Quantum Mechanics

Luis A. Anchordoqui

Department of Physics and Astronomy Lehman College, City University of New York

> Lesson I January 29, 2019

Table of Contents

Forging Mathematical Tools for Quantum Mechanics

- Elements of Linear Algebra
 - Linear Spaces
 - Linear Operators on Euclidean Spaces
- Generalized Functions

Linear Spaces

Definition 1: A *field* is a set *F* together with two operations + and \cdot for which all the axioms below hold $\forall \lambda, \mu, \nu \in F$:

- closure \rightarrow the sum $\lambda + \mu$ and the product $\lambda \cdot \mu$ again belong to *F*
- associative law $\rightarrow \lambda + (\mu + \nu) = (\lambda + \mu) + \nu$ and $\lambda \cdot (\mu \cdot \nu) = (\lambda \cdot \mu) \cdot \nu$
- commutative law $\rightarrow \lambda + \nu = \nu + \lambda$ and $\lambda \cdot \mu = \mu \cdot \lambda$
- distributive laws $\rightarrow \lambda \cdot (\mu + \nu) = \lambda \cdot \mu + \lambda \cdot \nu$ and $(\lambda + \mu) \cdot \nu = \lambda \cdot \nu + \mu \cdot \nu$
- existence of an additive identity → there exists an element 0 ∈ F for which λ + 0 = λ
- existence of a multiplicative identity \rightarrow there exists an element $1 \in F$, with $1 \neq 0$ for which $1 \cdot \lambda = \lambda$
- existence of additive inverse → to every λ ∈ F, there corresponds an additive inverse −λ, such that −λ + λ = 0
- existence of multiplicative inverse → to every λ ∈ F, there corresponds a multiplicative inverse λ⁻¹, such that λ⁻¹ · λ = 1
 Example: ℝ and ℂ

Definition 2: A *vector space* over the field *F* is a set *V* on which two operations are defined (called addition + and scalar multiplication \cdot) that must satisfy the axioms below $\forall x, y, w \in V$ and $\forall \lambda, \mu \in F$:

- closure → the sum x + y and the scalar multiplication λ ⋅ x are uniquely defined and belong to V
- commutative law of vector addition $\rightarrow x + y = y + x$
- associative law of vector addition $\rightarrow x + (y + w) = (x + y) + w$
- existence of an additive identity → there exists an element 0 ∈ V such that x + 0 = x
- existence of additive inverses \rightarrow to every element $x \in V$ there corresponds an inverse element -x, such that -x + x = 0
- associative law of scalar multiplication $\rightarrow (\lambda \cdot \mu) \cdot x = \lambda \cdot (\mu \cdot x)$
- distributive laws of scalar multiplication →
 (λ + μ) ⋅ x = λ ⋅ x + μ ⋅ x and λ ⋅ (x + y) = λ ⋅ x + λ ⋅ y
- unitary law $\rightarrow 1 \cdot x = x$

Example: For any field $F \bowtie$ set F^n of *n*-tuples is vector space over F

Cartesian space $\mathbb{R}^n \bowtie$ prototypical example of real *n*-dimensional *V*:

Let $x = (x_1, \dots, x_n)$ be an ordered *n*-tuple of real numbers x_i , to which there corresponds a point *x* with these Cartesian coordinates and a vector *x* with these components. We define addition of vectors by component addition

$$\mathbf{x}+\mathbf{y}=(x_1+y_1,\cdots,x_n+y_n)$$

and scalar multiplication by component multiplication

$$\lambda \mathbf{x} = (\lambda x_1, \cdots, \lambda x_n)$$

Definition 3: Given a vector space V over a field F, a subset W of V is called a subspace if W is a vector space over F under the operations already defined on V

- After defining notions of vector spaces and subspaces reares next step is to identify functions that can be used to relate one vector space to another
- These functions should respect algebraic structure of vector spaces so it is reasonable to require that they preserve addition and scalar multiplication

Definition 4: Let *V* and *W* be vector spaces over the field *F*. A linear transformation from *V* to *W* is a function $T: V \rightarrow W$ such that

 $T(\lambda \boldsymbol{x} + \boldsymbol{\mu} \boldsymbol{y}) = \lambda T(\boldsymbol{x}) + \boldsymbol{\mu} T(\boldsymbol{y})$

for all vectors $x, y \in V$ and all scalars $\lambda, \mu \in F$. If a linear transformation is one-to-one and onto, it is called a vector space isomorphism, or simply an isomorphism.

Definition 5: Let $S = \{x_1, \dots, x_n\}$ be a set of vectors in the vector space *V* over the field *F*. Any vector of the form $y = \sum_{i=1}^n \lambda_i x_i$, for $\lambda_i \in F$, is called a linear combination of the vectors in *S*. The set *S* is said to span *V* if each element of *V* can be expressed as a linear combination of the vectors in *S*.

Definition 6: Let x_1, \dots, x_m be *m* given vectors and $\lambda_1, \dots, \lambda_m$ an equal number of scalars. Then we can form a linear combination or sum

 $\lambda_1 x_1 + \cdots + \lambda_k x_k + \cdots + \lambda_m x_m$

which is also an element of the vector space. Suppose there exist values $\lambda_1 \cdots \lambda_n$, which are not all zero, such that the above vector sum is the zero vector. Then the vectors x_1, \cdots, x_m are said to be *linearly dependent*. Contrarily, the vectors x_1, \cdots, x_m are called *linearly independent* if

 $\lambda_1 x_1 + \cdots + \lambda_k x_k + \cdots + \lambda_m x_m = \mathbf{0}$

demands the scalars λ_k must all be zero.

Definition 7: The dimension of V is the maximal number of linearly independent vectors of V

Definition 8: Let V be an n dimensional vector space and

$$S=\{x_1,\cdots,x_n\}\subset V$$

a linearly independent spanning set for $V \bowtie S$ is called a basis of V

Definition 9: An inner product $\langle , \rangle : V \times V \to F$ is a function that takes each ordered pair (x, y) of elements of *V* to a number $\langle x, y \rangle \in F$ and has the following properties:

- conjugate symmetry or Hermiticity $o \langle x,y
 angle = (\langle y,x
 angle)^*$
- linearity in the second argument $\rightarrow \langle x, y + w \rangle = \langle x, y \rangle + \langle x, w \rangle$ and $\langle x, \lambda y \rangle = \lambda \langle x, y \rangle$
- definiteness $\rightarrow \langle x, x \rangle = 0 \Leftrightarrow x = 0$

Definition 10: An inner product \langle , \rangle is said to be positive definite \Leftrightarrow for all non-zero *x* in *V*, $\langle x, x \rangle \ge 0$

Definition 11: An inner product space is a vector space *V* over the field *F* equipped with an inner product $\langle , \rangle : V \times V \to F$

Definition 12: The vector space V on F endowed with a positive definite inner product (a.k.a. scalar product) defines the Euclidean space \mathscr{E}

Example: For $x, y \in \mathbb{R}^n \boxtimes \langle x, y \rangle = x \cdot y = \sum_{k=1}^n x_k y_k$ **Example:** For $x, y \in \mathbb{C}^n \boxtimes \langle x, y \rangle = x \cdot y = \sum_{k=1}^n x_k^* y_k$

Example:

- Let C([a, b]) denote the set of continuous functions x(t) defined on the closed interval −∞ < a ≤ t ≤ b < ∞
- This set is structured as a vector space with respect to the usual operations of sum of functions and product of functions by numbers, whose neutral element is the zero function
- For $x(t), y(t) \in C([a, b])$ is we can define the scalar product: $\langle x, y \rangle = \int_a^b x^*(t) y(t) dt$ which satisfies all the necessary axioms
- In particular $\Im \langle x, x \rangle = \int_a^b |x(t)|^2 dt \ge 0$ and if $\langle x, x \rangle = 0$ then $0 = \int_a^b |x(t)|^2 dt \ge \int_{a_1}^{b_1} |x(t)|^2 dt \ge 0 \ \forall a \le a_1 \le b_1 \le b$ therefore $\Im x(t) \equiv 0$
- Indeed since x(t) is continuous, if $x(t_0) \neq 0$ with $a \leq t_0 \leq b$ then $x(t) \neq 0$ in an interval of such point scontradiction

Definition 13: The axiom of positivity allows one to define a norm or length for each vector of an euclidean space

$$\|x\| = +\sqrt{\langle x, x \rangle}$$

- In particular $\mathbb{R} ||x|| = 0 \Leftrightarrow x = 0$
- Further real if $\lambda \in \mathbb{C}$ then $\|\lambda x\| = \sqrt{|\lambda|^2 \langle x, x \rangle} = |\lambda| \|x\|$
- This allows a normalization for any non-zero length vector
- Indeed \bowtie if $x \neq 0$ then ||x|| > 0
- Thus regions we can take $\lambda \in \mathbb{C}$ such that $|\lambda| = ||x||^{-1}$ and $y = \lambda x$
- It follows that $\|y\| = |\lambda| \|x\| = 1$.

Example: The length of a vector $x \in \mathbb{R}^n$ is

$$\|\boldsymbol{x}\| = \left(\sum_{k=1}^n x_k^2\right)^{1/2}$$

Example: The length of a vector $x \in C^2([a, b])$ is

$$\|\mathbf{x}\| = \left\{ \int_{a}^{b} |x(t)|^{2} dt \right\}^{1/2}$$

L. A. Anchordoqui (CUNY)

Quantum Mechanics

Definition 14: In a real Euclidean space the angle between the vectors x and y is defined by

$$\cos \widehat{xy} = \frac{|\langle x, y \rangle|}{\|x\| \|y\|}$$

Definition 15: Two vectors are orthogonal, $x \perp y$, if $\langle x, y \rangle = 0$. The zero vector is orthogonal to every vector in \mathscr{E} .

Definition 16: In a real Euclidean space the angle between two orthogonal non-zero vectors is $\pi/2$, *i.e.* $\cos \hat{xy} = 0$

Definition 17: The angle between two complex vectors is given by

$$\cos \widehat{xy} = \frac{\operatorname{Re}(|\langle x, y \rangle|)}{\|x\| \|y\|}$$

Definition 18: A basis x_1, \dots, x_n of \mathscr{E} is called orthogonal if $\langle x_i, x_j \rangle = 0$ for all $i \neq j$. The basis is called *orthonormal* if, in addition, each vector has unit length, *i.e.*, $||x_i|| = 1$, $\forall i = 1, \dots, n$.

Example: Simplest example of orthonormal basis is standard basis

Definition 19: A Hilbert space \mathcal{H} is a vector space that

- has an inner product
- is "complete" I which means limits work nicely

Hilbert spaces are possibly-infinite-dimensional analogues of the finite-dimensional Euclidean spaces

Example: Any finite dimensional inner product space is \mathscr{H} **Example:** The space l^2 of infinite sequences of complex numbers $l^2 = \{(x_1, x_2, x_3, \cdots) : x_k \in \mathbb{C}, \sum_{k=1}^{\infty} |x_k|^2 < \infty\}$ with $\langle y, x \rangle = \sum_{k=1}^{\infty} y_k^* x_k$ **Example:** The space \mathcal{L}^2 defined by the collection of measurable real or complex valued square integrable functions

$$\int_{-\infty}^{\infty} |\psi(t)|^2 \, dt < \infty$$

endowed with inner product

$$\langle \Psi, \Phi \rangle = \int_a^b \psi^*(t) \, \phi(t) \, dt$$

and associated norm

$$\left\|\Psi\right\| = \left\{\int_{-\infty}^{\infty} \left|\psi(t)\right|^2 dt\right\}^{1/2}$$

is an infinite dimensional Hilbert space \mathscr{H}

Linear Operators on Euclidean Spaces

Definition 20:

- An operator A on \mathscr{E} is a vector function $A : \mathscr{E} \to \mathscr{E}$
- The operator is called linear if

$$A(\alpha x + \beta y) = \alpha A x + \beta A y, \ \forall x, y \in \mathscr{E} \text{ and } \forall \alpha, \beta \in \mathbb{C} \text{ (or } \mathbb{R})$$

L. A. Anchordoqui (CUNY)

Quantum Mechanics

1-29-2019 14 / 23

Definition 21: Let \mathbb{A} be an $n \times n$ matrix and x a vector:

- the function $A(x) = \mathbb{A}x$ is obviously a linear operator
- a vector $x \neq 0$ is an eigenvector of \mathbb{A} if $\exists \lambda$ satisfying $\mathbb{A} x = \lambda x$
- in such a case $\mathbb{R}(\mathbb{A} \lambda \mathbb{1}) x = 0$ with $\mathbb{1}$ the identity matrix
- eigenvalues λ are given by the relation det (A − λ 1) = 0 which has m different roots with 1 ≤ m ≤ n (note that det(A − λ 1) is a polynomial of degree n)
- The eigenvectors associated with the eigenvalue λ can be obtained by solving the (singular) linear system (A λ 1) x = 0
 Definition 22: A complex square matrix A is Hermitian if A = A⁺
 A⁺ = (A^{*})^T is the conjugate transpose of a complex matrix
 Definition 23: A linear operator A on a Hilbert space ℋ is symmetric if ⟨Ax, y⟩ = ⟨x, Ay⟩, ∀x and y in the domain of A
 Definition 24: A symmetric everywhere defined operator is called self-adjoint or Hermitian

Example: If we take as \mathscr{H} the Hilbert space \mathbb{C}^n with the standard dot product and interpret a Hermitian square matrix \mathbb{A} as a linear operator on \mathscr{H} is we have: $\langle x, \mathbb{A}y \rangle = \langle \mathbb{A}x, y \rangle, \forall x, y \in \mathbb{C}^n$

Definition 25: Dirac delta function as a limit

Consider the function

$$g_{\epsilon}(x) = \begin{cases} 1/\epsilon & |x| \le \epsilon/2 \\ 0 & |x| > \epsilon/2 \end{cases}$$

with $\epsilon > 0$

.

• It follows that $\int_{-\infty}^{+\infty} g_{\epsilon}(x) dx = 1 \ \forall \epsilon > 0$

where F is the primitive of f

• In addition \square if *f* is an arbitrary continuous function

$$\int_{-\infty}^{+\infty} g_{\epsilon}(x) f(x) dx = \epsilon^{-1} \int_{-\epsilon/2}^{+\epsilon/2} f(x) dx = \frac{F(\epsilon/2) - F(-\epsilon/2)}{\epsilon},$$

• For $\epsilon \to 0^+ \, \mathrm{esc} \, g_\epsilon(x)$ is concentrated near the origin yielding

$$\lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} g_{\epsilon}(x) f(x) \, dx = \lim_{\epsilon \to 0^+} \frac{F(\epsilon/2) - F(-\epsilon/2)}{\epsilon} = F'(0) = f(0)$$

We can define the distribution (or generalized function) as the limit

 $\delta(x) = \lim_{\epsilon \to 0^+} g_{\epsilon}(x)$

satisfying

$$\int_{-\infty}^{+\infty} \delta(x) f(x) \, dx = f(0)$$

 Although limit δ(x) does not strictly exist (it is 0 if x ≠ 0 and ∞ if x = 0)

limit of integral $\exists \ \forall f$ continuous in an interval centered at x = 0and this is the meaning of $\delta(x)$

- We will consider from now on test functions *f* which are bounded and differentiable functions to any order and which vanish outside a finite range *I*
- Remember first and foremost that such functions exist 🖙 e.g.

if
$$f(x) = 0$$
, for $x \le 0$ and $x \ge 1$

and
$$f(x) = e^{-1/x^2} e^{-1/(1-x)^2}$$
, for $|x| < 1$

then the function *f* has derivatives of any order at x = 0 and x = 1

- Many other $g_{\epsilon}(x)$ converge to $\delta(x)$ is with derivatives of all orders
- A well-known example $\Im \delta(x) = \lim_{\epsilon \to 0^+} \frac{e^{-x^2/2\epsilon^2}}{\sqrt{2\pi\epsilon}}$
- o Indeed 🖙

$$\frac{1}{\sqrt{2\pi\epsilon}} \int_{-\infty}^{+\infty} e^{-x^2/2\epsilon^2} dx = 1 \; \forall \epsilon > 0$$

and

$$\lim_{\epsilon \to 0^+} \frac{1}{\sqrt{2\pi\epsilon}} \int_{-\infty}^{+\infty} e^{-x^2/2\epsilon^2} f(x) dx = f(0)$$

$$g_{\epsilon}(x) = \frac{1}{\sqrt{2\pi} \epsilon} e^{-x^2/2\epsilon^2}$$

is the normal (or Gaussian) distribution of area 1 and variance

$$\int_{-\infty}^{+\infty} g_{\epsilon} \, x^2 \, dx = \epsilon^2$$

 When ε → 0⁺ s g_ε(x) concentrates around x = 0 keeping its area constant

L. A. Anchordoqui (CUNY)

Quantum Mechanics

The delta function as a limit in the sense of distributions

Definition 26: The convolution of $\delta(x)$ with other functions is defined in such a way that the integration rules still hold

• For example 🖙

$$\int_{-\infty}^{+\infty} \delta(x-x_0) f(x) dx = \int_{-\infty}^{+\infty} \delta(u) f(u+x_0) du = f(x_0)$$

• Similarly \square if $a \neq 0$

$$\int_{-\infty}^{+\infty} \delta(ax) f(x) dx = \frac{1}{|a|} \int_{-\infty}^{+\infty} \delta(u) f(u/a) du = \frac{1}{|a|} f(0)$$

and so

$$\delta(ax) = \frac{1}{|a|}\delta(x) \quad a \neq 0.$$

• In particular $\bowtie \delta(-x) = \delta(x)$

Definition 27: Integration by parts

 If we want δ to fulfill the usual equalities of integration by parts we must define the derivative

$$\int_{-\infty}^{+\infty} \delta'(x) f(x) dx = -\int_{-\infty}^{+\infty} \delta(x) f'(x) dx = -f'(0),$$

recalling that f = 0 outside a finite interval

In general IS

$$\int_{-\infty}^{+\infty} \delta^{(n)}(x) f(x) dx = (-1)^n f^{(n)}(0)$$

•
$$f'(x_0) = -\int_{-\infty}^{+\infty} \delta'(x - x_0) f(x) dx$$

• $f^{(n)}(x_0) = (-1)^n \int_{-\infty}^{+\infty} \delta^{(n)}(x - x_0) f(x) dx$
• If $a \neq 0$ is

$$\delta^{(n)}(ax) = \frac{1}{a^n |a|} \delta^{(n)}(x)$$

• In particular is
$$\delta^{(n)}(-x) = (-1)^n \delta^{(n)}(x)$$

Corollary read Heaviside function: The step (Heaviside) function

$$\Theta(x) = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}$$

is the "primitive" (at least in symbolic form) of $\delta(x)$

Equivalently $\mathbb{S} \Theta'(x)$ has the symbolic limit $\delta(x)$

PROOF. For any given test function f(x) is integration by parts leads to

$$\int_{-\infty}^{+\infty} \Theta'(x) f(x) dx = -\int_{-\infty}^{+\infty} \Theta(x) f'(x) dx = -\int_{0}^{\infty} f'(x) dx = f(0)$$

therefore $\Theta'(x) = \delta(x)$

Bibliography

- G. F. D. Duff and D. Naylor; ISBN: 978-0471223672
- 2 G. B. Arfken and H. J. Weber; ISBN: 978-0080916729
- L. A. Anchordoqui and T. C. Paul; ISBN: 978-1626186002