## Quantum Mechanics

Luis A. Anchordoqui

Department of Physics and Astronomy
Lehman College, City University of New York

Lesson X<br>April 30, 2019



- Until now we have focused on quantum mechanics of particles which are "featureless" carrying no internal degrees of freedom
- A relativistic formulation of quantum mechanics due to Dirac (not covered in this course) reveals that quantum particles can exhibit an intrinsic angular momentum component known as spin
- However the discovery of quantum mechanical spin predates its theoretical understanding and appeared as a result of an ingeneous experiment due to Stern and Gerlach that we will discuss in this lesson


## Table of Contents

(1) Particle spin and Stern-Gerlach experiment

- $\hat{L}, \hat{L}^{2}, \hat{L}_{z}$, and all that...
- Magnetic moment and the Zeeman effect
- Stern-Gerlach and the discovery of spin
- Spinors, spin operators, and Pauli matrices
- Spin precession in a magnetic field


## We have seen that...

- In addition to quantized energy (specified by principle quantum number $n$ ) solutions subject to physical boundary conditions also have quantized orbital angular momentum $L$
- Magnitude of $L$ is required to obey $L Y_{l}^{m}=\sqrt{l(l+1)} \hbar Y_{l}^{m}$ with $(l=0,1,2, \cdots, n-1)$ ) orbital quantum number
- Bohr model of H atom also has quantized angular momentum $L=n \hbar$ but lowest energy state $n=1$ would have $L=\hbar$
- Schrödinger equation shows that lowest state has $L=0$
- This lowest energy-state wave function is a perfectly symmetric sphere
- For higher energy states vector $L$ has in addition only certain allowed directions such that $z$-component is quantized as $L_{z} Y_{l}^{m}=m_{l} \hbar Y_{l}^{m}\left(m_{l}=0, \pm 1, \pm 2, \cdots, \pm l\right)$


## The hydrogen atom: Degeneracy

- States with different quantum numbers $l$ and $n$ are often referred to with letters as follows:

| 1 value | letter |
| :---: | :---: |
| 0 | $s$ |
| 1 | $p$ |
| 2 | $d$ |
| 3 | $f$ |
| 4 | $g$ |
| 5 | $h$ |


| $n$ value | shell |
| :---: | :---: |
| 1 | $K$ |
| 2 | $L$ |
| 3 | $M$ |
| 4 | $N$ |

- Hydrogen atom states with the same value of $n$ but different values of $l$ and $m_{l}$ are degenerate
 (have the same energy).
- Figure at right shows radial probability distribution for states with $l=0,1,2,3$ and different values of $n=1,2,3,4$.



## Cumminm stantes off hyalrodjen atomm



-For each value of the quantum number $n$
there are $n$ possible values of the quantum number $l$
-For each value of $l$
there are $2 l+1$ values of the quantum number $m_{l}$

| $\boldsymbol{n}$ | $\boldsymbol{l}$ | $m_{l}$ | Spectroscopic Notation | Shell |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | $1 s$ | $K$ |
| 2 | 0 | 0 | $2 s$ |  |
| 2 | 1 | $-1,0,1$ | $2 p$ | $L$ |
| 3 | 0 | 0 | $3 s$ |  |
| 3 | 1 | $-1,0,1$ | $3 p$ |  |
| 3 | 2 | $-2,-1,0,1,2$ | $3 d$ |  |
| 4 | 0 | 0 | $4 s$ | $M$ |
|  |  |  | $N$ |  |

## Example

- How many distinct states of the hydrogen atom $\left(n, l, m_{l}\right)$ are there for the $n=3$ state?
- What are their energies?
- The $n=3$ state has possible $l$ values $0,1,2$
- Each $l$ has $m_{l}$ possible values (0), $(-1,0,1),(-2,-1,0,1,2)$
- The total number of states is then $1+3+5=9$
- There is another quantum number $s= \pm \frac{1}{2}$ for electron spin so there are 18 possible states for $n=3$ (more on this later)
- Each of these states have same $n$ so they all have same energy


## The hydrogen atom: Probability distributions I

- States of the hydrogen atom with $l=0$ (zero orbital angular momentum) have spherically symmetric wave functions that depend on $r$ but not on $\theta$ or $\phi$. These are called $s$ states.
- electron probability distributions for three of these states.



## The hydrogen atom: Probability distributions II

- States of the hydrogen atom with nonzero orbital angular momentum, such as $p$ states $(l=1)$ and $d$ states $(l=2)$, have wave functions that are not spherically symmetric.
electron probability distributions for several of these states, as well as for two spherically symmetric $s$ states.




## Ground-state electron configurations

| Element | Symbol | Atomic Number ( $\boldsymbol{Z}$ ) | Electron Configuration |
| :---: | :---: | :---: | :---: |
| Hydrogen | H | 1 | 1 s |
| Helium | He | 2 | $1 s^{2}$ |
| Lithium | Li | 3 | $1 s^{2} 2 s$ |
| Beryllium | Be | 4 | $1 s^{2} 2 s^{2}$ |
| Boron | B | 5 | $1 s^{2} 2 s^{2} 2 p$ |
| Carbon | C | 6 | $1 s^{2} 2 s^{2} 2 p^{2}$ |
| Nitrogen | N | 7 | $1 s^{2} 2 s^{2} 2 p^{3}$ |
| Oxygen | 0 | 8 | $1 s^{2} 2 s^{2} 2 p^{4}$ |
| Fluorine | F | 9 | $1 s^{2} 2 s^{2} 2 p^{5}$ |
| Neon | Ne | 10 | $1 s^{2} 2 s^{2} 2 p^{6}$ |
| Sodium | Na | 11 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s$ |
| Magnesium | Mg | 12 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ |
| Aluminum | AI | 13 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p$ |
| Silicon | Si | 14 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$ |
| Phosphorus | P | 15 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$ |
| Sulfur | S | 16 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ |
| Chlorine | Cl | 17 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$ |
| Argon | Ar | 18 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ |
| Potassium | K | 19 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s$ |
| Calcium | Ca | 20 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$ |
| Scandium | Sc | 21 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d$ |
| Titanium | Ti | 22 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$ |
| Vanadium | V | 23 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$ |
| Chromium | Cr | 24 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s 3 d^{5}$ |
| Manganese | Mn | 25 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$ |
| Iron | Fe | 26 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$ |
| Cobalt | Co | 27 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{7}$ |
| Nickel | Ni | 28 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$ |
| Copper | Cu | 29 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s 33 d^{10}$ |
| Zinc | Zn | 30 | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10}$ |

- $e$-states with nonzero orbital angular momentum $(l=1,2,3, \cdots)$ carry magnetic dipole moment due to electron motion
- These states are affected if atom is placed in magnetic field $\vec{B}$

$$
\boldsymbol{\mu}=-\frac{e}{2 m_{e}} \hat{\mathbf{L}} \equiv-\mu_{\mathrm{B}} \hat{\mathbf{L}} / \hbar, \quad H_{\mathrm{int}}=-\boldsymbol{\mu} \cdot \mathbf{B}
$$

- Zeeman effect shift in energy of states with nonzero $m_{l}$


$$
n=1 \frac{}{l=0} 0--------------------------13.60 \mathrm{eV}
$$

- When beam of atoms are passed through inhomogeneous (but aligned) magnetic field where they experience force

$$
\mathbf{F}=\nabla(\boldsymbol{\mu} \cdot \mathbf{B}) \simeq \mu_{z}\left(\partial_{z} B_{z}\right) \hat{\mathbf{e}}_{z}
$$

we expect splitting into odd integer $(2 l+1)$ number of beams

## Stern-Gerlach apparatus



- Beam of atoms passes through a region where there is nonuniform $\vec{B}$-field
- Atoms with their magnetic dipole moments in opposite directions experience forces in opposite directions


## Stern-Gerlach experiment

- In experiment, a beam of silver atoms were passed through inhomogeneous magnetic field and collected on photographic plate.
- Since silver involves spherically symmetric charge distribution plus one $5 s$ electron, total angular momentum of ground state has $L=0$.
- If outer electron in $5 p$ state, $L=1$ and the beam should split in 3 .



## Stern-Gerlach experiment

- However, experiment showed a bifurcation of beam!


Gerlach's postcard, dated 8th February 1922, to Niels Bohr

- Since orbital angular momentum can take only integer values, this observation suggests electron possesses an additional intrinsic $s=\frac{1}{2} \quad$ component known as spin.


## Results of Stern-Gerlach experiment



- Image of slit with field turned off (left)
- With the field on two images of slit appear
- Small divisions in the scale represent 0.05 mm


## Quantum mechanical spin

- Later, it was understood that elementary quantum particles can be divided into two classes, fermions and bosons.
- Fermions (e.g. electron, proton, neutron) possess half-integer spin.
- Bosons (e.g. mesons, photon) possess integral spin (including zero).


## Spinors

- Space of angular momentum states for spin $s=1 / 2$ is two-dimensional:

$$
\left|s=1 / 2, m_{s}=1 / 2\right\rangle=|\uparrow\rangle, \quad|1 / 2,-1 / 2\rangle=|\downarrow\rangle
$$



- General spinor state of spin can be written as linear combination,

$$
\alpha|\uparrow\rangle+\beta|\downarrow\rangle=\binom{\alpha}{\beta}, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

- Operators acting on spinors are $2 \times 2$ matrices. From definition of spinor, $z$-component of spin represented as,

$$
S_{z}=\frac{1}{2} \hbar \sigma_{z}, \quad \sigma_{z}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

i.e. $S_{z}$ has eigenvalues $\pm \hbar / 2$ corresponding to $\binom{1}{0}$ and $\binom{0}{1}$.

## Uhlenbeck-Goudsmit-Pauli hypothesis

- Magnetic moment connected via intrinsic angular momentum

$$
\begin{equation*}
\vec{\mu}_{S}=-\frac{e}{2 m_{e}} g_{e} \vec{S} \tag{1}
\end{equation*}
$$

- For intrinsic spin only matrix representation is possible
- Spin up $|\uparrow\rangle$ and down $|\downarrow\rangle$ are defined by

$$
\begin{equation*}
\text { spin up } \Leftrightarrow\binom{1}{0} \quad \text { spin down } \quad \Leftrightarrow\binom{0}{1} . \tag{2}
\end{equation*}
$$

- $\hat{S}_{z}$ spin operator is defined by

$$
\hat{S}_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0  \tag{3}\\
0 & -1
\end{array}\right)
$$

- $\hat{S}_{z}$ acts on up and down states by ordinary matrix multiplication

$$
\begin{gather*}
\hat{S}_{z}|\uparrow\rangle=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0}=\frac{\hbar}{2}\binom{1}{0}=\frac{\hbar}{2}|\uparrow\rangle  \tag{4}\\
\hat{S}_{z}|\downarrow\rangle=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{0}{1}=-\frac{\hbar}{2}\binom{0}{1}=-\frac{\hbar}{2}|\uparrow\rangle \tag{5}
\end{gather*}
$$

- As for orbital angular momentum $\left[\hat{S}_{i}, \hat{S}_{j}\right]=i \hbar \epsilon_{i j k} \hat{S}_{k}$

$$
\hat{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1  \tag{6}\\
1 & 0
\end{array}\right) \quad \text { and } \quad \hat{S}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

- Only 4 hermitian 2-by-2 matrices indentity + Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1  \tag{7}\\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Spin up


## Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Pauli spin matrices are Hermitian, traceless, and obey defining relations (cf. general angular momentum operators):

$$
\sigma_{i}^{2}=\mathbb{I}, \quad\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k}
$$

- Total spin

$$
\mathbf{S}^{2}=\frac{1}{4} \hbar^{2} \boldsymbol{\sigma}^{2}=\frac{1}{4} \hbar^{2} \sum_{i} \sigma_{i}^{2}=\frac{3}{4} \hbar^{2} \mathbb{I}=\frac{1}{2}\left(\frac{1}{2}+1\right) \hbar^{2} \mathbb{I}
$$

i.e. $s(s+1) \hbar^{2}$, as expected for spin $s=1 / 2$.

## Spatial degrees of freedom and spin

- Spin represents additional internal degree of freedom, independent of spatial degrees of freedom, i.e. $[\hat{\mathbf{S}}, \mathbf{x}]=[\hat{\mathbf{S}}, \hat{\mathbf{p}}]=[\hat{\mathbf{S}}, \hat{\mathbf{L}}]=0$.
- Total state is constructed from direct product,

$$
|\psi\rangle=\int d^{3} x\left(\psi_{+}(\mathbf{x})|\mathbf{x}\rangle \otimes|\uparrow\rangle+\psi_{-}(\mathbf{x})|\mathbf{x}\rangle \otimes|\downarrow\rangle\right) \equiv\binom{\left|\psi_{+}\right\rangle}{\left|\psi_{-}\right\rangle}
$$

- In a weak magnetic field, the electron Hamiltonian can then be written as

$$
\hat{H}=\frac{\hat{\mathbf{p}}^{2}}{2 m}+V(r)+\mu_{\mathrm{B}}(\hat{\mathbf{L}} / \hbar+\boldsymbol{\sigma}) \cdot \mathbf{B}
$$

## Relating spinor to spin direction

For a general state $\alpha|\uparrow\rangle+\beta|\downarrow\rangle$, how do $\alpha, \beta$ relate to orientation of spin?


- Let us assume that spin is pointing along the unit vector $\hat{\mathbf{n}}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$, i.e. in direction $(\theta, \varphi)$.
- Spin must be eigenstate of $\hat{\mathbf{n}} \cdot \sigma$ with eigenvalue unity, i.e.

$$
\left(\begin{array}{cc}
n_{z} & n_{x}-i n_{y} \\
n_{x}+i n_{y} & -n_{z}
\end{array}\right)\binom{\alpha}{\beta}=\binom{\alpha}{\beta}
$$

- With normalization, $|\alpha|^{2}+|\beta|^{2}=1$, (up to arbitrary phase),

$$
\binom{\alpha}{\beta}=\binom{e^{-i \varphi / 2} \cos (\theta / 2)}{e^{i \varphi / 2} \sin (\theta / 2)}
$$

## Spin symmetry

$$
\binom{\alpha}{\beta}=\binom{e^{-i \varphi / 2} \cos (\theta / 2)}{e^{i \varphi / 2} \sin (\theta / 2)}
$$

- Note that under $2 \pi$ rotation,

$$
\binom{\alpha}{\beta} \mapsto-\binom{\alpha}{\beta}
$$

- In order to make a transformation that returns spin to starting point, necessary to make two complete revolutions, (cf. spin 1 which requires $2 \pi$ and spin 2 which requires only $\pi!$ ).


## (Classical) spin precession in a magnetic field

Consider magnetized object spinning about centre of mass, with angular momentum $\mathbf{L}$ and magnetic moment $\boldsymbol{\mu}=\gamma \mathbf{L}$ with $\gamma$ gyromagnetic ratio.

- A magnetic field $\mathbf{B}$ will then impose a torque

$$
\mathbf{T}=\boldsymbol{\mu} \times \mathbf{B}=\gamma \mathbf{L} \times \mathbf{B}=\partial_{t} \mathbf{L}
$$

- With $\mathbf{B}=B \hat{\mathbf{e}}_{z}$, and $L_{+}=L_{x}+i L_{y}, \partial_{t} L_{+}=-i \gamma B L_{+}$, with the solution $L_{+}=L_{+}^{0} e^{-i \gamma B t}$ while $\partial_{t} L_{z}=0$.
- Angular momentum vector $\mathbf{L}$ precesses about magnetic field direction with angular velocity $\boldsymbol{\omega}_{0}=-\gamma \mathbf{B}$ (independent of angle).
- We will now show that precisely the same result appears in the study of the quantum mechanics of an electron spin in a magnetic field.


## (Quantum) spin precession in a magnetic field

- Last lecture, we saw that the electron had a magnetic moment, $\boldsymbol{\mu}_{\text {orbit }}=-\frac{e}{2 m_{e}} \hat{\mathbf{L}}$, due to orbital degrees of freedom.
- The intrinsic electron spin imparts an additional contribution, $\boldsymbol{\mu}_{\text {spin }}=\gamma \hat{\mathbf{S}}$, where the gyromagnetic ratio,

$$
\gamma=-g \frac{e}{2 m_{e}}
$$

and $g$ (known as the Landé $g$-factor) is very close to 2 .

- These components combine to give the total magnetic moment,

$$
\boldsymbol{\mu}=-\frac{e}{2 m_{e}}(\hat{\mathbf{L}}+g \hat{\mathbf{S}})
$$

- In a magnetic field, the interaction of the dipole moment is given by

$$
\hat{H}_{\mathrm{int}}=-\boldsymbol{\mu} \cdot \mathbf{B}
$$

## (Quantum) spin precession in a magnetic field

- Focusing on the spin contribution alone,

$$
\hat{H}_{\mathrm{int}}=-\gamma \hat{\mathbf{S}} \cdot \mathbf{B}=-\frac{\gamma}{2} \hbar \boldsymbol{\sigma} \cdot \mathbf{B}
$$



- The spin dynamics can then be inferred from the time-evolution operator, $|\psi(t)\rangle=\hat{U}(t)|\psi(0)\rangle$, where

$$
\hat{U}(t)=e^{-i \hat{H}_{\text {int }} t / \hbar}=\exp \left[\frac{i}{2} \gamma \boldsymbol{\sigma} \cdot \mathbf{B} t\right]
$$

- However, we have seen that the operator $\hat{U}(\theta)=\exp \left[-\frac{i}{\hbar} \theta \hat{\mathbf{e}}_{n} \cdot \hat{\mathbf{L}}\right]$ generates spatial rotations by an angle $\theta$ about $\hat{\mathbf{e}}_{n}$.
- In the same way, $\hat{U}(t)$ effects a spin rotation by an angle $-\gamma B t$ about the direction of $\mathbf{B}$ !


## (Quantum) spin precession in a magnetic field

$$
\hat{U}(t)=e^{-i \hat{H}_{\mathrm{int}} t / \hbar}=\exp \left[\frac{i}{2} \gamma \boldsymbol{\sigma} \cdot \mathbf{B} t\right]
$$

- Therefore, for initial spin configuration,

$$
\binom{\alpha}{\beta}=\binom{e^{-i \varphi / 2} \cos (\theta / 2)}{e^{i \varphi / 2} \sin (\theta / 2)}
$$



- With $\mathbf{B}=B \hat{\mathbf{e}}_{z}, \hat{U}(t)=\exp \left[\frac{i}{2} \gamma B t \sigma_{z}\right],|\psi(t)\rangle=\hat{U}(t)|\psi(0)\rangle$,

$$
\binom{\alpha(t)}{\beta(t)}=\left(\begin{array}{cc}
e^{-\frac{i}{2} \omega_{0} t} & 0 \\
0 & e^{\frac{i}{2} \omega_{0} t}
\end{array}\right)\binom{\alpha}{\beta}=\binom{e^{-\frac{i}{2}\left(\varphi+\omega_{0} t\right)} \cos (\theta / 2)}{e^{\frac{i}{2}\left(\varphi+\omega_{0} t\right)} \sin (\theta / 2)}
$$

- i.e. spin precesses with angular frequency $\boldsymbol{\omega}_{0}=-\gamma \mathbf{B}=-g \omega_{c} \hat{\mathbf{e}}_{\mathbf{z}}$, where $\omega_{c}=\frac{e B}{2 m_{e}}$ is cyclotron frequency, $\left(\frac{\omega_{c}}{B} \simeq 10^{11} \mathrm{rad} \mathrm{s}^{-1} \mathrm{~T}^{-1}\right)$.

