Quantum Mechanics

Luis A. Anchordoqui

Department of Physics and Astronomy
Lehman College, City University of New York

Lesson IV
February 26, 2019

Table of Contents

(1) Introduction to wave mechanics

- Schrödinger equation
- Expectation value, observables, and operators
- Free particle solution

Time dependent Schrödinger equation

- It is not possible to derive the Schrödinger equation in any rigorous fashion from classical physics
- However it had to come from somewhere and it is indeed possible to "derive" the Schrödinger equation using somewhat less rigorous means
- Consider particle with mass m and momentum p_{x} moving in 1-dimension in potential $V(x)$ total energy is

$$
\begin{equation*}
E=\frac{p_{x}^{2}}{2 m}+V(x) \tag{1}
\end{equation*}
$$

- Multiplying both sides of (1) by wave function $\psi(x, t)$ should not change equality

$$
\begin{equation*}
E \psi(x, t)=\left[\frac{p_{x}^{2}}{2 m}+V(x)\right] \psi(x, t) \tag{2}
\end{equation*}
$$

Time dependent Schrödinger equation (cont'd)

- Recall de Broglie relations

$$
\begin{equation*}
p_{x}=\hbar k_{x} \quad \text { and } \quad E=\hbar \omega \tag{3}
\end{equation*}
$$

- Suppose wave function is plane wave traveling in x direction with a well defined energy and momentum

$$
\begin{equation*}
\psi(x, t)=A_{0} e^{i\left(k_{x} x-\omega t\right)} \tag{4}
\end{equation*}
$$

- Energy relation in terms of de Broglie variables becomes

$$
\begin{equation*}
\hbar \omega A_{0} e^{i\left(k_{x} x-\omega t\right)}=E A_{0} e^{i\left(k_{x} x-\omega t\right)} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\hbar^{2} k_{x}^{2}}{2 m}+V(x)\right] A_{0} e^{i\left(k_{x} x-\omega t\right)}=\left[\frac{p_{x}^{2}}{2 m}+V(x)\right] A_{0} e^{i\left(k_{x} x-\omega t\right)} \tag{6}
\end{equation*}
$$

Time dependent Schrödinger equation (cont'd)

- For equality in (5) to hold

$$
\begin{equation*}
E \psi(x, t)=i \hbar \frac{\partial}{\partial t} \psi(x, t) \tag{7}
\end{equation*}
$$

- For equality in (6) to hold

$$
\begin{equation*}
p_{x} \psi(x, t)=-\hbar \frac{\partial}{\partial x} \psi(x, t) \tag{8}
\end{equation*}
$$

Puttin'all this together time-dependent Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi(x, t)=\left[-\frac{h^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \psi(x, t) \tag{9}
\end{equation*}
$$

Time dependent Schrödinger equation (cont'd)

2nd-order linear differential equation with 3 important properties

- it is consistent with energy conservation
- it is linear and singular value solutions can be constructed by superposition of two or more independent solutions
- free-particle solution $V(x)=0$
consistent with a single de Broglie wave

Time independent Schrödinger equation

- If potential energy is independent of time
use mathematical technique known as separation of variables
- Assume

$$
\begin{equation*}
\psi(x, t)=\psi(x) \chi(t) \tag{10}
\end{equation*}
$$

- Substitution into time dependent Schrödinger equation yields

$$
\begin{gather*}
i \hbar \frac{\partial}{\partial t} \chi(t)=E \chi(t)=\hbar \omega \chi(t) \tag{11}\\
{\left[-\frac{h^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \psi(x)=E \psi(x)} \tag{12}
\end{gather*}
$$

- Solution to (11) oscillating complex exponential

$$
\begin{equation*}
\chi(t)=e^{-i E t / \hbar}=e^{-i \omega t} \tag{13}
\end{equation*}
$$

- Solution to (12) an eigenvalue problem

Time independent Schrödinger equation

2nd-order linear differential equation with 3 important properties

- Continuity: Solutions $\psi(x)$ to (12) and its first derivative $\psi^{\prime}(x)$ must be continuous $\forall x$ (the latter holds for finite potential $V(x)$)
- Normalizable: Solutions $\psi(x)$ to (12) must be square integrable integral of modulus squared of wave function over all space must be finite constant so that wave function can be normalized

$$
\int|\psi(x)|^{2} d x=1
$$

- Linearity: Given two independent solutions $\psi_{1}(x)$ and $\psi_{2}(x)$ can construct other solutions by taking superposition of these

$$
\psi(x)=\alpha_{1} \psi_{1}(x)+\alpha_{2} \psi_{2}(x)
$$

$\alpha_{i} \in \mathbb{C}$ satisfying $\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=1$ to ensure normalization.

Born's rule

- Probability amplitude ψ complex function used to describe behaviour of systems
- Probability density (probability per unit length in one dimension)

$$
\begin{equation*}
P(x) d x=|\psi(x)|^{2} d x \tag{14}
\end{equation*}
$$

- Probability to find particle between two points x_{1} and x_{2}

$$
\begin{equation*}
P\left(x_{1}<x<x_{2}\right)=\int_{x_{1}}^{x_{2}}|\psi(x)|^{2} d x \tag{15}
\end{equation*}
$$

- Normalization probability to find particle between $(-\infty,+\infty)$

$$
\begin{equation*}
\int_{-\infty}^{+\infty}|\psi(x)|^{2} d x=1 \tag{16}
\end{equation*}
$$

Expectation value

- We can no longer speak with certainty about particle position
- We can no longer guarantee outcome of single measurement (of any physical quantity that depends on position)
- Expectation value
most probable outcome for single measurement which is equivalent to average outcome for many measurements
- E.g. determine expected location of particle Performing a large number of measurements
we calculate average position

$$
\begin{equation*}
\langle x\rangle=\frac{n_{1} x_{1}+n_{2} x_{2}+\cdots}{n_{1}+n_{2}+\cdots}=\frac{\sum_{i} n_{i} x_{i}}{\sum_{i} n_{i}} \tag{17}
\end{equation*}
$$

Expectation value (cont'd)

- Number of times n_{i} that we measure each position x_{i} is proportional to probability $P\left(x_{i}\right) d x$ to find particle in interval $d x$ at x_{i}
- Making substitution and changing sums to integrals

$$
\begin{equation*}
\langle x\rangle=\frac{\int_{-\infty}^{+\infty} P(x) x d x}{\int_{-\infty}^{+\infty} P(x) d x} \Rightarrow\langle x\rangle=\int_{-\infty}^{+\infty} x|\psi(x)|^{2} d x \tag{18}
\end{equation*}
$$

- Expectation value of any function $f(x)$

$$
\begin{equation*}
\langle f(x)\rangle=\int_{-\infty}^{+\infty} f(x)|\psi(x)|^{2} d x \tag{19}
\end{equation*}
$$

Dirac notation

- State vector or wave-function ψ represented as "ket" $|\psi\rangle$
- We express any n-dimensional vector in terms of basis vectors
- We expand any wave function in terms of basis state vectors

$$
\begin{equation*}
|\psi\rangle=\lambda_{1}\left|\psi_{1}\right\rangle+\lambda_{2}\left|\psi_{2}\right\rangle+\cdots \tag{20}
\end{equation*}
$$

- Alongside the ket we define "bra" $\langle\psi|$
- Together bra and ket define scalar product

$$
\begin{equation*}
\langle\phi \mid \psi\rangle \equiv \int_{-\infty}^{+\infty} d x \phi^{*}(x) \psi(x) \Rightarrow\langle\phi \mid \psi\rangle^{*}=\langle\psi \mid \phi\rangle \tag{21}
\end{equation*}
$$

- As for n-dimensional vector Schwartz inequality holds

$$
\begin{equation*}
\langle\psi \mid \phi\rangle \leq \sqrt{\langle\psi \mid \psi\rangle\langle\phi \mid \phi\rangle} \tag{22}
\end{equation*}
$$

Operators and Observables

- Operator \hat{A} maps state vector into another $\hat{A}|\psi\rangle=|\phi\rangle$
- Eigenstate (or eigenfunction) of \hat{A} with eigenvalue a

$$
\hat{A}|\psi\rangle=a|\psi\rangle
$$

- Observable any particle property that can be measured
- For any observable A there is an operator \hat{A}

$$
\begin{equation*}
\langle A\rangle=\langle\psi| \hat{A}|\psi\rangle=\int_{-\infty}^{+\infty} d x \psi^{*}(x) \hat{A} \psi(x) \tag{23}
\end{equation*}
$$

- A^{+}is called hermitian conjugate of \hat{A} if

$$
\begin{equation*}
\int_{-\infty}^{+\infty}\left(\hat{A}^{\dagger} \phi\right)^{*} \psi d x=\int_{-\infty}^{+\infty} \phi^{*} \hat{A} \psi d x \Rightarrow\left\langle A^{\dagger} \phi \mid \psi\right\rangle=\langle\phi \mid A \psi\rangle \tag{24}
\end{equation*}
$$

- \hat{A} is called hermitian if $\hat{A}^{\dagger}=\hat{A}\langle A \phi \mid \psi\rangle=\langle\phi \mid A \psi\rangle$

Commutator

- Operators are associative but not (in general) commutative

$$
\begin{equation*}
\hat{A} \hat{B}|\psi\rangle=\hat{A}(\hat{B} \psi\rangle)=(\hat{A} \hat{B})|\psi\rangle \neq \hat{B} \hat{A}|\psi\rangle \tag{25}
\end{equation*}
$$

- Example $(\hat{x} \hat{p}-\hat{p} \hat{x}) \psi(x)=-i \hbar\left\{x \frac{\partial \psi}{\partial x}-\frac{\partial}{\partial x}[x \psi(x)]\right\}$
by product rule of differentiation

$$
\begin{equation*}
(\hat{x} \hat{p}-\hat{p} \hat{x}) \psi(x)=i \hbar \psi(x) \tag{27}
\end{equation*}
$$

- Since this must hold for any function $\psi(x)$

$$
\begin{equation*}
\hat{x} \hat{p}-\hat{p} \hat{x}=i \hbar \tag{28}
\end{equation*}
$$

- Short-hand notation:

$$
[\hat{A}, \hat{B}] \equiv \hat{A} \hat{B}-\hat{B} \hat{A}
$$

- A "free" particle no external forces acting upon it $\Rightarrow V(x)=V_{0}$
- State represented by its wave function $\psi(x)=A e^{i k x}$
- Schrödinger equation has 4 possible solutions

$$
\begin{equation*}
\frac{2 m}{\hbar^{2}}\left(E-V_{0}\right) \psi(x)=-\frac{\partial^{2}}{\partial x^{2}} \psi(x)=k^{2} \psi(x) \quad \pm k \in \Re \text { or } \Im \tag{29}
\end{equation*}
$$

- 2 travelling waves solutions

$$
\begin{equation*}
\psi(x)=A e^{i k x}+B e^{-i k x} \quad k= \pm \frac{1}{\hbar} \sqrt{2 m\left(E-V_{0}\right)} \quad\left(E>V_{0}\right) \tag{30}
\end{equation*}
$$

- 2 exponentially decaying solutions

$$
\begin{equation*}
\psi(x)=A e^{\kappa x}+B e^{-\kappa x} \quad i \kappa= \pm i \frac{1}{\hbar} \sqrt{2 m\left(V_{0}-E\right)} \quad\left(E<V_{0}\right) \tag{31}
\end{equation*}
$$

- Allowed energies are

$$
\begin{equation*}
E=\frac{\hbar^{2} k^{2}}{2 m}+V_{0} \tag{32}
\end{equation*}
$$

- $E>V_{0}$ classically allowed
- $E<V_{0}$ classically forbidden
- Traveling wave solutions time evolution of probability density

$$
\begin{equation*}
P(x, t)=\psi^{*}(x, t) \psi(x, t)=\psi^{*}(x) e^{i \omega t} \psi(x) e^{-i \omega t}=\psi^{*}(x) \psi(x) \tag{33}
\end{equation*}
$$

independent of time!

- Particle traveling in only one (say $+x$) direction

$$
\begin{equation*}
P(x, t)=\psi^{*}(x) \psi(x)=A^{*} e^{-i k x} A e^{i k x}=A^{*} A \tag{34}
\end{equation*}
$$

independent of position particle completely delocalized!

- Superposition of both positive and negative going waves

$$
\begin{aligned}
P(x, t) & =\left(A e^{i k x}+B^{-i k x}\right)^{*}\left(A e^{i k x}+B e^{-i k x}\right) \\
& =A^{*} A+B^{*} B+2 \Re\left\{A^{*} B e^{-2 i k x}+B^{*} A e^{2 i k x}\right\}
\end{aligned}
$$

- For real-valued coefficients A and B

$$
\begin{equation*}
P(x, t)=A^{2}+B^{2}+2 A B \cos (2 k x) \tag{35}
\end{equation*}
$$

which is equation for standing wave

