Quantum Mechanics

Luis A. Anchordoqui

Department of Physics and Astronomy
Lehman College, City University of New York
Lesson V
March 5, 2019

Table of Contents

(1) Scattering in one dimension

- Step potential
- Potential barrier and tunneling
- The ins and outs of tunneling

LAST GMANS IVE SANY

$$
E \psi=\hbar \omega \psi=-j \hbar \frac{\partial}{\partial t} \psi \quad p_{x} \psi=\hbar k \psi=j \hbar \frac{\partial}{\partial x} \psi
$$

$$
E=\frac{p^{2}}{2 m} \quad \text { (free-particle) } \quad \text { Notation } \Rightarrow i=j
$$

..The Free-Particle Schrodinger Wave Equation!
probability

Erwin Schrödinger (1887-1961) Image in the Public Domain

The Schrodinger Wave Equation

$$
E \psi(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)
$$

Quantum Intuition

$$
V(x)=\left\{\begin{array}{cc}
0 & \text { for } x<0 \tag{1}\\
V_{0} & \text { for } x \geq 0
\end{array}\right.
$$

(a)

(b)

A Simple
 Potential Step

CASE I: $E_{0}>V$

In Region 1: $\quad E_{o} \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Rightarrow k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}}$

In Region 2: $\quad\left(E_{o}-V\right) \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Longrightarrow k_{2}^{2}=\frac{2 m\left(E_{o}-V\right)}{\hbar^{2}}$

A Simple Potential Step

CASE I: $E_{0}>V$

$$
\psi_{1}=A e^{-j k_{1} x}+B e^{j k_{1} x} \quad \psi_{2}=C e^{-j k_{2} x}
$$

$$
\quad \begin{aligned}
& A+B=C \\
& A-B=\frac{k_{2}}{k_{1}} C
\end{aligned}
$$

A Simple Potential Step

CASE I: $E_{o}>V$

$$
\begin{aligned}
\frac{B}{A} & =\frac{1-k_{2} / k_{1}}{1+k_{2} / k_{1}} & \frac{C}{A} & =\frac{2}{1+k_{2} / k_{1}} \\
& =\frac{k_{1}-k_{2}}{k_{1}+k_{2}} & & =\frac{2 k_{1}}{k_{1}+k_{2}}
\end{aligned} \Longleftrightarrow\left\{\begin{array}{l}
A+B=C \\
A-B=\frac{k_{2}}{k_{1}} C
\end{array}\right.
$$

Quantum Electron Currents

Given an electron of mass m
that is located in space with charge density $\rho=q|\psi(x)|^{2}$
and moving with momentum $<p>$ corresponding to $\langle v\rangle=\hbar k / m$
... then the current density for a single electron is given by

$$
J=\rho v=q|\psi|^{2}(\hbar k / m)
$$

A Simple Potential Step

CASE I: $E_{0}>V$

$$
\begin{gathered}
\text { Reflection }=R=\frac{J_{\text {reflected }}}{J_{\text {incident }}}=\frac{J_{B}}{J_{A}}=\frac{\left|\psi_{B}\right|^{2}\left(\hbar k_{1} / m\right)}{\left|\psi_{A}\right|^{2}\left(\hbar k_{1} / m\right)}=\left|\frac{B}{A}\right|^{2} \\
\text { Transmission }=T=\frac{J_{\text {transmitted }}}{J_{\text {incident }}}=\frac{J_{C}}{J_{A}}=\frac{\left|\psi_{C}\right|^{2}\left(\hbar k_{2} / m\right)}{\left|\psi_{A}\right|^{2}\left(\hbar k_{1} / m\right)}=\left|\frac{C}{A}\right|^{2} \frac{k_{2}}{k_{1}} \\
\frac{B}{A}=\frac{1-k_{2} / k_{1}}{1+k_{2} / k_{1}} \quad \frac{C}{A}=\frac{2}{1+k_{2} / k_{1}}
\end{gathered}
$$

A Simple
 Potential Step

In Region 1: $\quad E_{o} \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Longleftrightarrow \quad k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}}$

In Region 2: $\quad\left(E_{o}-V\right) \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \square \kappa^{2}=\frac{2 m\left(E_{o}-V\right)}{\hbar^{2}}$

A Simple Potential Step

$$
\psi_{1}=A e^{-j k_{1} x}+B e^{j k_{1} x} \quad \psi_{2}=C e^{-\kappa x}
$$

ψ is continuous:

$$
\psi_{1}(0)=\psi_{2}(0)
$$

$$
A+B=C
$$

$\frac{\partial \psi}{\partial x}$ is continuous: $\frac{\partial}{\partial x} \psi(0)=\frac{\partial}{\partial x} \psi_{2}(0) \quad \square \quad A-B=-j \frac{\kappa}{k_{1}} C$

A Simple
 Potential Step

CASE II: $E_{0}<V$

$$
\begin{array}{lr}
\frac{B}{A}=\frac{1+j \kappa / k_{1}}{1-j \kappa / k_{1}} \quad \frac{C}{A}=\frac{2}{1-j \kappa / k_{1}} \\
R=\left|\frac{B}{A}\right|^{2}=1 & T=0 \\
A-B=-j \frac{\kappa}{k_{1}} C
\end{array}
$$

Total reflection \rightarrow Transmission must be zero

KEY TAKEAWAYS

CASE I: $E_{o}>v$

A Simple Potential Step

$$
\text { Reflection }=R=\left|\frac{B}{A}\right|^{2}=\left|\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right|^{2}
$$

Transmission $=T=1-R=\frac{4 k_{1} k_{2}}{\left|k_{1}+k_{2}\right|^{2}}$

$$
\begin{aligned}
& \text { CASE II: } E_{0}<V \\
& T=0 \\
& \text { TOTAL REFLECTION } \\
& R=\left|\frac{B}{A}\right|^{2}=1 \\
& \psi_{1}=A e^{-j k_{1} x}+B e^{j k_{1} x} \quad \psi_{2}=C e^{-\kappa x} \\
& k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}} \\
& \kappa^{2}=\frac{2 m\left(V-E_{o}\right)}{\hbar^{2}}
\end{aligned}
$$

$$
\begin{array}{lll}
=T=1-R=\frac{1 k^{2}}{\left|k_{1}+k_{2}\right|^{2}} & \psi_{1}=A e^{-j k_{1} x}+B e^{j k_{1} x} & \psi_{2}=C e^{-j k_{2} x} \\
\text { PARTIAL REFLECTION } & k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}} & k_{2}^{2}=\frac{2 m\left(E_{o}-V\right)}{\hbar^{2}}
\end{array}
$$

Quantum Tunneling Through a Thin Potential Barrier

Total Reflection at Boundary

Frustrated Total Reflection (Tunneling)

23

In Regions 1 and 3: $\quad E_{o} \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \Longrightarrow k_{1}^{2}=\frac{2 m E_{o}}{\hbar^{2}}$
In Region 2: $\quad\left(E_{o}-V\right) \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \square \kappa^{2}=\frac{2 m\left(V-E_{o}\right)}{\hbar^{2}}$
for $E_{o}<V$:

$$
T=\left|\frac{F}{A}\right|^{2}=\frac{1}{1+\frac{1}{4} \frac{V^{2}}{E_{o}\left(V-E_{o}\right)} \sinh ^{2}(2 \kappa a)}
$$

A Rectangular Potential Step

for $E_{o}<V$:

$$
T=\left|\frac{F}{A}\right|^{2}=\frac{1}{1+\frac{1}{4} \frac{V^{2}}{E_{o}\left(V-E_{o}\right)} \sinh ^{2}(2 \kappa a)}
$$

$$
\begin{gathered}
\sinh ^{2}(2 \kappa a)=\left[e^{2 \kappa a}-e^{-2 \kappa a}\right]^{2} \approx e^{-4 \kappa a} \\
T=\left|\frac{F}{A}\right|^{2} \approx \frac{1}{1+\frac{1}{4} \frac{V^{2}}{E_{o}\left(V-E_{o}\right)}} e^{-4 \kappa a}
\end{gathered}
$$

Example: Barrier Tunneling

- Let's consider a tunneling problem:

An electron with a total energy of $E_{0}=6 \mathrm{eV}$ approaches a potential barrier with a height of $\mathrm{V}_{0}=12 \mathrm{eV}$. If the width of the barrier is $\mathrm{L}=0.18 \mathrm{~nm}$, what is the probability that the electron will tunnel through the barrier?

v	$L=2 a$
metal	E
	metal
0 L air	

$$
\kappa=\sqrt{\frac{2 m_{e}}{\hbar^{2}}\left(V-E_{o}\right)}=2 \pi \sqrt{\frac{2 m_{e}}{h^{2}}\left(V-E_{o}\right)}=2 \pi \sqrt{\frac{6 \mathrm{eV}}{1.505 \mathrm{eV}-\mathrm{nm}^{2}}} \approx 12.6 \mathrm{~nm}^{-1}
$$

$$
T=4 e^{-2\left(12.6 \mathrm{~nm}^{-1}\right)(0.18 \mathrm{~nm})}=4(0.011)=4.4 \%
$$

Question: What will T be if we double the width of the gap?

Multiple Choice Questions

Consider a particle tunneling through a barrier:

1. Which of the following will increase the likelihood of tunneling?
a. decrease the height of the barrier

b. decrease the width of the barrier
c. decrease the mass of the particle
2. What is the energy of the particles that have successfully "escaped"?
a. < initial energy
b. = initial energy
c. > initial energy

Although the amplitude of the wave is smaller after the barrier, no energy is lost in the tunneling process

Schrodinger Equations

Key to solving for the wave function of a particle hitting a potential barrier is finding the Schrodinger equations which describe the system. First, define the energy potential, $V(x)$, of the system as this:

$$
V(x)=\left\{\begin{array}{lc}
0, & x<0 \tag{1}\\
V_{0}, & 0<x<a \\
0, & x>a
\end{array}\right.
$$

Writing the wave function of the particle as $\psi_{1}(x)$ for $x<0, \psi_{2}(x)$ for $0<x<a$, and $\psi_{3}(x)$ for $x>a$, the Schrodinger equations for $x<0,0<x<a$, and $x>a$ are respectively:

$$
\begin{align*}
& E \psi_{1}(x)=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi_{1}(x) \tag{2}\\
& E \psi_{2}(x)=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi_{2}(x)+V_{0} \psi_{2}(x) \tag{3}\\
& E \psi_{3}(x)=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi_{3}(x) \tag{4}
\end{align*}
$$

This can be simplified, considering the wavenumbers, k_{1} and k_{2}, of the wave function for inside and outside the barrier respectively. Since ${k_{1}}^{2}=2 m E / \hbar^{2}$ and ${k_{2}}^{2}=2 m\left(E-V_{0}\right) / \hbar^{2}$, this can be said of the wave function of a particle with $E \geq V_{0}$.

$$
\begin{align*}
& 0=\frac{d^{2}}{d x^{2}} \psi_{1}(x)+k_{1}^{2} \psi_{1}(x) \tag{5}\\
& 0=\frac{d^{2}}{d x^{2}} \psi_{2}(x)+{k_{2}^{2}}^{2} \psi_{2}(x) \tag{6}\\
& 0=\frac{d^{2}}{d x^{2}} \psi_{3}(x)+{k_{1}}^{2} \psi_{3}(x) \tag{7}
\end{align*}
$$

Notice, however that if $E<V_{0}, k_{2}$ is imaginary and thus no longer an observable. By convention therefore, κ, defined by $\kappa^{2}=2 m\left(V_{0}-E\right) / \hbar^{2}$, is used instead for $E<V_{0}$. The differential equations defining the wave function of a particle with insufficient energy are thus:

$$
\begin{align*}
& 0=\frac{d^{2}}{d x^{2}} \psi_{1}(x)+k_{1}^{2} \psi_{1}(x) \tag{8}\\
& 0=\frac{d^{2}}{d x^{2}} \psi_{2}(x)-\kappa^{2} \psi_{2}(x) \tag{9}\\
& 0=\frac{d^{2}}{d x^{2}} \psi_{3}(x)+k_{1}^{2} \psi_{3}(x) \tag{10}
\end{align*}
$$

If There Is Sufficient Energy

For $E \geq V_{0}$, to find the wave function of the particle, equations (5), (6), and (7) must be solved. These are homogeneous second-order linear differential equations and have the following general solutions:

$$
\begin{align*}
& \psi_{1}(x)=A e^{r_{A} x}+B e^{r_{B} x} \tag{11}\\
& \psi_{2}(x)=C e^{r_{C} x}+D e^{r_{D} x} \tag{12}\\
& \psi_{3}(x)=F e^{r_{F} x}+G e^{r_{G} x} \tag{13}
\end{align*}
$$

where A, B, C, D, F, and G are constants and $r_{A}=r_{F}$ and $r_{B}=r_{G}$ are the two solutions to the equation $r^{2}+{k_{1}}^{2}=0$ while r_{C} and r_{D} are the two solutions to the equation $r^{2}+{k_{2}}^{2}=0$.

$$
\begin{align*}
& \psi_{1}(x)=A e^{i k_{1} x}+B e^{-i k_{1} x} \tag{14}\\
& \psi_{2}(x)=C e^{i k_{2} x}+D e^{-i k_{2} x} \tag{15}\\
& \psi_{3}(x)=F e^{i k_{1} x}+G e^{-i k_{1} x} \tag{16}
\end{align*}
$$

tice, considering Euler's formula, that $A e^{i k_{1} x}, C e^{i k_{2} x}$, and $F e^{i k_{1} x}$ represent waves travelling in the positive ection while $B e^{-i k_{1} x}, D e^{-i k_{2} x}$, and $G e^{-i k_{1} x}$ represent waves travelling in the negative direction. Since reflection by : barrier is conceivable, it is possible to have wave components travelling in the negative direction for $x<a$, but re is no reason to have waves doing so for $x>a$. Thus, $G=0$.

$$
\begin{align*}
& \psi_{1}(x)=A e^{i k_{1} x}+B e^{-i k_{1} x} \tag{17}\\
& \psi_{2}(x)=C e^{i k_{2} x}+D e^{-i k_{2} x} \tag{18}\\
& \psi_{3}(x)=F e^{i k_{1} x} \tag{19}
\end{align*}
$$

solve for B and F in relation to A, impose these four boundary conditions to ensure that the wave function is a ooth curve as $x \rightarrow 0$ and as $x \rightarrow a$:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \psi_{1}(x) & =\lim _{x \rightarrow 0^{+}} \psi_{2}(x) \\
\lim _{x \rightarrow 0^{-}} \frac{d}{d x} \psi_{1}(x) & =\lim _{x \rightarrow 0^{+}} \frac{d}{d x} \psi_{2}(x) \\
\lim _{x \rightarrow a^{-}} \psi_{2}(x) & =\lim _{x \rightarrow a^{+}} \psi_{3}(x) \\
\lim _{x \rightarrow a^{-}} \frac{d}{d x} \psi_{2}(x) & =\lim _{x \rightarrow a^{+}} \frac{d}{d x} \psi_{3}(x)
\end{aligned}
$$

$$
\begin{align*}
A+B & =C+D \tag{20}\\
i k_{1} A-i k_{1} B & =i k_{2} C-i k_{2} D \tag{21}\\
C e^{i k_{2} a}+D e^{-i k_{2} a} & =F e^{i k_{1} a} \tag{22}\\
i k_{2} C e^{i k_{2} a}-i k_{2} D e^{-i k_{2} a} & =i k_{1} F e^{i k_{1} a} \tag{23}
\end{align*}
$$

$$
\begin{align*}
k_{1} A+k_{1} B & =k_{1} C+k_{1} D \tag{24}\\
k_{1} A-k_{1} B & =k_{2} C-k_{2} D \tag{25}\\
k_{2} C e^{i k_{2} a}+k_{2} D e^{-i k_{2} a} & =k_{2} F e^{i k_{1} a} \tag{26}\\
k_{2} C e^{i k_{2} a}-k_{2} D e^{-i k_{2} a} & =k_{1} F e^{i k_{1} a} \tag{27}
\end{align*}
$$

$$
\begin{align*}
2 k_{1} A & =\left(k_{1}+k_{2}\right) C+\left(k_{1}-k_{2}\right) D \tag{28}\\
2 k_{1} B & =\left(k_{1}-k_{2}\right) C+\left(k_{1}+k_{2}\right) D \tag{29}\\
2 k_{2} C e^{i k_{2} a} & =\left(k_{1}+k_{2}\right) F e^{i k_{1} a} \tag{30}\\
2 k_{2} D e^{-i k_{2} a} & =\left(k_{2}-k_{1}\right) F e^{i k_{1} a} \tag{31}
\end{align*}
$$

To solve for F in relation to A, consider equations (28), (30), and (31).

$$
\begin{align*}
& 2 k_{1} A=\frac{\left(k_{1}+k_{2}\right)^{2}}{2 k_{2}} F e^{i\left(k_{1}-k_{2}\right) a}-\frac{\left(k_{1}-k_{2}\right)^{2}}{2 k_{2}} F e^{i\left(k_{1}+k_{2}\right) a} \tag{32}\\
& 4 k_{1} k_{2} e^{-i k_{1} a} A=\left(k_{1}+k_{2}\right)^{2} F e^{-i k_{2} a}-\left(k_{1}-k_{2}\right)^{2} F e^{i k_{2} a} \tag{33}
\end{align*}
$$

Using Euler's formula to expand $e^{-i k_{2} a}$ and $e^{i k_{2} a}$, the following can be derived:

$$
\begin{gather*}
4 k_{1} k_{2} e^{-i k_{1} a} A=\left(-2 i{k_{1}}^{2} \sin k_{2} a+4 k_{1} k_{2} \cos k_{2} a-2 i{k_{2}}^{2} \sin k_{2} a\right) F \tag{34}\\
F=\frac{2 k_{1} k_{2} e^{-i k_{1} a} A}{2 k_{1} k_{2} \cos k_{2} a-i\left(k_{1}^{2}+{k_{2}}^{2}\right) \sin k_{2} a} \tag{35}
\end{gather*}
$$

To solve for B in relation to A, consider equations (29), (30), and (31).

$$
\begin{align*}
& 2 k_{1} B= \frac{{k_{1}^{2}-{k_{2}}^{2}}_{2 k_{2}} F e^{i\left(k_{1}-k_{2}\right) a}-\frac{{k_{1}^{2}}^{2}-{k_{2}}^{2}}{2 k_{2}} F e^{i\left(k_{1}+k_{2}\right) a}}{} \tag{36}\\
& \frac{4 k_{1} k_{2} e^{-i k_{1} a} B}{k_{1}{ }^{2}-k_{9}^{2}}=\left(e^{-i k_{2} a}-e^{i k_{2} a}\right) F
\end{align*}
$$

Using Euler's formula to expand $e^{-i k_{2} a}$ and $e^{i k_{2} a}$, the following can be derived:

$$
\begin{equation*}
\frac{2 k_{1} k_{2} e^{-i k_{1} a} B}{-i\left({k_{1}}^{2}-{k_{2}}^{2}\right) \sin k_{2} a}=F \tag{38}
\end{equation*}
$$

Comparing equations (35) and (38), B is solved for in relation to A.

$$
\begin{equation*}
B=\frac{-i\left({k_{1}}^{2}-{k_{2}}^{2}\right) \sin \left(k_{2} a\right) A}{2 k_{1} k_{2} \cos k_{2} a-i\left({k_{1}}^{2}+{k_{2}}^{2}\right) \sin k_{2} a} \tag{39}
\end{equation*}
$$

Considering equations (30) and (31) alongside equation (35), C and D can also be solved for in relation to A, but since only A, B, and F are needed to calculate the reflection and transmission coefficients, the derivations of C and D are omitted here. In order to find the reflection and transmission coefficients, the wave function must be first written in terms of its incident, reflected, and transmitted components, $\psi_{i}(x), \psi_{r}(x)$, and $\psi_{t}(x)$ respectively.

$$
\begin{align*}
\psi_{i}(x) & =A e^{i k_{1} x} \tag{40}\\
\psi_{r}(x) & =B e^{-i k_{1} x} \tag{41}\\
\psi_{t}(x) & =F e^{i k_{1} x} \tag{42}
\end{align*}
$$

The reflection and transmission coefficients, R and T respectively, are defined as follows:

$$
\begin{align*}
& R=-\frac{j_{r}}{j_{i}} \tag{43}\\
& T=\frac{j_{t}}{j_{i}} \tag{44}
\end{align*}
$$

where j_{i}, j_{r}, and j_{t} are the incident, reflected, and transmitted probability currents respectively.

$$
\begin{align*}
R & =-\frac{\psi_{r}(x) \frac{d}{d x} \psi_{r}^{*}(x)-\psi_{r}^{*}(x) \frac{d}{d x} \psi_{r}(x)}{\psi_{i}(x) \frac{d}{d x} \psi_{i}^{*}(x)-\psi_{i}^{*}(x) \frac{d}{d x} \psi_{i}(x)} \tag{45}\\
T & =\frac{\psi_{t}(x) \frac{d}{d x} \psi_{t}^{*}(x)-\psi_{t}^{*}(x) \frac{d}{d x} \psi_{t}(x)}{\psi_{i}(x) \frac{d}{d x} \psi_{i}^{*}(x)-\psi_{i}^{*}(x) \frac{d}{d x} \psi_{i}(x)} \tag{46}
\end{align*}
$$

$$
\begin{align*}
R & =\frac{|B|^{2}}{|A|^{2}} \tag{47}\\
T & =\frac{|F|^{2}}{|A|^{2}} \tag{48}
\end{align*}
$$

Applying the solutions for B and F found in equations (39) and (35) respectively gives:

$$
\begin{align*}
& R=\frac{\left(k_{1}^{2}-{k_{2}}^{2}\right)^{2} \sin ^{2} k_{2} a}{4{k_{1}}^{2}{k_{2}}^{2} \cos ^{2} k_{2} a+\left({k_{1}}^{2}+{k_{2}}^{2}\right)^{2} \sin ^{2} k_{2} a} \tag{49}\\
& T=\frac{4{k_{1}}^{2}{k_{2}^{2}}^{2}}{4{k_{1}}^{2}{k_{2}}^{2} \cos ^{2} k_{2} a+\left({k_{1}}^{2}+{k_{2}}^{2}\right)^{2} \sin ^{2} k_{2} a} \tag{50}
\end{align*}
$$

$$
\begin{align*}
R & =\frac{\left(k_{1}^{2}-{k_{2}}^{2}\right)^{2} \sin ^{2} k_{2} a}{4{k_{1}^{2}}^{2}{k_{2}^{2}}^{2}+\left({k_{1}}^{2}-{k_{2}}^{2}\right)^{2} \sin ^{2} k_{2} a} \tag{51}\\
T & =\frac{4 k_{1}^{2}{k_{2}}^{2}}{4{k_{1}}^{2}{k_{2}^{2}}^{2}+\left({k_{1}}^{2}-{k_{2}}^{2}\right)^{2} \sin ^{2} k_{2} a} \tag{52}
\end{align*}
$$

$$
\begin{align*}
& R=\left[\frac{4{k_{1}}^{2}{k_{2}}^{2}}{\left({k_{1}}^{2}-{k_{2}}^{2}\right)^{2} \sin ^{2} k_{2} a}+1\right]^{-1} \tag{53}\\
& T=\left[\frac{\left({k_{1}}^{2}-{k_{2}}^{2}\right)^{2} \sin ^{2} k_{2} a}{4{k_{1}}^{2}{k_{2}}^{2}}+1\right]^{-1} \tag{54}
\end{align*}
$$

Interestingly contrary to classical mechanics, quantum mechanics suggests that the particle may actually be reflected by the potential barrier, despite having a total energy of equal or greater value than V_{0}.

If There Is Insufficient Energy

For $E<V_{0}$, equations (8), (9), and (10) must be solved to find $\psi_{1}(x), \psi_{2}(x)$, and $\psi_{3}(x)$. To do this, follow the methodology employed in the previous section, "If There Is Sufficient Energy". The solutions of equations (8), (9), and (10) are identical to those of $(5),(6)$, and (7) respectively save for the use of $i \kappa$ in the place of k_{2}.

$$
\begin{align*}
& \psi_{1}(x)=A e^{i k_{1} x}+B e^{-i k_{1} x} \tag{55}\\
& \psi_{2}(x)=C e^{-\kappa x}+D e^{\kappa x} \tag{56}\\
& \psi_{3}(x)=F e^{i k_{1} x} \tag{57}
\end{align*}
$$

Applying the same boundary conditions as in the previous section and manipulating algebra in the same manner, it can also be found that:

$$
\begin{align*}
2 i k_{1} A & =\left(i k_{1}-\kappa\right) C+\left(i k_{1}+\kappa\right) D \tag{58}\\
2 i k_{1} B & =\left(i k_{1}+\kappa\right) C+\left(i k_{1}-\kappa\right) D \tag{59}\\
2 \kappa C e^{-\kappa a} & =\left(\kappa-i k_{1}\right) F e^{i k_{1} a} \tag{60}\\
2 \kappa D e^{\kappa a} & =\left(i k_{1}+\kappa\right) F e^{i k_{1} a} \tag{61}
\end{align*}
$$

To solve for F in relation to A, consider equations (58), (60), and (61).

$$
\begin{gather*}
2 i k_{1} A=-\frac{\left(i k_{1}-\kappa\right)^{2}}{2 \kappa} F e^{\left(i k_{1}+\kappa\right) a}+\frac{\left(i k_{1}+\kappa\right)^{2}}{2 \kappa} F e^{\left(i k_{1}-\kappa\right) a} \tag{62}\\
4 i k_{1} \kappa e^{-i k_{1} a} A=-\left(i k_{1}-\kappa\right)^{2} F e^{\kappa a}+\left(i k_{1}+\kappa\right)^{2} F e^{-\kappa a} \tag{63}\\
4 i k_{1} \kappa e^{-i k_{1} a} A=\left[\left({k_{1}}^{2}-\kappa^{2}\right)\left(e^{\kappa a}-e^{-\kappa a}\right)+2 i k_{1} \kappa\left(e^{\kappa a}+e^{-\kappa a}\right)\right] F \tag{64}\\
F=\frac{2 i k_{1} \kappa e^{-i k_{1} a} A}{\left(k_{1}^{2}-\kappa^{2}\right) \sinh \kappa a+2 i k_{1} \kappa \cosh \kappa a} \tag{65}
\end{gather*}
$$

(In case you are unfamiliar with hyperbolic functions, $\sinh u=\left(e^{u}-e^{-u}\right) / 2$ is the hyperbolic sine function and $\cosh u=\left(e^{u}+e^{-u}\right) / 2$ is the hyperbolic cosine function.) To solve for B in relation to A, consider equations (59), (60), and (61).

$$
\begin{gather*}
2 i k_{1} B=\frac{k_{1}^{2}+\kappa^{2}}{2 \kappa} F e^{\left(i k_{1}+\kappa\right) a}-\frac{k_{1}^{2}+\kappa^{2}}{2 \kappa} F e^{\left(i k_{1}-\kappa\right) a} \tag{66}\\
\frac{4 i k_{1} \kappa e^{-i k_{1} a} B}{k_{1}^{2}+\kappa^{2}}=F e^{\kappa a}-F e^{-\kappa a} \tag{67}\\
\frac{2 i k_{1} \kappa e^{-i k_{1} a} B}{\left(k_{1}^{2}+\kappa^{2}\right) \sinh \kappa a}=F \tag{68}
\end{gather*}
$$

Comparing equations (65) and (68), B is solved for in relation to A.

$$
\begin{equation*}
B=\frac{\left(k_{1}^{2}+\kappa^{2}\right) \sinh (\kappa a) A}{\left(k_{1}^{2}-\kappa^{2}\right) \sinh \kappa a+2 i k_{1} \kappa \cosh \kappa a} \tag{69}
\end{equation*}
$$

As in the previous section, the wave function written in terms of its incident, reflected, and transmitted components is:

$$
\begin{align*}
\psi_{i}(x) & =A e^{i k_{1} x} \tag{70}\\
\psi_{r}(x) & =B e^{-i k_{1} x} \tag{71}\\
\psi_{t}(x) & =F e^{i k_{1} x} \tag{72}
\end{align*}
$$

Furthermore, the reflection and transmission coefficients, derivable using the same method as in the previous section, are again given by:

$$
\begin{align*}
R & =\frac{|B|^{2}}{|A|^{2}} \tag{73}\\
T & =\frac{|F|^{2}}{|A|^{2}} \tag{74}
\end{align*}
$$

$$
\begin{aligned}
R & =\frac{\left(k_{1}^{2}+\kappa^{2}\right)^{2} \sinh ^{2} \kappa a}{\left(k_{1}^{2}-\kappa^{2}\right)^{2} \sinh ^{2} \kappa a+4{k_{1}}^{2} \kappa^{2} \cosh ^{2} \kappa a} \\
T & =\frac{4 k_{1}^{2} \kappa^{2}}{\left(k_{1}^{2}-\kappa^{2}\right)^{2} \sinh ^{2} \kappa a+4{k_{1}}^{2} \kappa^{2} \cosh ^{2} \kappa a}
\end{aligned}
$$

$$
\begin{equation*}
R=\frac{\left(k_{1}^{2}+\kappa^{2}\right)^{2} \sinh ^{2} \kappa a}{\left({k_{1}}^{2}+\kappa^{2}\right)^{2} \sinh ^{2} \kappa a+4{k_{1}}^{2} \kappa^{2}} \tag{77}
\end{equation*}
$$

$$
\begin{equation*}
T=\frac{4 k_{1}^{2} \kappa^{2}}{\left(k_{1}^{2}+\kappa^{2}\right)^{2} \sinh ^{2} \kappa a+4{k_{1}}^{2} \kappa^{2}} \tag{78}
\end{equation*}
$$

$$
\begin{align*}
& R=\left[\frac{\left.4{k_{1}^{2} \kappa^{2}}_{\left(k_{1}^{2}+\kappa^{2}\right)^{2} \sinh ^{2} \kappa a}+1\right]^{-1}}{T=\left[\frac{\left(k_{1}^{2}+\kappa^{2}\right)^{2} \sinh ^{2} \kappa a}{4{k_{1}}^{2} \kappa^{2}}+1\right]^{-1}}\right. \tag{79}
\end{align*}
$$

Contrary to classical expectations which would suggest that the particle has zero probability of travelling beyond $x=0$, quantum mechanics asserts that the particle has a non-zero probability of tunneling through the rectangular potential barrier, despite having a total energy less than V_{0}. This phenomenon marks a major difference between quantum and classical mechanics.

