Quantum Mechanics

Luis A. Anchordoqui

Department of Physics and Astronomy
Lehman College, City University of New York
Lesson I
January 29, 2019

Table of Contents

(1) Forging Mathematical Tools for Quantum Mechanics

- Elements of Linear Algebra
- Linear Spaces
- Linear Operators on Euclidean Spaces
- Generalized Functions

Linear Spaces

Definition 1: A field is a set F together with two operations + and \cdot for which all the axioms below hold $\forall \lambda, \mu, v \in F$:

- closure \rightarrow the sum $\lambda+\mu$ and the product $\lambda \cdot \mu$ again belong to F
- associative law $\rightarrow \lambda+(\mu+v)=(\lambda+\mu)+v$ and $\lambda \cdot(\mu \cdot v)=(\lambda \cdot \mu) \cdot v$
- commutative law $\rightarrow \lambda+v=v+\lambda$ and $\lambda \cdot \mu=\mu \cdot \lambda$
- distributive laws $\rightarrow \lambda \cdot(\mu+v)=\lambda \cdot \mu+\lambda \cdot v$ and $(\lambda+\mu) \cdot v=\lambda \cdot v+\mu \cdot v$
- existence of an additive identity \rightarrow there exists an element $0 \in F$ for which $\lambda+0=\lambda$
- existence of a multiplicative identity \rightarrow there exists an element $1 \in F$, with $1 \neq 0$ for which $1 \cdot \lambda=\lambda$
- existence of additive inverse \rightarrow to every $\lambda \in F$, there corresponds an additive inverse $-\lambda$, such that $-\lambda+\lambda=0$
- existence of multiplicative inverse \rightarrow to every $\lambda \in F$, there corresponds a multiplicative inverse λ^{-1}, such that $\lambda^{-1} \cdot \lambda=1$
Example: \mathbb{R} and \mathbb{C}

Definition 2: A vector space over the field F is a set V on which two operations are defined (called addition + and scalar multiplication \cdot) that must satisfy the axioms below $\forall x, y, w \in V$ and $\forall \lambda, \mu \in F$:

- closure \rightarrow the sum $x+y$ and the scalar multiplication $\lambda \cdot x$ are uniquely defined and belong to V
- commutative law of vector addition $\rightarrow \boldsymbol{x}+\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{x}$
- associative law of vector addition $\rightarrow \boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{w})=(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{w}$
- existence of an additive identity \rightarrow there exists an element $\mathbf{0} \in V$ such that $x+0=x$
- existence of additive inverses \rightarrow to every element $x \in V$ there corresponds an inverse element $-\boldsymbol{x}$, such that $-\boldsymbol{x}+\boldsymbol{x}=\mathbf{0}$
- associative law of scalar multiplication $\rightarrow(\lambda \cdot \mu) \cdot x=\lambda \cdot(\mu \cdot x)$
- distributive laws of scalar multiplication \rightarrow $(\lambda+\mu) \cdot x=\lambda \cdot x+\mu \cdot x$ and $\lambda \cdot(x+y)=\lambda \cdot x+\lambda \cdot y$
- unitary law $\rightarrow 1 \cdot x=x$

Example: For any field F set F^{n} of n-tuples is vector space over F

Cartesian space \mathbb{R}^{n} prototypical example of real n-dimensional V :
Let $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ be an ordered n-tuple of real numbers x_{i}, to which there corresponds a point x with these Cartesian coordinates and a vector x with these components. We define addition of vectors by component addition

$$
\boldsymbol{x}+\boldsymbol{y}=\left(x_{1}+y_{1}, \cdots, x_{n}+y_{n}\right)
$$

and scalar multiplication by component multiplication

$$
\lambda x=\left(\lambda x_{1}, \cdots, \lambda x_{n}\right)
$$

Definition 3: Given a vector space V over a field F, a subset W of V is called a subspace if W is a vector space over F under the operations already defined on V

- After defining notions of vector spaces and subspaces next step is to identify functions that can be used to relate one vector space to another
- These functions should respect algebraic structure of vector spaces so it is reasonable to require that they preserve addition and scalar multiplication
Definition 4: Let V and W be vector spaces over the field F. A linear transformation from V to W is a function $T: V \rightarrow W$ such that

$$
T(\lambda x+\mu \boldsymbol{y})=\lambda T(\boldsymbol{x})+\mu T(\boldsymbol{y})
$$

for all vectors $x, y \in V$ and all scalars $\lambda, \mu \in F$. If a linear transformation is one-to-one and onto, it is called a vector space isomorphism, or simply an isomorphism.
Definition 5: Let $S=\left\{x_{1}, \cdots, x_{n}\right\}$ be a set of vectors in the vector space V over the field F. Any vector of the form $y=\sum_{i=1}^{n} \lambda_{i} x_{i}$, for $\lambda_{i} \in F$, is called a linear combination of the vectors in S. The set S is said to span V if each element of V can be expressed as a linear combination of the vectors in S.

Definition 6: Let x_{1}, \cdots, x_{m} be m given vectors and $\lambda_{1}, \cdots \lambda_{m}$ an equal number of scalars. Then we can form a linear combination or sum

$$
\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}+\cdots+\lambda_{m} x_{m}
$$

which is also an element of the vector space. Suppose there exist values $\lambda_{1} \cdots \lambda_{n}$, which are not all zero, such that the above vector sum is the zero vector. Then the vectors x_{1}, \cdots, x_{m} are said to be linearly dependent. Contrarily, the vectors x_{1}, \cdots, x_{m} are called linearly independent if

$$
\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}+\cdots+\lambda_{m} x_{m}=\mathbf{0}
$$

demands the scalars λ_{k} must all be zero.
Definition 7: The dimension of V is the maximal number of linearly independent vectors of V
Definition 8: Let V be an n dimensional vector space and

$$
S=\left\{x_{1}, \cdots, x_{n}\right\} \subset V
$$

a linearly independent spanning set for V is called a basis of V

Definition 9: An inner product $\langle\rangle:, V \times V \rightarrow F$ is a function that takes each ordered pair (x, y) of elements of V to a number $\langle\boldsymbol{x}, \boldsymbol{y}\rangle \in F$ and has the following properties:

- conjugate symmetry or Hermiticity $\rightarrow\langle\boldsymbol{x}, \boldsymbol{y}\rangle=(\langle\boldsymbol{y}, \boldsymbol{x}\rangle)^{*}$
- linearity in the second argument $\rightarrow\langle\boldsymbol{x}, \boldsymbol{y}+\boldsymbol{w}\rangle=\langle\boldsymbol{x}, \boldsymbol{y}\rangle+\langle\boldsymbol{x}, \boldsymbol{w}\rangle$ and $\langle\boldsymbol{x}, \lambda \boldsymbol{y}\rangle=\lambda\langle\boldsymbol{x}, \boldsymbol{y}\rangle$
- definiteness $\rightarrow\langle x, x\rangle=0 \Leftrightarrow x=0$

Definition 10: An inner product \langle,$\rangle is said to be positive definite \Leftrightarrow$ for all non-zero x in $V,\langle\boldsymbol{x}, \boldsymbol{x}\rangle \geq 0$
Definition 11: An inner product space is a vector space V over the field F equipped with an inner product $\langle\rangle:, V \times V \rightarrow F$
Definition 12: The vector space V on F endowed with a positive definite inner product (a.k.a. scalar product) defines the Euclidean space \mathscr{E}
Example: For $x, y \in \mathbb{R}^{n}\langle x, y\rangle=x \cdot y=\sum_{k=1}^{n} x_{k} y_{k}$
Example: For $x, y \in \mathbb{C}^{n}\langle x, y\rangle=x \cdot y=\sum_{k=1}^{n} x_{k}^{*} y_{k}$

Example:

- Let $\mathcal{C}([a, b])$ denote the set of continuous functions $x(t)$ defined on the closed interval $-\infty<a \leq t \leq b<\infty$
- This set is structured as a vector space with respect to the usual operations of sum of functions and product of functions by numbers, whose neutral element is the zero function
- For $x(t), y(t) \in \mathcal{C}([a, b])$ we can define the scalar product: $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\int_{a}^{b} x^{*}(t) y(t) d t$ which satisfies all the necessary axioms
- In particular $\langle x, x\rangle=\int_{a}^{b}|x(t)|^{2} d t \geq 0$ and if $\langle x, x\rangle=0$ then $0=\int_{a}^{b}|x(t)|^{2} d t \geq \int_{a_{1}}^{b_{1}}|x(t)|^{2} d t \geq 0 \forall a \leq a_{1} \leq b_{1} \leq b$ therefore $x(t) \equiv 0$
- Indeed since $x(t)$ is continuous, if $x\left(t_{0}\right) \neq 0$ with $a \leq t_{0} \leq b$ then $x(t) \neq 0$ in an interval of such point contradiction

Definition 13: The axiom of positivity allows one to define a norm or length for each vector of an euclidean space

$$
\|x\|=+\sqrt{\langle x, x\rangle}
$$

- In particular $\|\boldsymbol{x}\|=0 \Leftrightarrow \boldsymbol{x}=\mathbf{0}$
- Further if $\lambda \in \mathbb{C}$ then $\|\lambda x\|=\sqrt{|\lambda|^{2}\langle x, x\rangle}=|\lambda|\|x\|$
- This allows a normalization for any non-zero length vector
- Indeed if $\boldsymbol{x} \neq \mathbf{0}$ then $\|x\|>0$
- Thus we can take $\lambda \in \mathbb{C}$ such that $|\lambda|=\|x\|^{-1}$ and $y=\lambda x$
- It follows that $\|y\|=|\lambda|\|x\|=1$.

Example: The length of a vector $x \in \mathbb{R}^{n}$ is

$$
\|x\|=\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{1 / 2}
$$

Example: The length of a vector $x \in \mathcal{C}^{2}([a, b])$ is

$$
\|x\|=\left\{\int_{a}^{b}|x(t)|^{2} d t\right\}^{1 / 2}
$$

Definition 14: In a real Euclidean space the angle between the vectors x and y is defined by

$$
\cos \widehat{x y}=\frac{|\langle x, y\rangle|}{\|x\|\|y\|}
$$

Definition 15: Two vectors are orthogonal, $x \perp y$, if $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0$. The zero vector is orthogonal to every vector in \mathscr{E}.
Definition 16: In a real Euclidean space the angle between two orthogonal non-zero vectors is $\pi / 2$, i.e. $\cos \widehat{x y}=0$
Definition 17: The angle between two complex vectors is given by

$$
\cos \widehat{x y}=\frac{\operatorname{Re}(|\langle x, y\rangle|)}{\|x\|\|y\|}
$$

Definition 18: A basis x_{1}, \cdots, x_{n} of \mathscr{E} is called orthogonal if $\left\langle x_{i}, x_{j}\right\rangle=0$ for all $i \neq j$. The basis is called orthonormal if, in addition, each vector has unit length, i.e., $\left\|x_{i}\right\|=1, \forall i=1, \cdots, n$.

Example: Simplest example of orthonormal basis is standard basis

$$
\boldsymbol{e}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \boldsymbol{e}_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots \quad \boldsymbol{e}_{n}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Definition 19: A Hilbert space \mathscr{H} is a vector space that

- has an inner product
- is "complete" which means limits work nicely

Hilbert spaces are possibly-infinite-dimensional analogues of the finite-dimensional Euclidean spaces
Example: Any finite dimensional inner product space is \mathscr{H}
Example: The space l^{2} of infinite sequences of complex numbers $l^{2}=\left\{\left(x_{1}, x_{2}, x_{3}, \cdots\right): x_{k} \in \mathbb{C}, \sum_{k=1}^{\infty}\left|x_{k}\right|^{2}<\infty\right\}$ with $\langle y, x\rangle=\sum_{k=1}^{\infty} y_{k}^{*} x_{k}$

Example: The space \mathcal{L}^{2} defined by the collection of measurable real

 or complex valued square integrable functions$$
\int_{-\infty}^{\infty}|\psi(t)|^{2} d t<\infty
$$

endowed with inner product

$$
\langle\Psi, \Phi\rangle=\int_{a}^{b} \psi^{*}(t) \phi(t) d t
$$

and associated norm

$$
\|\Psi\|=\left\{\int_{-\infty}^{\infty}|\psi(t)|^{2} d t\right\}^{1 / 2}
$$

is an infinite dimensional Hilbert space \mathscr{H}

Linear Operators on Euclidean Spaces

Definition 20:

- An operator A on \mathscr{E} is a vector function $A: \mathscr{E} \rightarrow \mathscr{E}$
- The operator is called linear if

$$
A(\alpha \boldsymbol{x}+\beta \boldsymbol{y})=\alpha A \boldsymbol{x}+\beta A \boldsymbol{y}, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathscr{E} \text { and } \forall \alpha, \beta \in \mathbb{C}(\text { or } \mathbb{R})
$$

Definition 21: Let \mathbb{A} be an $n \times n$ matrix and x a vector:

- the function $A(x)=\mathbb{A} x$ is obviously a linear operator
- a vector $x \neq 0$ is an eigenvector of \mathbb{A} if $\exists \lambda$ satisfying $\mathbb{A} x=\lambda x$
- in such a case $(\mathbb{A}-\lambda \mathbb{1}) x=0$ with $\mathbb{1}$ the identity matrix
- eigenvalues λ are given by the relation $\operatorname{det}(\mathbb{A}-\lambda \mathbb{1})=0$ which has m different roots with $1 \leq m \leq n$ (note that $\operatorname{det}(\mathbb{A}-\lambda \mathbb{1})$ is a polynomial of degree n)
- The eigenvectors associated with the eigenvalue λ can be obtained by solving the (singular) linear system $(\mathbb{A}-\lambda \mathbb{1}) \boldsymbol{x}=\mathbf{0}$ Definition 22: A complex square matrix \mathbb{A} is Hermitian if $\mathbb{A}=\mathbb{A}^{+}$ $\mathbb{A}^{+}=\left(\mathbb{A}^{*}\right)^{T}$ is the conjugate transpose of a complex matrix Definition 23: A linear operator A on a Hilbert space \mathscr{H} is symmetric if $\langle A \boldsymbol{x}, \boldsymbol{y}\rangle=\langle\boldsymbol{x}, A \boldsymbol{y}\rangle, \forall \boldsymbol{x}$ and \boldsymbol{y} in the domain of A Definition 24: A symmetric everywhere defined operator is called self-adjoint or Hermitian Example: If we take as \mathscr{H} the Hilbert space \mathbb{C}^{n} with the standard dot product and interpret a Hermitian square matrix \mathbb{A} as a linear operator on \mathscr{H} we have: $\langle\boldsymbol{x}, \mathbb{A} \boldsymbol{y}\rangle=\langle\mathbb{A} \boldsymbol{x}, \boldsymbol{y}\rangle, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{C}^{n}$

Definition 25: Dirac delta function as a limit

- Consider the function

$$
g_{\epsilon}(x)=\left\{\begin{array}{cc}
1 / \epsilon & |x| \leq \epsilon / 2 \\
0 & |x|>\epsilon / 2
\end{array}\right.
$$

with $\epsilon>0$

- It follows that $\int_{-\infty}^{+\infty} g_{\epsilon}(x) d x=1 \forall \epsilon>0$
- In addition if f is an arbitrary continuous function

$$
\int_{-\infty}^{+\infty} g_{\epsilon}(x) f(x) d x=\epsilon^{-1} \int_{-\epsilon / 2}^{+\epsilon / 2} f(x) d x=\frac{F(\epsilon / 2)-F(-\epsilon / 2)}{\epsilon}
$$

where F is the primitive of f

- For $\epsilon \rightarrow 0^{+} g_{\epsilon}(x)$ is concentrated near the origin yielding

$$
\lim _{\epsilon \rightarrow 0^{+}} \int_{-\infty}^{+\infty} g_{\epsilon}(x) f(x) d x=\lim _{\epsilon \rightarrow 0^{+}} \frac{F(\epsilon / 2)-F(-\epsilon / 2)}{\epsilon}=F^{\prime}(0)=f(0)
$$

- We can define the distribution (or generalized function) as the limit

$$
\delta(x)=\lim _{\epsilon \rightarrow 0^{+}} g_{\epsilon}(x)
$$

satisfying

$$
\int_{-\infty}^{+\infty} \delta(x) f(x) d x=f(0)
$$

- Although limit $\delta(x)$ does not strictly exist
(it is 0 if $x \neq 0$ and ∞ if $x=0$)
limit of integral $\exists \forall f$ continuous in an interval centered at $x=0$
and this is the meaning of $\delta(x)$
- We will consider from now on test functions f which are bounded and differentiable functions to any order and which vanish outside a finite range I
- Remember first and foremost that such functions exist e.g.

$$
\begin{aligned}
& \text { if } f(x)=0 \text {, for } x \leq 0 \text { and } x \geq 1 \\
& \text { and } f(x)=e^{-1 / x^{2}} e^{-1 /(1-x)^{2}}, \text { for }|x|<1
\end{aligned}
$$

then the function f has derivatives of any order at $x=0$ and $x=1$

- Many other $g_{\epsilon}(x)$ converge to $\delta(x)$ with derivatives of all orders
- A well-known example $\delta(x)=\lim _{\epsilon \rightarrow 0^{+}} \frac{e^{-x^{2} / 2 \epsilon^{2}}}{\sqrt{2 \pi \epsilon}}$
- Indeed

$$
\frac{1}{\sqrt{2 \pi} \epsilon} \int_{-\infty}^{+\infty} e^{-x^{2} / 2 \epsilon^{2}} d x=1 \forall \epsilon>0
$$

and

$$
\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{\sqrt{2 \pi} \epsilon} \int_{-\infty}^{+\infty} e^{-x^{2} / 2 \epsilon^{2}} f(x) d x=f(0)
$$

- Here

$$
g_{\epsilon}(x)=\frac{1}{\sqrt{2 \pi} \epsilon} e^{-x^{2} / 2 \epsilon^{2}}
$$

is the normal (or Gaussian) distribution of area 1 and variance

$$
\int_{-\infty}^{+\infty} g_{\epsilon} x^{2} d x=\epsilon^{2}
$$

- When $\epsilon \rightarrow 0^{+} g_{\epsilon}(x)$ concentrates around $x=0$ keeping its area constant

The delta function as a limit in the sense of distributions

Definition 26: The convolution of $\delta(x)$ with other functions is defined in such a way that the integration rules still hold

- For example

$$
\int_{-\infty}^{+\infty} \delta\left(x-x_{0}\right) f(x) d x=\int_{-\infty}^{+\infty} \delta(u) f\left(u+x_{0}\right) d u=f\left(x_{0}\right)
$$

- Similarly if $a \neq 0$

$$
\int_{-\infty}^{+\infty} \delta(a x) f(x) d x=\frac{1}{|a|} \int_{-\infty}^{+\infty} \delta(u) f(u / a) d u=\frac{1}{|a|} f(0)
$$

and so

$$
\delta(a x)=\frac{1}{|a|} \delta(x) \quad a \neq 0
$$

- In particular $\delta(-x)=\delta(x)$

Definition 27: Integration by parts

- If we want δ to fulfill the usual equalities of integration by parts we must define the derivative

$$
\int_{-\infty}^{+\infty} \delta^{\prime}(x) f(x) d x=-\int_{-\infty}^{+\infty} \delta(x) f^{\prime}(x) d x=-f^{\prime}(0),
$$

recalling that $f=0$ outside a finite interval

- In general

$$
\int_{-\infty}^{+\infty} \delta^{(n)}(x) f(x) d x=(-1)^{n} f^{(n)}(0)
$$

- $f^{\prime}\left(x_{0}\right)=-\int_{-\infty}^{+\infty} \delta^{\prime}\left(x-x_{0}\right) f(x) d x$
- $f^{(n)}\left(x_{0}\right)=(-1)^{n} \int_{-\infty}^{+\infty} \delta^{(n)}\left(x-x_{0}\right) f(x) d x$
- If $a \neq 0$ 중

$$
\delta^{(n)}(a x)=\frac{1}{a^{n}|a|} \delta^{(n)}(x)
$$

- In particular $\delta^{(n)}(-x)=(-1)^{n} \delta^{(n)}(x)$

Corollary Heaviside function: The step (Heaviside) function

$$
\Theta(x)= \begin{cases}1 & x \geq 0 \\ 0 & x<0\end{cases}
$$

is the "primitive" (at least in symbolic form) of $\delta(x)$

Equivalently $\Theta^{\prime}(x)$ has the symbolic limit $\delta(x)$

Proof. For any given test function $f(x)$ integration by parts leads to

$$
\int_{-\infty}^{+\infty} \Theta^{\prime}(x) f(x) d x=-\int_{-\infty}^{+\infty} \Theta(x) f^{\prime}(x) d x=-\int_{0}^{\infty} f^{\prime}(x) d x=f(0)
$$

therefore $\Theta^{\prime}(x)=\delta(x)$

Bibliography

ARFKEN, WEBER, an HARRIS

Luis Alfredo Anchordoqui Thomas Cantzon Paul

Mathematical Models of Physics Problems

MATHEMATICAL METHODS FOR PHYSICISTS

साruby

ARFKEN AND WEBER
(1) G. F. D. Duff and D. Naylor; ISBN: 978-0471223672
(2) G. B. Arfken and H. J. Weber; ISBN: 978-0080916729
(3) L. A. Anchordoqui and T. C. Paul; ISBN: 978-1626186002

