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Introduction to wave mechanics Schrödinger equation

Time dependent Schrödinger equation

It is not possible to derive the Schrödinger equation
in any rigorous fashion from classical physics

However + it had to come from somewhere
and it is indeed possible to “derive” the Schrödinger equation

using somewhat less rigorous means
Consider particle with mass m and momentum px
moving in 1-dimension in potential V(x) + total energy is

E =
p2

x
2m

+ V(x) (1)

Multiplying both sides of (1) by wave function ψ(x, t)
should not change equality

Eψ(x, t) =
[

p2
x

2m
+ V(x)

]
ψ(x, t) (2)

L. A. Anchordoqui (CUNY) Quantum Mechanics 11-5-2015 4 / 17



Introduction to wave mechanics Schrödinger equation

Time dependent Schrödinger equation (cont’d)
Recall de Broglie relations

px = h̄kx and E = h̄ω (3)

Suppose wave function is plane wave traveling in x direction
with a well defined energy and momentum

ψ(x, t) = A0ei(kxx−ωt) (4)

Energy relation in terms of de Broglie variables becomes

h̄ωA0ei(kxx−ωt) = EA0ei(kxx−ωt) (5)

[
h̄2k2

x
2m

+ V(x)

]
A0ei(kxx−ωt) =

[
p2

x
2m

+ V(x)
]

A0ei(kxx−ωt) (6)
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Introduction to wave mechanics Schrödinger equation

Time dependent Schrödinger equation (cont’d)
For equality in (5) to hold

Eψ(x, t) = ih̄
∂

∂t
ψ(x, t) (7)

For equality in (6) to hold

pxψ(x, t) = −h̄
∂

∂x
ψ(x, t) (8)

Puttin’all this together + time-dependent Schrödinger equation

ih̄
∂

∂t
ψ(x, t) =

[
− h2

2m
∂2

∂x2 + V(x)
]

ψ(x, t) (9)
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Introduction to wave mechanics Schrödinger equation

Time dependent Schrödinger equation (cont’d)�� ��2nd-order linear differential equation with 3 important properties

it is consistent with energy conservation

it is linear and singular value + solutions can be constructed
by superposition of two or more independent solutions

free-particle solution + V(x) = 0
consistent with a single de Broglie wave
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Introduction to wave mechanics Schrödinger equation

Time independent Schrödinger equation
If potential energy is independent of time
use mathematical technique known as separation of variables
Assume

ψ(x, t) = ψ(x) χ(t) (10)

Substitution into time dependent Schrödinger equation yields

ih̄
∂

∂t
χ(t) = Eχ(t) = h̄ωχ(t) (11)

[
− h2

2m
∂2

∂x2 + V(x)
]

ψ(x) = Eψ(x) (12)

Solution to (11) + oscillating complex exponential

χ(t) = e−iEt/h̄ = e−iωt (13)

Solution to (12) + an eigenvalue problem
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Introduction to wave mechanics Schrödinger equation

Time independent Schrödinger equation�� ��2nd-order linear differential equation with 3 important properties

Continuity: Solutions ψ(x) to (12) and its first derivative ψ′(x)
must be continuous ∀x (the latter holds for finite potential V(x))

Normalizable: Solutions ψ(x) to (12) must be square integrable
integral of modulus squared of wave function over all space
must be finite constant so that wave function can be normalized∫

|ψ(x)|2 dx = 1

Linearity: Given two independent solutions ψ1(x) and ψ2(x)
can construct other solutions by taking superposition of these

ψ(x) = α1 ψ1(x) + α2 ψ2(x)
αi ∈ C satisfying |α1|2 + |α2|2 = 1 to ensure normalization.
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Introduction to wave mechanics Expectation value, observables, and operators

Born’s rule
Probability amplitude ψ + complex function

used to describe behaviour of systems

Probability density (probability per unit length in one dimension)

P(x) dx = |ψ(x)|2dx (14)

Probability to find particle between two points x1 and x2

P(x1 < x < x2) =
∫ x2

x1

|ψ(x)|2 dx (15)

Normalization + probability to find particle between (−∞,+∞)∫ +∞

−∞
|ψ(x)|2 dx = 1 (16)
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Introduction to wave mechanics Expectation value, observables, and operators

Expectation value
We can no longer speak with certainty about particle position

We can no longer guarantee outcome of single measurement
(of any physical quantity that depends on position)

Expectation value +

most probable outcome for single measurement
which is equivalent to average outcome for many measurements

E.g. + determine expected location of particle
Performing a large number of measurements

we calculate average position

〈x〉 = n1x1 + n2x2 + · · ·
n1 + n2 + · · ·

=
∑i nixi

∑i ni
(17)
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Introduction to wave mechanics Expectation value, observables, and operators

Expectation value (cont’d)
Number of times ni that we measure each position xi

is proportional to probability P(xi) dx
to find particle in interval dx at xi

Making substitution and changing sums to integrals

〈x〉 =
∫ +∞
−∞ P(x) x dx∫ +∞
−∞ P(x) dx

⇒ 〈x〉 =
∫ +∞

−∞
x|ψ(x)|2 dx (18)

Expectation value of any function f (x)

〈 f (x)〉 =
∫ +∞

−∞
f (x)|ψ(x)|2 dx (19)
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Introduction to wave mechanics Expectation value, observables, and operators

Dirac notation
State vector or wave-function ψ + represented as “ket” |ψ〉
We express any n-dimensional vector in terms of basis vectors
We expand any wave function in terms of basis state vectors

|ψ〉 = λ1|ψ1〉+ λ2|ψ2〉+ · · · (20)

Alongside the ket + we define “bra” 〈ψ|
Together + bra and ket define scalar product

〈φ|ψ〉 ≡
∫ +∞

−∞
dx φ∗(x) ψ(x)⇒ 〈φ|ψ〉∗ = 〈ψ|φ〉 (21)

As for n-dimensional vector + Schwartz inequality holds

〈ψ|φ〉 ≤
√
〈ψ|ψ〉〈φ|φ〉 (22)
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Introduction to wave mechanics Expectation value, observables, and operators

Operators and Observables

Operator Â + maps state vector into another Â|ψ〉 = |φ〉
Eigenstate (or eigenfunction) of Â with eigenvalue a

Â|ψ〉 = a|ψ〉

Observable + any particle property that can be measured
For any observable A + there is an operator Â

〈A〉 = 〈ψ|Â|ψ〉 =
∫ +∞

−∞
dx ψ∗(x) Âψ(x) (23)

A† is called hermitian conjugate of Â if∫ +∞

−∞
(Â†φ)∗ ψ dx =

∫ +∞

−∞
φ∗ Âψ dx ⇒ 〈A†φ|ψ〉 = 〈φ|Aψ〉 (24)

Â is called hermitian if Â† = Â + 〈Aφ|ψ〉 = 〈φ|Aψ〉
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Introduction to wave mechanics Expectation value, observables, and operators

Commutator
Operators are associative but not (in general) commutative

ÂB̂|ψ〉 = Â(B̂ψ〉) = (ÂB̂)|ψ〉 6= B̂Â|ψ〉 (25)

Example +(x̂ p̂− p̂x̂)ψ(x) = −ih̄
{

x
∂ψ

∂x
− ∂

∂x
[xψ(x)]

}
(26)

by product rule of differentiation

(x̂ p̂− p̂x̂)ψ(x) = ih̄ψ(x) (27)

Since this must hold for any function ψ(x)

x̂ p̂− p̂x̂ = ih̄ (28)

Short-hand notation:

[Â, B̂] ≡ ÂB̂− B̂Â
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Introduction to wave mechanics Free particle solution

A “free” particle + no external forces acting upon it⇒ V(x) = V0

State represented by its wave function + ψ(x) = Aeikx

Schrödinger equation has 4 possible solutions

2m
h̄2 (E−V0)ψ(x) = − ∂2

∂x2 ψ(x) = k2ψ(x) ± k ∈ < or= (29)

2 travelling waves solutions

ψ(x) = Aeikx + Be−ikx k = ±1
h̄

√
2m(E−V0) (E > V0) (30)

2 exponentially decaying solutions

ψ(x) = Aeκx + Be−κx iκ = ±i
1
h̄

√
2m(V0 − E) (E < V0)

(31)
Allowed energies are

E =
h̄2k2

2m
+ V0 (32)
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Introduction to wave mechanics Free particle solution

E > V0 + classically allowed
E < V0 + classically forbidden
Traveling wave solutions + time evolution of probability density

P(x, t) = ψ∗(x, t)ψ(x, t) = ψ∗(x)eiωtψ(x)e−iωt = ψ∗(x)ψ(x) (33)

independent of time!
Particle traveling in only one (say +x) direction

P(x, t) = ψ∗(x)ψ(x) = A∗e−ikx Aeikx = A∗A (34)

independent of position + particle completely delocalized!
Superposition of both positive and negative going waves

P(x, t) =
(

Aeikx + B−ikx
)∗

(Aeikx + Be−ikx)

= A∗A + B∗B + 2<{A∗Be−2ikx + B∗Ae2ikx}
For real-valued coefficients A and B

P(x, t) = A2 + B2 + 2ABcos(2kx) (35)

which is equation for standing wave
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