit

$$
\lim _{\Delta \epsilon \rightarrow 0} i k\left[(F+B) e^{+i k \epsilon}-A e^{-i k \epsilon}\right]=-\frac{2 m \alpha}{\hbar^{2}}(A+B)
$$

this reduces to

$$
F+B-A=\frac{i 2 m \alpha}{\hbar^{2} k}(A+B)=2 i \beta(A+B) \quad \text { with } \quad \beta=\frac{m \alpha}{\hbar^{2} k}
$$

- Using condition on continuity of wave function $F=A+B$ this last equation reduces to $B=i \beta(A+B)$ or

$$
B=\frac{i \beta}{1-i \beta} A
$$

- Since $F=A+B$ solving for F gives

$$
F=\frac{1}{1-i \beta} A
$$

- Probability current density

$$
j=-\frac{i \hbar}{2 m}\left[\Psi^{*}(x, t) \frac{\partial}{\partial x} \Psi(x, t)-\Psi(x, t) \frac{\partial}{\partial x} \Psi^{*}(x, t)\right]
$$

- It should be obvious that:
amplitude A related to probability of measuring incoming particle amplitude B related to probability of measuring reflected particle and amplitude F to measuring transmitted particle

$$
R \equiv\left|\frac{j_{\text {reflected }}}{j_{\text {incident }}}\right| \quad \text { and } \quad T \equiv\left|\frac{j_{\text {transmitted }}}{j_{\text {incident }}}\right|
$$

- Solutions for δ-function potential are travelling plane waves

$$
\Psi(x, t)=A e^{i(k x-\omega t)}
$$

- Probability current density for plane waves is

$$
\begin{gathered}
j=-\frac{i \hbar}{2 m}\left[A^{*} e^{-i(k x-\omega t)} \frac{\partial}{\partial x} A e^{i(k x-\omega t)}-A e^{i(k x-\omega t} \frac{\partial}{\partial x} A^{*} e^{-i(k x-\omega t)}\right] \\
j=-\frac{i \hbar}{2 m}\left[A^{*} e^{-i(k x-\omega t)} i k A e^{i(k x-\omega t)}-A e^{i(k x-\omega t}(-i k) A^{*} e^{-i(k x-\omega t)}\right] \\
j=-\frac{i \hbar}{2 m}\left[i k|A|^{2}-(-i k)|A|^{2}\right] \\
j=-\frac{i \hbar}{2 m} 2 i k|A|^{2}=\frac{\hbar k}{m}|A|^{2}
\end{gathered}
$$

- This has the form

$$
j=\frac{p}{m}|A|^{2}=u|A|^{2} \quad \text { where } u \quad \text { velocity }
$$

and will be positive or negative depending upon sign of k

- Incident probability current density

$$
j_{\text {incident }}=+\frac{\hbar k}{m}|A|^{2}
$$

- Reflected probability current density

$$
j_{\text {reflected }}=-\frac{\hbar k}{m}|B|^{2}
$$

- Transmitted probability current density

$$
j_{\text {transmitted }}=+\frac{\hbar k}{m}|F|^{2}
$$

- Recall $\beta^{2}=\frac{m^{2} \alpha^{2}}{\hbar^{4} k^{2}}=\frac{m^{2} \alpha^{2}}{\hbar^{4}\left(2 m E / \hbar^{2}\right)}=\frac{m \alpha^{2}}{2 \hbar^{2} E}$
- Reflection coefficient

$$
R=\frac{|B|^{2}}{|A|^{2}}=\frac{\beta^{2}}{1+\beta^{2}}=\frac{1}{1+1 / \beta^{2}}=\frac{1}{1+2 \hbar^{2} E /\left(m \alpha^{2}\right)}
$$

- Transmission coeffcient

$$
T=\frac{|F|^{2}}{|A|^{2}}=\frac{1}{1+\beta^{2}}=\frac{1}{1+m \alpha^{2} /\left(2 \hbar^{2} E\right)}
$$

- For δ-function potential barrier sign of potential is changed

$$
V(x)=+\alpha \delta(x)
$$

- $V(x)$ acts as infinitely narrow, infinitely tall potential barrier in otherwise constant potential background
- It should be obvious that there is no bound state solution for $E<0$
- For $E>0$ all we have to do to find solution for infinite barrier is change sign of α
- But reflection and transmission coefficients are function only of α^{2} so that we obtain the same result as for the potential well
- This means that a quantum mechanical particle can penetrate a potential barrier of infinite height!
- Particularly interesting potentials having lot of practical relevances are double or multiple (periodic) square well potentials
- These potentials are often found in electronic arrangements in solids or molecules
- First consider attractive double δ-function potential

$$
V(x)=-\alpha[\delta(x+a)+\delta(x-a)] \quad \text { with } \quad \alpha=\hbar^{2} /(m a)
$$

- Interest is in $E<0$ bound states

- Schrödinger equations are solved for wave functions in regions

$$
\begin{cases}I: & x<a \\ I I: & a \leq x \leq a \\ I I I: & x>a\end{cases}
$$

- In all these regions we have same Schrödinger equation

$$
\frac{d^{2} \psi}{d x^{2}}-\kappa^{2} \psi=0 \quad \text { with } \quad \kappa^{2}=-\frac{2 m E}{\hbar^{2}}
$$

- Solutions are (discarding those that blow up at $\pm \infty$):

$$
\begin{array}{rcc}
x<-a & : & \psi(x)=A e^{\kappa x} \\
-a \leq x \leq a & : & \psi(x)=C e^{\kappa x}+D e^{-\kappa x} \\
x>a & : & \psi(x)=F e^{-\kappa x}
\end{array}
$$

- Apply boundary conditions to evaluate unknown constants
- Continuity of $\psi(x)$ at $x=-a$

$$
A e^{-\kappa a}=C e^{-\kappa a}+D e^{\kappa a}
$$

- Continuity of $\psi(x)$ at $x=a$

$$
F e^{-\kappa a}=C e^{\kappa a}+D e^{-\kappa a}
$$

- Discontonuity of $d \psi / d x$ at $x=-a$

$$
\kappa\left(C e^{-\kappa a}-D e^{\kappa a}\right)-\kappa A e^{-\kappa a}=-\frac{2 m \alpha}{\hbar^{2}} A e^{-\kappa a}=-\frac{2}{a} A e^{-\kappa a}
$$

- Discontonuity of $d \psi / d x$ at $x=a$

$$
-\kappa F e^{-\kappa a}-\kappa\left(C e^{-\kappa a}-D e^{\kappa a}\right)=-\frac{2 m \alpha}{\hbar^{2}} F e^{-\kappa a}=-\frac{2}{a} F e^{-\kappa a}
$$

- Discontinuous boundary equations can be simplified as

For $x=-a A e^{-\kappa a}(\kappa-2 / a)=\kappa\left(C e^{-\kappa a}-D e^{\kappa a}\right)$
For $x=a \quad F e^{-\kappa a}(2 / a-\kappa)=\kappa\left(C e^{-\kappa a}-D e^{\kappa a}\right)$

- To determine allowed energies we solve boundary equations for C and D eliminating A and F

$$
\left.\begin{array}{l}
C e^{-\kappa a}=D e^{\kappa a}(\kappa a-1) \\
D e^{-\kappa a}=C e^{\kappa a}(\kappa a-1)
\end{array}\right\} C^{2}=D^{2} \Rightarrow C= \pm D
$$

- Not surprising because of symmetry of potential we have both even and odd parity solutions
- Even parity $C=D \psi(x)=C\left(e^{\kappa x}+e^{-\kappa x}\right)=C^{\prime} \cosh (\kappa x)$
- Odd parity $C=-D \psi(x)=C\left(e^{\kappa x}-e^{-\kappa x}\right)=C^{\prime} \sinh (\kappa x)$
- Solving for bound state(s) through transcendental equations
- Even: $C=D e^{-2 \kappa a}=\kappa a-1 \Rightarrow e^{-2 y}=y-1$
- Odd: $C=-D e^{-2 \kappa a}=1-\kappa a \Rightarrow e^{-2 y}=1-y$
- Only even bound state solution $y=\kappa a \approx 1.11$
- $y=\kappa a=0$ leaves bound state wave function non normalizable
- For $\alpha>\hbar^{2} / m a$ we can get one odd parity bound state too
- For $\alpha=\hbar^{2} /(m a)$ double δ-function gives lower bound state E

$$
E_{s}=-\frac{m \alpha^{2}}{2 \hbar^{2}}=-\frac{\hbar^{2}}{2 m a} \quad \text { and } \quad E_{d}=-(1.11)^{2} \frac{\hbar^{2}}{2 m a^{2}}
$$

- Kronig-Penney model describes electron motion in periodic array of rectangular barriers
- Kronig-Penney-Dirac model special case of Kronig-Penney obtained by taking limit $b \rightarrow 0$ and $V_{0} \rightarrow \infty$ but $U_{0} \equiv V_{0} b$ finite
- In this limit each rectangular barrier becomes a Dirac δ-function

$$
U(x)=U_{0} \sum_{n=-\infty}^{+\infty} \delta(x-n a)
$$

a

- Schrödinger equation reads

$$
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)+U(x) \psi(x)=E \psi(x)
$$

- Consider two segments: $\begin{cases}I & a<x<0 \\ I I & 0<x<a\end{cases}$
- Since potential energy is equal to zero inside each segment wave functions are linear combinations of two plane waves

$$
\begin{aligned}
\psi_{I}(x) & =A e^{i k x}+B e^{-i k x} \\
\psi_{I I}(x) & =C e^{i k x}+D e^{-i k x}
\end{aligned}
$$

- Recall $k=\sqrt{2 m E} / \hbar$
- Wave function must satisfy Bloch theorem $\psi(x+a)=e^{i q a} \psi(x)$
- Imposing symmetry condition for $0 \leq x \leq a$ we have

$$
\begin{gathered}
\psi_{I I}(x)=e^{i q a} \psi_{I}(x-a) \\
C e^{i k x}+D e^{-i k x}=e^{i q a}\left(A e^{i k(x-a)}+B e^{-i k(x-a)}\right)
\end{gathered}
$$

- Since $e^{i k x}$ and $e^{-i k x}$ are linearly independent functions, the coefficients in front of the $e^{i k x}$ terms must match

$$
C=A e^{i q a} e^{-i k a} \quad \text { and } \quad D=e^{i q a} e^{i k a}
$$

wave function $\psi_{I I}$ becomes

$$
\psi_{I I}(x)=e^{i q a}\left[A e^{i k(x-a)}+B e^{-i k(x-a)}\right]
$$

- Boundary conditions
- wave function is continuos at $x=0$

$$
A+B=e^{i q a}\left[A e^{i k a}+B e^{-i k a}\right]
$$

- discontinuity of wave function at $x=0$ is obtained by integrating the Schrödinger equation over narrow interval $(-\epsilon, \epsilon)$ around $x=0$

$$
-\frac{\hbar^{2}}{2 m} \int_{-\epsilon}^{+\epsilon} \psi^{\prime \prime}(x) d x+U_{0} \int_{-\epsilon}^{+\epsilon} \delta(x) \psi(x) d x=E \int_{-\epsilon}^{+\epsilon} \psi(x) d x
$$

which gives

$$
-\frac{\hbar^{2}}{2 m}\left(\psi_{I I}^{\prime}(0)-\psi_{I}^{\prime}(0)\right)+U_{0} \psi_{I}(0)=0
$$

- Derivatives

$$
\begin{gathered}
\psi_{I}^{\prime}(0)=\left.i k\left[A e^{i k x}-B e^{-i k x}\right]\right|_{x=0}=i k(A-B) \\
\psi_{I I}^{\prime}(0)=\left.i k e^{i q a}\left[A e^{i k(x-a)}-B e^{-i k(x-a)}\right]\right|_{x=0}=i k e^{i q a}\left[A e^{-i k a}-B e^{i k a}\right]
\end{gathered}
$$

- Substituting derivatives back obtain 2×2 system for A and B

$$
\begin{gathered}
A\left(1-e^{i(k-q) a}\right)+B\left(1-e^{i(k+q) a}\right)=0 \\
A\left(e^{i(q-k) a}-1-\frac{2 m U_{0}}{i \hbar k}\right)+B\left(-e^{i(k+q} a+1-\frac{2 m U_{0}}{i \hbar k}\right)=0
\end{gathered}
$$

- Non-trivial solution determinant must equal zero
- Opening brackets and simplifying yields

$$
\cos (q a)=\cos (k a)+\frac{m U_{0} a}{\hbar^{2}} \frac{\sin (k a)}{k a}
$$

- $u=m U_{0} a / \hbar$ dimensionless parameter of model
"measuring" strength of periodic potential
- Transcendental equation

$$
\cos (q a)=\cos (k a)+u \frac{\sin (k a)}{k a}
$$

constrains allowed k values (and therefore E)
similar to quantized energies for bound states

- If $U_{0}>0$ maximum value of RHS reached at $k a=0$

$$
\lim _{k a \rightarrow 0}[\cos (k a)+u \sin (k a) /(k a)]=1+u>0
$$

- For larger $|k a|$ RHS decreases and oscillates
- LHS bounded by unity $-1 \leq \cos (q a) \leq 1$
- Solution in real numbers for k only possible within those intervals where magnitude of RHS is less than unity
- There are allowed bands of k and gap between those bands
- Appearence of energy bands separated by energy gaps is hallmark of periodic lattice potential system

Example

- $\cos (k a)+u \frac{\sin (k a)}{k a} u=10$
- Horizontal lines bounds on $\cos (q a)$

