Quantum Mechanics

Luis A. Anchordoqui

Department of Physics and Astronomy Lehman College, City University of New York

> Lesson X April 30, 2019

 Until now we have focused on quantum mechanics of particles which are "featureless" region carrying no internal degrees of freedom

• A relativistic formulation of quantum mechanics due to Dirac (not covered in this course) reveals that quantum particles can exhibit an intrinsic angular momentum component known as spin

• However rearest the discovery of quantum mechanical spin predates its theoretical understanding and appeared as a result of an ingeneous experiment due to Stern and Gerlach that we will discuss in this lesson

- Particle spin and Stern-Gerlach experiment
 - \hat{L} , \hat{L}^2 , \hat{L}_z , and all that...
 - Magnetic moment and the Zeeman effect
 - Stern-Gerlach and the discovery of spin
 - Spinors, spin operators, and Pauli matrices
 - Spin precession in a magnetic field

We have seen that...

- In addition to quantized energy (specified by principle quantum number n) solutions subject to physical boundary conditions also have quantized orbital angular momentum L
- Magnitude of *L* is required to obey $\mathbb{S} L Y_l^m = \sqrt{l(l+1)}\hbar Y_l^m$ with $(l = 0, 1, 2, \dots, n-1) \mathbb{S} l \equiv$ orbital quantum number
- Bohr model of H atom also has quantized angular momentum $L = n\hbar$ is but lowest energy state n = 1 would have $L = \hbar$
- Schrödinger equation shows that lowest state has L = 0
- This lowest energy-state wave function is a perfectly symmetric sphere
- For higher energy states s vector *L* has in addition only certain allowed directions such that *z*-component is quantized as
 L_z Y_l^m = m_l ħ Y_l^m s (m_l = 0, ±1, ±2, · · · , ±l)

 \hat{L} , \hat{L}^2 , \hat{L}_z , and all that...

The hydrogen atom: Degeneracy

• States with different quantum numbers *l* and *n* are often referred to with letters as follows:

<i>l</i> value	
0	S
1	р
2	d
3	f
4	g
5	h

- Hydrogen atom states with the same value of n but different values of l and m_l are degenerate (have the same energy).
- Figure at right shows radial probability distribution for states with *l* = 0, 1, 2, 3 and different values of *n* = 1, 2, 3, 4.

Quantum states of hydrogen atom

•For each value of the quantum number nthere are n possible values of the quantum number l

 $\bullet {\rm For}$ each value of l

there are 2l + 1 values of the quantum number m_l

	n	l	m_l	Spectroscopic Notation	Shell
!)	1	0	0	1s	K
	2	0	0	2s	
	2	1	-1, 0, 1	2p	L
	3	0	0	38	
	3	1	-1, 0, 1	3p	M
	3	2	-2, -1, 0, 1, 2	3 <i>d</i>)	
	4	0	0	45	N
	and so on				

Example

- How many distinct states of the hydrogen atom (n, l, m_l) are there for the n = 3 state?
- What are their energies?
- The *n* = 3 state has possible *l* values 0, 1, 2
- Each *l* has *m_l* possible values IS (0), (−1,0,1), (−2, −1, 0, 1, 2)
- The total number of states is then 1+3+5=9
- There is another quantum number $s = \pm \frac{1}{2}$ for electron spin so there are 18 possible states for n = 3 (more on this later)
- Each of these states have same *n* is so they all have same energy

The hydrogen atom: Probability distributions I

• States of the hydrogen atom with l = 0 (zero orbital angular momentum) have spherically symmetric wave functions that depend on *r* but not on θ or ϕ . These are called *s* states.

• electron probability distributions for three of these states.

The hydrogen atom: Probability distributions II

• States of the hydrogen atom with nonzero orbital angular momentum, such as *p* states (*l* = 1) and *d* states (*l* = 2), have wave functions that are *not* spherically symmetric.

electron probability distributions for several of these states, as well as for two spherically symmetric *s* states.

Ground-state electron configurations

Atomic				
Element	Symbol	Number (Z)	Electron Configuration	
Hydrogen	Н	1	1s	
Helium	He	2	$1s^{2}$	
Lithium	Li	3	$1s^2 2s$	
Beryllium	Be	4	$1s^22s^2$	
Boron	В	5	$1s^22s^22p$	
Carbon	С	6	$1s^22s^22p^2$	
Nitrogen	Ν	7	$1s^22s^22p^3$	
Oxygen	0	8	$1s^22s^22p^4$	
Fluorine	F	9	$1s^2 2s^2 2p^5$	
Neon	Ne	10	$1s^22s^22p^6$	
Sodium	Na	11	$1s^22s^22p^63s$	
Magnesium	Mg	12	$1s^2 2s^2 2p^6 3s^2$	
Aluminum	Al	13	$1s^22s^22p^63s^23p$	
Silicon	Si	14	$1s^22s^22p^63s^23p^2$	
Phosphorus	Р	15	$1s^2 2s^2 2p^6 3s^2 3p^3$	
Sulfur	S	16	$1s^22s^22p^63s^23p^4$	
Chlorine	Cl	17	$1s^22s^22p^63s^23p^5$	
Argon	Ar	18	$1s^22s^22p^63s^23p^6$	
Potassium	K	19	$1s^2 2s^2 2p^6 3s^2 3p^6 4s$	
Calcium	Ca	20	$1s^22s^22p^63s^23p^64s^2$	
Scandium	Sc	21	$1s^22s^22p^63s^23p^64s^23d$	
Titanium	Ti	22	$1s^22s^22p^63s^23p^64s^23d^2$	
Vanadium	V	23	$1s^22s^22p^63s^23p^64s^23d^3$	
Chromium	Cr	24	$1s^22s^22p^63s^23p^64s3d^5$	
Manganese	Mn	25	$1s^22s^22p^63s^23p^64s^23d^5$	
Iron	Fe	26	$1s^22s^22p^63s^23p^64s^23d^6$	
Cobalt	Co	27	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁷	
Nickel	Ni	28	$1s^22s^22p^63s^23p^64s^23d^8$	
Copper	Cu	29	$1s^22s^22p^63s^23p^64s3d^{10}$	
Zinc	Zn	30	$1s^22s^22p^63s^23p^64s^23d^{10}$	

Same

energy

Higher

energy

- e-states with nonzero orbital angular momentum $(l = 1, 2, 3, \cdots)$ carry magnetic dipole moment due to electron motion
- These states are affected if atom is placed in magnetic field B

$$\boldsymbol{\mu} = -\frac{e}{2m_e}\hat{\mathbf{L}} \equiv -\mu_{\mathrm{B}}\hat{\mathbf{L}}/\hbar, \qquad H_{\mathrm{int}} = -\boldsymbol{\mu}\cdot\mathbf{B}$$

Zeeman effect
 shift in energy of states with nonzero m_l

 When beam of atoms are passed through inhomogeneous (but aligned) magnetic field where they experience force

$$\mathbf{F} =
abla(oldsymbol{\mu} \cdot \mathbf{B}) \simeq \mu_z(\partial_z B_z) \hat{\mathbf{e}}_z$$

we expect splitting into odd integer (2l+1) number of beams

L. A. Anchordogui (CUNY)

Modern Physics

- Beam of atoms passes through a region where there is nonuniform \vec{B} -field
- Atoms with their magnetic dipole moments in opposite directions experience forces in opposite directions

Stern-Gerlach experiment

- In experiment, a beam of silver atoms were passed through inhomogeneous magnetic field and collected on photographic plate.
- Since silver involves spherically symmetric charge distribution plus one 5s electron, total angular momentum of ground state has L = 0.
- If outer electron in 5p state, L = 1 and the beam should split in 3.

Stern-Gerlach experiment

• However, experiment showed a bifurcation of beam!

Gerlach's postcard, dated 8th February 1922, to Niels Bohr

• Since orbital angular momentum can take only integer values, this observation suggests electron possesses an additional intrinsic $s = \frac{1}{2}$ component known as spin.

Modern Physics

Results of Stern-Gerlach experiment

- Image of slit with field turned off (left)
- With the field on reactive two images of slit appear
- Small divisions in the scale represent 0.05 mm

Quantum mechanical spin

- Later, it was understood that elementary quantum particles can be divided into two classes, fermions and bosons.
- Fermions (e.g. electron, proton, neutron) possess half-integer spin.
- Bosons (e.g. mesons, photon) possess integral spin (including zero).

Spinors

• Space of angular momentum states for spin *s* = 1/2 is two-dimensional:

$$|s = 1/2, m_s = 1/2 \rangle = |\uparrow\rangle, \qquad |1/2, -1/2 \rangle = |\downarrow\rangle$$

• General spinor state of spin can be written as linear combination,

$$\alpha|\uparrow\rangle+\beta|\downarrow\rangle=\left(\begin{array}{c}\alpha\\\beta\end{array}\right),\qquad |\alpha|^2+|\beta|^2=1$$

• Operators acting on spinors are 2 × 2 matrices. From definition of spinor, *z*-component of spin represented as,

$$S_z = \frac{1}{2}\hbar\sigma_z, \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

i.e. S_z has eigenvalues $\pm\hbar/2$ corresponding to $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Uhlenbeck-Goudsmit-Pauli hypothesis

Magnetic moment reconnected via intrinsic angular momentum

$$ec{\mu}_S = -rac{e}{2m_e}g_eec{S}$$

• For intrinsic spin region only matrix representation is possible

• Spin up $|\uparrow\rangle$ and down $|\downarrow\rangle$ are defined by

spin up
$$\Leftrightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 spin down $\Leftrightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. (2)

•
$$\hat{S}_z$$
 spin operator is defined by

$$\hat{S}_z = \frac{\hbar}{2} \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array} \right) \tag{3}$$

(1)

• \hat{S}_z acts on up and down states by ordinary matrix multiplication

$$\hat{S}_{z}|\uparrow\rangle = \frac{\hbar}{2} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \frac{\hbar}{2}|\uparrow\rangle$$
 (4)

$$\hat{S}_{z}|\downarrow\rangle = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\frac{\hbar}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\frac{\hbar}{2}|\uparrow\rangle \quad (5)$$

• As for orbital angular momentum $[\hat{S}_i, \hat{S}_j] = i\hbar \epsilon_{ijk} \hat{S}_k$

$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$
 and $\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}$ (6)

Only 4 hermitian 2-by-2 matrices regional indentity + Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad (7)$$

L. A. Anchordoqui (CUNY)

Modern Physics

4-30-2019 21 / 29

Pauli matrices

$$\sigma_{x} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_{y} = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \quad \sigma_{z} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

• Pauli spin matrices are Hermitian, traceless, and obey defining relations (cf. general angular momentum operators):

$$\sigma_i^2 = \mathbb{I}, \qquad [\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k$$

Total spin

$$\mathbf{S}^{2} = \frac{1}{4}\hbar^{2}\boldsymbol{\sigma}^{2} = \frac{1}{4}\hbar^{2}\sum_{i}\sigma_{i}^{2} = \frac{3}{4}\hbar^{2}\mathbb{I} = \frac{1}{2}(\frac{1}{2}+1)\hbar^{2}\mathbb{I}$$

i.e. $s(s+1)\hbar^2$, as expected for spin s=1/2.

L. A. Anchordoqui (CUNY)

Spatial degrees of freedom and spin

- Spin represents additional internal degree of freedom, independent of spatial degrees of freedom, i.e. $[\hat{\mathbf{S}}, \mathbf{x}] = [\hat{\mathbf{S}}, \hat{\mathbf{p}}] = [\hat{\mathbf{S}}, \hat{\mathbf{L}}] = 0.$
- Total state is constructed from direct product,

$$|\psi
angle = \int d^3x \left(\psi_+(\mathbf{x})|\mathbf{x}
angle \otimes |\uparrow
angle + \psi_-(\mathbf{x})|\mathbf{x}
angle \otimes |\downarrow
angle \right) \equiv \left(egin{array}{c} |\psi_+
angle \ |\psi_-
angle \end{array}
ight)$$

 In a weak magnetic field, the electron Hamiltonian can then be written as

$$\hat{H} = \frac{\hat{\mathbf{p}}^2}{2m} + V(r) + \mu_{\rm B} \left(\hat{\mathbf{L}} / \hbar + \boldsymbol{\sigma} \right) \cdot \mathbf{B}$$

Relating spinor to spin direction

For a general state $\alpha|\uparrow\rangle+\beta|\downarrow\rangle,$ how do $\alpha,\,\beta$ relate to orientation of spin?

- Let us assume that spin is pointing along the unit vector $\hat{\mathbf{n}} = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$, i.e. in direction (θ, φ) .
- Spin must be eigenstate of $\hat{\mathbf{n}} \cdot \boldsymbol{\sigma}$ with eigenvalue unity, i.e.

$$\left(\begin{array}{cc}n_z & n_x - in_y\\n_x + in_y & -n_z\end{array}\right)\left(\begin{array}{c}\alpha\\\beta\end{array}\right) = \left(\begin{array}{c}\alpha\\\beta\end{array}\right)$$

• With normalization, $|\alpha|^2 + |\beta|^2 = 1$, (up to arbitrary phase),

$$\left(\begin{array}{c} \alpha\\ \beta \end{array}\right) = \left(\begin{array}{c} e^{-i\varphi/2}\cos(\theta/2)\\ e^{i\varphi/2}\sin(\theta/2) \end{array}\right)$$

Spin symmetry

$$\left(\begin{array}{c} \alpha\\ \beta\end{array}\right) = \left(\begin{array}{c} e^{-i\varphi/2}\cos(\theta/2)\\ e^{i\varphi/2}\sin(\theta/2)\end{array}\right)$$

• Note that under 2π rotation,

$$\left(\begin{array}{c} \alpha \\ \beta \end{array}\right) \mapsto - \left(\begin{array}{c} \alpha \\ \beta \end{array}\right)$$

 In order to make a transformation that returns spin to starting point, necessary to make two complete revolutions, (cf. spin 1 which requires 2π and spin 2 which requires only π!).

(Classical) spin precession in a magnetic field

Consider magnetized object spinning about centre of mass, with angular momentum L and magnetic moment $\mu = \gamma L$ with γ gyromagnetic ratio.

• A magnetic field **B** will then impose a torque

 $\mathbf{T} = \boldsymbol{\mu} \times \mathbf{B} = \gamma \mathbf{L} \times \mathbf{B} = \partial_t \mathbf{L}$

- With $\mathbf{B} = B\hat{\mathbf{e}}_x$, and $L_+ = L_x + iL_y$, $\partial_t L_+ = -i\gamma BL_+$, with the solution $L_+ = L_+^0 e^{-i\gamma Bt}$ while $\partial_t L_z = 0$.
 - Angular momentum vector L precesses about magnetic field direction with angular velocity ω₀ = -γB (independent of angle).
 - We will now show that precisely the same result appears in the study of the quantum mechanics of an electron spin in a magnetic field.

(Quantum) spin precession in a magnetic field

- Last lecture, we saw that the electron had a magnetic moment, $\mu_{\rm orbit} = -\frac{e}{2m_e} \hat{\mathbf{L}}$, due to orbital degrees of freedom.
- The intrinsic electron spin imparts an additional contribution, $\mu_{spin} = \gamma \hat{S}$, where the gyromagnetic ratio,

$$\gamma = -g \frac{e}{2m_e}$$

and g (known as the Landé g-factor) is very close to 2.

• These components combine to give the total magnetic moment,

$$oldsymbol{\mu} = -rac{e}{2m_e}(\hat{f L} + g\hat{f S})$$

• In a magnetic field, the interaction of the dipole moment is given by

$$\hat{H}_{
m int} = - \boldsymbol{\mu} \cdot \mathbf{B}$$

(Quantum) spin precession in a magnetic field

Focusing on the spin contribution alone,

$$\hat{\mathcal{H}}_{\mathrm{int}} = -\gamma \hat{\mathbf{S}} \cdot \mathbf{B} = -\frac{\gamma}{2} \hbar \boldsymbol{\sigma} \cdot \mathbf{B}$$

• The spin dynamics can then be inferred from the time-evolution operator, $|\psi(t)
angle=\hat{U}(t)|\psi(0)
angle$, where

$$\hat{U}(t) = e^{-i\hat{H}_{\rm int}t/\hbar} = \exp\left[\frac{i}{2}\gamma\boldsymbol{\sigma}\cdot\mathbf{B}t\right]$$

- However, we have seen that the operator Û(θ) = exp[-ⁱ/_ħθê_n · L̂] generates spatial rotations by an angle θ about ê_n.
- In the same way, $\hat{U}(t)$ effects a spin rotation by an angle $-\gamma Bt$ about the direction of **B**!

(Quantum) spin precession in a magnetic field

$$\hat{U}(t) = e^{-i\hat{H}_{\mathrm{int}}t/\hbar} = \exp\left[rac{i}{2}\gamma \boldsymbol{\sigma}\cdot \mathbf{B}t
ight]$$

• Therefore, for initial spin configuration,

$$\left(\begin{array}{c} \alpha\\ \beta\end{array}\right) = \left(\begin{array}{c} e^{-i\varphi/2}\cos(\theta/2)\\ e^{i\varphi/2}\sin(\theta/2)\end{array}\right)$$

• With
$$\mathbf{B} = B\hat{\mathbf{e}}_z$$
, $\hat{U}(t) = \exp[\frac{i}{2}\gamma Bt\sigma_z]$, $|\psi(t)\rangle = \hat{U}(t)|\psi(0)\rangle$,

$$\begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} = \begin{pmatrix} e^{-\frac{i}{2}\omega_0 t} & 0 \\ 0 & e^{\frac{i}{2}\omega_0 t} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} e^{-\frac{i}{2}(\varphi+\omega_0 t)}\cos(\theta/2) \\ e^{\frac{i}{2}(\varphi+\omega_0 t)}\sin(\theta/2) \end{pmatrix}$$

• i.e. spin precesses with angular frequency $\omega_0 = -\gamma \mathbf{B} = -g\omega_c \hat{\mathbf{e}}_x$, where $\omega_c = \frac{eB}{\omega_c}$ is cyclotron frequency, $(\frac{\omega_c}{B} \simeq 10^{11} \text{ rad s}^{-1} \text{T}^{-1})$.