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Scattering in one dimension

Schrodinger: A Wave Equation for Electrons 

∂
Eψ = !ωψ = −j!

(free-particle) 

(free-particle) 

..The Free-Particle Schrodinger Wave Equation ! 
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Erwin Schrödinger (1887–1961)  
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Schrodinger Equation and Energy Conservation 

The Schrodinger Wave Equation 

The quantity | |2 dx is interpreted as the probability that the particle can be 

found at a particular point x  (within interval dx) 

0 x L n=3 

P (x) = |ψ|2dx

2!
Eψ(x) = −

|ψ|2

2m

∂2ψ(x)
+ V (x)ψ(x)

∂x2
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Notation ) i = j
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Scattering in one dimension Step potential

Quantum Intuition

V(x) =
{

0 for x < 0
V0 for x ≥ 0

(1)
252 Chapter 6 The Schrödinger Equation

ψ(x )

Energy

E

0 x

0
I II

I II

V(x ) = V0

V(x) = 0

x

(a)

(b)

Figure 6-22 (a) A potential step. Particles are incident on the step from the left toward the
right, each with total energy E ! V0 . (b) The wavelength of the incident wave (Region I) is
shorter than that of the transmitted wave (Region II). Since k2 " k1 , however,
the transmission coefficient T " 1.

ƒC ƒ 2 ! ƒA ƒ 2;

The general solutions are

Region I

6-63

Region II

6-64

Specializing these solutions to our situation where we are assuming the incident beam
of particles to be moving from left to right, we see that the first term in Equation 6-63
represents that beam since multiplying by the time part of yields a
plane wave (i.e., a beam of free particles) moving to the right. The second term,

represents particles moving to the left in Region I. In Equation 6-64, D # 0
since that term represents particles incident on the potential step from the right and
there are none. Thus, we have that the constant A is known or at least obtainable (de-
termined by normalization of in terms of the density of particles in the beam as
explained above) and the constants B and C are yet to be found. We find them by ap-
plying the continuity condition on and at x # 0, i.e., by requiring that

and . Continuity of at x # 0 yields

or

6-65a

Continuity of at x # 0 gives

6-65bk1A $ k1B # k2C

d%>dx A & B # C

%I(0) # A & B # %II(0) # C

%d%I(0)>dx # d%II(0)>dx%I(0) # %II(0)
d%(x)>dx%(x)

Aeik1x

Be$ik2x,

'(x, t), ei(t,Aeik1x

(x ! 0)  %II(x) # Ceik2x & De$ik2x

(x " 0)  %I(x) # Aeik1x & Be$ik1x

254 Chapter 6 The Schrödinger Equation

ψ(x )

Energy

E

0 x

0

V(x) = V0

V(x) = 0

x

(a)

(b)

Figure 6-24 (a) A potential
step. Particles are incident
on the step from the left
moving toward the right,
each with total energy
E ! V0 . (b) The wave
transmitted into region II is
a decreasing exponential.
However, the value of R in
this case is 1 and no net
energy is transmitted.
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Figure 6-25 Reflection
coefficient R and transmission
coefficient T for a potential
step V0 high versus energy E
(in units of V0).

Now let us consider the case shown in Figure 6-24a, where E ! V0 . Classically,
we expect all particles to be reflected at x " 0; however, we note that k2 in Equation
6-64 is now an imaginary number since E ! V0 . Thus,

6-71

is a real exponential function where (We choose the positive
root so that as ) This means that the numerator and denominator of
the right side of Equation 6-66 are complex conjugates of each other; hence

and R " 1 and T " 0. Figure 6-25 is a graph of both R and T versus en-
ergy for a potential step. In agreement with the classical prediction, all of the particles
(waves) are reflected back into Region I. However, another interesting result of our so-
lution of Schrödinger’s equation is that the particle waves do not all reflect at x " 0.

ƒB ƒ 2 " ƒA ƒ 2

xS # .$II S 0
% " 22m(V0 & E)>U.

$II(x) " Ceik2x " Ce&%x
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Scattering in one dimension Step potential

A Simple   
Potential Step 

Region 1 Region 2 

CASE I : Eo > V 

In Region 1: 
 
 
 
In Region 2: 

ψA = Ae−jk1x ψC = Ce−jk1x

ψB = Be−jk1x

E = Eo

E = 0
x

x = 0

2!
Eoψ = −

2m

∂2ψ

∂x2

2!
(Eo − V ) ψ = − ∂2ψ

2m

2
k2 mEo
1 =

∂x2

!2

k2 2m (Eo
2 =

− V )

!2

V

10
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Scattering in one dimension Step potential

A Simple   
Potential Step 

CASE I : Eo > V 

     is continuous: 
 
 
 
        is continuous: 

ψ1 = Ae−jk1x + Bejk1x ψ2 = Ce−jk2x

ψ1(0) = ψ2(0) A + B = C

∂

∂x
ψ(0) =

∂

∂x
ψ2(0) A − B =

k2

ψ

∂ψ
C

k1∂x

Region 1 Region 2 

ψA = Ae−jk1x ψC = Ce−jk1x

ψB = Be−jk1x

E = Eo

E = 0

x = 0
x

V

11
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Scattering in one dimension Step potential

A Simple   
Potential Step 

CASE I : Eo > V 

B

A
=

1 − k2/k1

1 + k2/k1

=
k1 − k2

k1 + k2

C

A
=

2

1 + k2/k1

=
2k1

k1 + k2

A + B = C

A − B =
k2

k1
C

Region 1 Region 2 

ψA = Ae−jk1x

ψB = Be−jk1x

ψC = Ce−jk1x

E = Eo

E = 0

x = 0
x

V
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Scattering in one dimension Step potential

Quantum Electron Currents 

Given an electron of mass  
 
that is located in space with charge density                  
  
and moving with momentum             corresponding to  

… then the current density for a single electron is given by  

m

ρ = q |ψ(x)|2

< p > < v > = !k/m

J = ρv = q |ψ|2 (!k/m)

14
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Scattering in one dimension Step potential

A Simple   
Potential Step 

CASE I : Eo > V 

Jtransmitted
Transmission = T =

Jincident
=

JC

JA
=

|ψC |2(!k2/m)

|ψA|2(!k1/m)
=

∣∣∣∣
C

A

∣∣∣∣
2

k2

Jreflected
Reflection = R =

k1

JB
=

Jincident JA
=

|ψB |2(!k1/m)

|ψA|2(!k1/m)
=

∣∣∣∣
B

A

∣∣∣∣
2

B 1
=

− k2/k1

A

C

1 + k2/k1

2
=

A 1 + k2/k1

Region 1 Region 2 

ψA = Ae−jk1x ψC = Ce−jk1x

ψB = Be−jk1x

E = Eo

E = 0

x = 0
x

V
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Scattering in one dimension Step potential

A Simple   
Potential Step 

CASE I : Eo > V 

1 

T

R

T + R = 1

1 

B
Reflection = R =

∣∣∣∣
2

A

∣∣∣ =

∣∣k1 − k2

∣ ∣∣
∣2

k1 + k2

∣∣

Transmission = T = 1

∣

− R
4k1k2

=
|k1 + k2|2

k2

k1
=

√
1 − V

EoEo = V Eo = ∞

Region 1 Region 2 

ψA = Ae−jk1x ψC = Ce−jk1x

ψB = Be−jk1x

E = Eo

E = 0

x = 0
x

V
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Scattering in one dimension Step potential

A Simple   
Potential Step 

CASE II : Eo < V 

In Region 1: 
 
 
 
In Region 2: 

2!
Eoψ = − ∂2ψ

2m ∂x2

2!
(Eo − V ) ψ = − ∂2ψ

2m

2
k2 mEo
1 =

∂x2

!2

κ2 2m (Eo
=

− V )

!2

ψC = Ce−κx

Region 1 Region 2 

ψA = Ae−jk1x

ψB = Be−jk1x

E = Eo

E = 0

x = 0
x

V

20
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Scattering in one dimension Step potential

A Simple   

ψ2 = Ce−κx

Potential Step 

     is continuous: 
 
 
 
        is continuous: 

CASE II : Eo < V 

ψ1 = Ae−jk1x + Bejk1x

ψ1(0) = ψ2(0) A + B = C

∂

∂x
ψ(0) =

∂

∂x
ψ2(0)

ψ

∂ψ κ
A

∂x
− B = −j

ψC = Ce−κx

C
k1

Region 1 Region 2 

ψA = Ae−jk1x

ψB = Be−jk1x

E = Eo

E = 0

x = 0
x

V
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Scattering in one dimension Step potential

A Simple   
Potential Step 

CASE II : Eo < V 

B

Total reflection � Transmission must be zero 

1 + jκ/k1
=

A

C

1 − jκ/k1

2
=

A 1 − jκ/k1

R =

∣∣B∣∣A

∣∣∣∣
2

= 1 T = 0

A + B = C

A − B = −j
κ

ψC = Ce−κx

C
k1

Region 1 Region 2 

ψA = Ae−jk1x

ψB = Be−jk1x

E = Eo

E = 0

x = 0
x

V

22
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Scattering in one dimension Step potential

KEY TAKEAWAYS 

Region 1 Region 2 

CASE II : Eo < V 

A Simple Potential Step 

CASE I : Eo > V 

Region 1 Region 2 

B
Reflection = R =

∣∣∣∣A

∣∣∣∣
2

=

∣∣∣∣
k1 − k2

2

k1 + k2

∣∣∣

4 k

∣

Transmission = T = 1 − 1k2
R =

|k1 + k2|2

PARTIAL REFLECTION 

TOTAL REFLECTION 

24
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Scattering in one dimension Potential barrier and tunneling

Quantum Tunneling Through a Thin Potential Barrier  

Total Reflection at Boundary 

Frustrated Total Reflection (Tunneling) 

R = 1 T = 0

T ≠ 0

23
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Scattering in one dimension Potential barrier and tunneling

CASE II : Eo < V 

Region 1 Region 2 Region 3 

In Regions 1 and 3: 
 
 
 
In Region 2: 

A Rectangular   
Potential Step 

for Eo < V : 

κx
ψA = Ae−jk1x ψC = Ce−

ψB = Bejk1x

ψF = Fe−jk1x

ψD = Deκx

V
E = Eo

E = 0 −a a0

2!
Eoψ = −

2m

∂2ψ

∂x2

(Eo − V )ψ = − !2

2m

∂2ψ

2
k2 mEo
1 =

∂x2

!2

κ2 =
2m(V − Eo)

!2

T =

∣∣∣∣
F

A

∣∣∣∣
2

=
1

1 + 1
4

V 2

Eo(V −Eo) sinh2(2κa)

25
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Scattering in one dimension Potential barrier and tunneling

A Rectangular   
Potential Step 

for Eo < V : 

T =

∣∣F∣∣A

∣∣∣∣
2

=
1

1 + 1
4

V 2

Eo(V −Eo) sinh2(2κa)

T =

∣∣∣∣
F

A

∣∣∣∣
2

≈ 1

1 + 1
4

V 2

Eo(V −Eo)

e−4κa

sinh2(2κa) =
[
e2κa − e−2κa

]2 ≈ e−4κa

UE

26
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Scattering in one dimension Potential barrier and tunneling

0 L 

V0 

x 

Eo 

metal metal 

air 
gap 

L = 2a

 Example: Barrier Tunneling 

Question:  What will T be if we double the width of the gap? 

•  Let�s consider a tunneling problem: 

An electron with a total energy of Eo= 6 eV 
approaches a potential barrier with a height of  
V0 = 12 eV.  If the width of the barrier is  
L = 0.18 nm, what is the probability that the 
electron will tunnel through the barrier? 

T =

∣∣∣∣
F

A

∣∣∣∣
2

≈ 16Eo(V − Eo)

V 2
e−2κL

κ =

√
2me

!2
(V − Eo) = 2π

√
2me

h2
(V − Eo) = 2π

√
6eV

1.505eV-nm2 ≈ 12.6 nm−1

T = 4e−2(12.6 nm−1)(0.18 nm) = 4(0.011) = 4.4%

30
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Scattering in one dimension Potential barrier and tunneling

Multiple Choice Questions 

Consider a particle tunneling through a barrier: 
  

1.  Which of the following will increase the  
 likelihood of tunneling?  

 
 a. decrease the height of the barrier 
 b. decrease the width of the barrier 
 c. decrease the mass of the particle 

 
 
 
 
 
2. What is the energy of the particles that have successfully �escaped�? 

 a. < initial energy    
 b. = initial energy   
 c. > initial energy 

 

0 L 

V 

x 

Eo 

Although the amplitude of the wave is smaller after the barrier, no 
energy is lost in the tunneling process 

31
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Scattering in one dimension The ins and outs of tunneling

4/2/17, 7:27 PMRectangular Potential Barrier - Tedious Derivations
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Saturday, August 31, 2013

Rectangular Potential Barrier

Rectangular potential barriers, also called square potential barriers, are formed by energy potentials which create wall-
like barricades for particles. Essentially, a potential barrier is a potential step except the energy potential returns to
zero at some finite positive -position, , and remains zero beyond that point. Here, we'll derive the wave function of a
particle facing a rectangular potential barrier, then find the transmission and reflection coe!icients of the particle upon
encountering the barrier. 

Schrodinger Equations

Key to solving for the wave function of a particle hitting a potential barrier is finding the Schrodinger equations which
describe the system. First, define the energy potential, , of the system as this:

Writing the wave function of the particle as  for ,  for , and  for , the
Schrodinger equations for , , and  are respectively:

This can be simplified, considering the wavenumbers,  and , of the wave function for inside and outside the barrier
respectively. Since  and , this can be said of the wave function of a particle
with .

Notice, however that if ,  is imaginary and thus no longer an observable. By convention therefore, , defined
by , is used instead for . The di!erential equations defining the wave function of a
particle with insu!icient energy are thus:

Author
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E (x)ψ1

E (x)ψ2
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dx2
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dx2
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dx2
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Scattering in one dimension The ins and outs of tunneling
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Scattering in one dimension The ins and outs of tunneling
4/2/17, 7:27 PMRectangular Potential Barrier - Tedious Derivations
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If There Is Su!icient Energy

For , to find the wave function of the particle, equations , , and  must be solved. These are
homogeneous second-order linear di!erential equations and have the following general solutions:

where , , , , , and  are constants and  and  are the two solutions to the equation 
 while  and  are the two solutions to the equation . 

Notice, considering Euler's formula, that , , and  represent waves travelling in the positive
direction while , , and  represent waves travelling in the negative direction. Since reflection by
the barrier is conceivable, it is possible to have wave components travelling in the negative direction for  , but
there is no reason to have waves doing so for . Thus, .

To solve for  and  in relation to , impose these four boundary conditions to ensure that the wave function is a
smooth curve as  and as :

0

0

0

= (x) + (x)d2

dx2
ψ1 k1

2ψ1

= (x) − (x)d2

dx2
ψ2 κ2 ψ2

= (x) + (x)d2

dx2
ψ3 k1

2ψ3

(8)

(9)

(10)

E ≥ V0 (5) (6) (7)

(x)ψ1

(x)ψ2

(x)ψ3

= A + Be xrA e xrB

= C + De xrC e xrD

= F + Ge xrF e xrG

(11)
(12)
(13)

A B C D F G =rA rF =rB rG

+ = 0r2 k1
2 rC rD + = 0r2 k2

2

(x)ψ1

(x)ψ2

(x)ψ3

= A + Bei xk1 e−i xk1

= C + Dei xk2 e−i xk2

= F + Gei xk1 e−i xk1

(14)
(15)
(16)

Aei xk1 Cei xk2 F ei xk1

Be−i xk1 De−i xk2 Ge−i xk1

x < a
x > a G = 0

(x)ψ1

(x)ψ2

(x)ψ3

= A + Bei xk1 e−i xk1

= C + Dei xk2 e−i xk2

= F ei xk1

(17)
(18)
(19)

B F A
x → 0 x → a

(x)lim
x→0−

ψ1

(x)lim
x→0−

d

dx
ψ1

(x)lim
x→a−

ψ2

(x)lim
x→a−

d
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If There Is Su!icient Energy

For , to find the wave function of the particle, equations , , and  must be solved. These are
homogeneous second-order linear di!erential equations and have the following general solutions:
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direction while , , and  represent waves travelling in the negative direction. Since reflection by
the barrier is conceivable, it is possible to have wave components travelling in the negative direction for  , but
there is no reason to have waves doing so for . Thus, .
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smooth curve as  and as :

0

0

0

= (x) + (x)d2

dx2
ψ1 k1

2ψ1

= (x) − (x)d2

dx2
ψ2 κ2 ψ2

= (x) + (x)d2

dx2
ψ3 k1

2ψ3

(8)

(9)

(10)

E ≥ V0 (5) (6) (7)

(x)ψ1

(x)ψ2

(x)ψ3

= A + Be xrA e xrB

= C + De xrC e xrD

= F + Ge xrF e xrG

(11)
(12)
(13)

A B C D F G =rA rF =rB rG

+ = 0r2 k1
2 rC rD + = 0r2 k2

2

(x)ψ1

(x)ψ2

(x)ψ3

= A + Bei xk1 e−i xk1

= C + Dei xk2 e−i xk2

= F + Gei xk1 e−i xk1

(14)
(15)
(16)

Aei xk1 Cei xk2 F ei xk1

Be−i xk1 De−i xk2 Ge−i xk1

x < a
x > a G = 0

(x)ψ1

(x)ψ2

(x)ψ3

= A + Bei xk1 e−i xk1

= C + Dei xk2 e−i xk2

= F ei xk1

(17)
(18)
(19)

B F A
x → 0 x → a

(x)lim
x→0−

ψ1

(x)lim
x→0−

d

dx
ψ1

(x)lim
x→a−

ψ2

(x)lim
x→a−

d

dx
ψ2

= (x)lim
x→0+

ψ2

= (x)lim
x→0+

d

dx
ψ2

= (x)lim
x→a+

ψ3

= (x)lim
x→a+

d

dx
ψ3

A + B

i A − i Bk1 k1

C + Dei ak2 e−i ak2

i C − i Dk2 ei ak2 k2 e−i ak2

= C + D

= i C − i Dk2 k2

= F ei ak1

= i Fk1 ei ak1

(20)
(21)
(22)
(23)

A + Bk1 k1

A − Bk1 k1

C + Dk2 ei ak2 k2 e−i ak2

C − Dk2 ei ak2 k2 e−i ak2

= C + Dk1 k1

= C − Dk2 k2

= Fk2 ei ak1

= Fk1 ei ak1

(24)
(25)
(26)
(27)

L. A. Anchordoqui (CUNY) Quantum Mechanics 3-5-2019 23 / 35



Scattering in one dimension The ins and outs of tunneling

4/2/17, 7:27 PMRectangular Potential Barrier - Tedious Derivations

Page 2 of 7http://tediousderivations.blogspot.com/2013/08/rectangular-potential-barrier.html

If There Is Su!icient Energy

For , to find the wave function of the particle, equations , , and  must be solved. These are
homogeneous second-order linear di!erential equations and have the following general solutions:

where , , , , , and  are constants and  and  are the two solutions to the equation 
 while  and  are the two solutions to the equation . 

Notice, considering Euler's formula, that , , and  represent waves travelling in the positive
direction while , , and  represent waves travelling in the negative direction. Since reflection by
the barrier is conceivable, it is possible to have wave components travelling in the negative direction for  , but
there is no reason to have waves doing so for . Thus, .

To solve for  and  in relation to , impose these four boundary conditions to ensure that the wave function is a
smooth curve as  and as :

0

0

0

= (x) + (x)d2

dx2
ψ1 k1

2ψ1

= (x) − (x)d2

dx2
ψ2 κ2 ψ2

= (x) + (x)d2

dx2
ψ3 k1

2ψ3

(8)

(9)

(10)

E ≥ V0 (5) (6) (7)

(x)ψ1

(x)ψ2

(x)ψ3

= A + Be xrA e xrB

= C + De xrC e xrD

= F + Ge xrF e xrG

(11)
(12)
(13)

A B C D F G =rA rF =rB rG

+ = 0r2 k1
2 rC rD + = 0r2 k2

2

(x)ψ1

(x)ψ2

(x)ψ3

= A + Bei xk1 e−i xk1

= C + Dei xk2 e−i xk2

= F + Gei xk1 e−i xk1

(14)
(15)
(16)

Aei xk1 Cei xk2 F ei xk1

Be−i xk1 De−i xk2 Ge−i xk1

x < a
x > a G = 0

(x)ψ1

(x)ψ2

(x)ψ3

= A + Bei xk1 e−i xk1

= C + Dei xk2 e−i xk2

= F ei xk1

(17)
(18)
(19)

B F A
x → 0 x → a

(x)lim
x→0−

ψ1

(x)lim
x→0−

d

dx
ψ1

(x)lim
x→a−

ψ2

(x)lim
x→a−

d

dx
ψ2

= (x)lim
x→0+

ψ2

= (x)lim
x→0+

d

dx
ψ2

= (x)lim
x→a+

ψ3

= (x)lim
x→a+

d

dx
ψ3

A + B

i A − i Bk1 k1

C + Dei ak2 e−i ak2

i C − i Dk2 ei ak2 k2 e−i ak2

= C + D

= i C − i Dk2 k2

= F ei ak1

= i Fk1 ei ak1

(20)
(21)
(22)
(23)

A + Bk1 k1

A − Bk1 k1

C + Dk2 ei ak2 k2 e−i ak2

C − Dk2 ei ak2 k2 e−i ak2

= C + Dk1 k1

= C − Dk2 k2

= Fk2 ei ak1

= Fk1 ei ak1

(24)
(25)
(26)
(27)

L. A. Anchordoqui (CUNY) Quantum Mechanics 3-5-2019 24 / 35



Scattering in one dimension The ins and outs of tunneling

4/2/17, 7:27 PMRectangular Potential Barrier - Tedious Derivations

Page 3 of 7http://tediousderivations.blogspot.com/2013/08/rectangular-potential-barrier.html

To solve for  in relation to , consider equations , , and .

Using Euler's formula to expand  and , the following can be derived:

To solve for  in relation to , consider equations , , and .
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Comparing equations  and ,  is solved for in relation to .

Considering equations  and  alongside equation ,  and  can also be solved for in relation to , but
since only , , and  are needed to calculate the reflection and transmission coe!icients, the derivations of  and 

 are omitted here. In order to find the reflection and transmission coe!icients, the wave function must be first written
in terms of its incident, reflected, and transmitted components, , , and  respectively. 

The reflection and transmission coe!icients,  and  respectively, are defined as follows:
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where , , and  are the incident, reflected, and transmitted probability currents respectively.

Applying the solutions for  and  found in equations  and  respectively gives:

Interestingly contrary to classical mechanics, quantum mechanics suggests that the particle may actually be reflected
by the potential barrier, despite having a total energy of equal or greater value than .

If There Is Insu!icient Energy

For , equations , , and  must be solved to find , , and . To do this, follow the
methodology employed in the previous section, "If There Is Su!icient Energy". The solutions of equations , ,
and  are identical to those of , , and  respectively save for the use of  in the place of .
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Applying the same boundary conditions as in the previous section and manipulating algebra in the same manner, it can
also be found that:

To solve for  in relation to , consider equations , , and .

(In case you are unfamiliar with hyperbolic functions,  is the hyperbolic sine function and 
 is the hyperbolic cosine function.) To solve for  in relation to , consider equations , 

, and .

Comparing equations  and ,  is solved for in relation to .

As in the previous section, the wave function written in terms of its incident, reflected, and transmitted components is:

Furthermore, the reflection and transmission coe!icients, derivable using the same method as in the previous section,
are again given by:
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Contrary to classical expectations which would suggest that the particle has zero probability of travelling beyond 
, quantum mechanics asserts that the particle has a non-zero probability of tunneling through the rectangular

potential barrier, despite having a total energy less than . This phenomenon marks a major di!erence between
quantum and classical mechanics. 

Labels: energy potentials, Euler's formula, hyperbolic functions, probability current, quantum mechanics, rectangular
potential barrier, reflection and transmission coe!icients, Schrodinger equation, tunneling

7 comments:

1. 
Dhiraj UpadhyayMarch 20, 2016 at 1:52 AM

Thank you very much.

ReplyDelete

2. 
UnknownOctober 8, 2016 at 7:15 PM

This is, truly, a most tedious derivation.

ReplyDelete

3. 
UnknownOctober 12, 2016 at 9:18 AM

Thank you so much...I couldn't get this awesome derivation anywhere else..!!!!

ReplyDelete

4. 
UnknownOctober 24, 2016 at 1:08 PM

Please, did u wrote this website in Latex ?

R

T

=
|B|2

|A|2

=
|F |2

|A|2

(73)

(74)

R

T

=
κa( + )k1

2 κ2 2sinh2

κa + 4 κa( − )k1
2 κ2 2sinh2 k1

2κ2cosh2

= 4k1
2κ2

κa + 4 κa( − )k1
2 κ2 2sinh2 k1

2κ2cosh2

(75)

(76)

R

T

=
κa( + )k1

2 κ2 2sinh2

κa + 4( + )k1
2 κ2 2sinh2 k1

2κ2

= 4k1
2κ2

κa + 4( + )k1
2 κ2 2sinh2 k1

2κ2

(77)

(78)

R

T

= + 1
⎡
⎣ 4k1

2κ2

κa( + )k1
2 κ2 2sinh2

⎤
⎦

−1

= + 1
⎡
⎣

κa( + )k1
2 κ2 2sinh2

4k1
2κ2

⎤
⎦

−1

(79)

(80)

x = 0
V0

L. A. Anchordoqui (CUNY) Quantum Mechanics 3-5-2019 34 / 35



Scattering in one dimension The ins and outs of tunneling

4/2/17, 7:27 PMRectangular Potential Barrier - Tedious Derivations

Page 6 of 7http://tediousderivations.blogspot.com/2013/08/rectangular-potential-barrier.html

Contrary to classical expectations which would suggest that the particle has zero probability of travelling beyond 
, quantum mechanics asserts that the particle has a non-zero probability of tunneling through the rectangular

potential barrier, despite having a total energy less than . This phenomenon marks a major di!erence between
quantum and classical mechanics. 

Labels: energy potentials, Euler's formula, hyperbolic functions, probability current, quantum mechanics, rectangular
potential barrier, reflection and transmission coe!icients, Schrodinger equation, tunneling

7 comments:

1. 
Dhiraj UpadhyayMarch 20, 2016 at 1:52 AM

Thank you very much.

ReplyDelete

2. 
UnknownOctober 8, 2016 at 7:15 PM

This is, truly, a most tedious derivation.

ReplyDelete

3. 
UnknownOctober 12, 2016 at 9:18 AM

Thank you so much...I couldn't get this awesome derivation anywhere else..!!!!

ReplyDelete

4. 
UnknownOctober 24, 2016 at 1:08 PM

Please, did u wrote this website in Latex ?

R

T

=
|B|2

|A|2

=
|F |2

|A|2

(73)

(74)

R

T

=
κa( + )k1

2 κ2 2sinh2

κa + 4 κa( − )k1
2 κ2 2sinh2 k1

2κ2cosh2

= 4k1
2κ2

κa + 4 κa( − )k1
2 κ2 2sinh2 k1

2κ2cosh2

(75)

(76)

R

T

=
κa( + )k1

2 κ2 2sinh2

κa + 4( + )k1
2 κ2 2sinh2 k1

2κ2

= 4k1
2κ2

κa + 4( + )k1
2 κ2 2sinh2 k1

2κ2

(77)

(78)

R

T

= + 1
⎡
⎣ 4k1

2κ2

κa( + )k1
2 κ2 2sinh2

⎤
⎦

−1

= + 1
⎡
⎣

κa( + )k1
2 κ2 2sinh2

4k1
2κ2

⎤
⎦

−1

(79)

(80)

x = 0
V0

L. A. Anchordoqui (CUNY) Quantum Mechanics 3-5-2019 35 / 35


	Scattering in one dimension
	Step potential
	Potential barrier and tunneling
	The ins and outs of tunneling




