Quantum Mechanics

Luis A. Anchordoqui

Department of Physics and Astronomy
Lehman College, City University of New York

Lesson VI
March 19, 2019

Table of Contents

(1) Bound states in one dimension

- Particle in a box
- Finite square well
- Superposition and time dependence
- Harmonic oscillator

$$
V(x)= \begin{cases}\infty & \text { for } x<L / 2 \tag{1}\\ V_{0} & \text { for }-L / 2 \leq x \leq L / 2 \\ \infty & \text { for } x>L / 2\end{cases}
$$

- wave function outside box

$$
\begin{equation*}
\psi(x)=0 \quad x<-L / 2 \wedge x>L / 2 \tag{2}
\end{equation*}
$$

- wave function inside box

$$
\begin{equation*}
\psi(x)=A e^{i k x}+B e^{-i k x} \quad-L / 2 \leq x \leq L / 2 \tag{3}
\end{equation*}
$$

- energy and wave vector

$$
\begin{equation*}
E=\frac{\hbar^{2} k^{2}}{2 m}+V_{0} \Rightarrow k^{2}=\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}} \tag{4}
\end{equation*}
$$

- boundary conditions for wave function

$$
\begin{align*}
& \psi(-L / 2)=A e^{-i k L / 2}+B e^{i k L / 2}=0 \tag{5}\\
& \psi(+L / 2)=A e^{i k L / 2}+B e^{-i k L / 2}=0 \tag{6}
\end{align*}
$$

- adding (5) to (6) gives

$$
\begin{equation*}
2(A+B) \cos (k L / 2)=0 \tag{7}
\end{equation*}
$$

- while subtracting (5) from (6) gives

$$
\begin{equation*}
2 i(A-B) \sin (k L / 2)=0 \tag{8}
\end{equation*}
$$

- both conditions in (7) and (8) must be met
- when $A=B$ (8) is met and to satisfy (7)

$$
\begin{equation*}
k=\frac{2 \pi n_{1}}{L}+\frac{\pi}{L} \quad n_{1}=0,1,2,3, \cdots \tag{9}
\end{equation*}
$$

- when $A=-B$ in which (7) is met and to satisfy (8)

$$
\begin{equation*}
k=\frac{2 \pi n_{2}}{L} \quad n_{2}=1,2,3, \cdots \tag{10}
\end{equation*}
$$

- Consolidate quantization conditions rewriting

$$
\begin{equation*}
k=\frac{\pi n}{L} \quad n=1,2,3 \ldots \tag{11}
\end{equation*}
$$

and solution to time-independent Schrödinger equation

$$
\psi_{n}(x)=A\left\{\begin{array}{ll}
\cos (n \pi x / L) & \text { for } n \text { odd } \tag{12}\\
\sin (n \pi x / L) & \text { for } n \text { even }
\end{array}=A \sin \left[\frac{n \pi}{L}\left(x+\frac{L}{2}\right)\right]\right.
$$

- Not only is the wave vector quantized but also

$$
\begin{gather*}
p=\hbar k=\hbar \pi n / L \tag{13}\\
\text { and } \\
E=V_{0}+\frac{\hbar^{2} k^{2}}{2 m}=V_{0}+\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}} \tag{14}
\end{gather*}
$$

- Amplitude can be found by considering normalization condition
$\int_{-\infty}^{+\infty}\left|\psi_{n}(x)\right|^{2} d x=\int_{-L / 2}^{+L / 2}\left|A \sin \left[\frac{n \pi}{L}\left(x+\frac{L}{2}\right)\right]\right|^{2} d x=|A|^{2} \frac{L}{2}$, (15)
recall

$$
\begin{equation*}
\int_{-L / 2}^{+L / 2}\left|\sin \left[\frac{n \pi}{L}\left(x+\frac{L}{2}\right)\right]\right|^{2} d x=\frac{L}{2} \tag{16}
\end{equation*}
$$

- Since we require $|A|^{2} L / 2=1$

$$
\begin{equation*}
A=\sqrt{\frac{2}{L}} \Rightarrow \psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left[\frac{n \pi}{L}\left(x+\frac{L}{2}\right)\right] \tag{17}
\end{equation*}
$$

- Normalization can be met for a range of complex amplitudes

$$
\begin{equation*}
A=e^{i \phi} \sqrt{\frac{2}{L}} \tag{18}
\end{equation*}
$$

in which phase ϕ is arbitrary

- This implies outcome of measurement about particle position (which is proportional to $|\psi(x)|^{2}$)
is invariant under global phase factor

Hamiltonian operator

- Each solution $\psi_{n}(x)$ satisfies the eigenvalue problem

$$
\begin{equation*}
\hat{H} \psi_{n}(x)=E_{n} \psi_{n}(x) \quad \hat{H}=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \tag{19}
\end{equation*}
$$

- Solutions are orthogonal to one another

$$
\begin{gather*}
\int_{-L / 2}^{+L / 2} \psi_{m}^{*}(x) \psi_{n}(x) d x=\delta_{m n} \tag{20}\\
\delta_{m n} \begin{cases}1 & m=n \\
0 & m \neq n\end{cases} \tag{21}
\end{gather*}
$$

$$
\begin{aligned}
& E_{1}>V_{0} \Rightarrow \begin{cases}-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{2 d^{2} x}=\left(E-V_{0}\right) \psi(x) & \text { in region I } \\
-\frac{\hbar^{2}}{2 m} \psi(x) \\
-\frac{\hbar^{2}}{d x} \frac{\hbar^{2}}{d} \frac{d^{2} \psi(x)}{d x}=\left(E-V_{0}\right) \psi(x) & \text { in region II } \\
\text { in region III }\end{cases} \\
& E_{2}<V_{0} \Rightarrow \begin{cases}-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{2 d^{2} x}=\left(V_{0}-E\right) \psi(x) & \text { in region I } \\
-\frac{\hbar^{2}}{2^{2} m} \frac{d^{2}(x)}{d x}=E \psi(x) & \text { in region II } \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x}=\left(V_{0}-E\right) \psi(x) & \text { in region III }\end{cases}
\end{aligned}
$$

- E_{1} Expect to find solution in terms of travelling waves Not so interesting describes case of unbound particle
- E_{2} Expect waves inside the well and imaginary momentum (yielding exponentially decaying probability of finding particle)
in outside regions
- More precisely
- Region I: $k^{\prime}=i \kappa \Rightarrow \kappa=\sqrt{\frac{2 m\left(V_{0}-E_{2}\right)}{\hbar^{2}}}=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}$
- Region II: $k=\sqrt{\frac{2 m E_{2}}{\hbar^{2}}}=\sqrt{\frac{2 m E}{\hbar^{2}}}$
- Region III: $k^{\prime}=i \kappa \Rightarrow \kappa=\sqrt{\frac{2 m\left(V_{0}-E_{2}\right)}{\hbar^{2}}}=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}$
- And wave function is
- Region I: $C^{\prime} e^{-\kappa|x|}$
- Region II: $A^{\prime} e^{i k x}+B^{\prime} e^{-i k x}$
- Region III: $D^{\prime} e^{-\kappa x}$

In first region can write either $C^{\prime} e^{-\kappa|x|}$ or $C^{\prime} e^{\kappa x}$
First notation makes it clear we have exponential decay

- Potential even function of x
- Differential operator also even function of x
- Solution has to be odd or even for equation to hold
- A and B must be chosen such that

$$
\psi(x)=A^{\prime} e^{i k x}+B^{\prime} e^{-i k x}
$$

is either even or odd

- Even solution $\psi(x)=A \cos (k x)$
- Odd solution $\psi(x)=A \sin (k x)$

Odd solution

- $\psi(-x)=-\psi(x)$ setting $C^{\prime}=-D^{\prime}$ rewrite $-C^{\prime}=D^{\prime}=C$
- Region I $\psi(x)=-C e^{\kappa x}$ and $\psi^{\prime}(x)=-\kappa C e^{\kappa x}$
- Region II $\psi(x)=A \sin (k x)$ and $\psi^{\prime}(x)=k A \cos (k x)$
- Region III $\psi(x)=C e^{-\kappa x}$ and $\psi^{\prime}(x)=-\kappa C e^{-\kappa x}$
- Since $\psi(-x)=-\psi(x)$ consider boundary condition @ $x=a$
- Two equations are

$$
\left\{\begin{array}{l}
A \sin (k a)=C e^{-\kappa a} \\
A k \cos (k a)=-\kappa C e^{-\kappa a}
\end{array}\right.
$$

- Substituting first equation into second

$$
A k \cos (k a)=-\kappa A \sin (k a)
$$

- Constraint on eigenvalues k and $\kappa \kappa=-k \cot (k a)$
- For the even solution in the well $\psi(x)=A \cos (k x)$
- For continuity of $\psi(x) A \cos (k a)=C e^{-\kappa a}$
- For continuity of $\psi^{\prime}(x)-k A \sin (k a)=-$ Cкe $e^{-\kappa a}$
- Constraint on eigenvalues k and $\kappa \kappa=k \tan (k a)$

Graphical Solutions

- Two different curves of k / k are shown
each corresponding to different V_{0} value
- V_{0} given by value of $k a$ where $\kappa / k=0$ indicated by small arrows
- Top κ / k curve has $\kappa / k=0$ for $k a=2.75 \pi$ or $\sqrt{2 m V_{0}} a / h=2.75 \pi$
- Allowed values of E are given by values of $k a$ at intersections of: κ / k and $\tan (k a)$ as well as κ / k and $-\cot (k a)$ curves

- Odd solutions

- Even solutions

Expansion in orthogonal eigenfunctions

- Time dependence of quantum states

$$
\begin{equation*}
\psi_{n}(x, t)=\psi_{n} e^{-i E_{n} t / \hbar} \tag{22}
\end{equation*}
$$

- Solution for "particle in a box"
can be expressed as a sum of different solutions

$$
\begin{equation*}
\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \psi_{n}(x, t) \tag{23}
\end{equation*}
$$

c_{n} must obey normalization condition $\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}=1$

- Modulus squared of each coefficient
gives probability to find particle in that state

$$
\begin{equation*}
P_{n}=\left|c_{n}\right|^{2} \tag{24}
\end{equation*}
$$

Example

- Particle initially prepared
in symmetric superposition of ground and first excited states

$$
\begin{equation*}
\Psi^{(+)}(x, t=0)=\frac{1}{\sqrt{2}}\left[\psi_{1}(x)+\psi_{2}(x)\right] \tag{25}
\end{equation*}
$$

- Probability to find particle in state 1 or 2 is $1 / 2$
- State will then evolve in time according to

$$
\begin{align*}
\Psi^{(+)}(x, t) & =\frac{1}{\sqrt{2}}\left[\psi_{1}(x) e^{-i \omega_{1} t}+\psi_{2}(x) e^{-i \omega_{2} t}\right] \\
& =e^{-i \omega_{1} t} \frac{1}{\sqrt{2}}\left[\psi_{1}(x)+\psi_{2}(x) e^{-i \Delta \omega t}\right] \tag{26}
\end{align*}
$$

- Probability to find particle in initial superposition state is not time independent
- H.O. characterized by quadratic potential $V(x)=\frac{k x^{2}}{2}$
- Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+\frac{k x^{2}}{2} \psi(x)=E \psi(x)
$$

- k spring constant which relates to restoring force of equivalent classical problem of mass m connected to spring

$$
\omega=\sqrt{\frac{k}{m}} \text { or } k=m \omega^{2}
$$

- Assume solution to be of the form

$$
\psi(x)=f(x) \exp \left(-\frac{\gamma x^{2}}{2}\right) \quad \text { with } \quad \gamma^{2}=m k / \hbar^{2}
$$

which reduces Schrödinger equation to

$$
\frac{d^{2} f(x)}{d x^{2}}-2 \gamma x \frac{d f(x)}{d x}+f(x)\left[\frac{2 m E}{\hbar^{2}}-\gamma\right]=0
$$

- Polynomial of order $n-1$ satisfies equation if

$$
\frac{2 m E_{n}}{\hbar^{2} \gamma}+1-2 n=0 \quad \text { or } \quad E_{n}=\hbar \omega(n-1 / 2) \quad \text { with } n=1,2,3 \cdots
$$

- Minimal energy $E_{1}=\hbar \omega / 2$
- All energy levels are separated from each other by an energy $\hbar \omega$
- Explicit form of normalized wave function

$$
\psi_{n}(q)=\frac{\pi^{-1 / 4}}{\sqrt{2^{n-1}(n-1)!}} H_{n-1}(q) e^{-q^{2} / 2} \text { with } q=\sqrt{\gamma} x
$$

- nth order Hermite polynomial defined through relation

$$
H_{n}(z)=e^{z^{2} / 2}\left(z-\frac{d}{d z}\right)^{n} e^{-z^{2} / 2}=(-1)^{n} e^{z} \frac{d^{n}}{d z^{n}} e^{-z}
$$

(second expression obtained writing out powers in first expression inserting factors of the form $1=e^{-z^{2} / 2} e^{z^{2} / 2}$ between each factor and performing a little algebra)

First three harmonic oscillator wave functions are

- $n=1$

$$
\psi_{1}(q)=\pi^{-1 / 4} e^{-q^{2} / 2}
$$

- $n=2$

$$
\psi_{2}(q)=\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left(q-\frac{d}{d q}\right)\left(\pi^{-1 / 4} e^{-q^{2} / 2}\right)=\frac{\pi^{-1 / 4}}{\sqrt{2}}(2 q) e^{-q^{2} / 2}
$$

- $n=3$

$$
\psi_{3}(q)=\frac{1}{2}\left(q-\frac{d}{d q}\right)\left(\frac{\pi^{-1 / 4}}{\sqrt{2}}(2 q) e^{-q^{2} / 2}\right)=\frac{\pi^{-1 / 4}}{\sqrt{2}}\left(2 q^{2}-1\right) e^{-q^{2} / 2}
$$

$\psi_{n}(q)$ wave functions graphed as solid lines with associated probability densities $\left|\psi_{n}(q)\right|^{2}$ indicated as dashed lines

