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Problems set # 9 Physics 400 April 11, 2019

1. Let A be a square finite-dimensional matrix (real elements) such that AAT = 1. (i) Show

that ATA = 1 (ii) Does this result hold for infinite dimensional matrices?

2. Let us define a state using a hardness basis {|h〉, |s〉}, where

ÔHARDNESS|h〉 = |h〉 and ÔHARDNESS|s〉 = −|s〉.

Suppose that we are in the state

|A〉 = cos θ|h〉+ eiφ sin θ|s〉

(i) Is this state normalized? Show your work. If not, normalize it. (ii) Find the state |B〉 that

is orthogonal to |A〉. Make sure |B〉 is normalized. (iii) Express |h〉 and |s〉 in the {|A〉, |B〉}
basis. (iv) What are the possible outcomes of a hardness measurement on state |A〉 and with what

probability will each occur? [Hint: Recall that eigenstates of hermitian operators with different

eigenvalues are orthogonal to each other.]

3. If the states {|1〉, |2〉|3〉} form an orthonormal basis and if the operator Ĝ has the properties

Ĝ|1〉 = 2|1〉 − 4|2〉+ 7|3〉
Ĝ|2〉 = −2|1〉+ 3|3〉
Ĝ|3〉 = 11|1〉+ |2〉 − 6|3〉

What is the matrix representation of Ĝ in the |1〉, |2〉|3〉 basis?

4. Given particles in state

|α〉 =
1√
83

(−3|1〉+ 5|2〉+ 7|3〉)

where {|1〉, |2〉, |3〉} form an orthonormal basis, what are the possible experimental results for a

measurement of

Ŷ =

 2 0 0

0 3 0

0 0 −6


(written in this basis) and with what probabilities do they occur?
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The new set u1 , u0
2 , u3 are orthogonal.

4.22.13 Infinite Dimensions

Let A be a square finite-dimensional matrix (real elements) such that AAT = I.

(a) Show that ATA = I.

Since

det(AB) = det(A) det(B) , det(A) = det(AT ) , det(I) = 1

we have

det(AAT ) = det(A) det(AT ) = det(A2) = det(I) = 1

Therefore the inverse of A exists and we have AT = A�1 with A�1A =
AA�1 = I.

(b) Does this result hold for infinite dimensional matrices?

The answer is no. We have a counterexample. Let

A =

0

BBBB@

0 1 0 0 0 ...
0 0 1 0 0 ...
0 0 0 1 0 ...
.
.

.

.
.
.

.

.
.
.

.

.

1

CCCCA

Then the transpose matrix AT of A is given by

AT =

0

BBBB@

0 0 0 0 0 ...
1 0 0 0 0 ...
0 1 0 0 0 ...
0
.

0
.

1
.

0
.

0
.

.

.

1

CCCCA

It follows that

AAT =

0

BBBB@

1 0 0 0 0 ...
0 1 0 0 0 ...
0 0 1 0 0 ...
0
.

0
.

0
.

1
.

0
.

.

.

1

CCCCA
= I
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and

ATA =

0

BBBB@

0 0 0 0 0 ...
0 1 0 0 0 ...
0 0 1 0 0 ...
0
.

0
.

0
.

1
.

0
.

.

.

1

CCCCA
6= I

Consequently,
AAT

6= ATA

4.22.14 Spectral Decomposition

Find the eigenvalues and eigenvectors of the matrix

M =

2

4
0 1 0
1 0 1
0 1 0

3

5

Construct the corresponding projection operators, and verify that the matrix
can be written in terms of its eigenvalues and eigenvectors. This is the spectral
decomposition for this matrix.
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and then we have
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(ii)

SOLUTIONS

1. Consider a single hydrogen atom: an electron of charge �e free to move around in the

electric field of a fixed proton of charge +e. (The proton is ⇠ 2000 times heavier than electron,

so we consider it fixed.) The electron has a potential energy due to the attraction to the proton

of V (r) = � e2

4⇡✏0r
, where r is the electron proton separation. The electron has a kinetic energy of

K =
p2

2m . The total energy is then

E(r) =
p2

2m
� e2

4⇡✏0r
.

Classically, the minimum energy of the hydrogen atom is �1 the state in which the electron is on

top of the proton p = 0, r = 0. Quantum mechanically, the uncertainty principle forces the electron

to have non-zero momentum and non-zero expectation value of position. If a is an average electron-

proton distance, the uncertainty principle informs us that the minimum electron momentum is on

the order of }/a. The enrgy as a function of a is then

E(a) =
}2

2ma2
� e2

4⇡✏0a
.

If we insist on placing the electron right on top of the proton (a = 0), the potential energy is still

�1, just as it is classically, but the total energy is:

E(0) ⇡ lim
a!0


}2

2ma2
� e2

4⇡✏0a

�

= lim
a!0


2⇡✏0}2 �me2a

4⇡✏0ma2

�

! +1 .

Hence, quantum mechanics tells us that an atom could never collapse as it would take an infi-

nite energy to locate the electron on top of the proton. The minimum energy state, quantum

mechanically, can be estimated by calculating the value of a = a0 for which E(a) is minimized:

@E(a)

@a

����
a0

= � }2
ma3

+
e2

4⇡✏0a20
= 0,

and so

a0 =
4⇡✏0}2
me2

=
10

�10 · 10�68

10�30 · 2 · 10�38
m ⇡ 0.5Å .

By preventing localization of the electron near the proton, the uncertainty principle retards the

classical collapse of the atom. The state of minimum energy corresponds to E(a0) = �13.6 eV; see

Fig. 1.

2. (i) The momentum of an electron confined within a radius r is approximately p ⇠ }/r. The
total energy is,

E =
}2

2mr2
� e2

4⇡✏0r
.



For the non-degenerate eigenvalue �3 = �b, we must have
⌦
u1

�� u3
↵
= 0 =⌦

u2
�� u3

↵
(orthogonal to the other two eigenvectors). If we choose u3

1 = 0
(guarantees

⌦
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�� u3
↵
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2 = 1, then the equation ibu3
2 = �bu3

3

says that u2
3 = �i, so that
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1
p
2

0

@
0
1
�i

1

A =
1
p
2
(|2i � i |3i)

The set {|1i , |2i , |3i} are also eigenvectors of Â.

4.22.18 The World of Hard/Soft Particles

Let us define a state using a hardness basis {|hi , |si}, where

ÔHARDNESS |hi = |hi , ÔHARDNESS |si = � |si

and the hardness operator ÔHARDNESS is represented by (in this basis) by

ÔHARDNESS =

✓
1 0
0 �1

◆

Suppose that we are in the state

|Ai = cos ✓ |hi+ ei' sin ✓ |si

(a) Is this state normalized? Show your work. If not, normalize it.

hA | Ai =
�
cos ✓ hh|+ e�i' sin ✓ hs|

� �
cos ✓ |hi+ ei' sin ✓ |si

�

= cos2 ✓ hh | hi+ ei' sin ✓ cos ✓ hh | si+ e�i' sin ✓ cos ✓ hs | hi+ sin2 ✓ hs | si
= cos2 ✓ + sin2 ✓ = 1

which says that the vector is normalized.

(b) Find the state |Bi that is orthogonal to |Ai. Make sure |Bi is normalized.

|Bi = ↵ |hi+ � |si
hA | Bi =

�
cos ✓ hh|+ e�i' sin ✓ hs|

�
(↵ |hi+ � |si) = 0

0 = ↵ cos ✓ + e�i'� sin ✓ ) � = �ei'↵ cot ✓
hB | Bi = (↵⇤

hh|+ �⇤
hs|) (↵ |hi+ � |si) = |↵|2 + |�|2 = 1

|↵|2 + cot2 ✓ |↵|2 = 1 ) |↵|2 = 1
1+cot2 ✓ = sin2 ✓

↵ = sin ✓ , � = �ei' cos ✓
|Bi = sin ✓ |hi � ei' cos ✓ |si
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4.22.18 The World of Hard/Soft Particles

Let us define a state using a hardness basis {|hi , |si}, where
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ÔHARDNESS =

✓
1 0
0 �1

◆

Suppose that we are in the state

|Ai = cos ✓ |hi+ ei' sin ✓ |si

(a) Is this state normalized? Show your work. If not, normalize it.

hA | Ai =
�
cos ✓ hh|+ e�i' sin ✓ hs|

� �
cos ✓ |hi+ ei' sin ✓ |si

�

= cos2 ✓ hh | hi+ ei' sin ✓ cos ✓ hh | si+ e�i' sin ✓ cos ✓ hs | hi+ sin2 ✓ hs | si
= cos2 ✓ + sin2 ✓ = 1

which says that the vector is normalized.

(b) Find the state |Bi that is orthogonal to |Ai. Make sure |Bi is normalized.

|Bi = ↵ |hi+ � |si
hA | Bi =

�
cos ✓ hh|+ e�i' sin ✓ hs|

�
(↵ |hi+ � |si) = 0

0 = ↵ cos ✓ + e�i'� sin ✓ ) � = �ei'↵ cot ✓
hB | Bi = (↵⇤

hh|+ �⇤
hs|) (↵ |hi+ � |si) = |↵|2 + |�|2 = 1

|↵|2 + cot2 ✓ |↵|2 = 1 ) |↵|2 = 1
1+cot2 ✓ = sin2 ✓

↵ = sin ✓ , � = �ei' cos ✓
|Bi = sin ✓ |hi � ei' cos ✓ |si

43

(c) Express |hi and |si in the {|Ai , |Bi} basis.

|Ai = cos ✓ |hi+ ei' sin ✓ |si
|Bi = sin ✓ |hi � ei' cos ✓ |si
hh | Ai = cos ✓ = hA | hi , hh | Bi = sin ✓ = hB | hi
hs | Ai = ei' sin ✓ = hA | si⇤ , hs | Bi = �ei' cos ✓ = hB | si⇤

|hi = hA | hi |Ai+ hB | hi |Bi = cos ✓ |Ai+ sin ✓ |Bi

|si = hA | si |Ai+ hB | si |Bi

= e�i' sin ✓ |Ai � e�i' cos ✓ |Bi = e�i' (sin ✓ |Ai � cos ✓ |Bi)
|si = sin ✓ |Ai � cos ✓ |Bi

since overall phase factors are irrelevant.

(d) What are the possible outcomes of a hardness measurement on state |Ai

and with what probability will each occur?

P (h|A) = |hh | Ai|
2 = cos2 ✓

P (s|A) = |hs | Ai|
2 = sin2 ✓

(e) Express the hardness operator in the {|Ai , |Bi} basis.

Ĥ = |hi hh|� |si hs|

H =

✓
hA| Ĥ |Ai hA| Ĥ |Bi

hB| Ĥ |Ai hB| Ĥ |Bi

◆

=

✓
hA | hi hh | Ai � hA | si hs | Ai hA | hi hh | Bi � hA | si hs | Bi

hB | hi hh | Ai � hB | si hs | Ai hB | hi hh | Bi � hB | si hs | Bi

◆

=

✓
cos2 ✓ � sin2 ✓ 2 sin ✓ cos ✓
2 sin ✓ cos ✓ sin2 ✓ � cos2 ✓

◆
=

✓
cos 2✓ sin 2✓
sin 2✓ � cos 2✓

◆

or

Ĥ = |hi hh|� |si hs|
= (cos ✓ |Ai+ sin ✓ |Bi) (cos ✓ hA|+ sin ✓ hB|)

� (sin ✓ |Ai � cos ✓ |Bi) (sin ✓ hA|� cos ✓ hB|)
= cos 2✓ |Ai hA|+ sin 2✓ |Bi hA|+ sin 2✓ |Ai hB|� cos 2✓ |Bi hB|

In the {|Ai , |Bi} basis

|Ai =

✓
1
0

◆
, |Bi =

✓
0
1

◆

|Ai hA| =

✓
1 0
0 0

◆
, |Ai hB| =

✓
0 1
0 0

◆

|Bi hA| =

✓
0 0
1 0

◆
, |Bi hB| =

✓
0 0
0 1

◆

so that

Ĥ = cos 2✓

✓
1 0
0 0

◆
+ sin 2✓

✓
0 1
0 0

◆
+ sin 2✓

✓
0 0
1 0

◆
� cos 2✓

✓
0 0
0 1

◆

=

✓
cos 2✓ sin 2✓
sin 2✓ � cos 2✓

◆
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hB| Ĥ |Ai hB| Ĥ |Bi
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Ĥ = |hi hh|� |si hs|
= (cos ✓ |Ai+ sin ✓ |Bi) (cos ✓ hA|+ sin ✓ hB|)

� (sin ✓ |Ai � cos ✓ |Bi) (sin ✓ hA|� cos ✓ hB|)
= cos 2✓ |Ai hA|+ sin 2✓ |Bi hA|+ sin 2✓ |Ai hB|� cos 2✓ |Bi hB|

In the {|Ai , |Bi} basis

|Ai =

✓
1
0

◆
, |Bi =

✓
0
1

◆

|Ai hA| =

✓
1 0
0 0

◆
, |Ai hB| =

✓
0 1
0 0

◆

|Bi hA| =

✓
0 0
1 0

◆
, |Bi hB| =

✓
0 0
0 1

◆

so that
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giving the orthonormal set of eigenvectors
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4.22.4 Operator Matrix Representation

If the states {|1i , |2i |3i} form an orthonormal basis and if the operator Ĝ has
the properties

Ĝ |1i = 2 |1i � 4 |2i+ 7 |3i
Ĝ |2i = �2 |1i+ 3 |3i
Ĝ |3i = 11 |1i+ 2 |2i � 6 |3i

What is the matrix representation of Ĝ in the |1i , |2i |3i basis?

We have

h1| Ĝ |1i = 2 h1 | 1i � 4 h1 | 2i+ 7 h1 | 3i = 2 = G11

h2| Ĝ |1i = 2 h2 | 1i � 4 h2 | 2i+ 7 h2 | 3i = �4 = G21

h3| Ĝ |1i = 2 h3 | 1i � 4 h3 | 2i+ 7 h3 | 3i = 7 = G31

h1| Ĝ |2i = �2 h1 | 1i+ 3 h1 | 3i = �2 = G12

h2| Ĝ |2i = �2 h2 | 1i+ 3 h2 | 3i = 0 = G22

h3| Ĝ |2i = �2 h3 | 1i+ 3 h3 | 3i = 3 = G32

h1| Ĝ |3i = 11 h1 | 1i+ 2 h1 | 2i � 6 h1 | 3i = 11 = G13

h2| Ĝ |3i = 11 h2 | 1i+ 2 h2 | 2i � 6 h2 | 3i = 2 = G23

h3| Ĝ |3i = 11 h3 | 1i+ 2 h3 | 2i � 6 h3 | 3i = �6 = G33

30so that

G =

0

@
2 �2 11
�4 0 2
7 3 �6

1

A

4.22.5 Matrix Representation and Expectation Value

If the states {|1i , |2i |3i} form an orthonormal basis and if the operator K̂ has
the properties

K̂ |1i = 2 |1i
K̂ |2i = 3 |2i
K̂ |3i = �6 |3i

(a) Write an expression for K̂ in terms of its eigenvalues and eigenvectors
(projection operators). Use this expression to derive the matrix repre-
senting K̂ in the |1i , |2i |3i basis.

These are eigenvectors of K̂ so we can immediately write

K̂ = 2 |1i h1|+ 3 |2i h2|� 6 |3i h3|

Any matrix representing an operator written in the basis of its own eigen-
vectors is diagonal with the eigenvalues on the diagonal. Thus

K̂ =

0

@
2 0 0
0 3 0
0 0 �6

1

A

(b) What is the expectation or average value of K̂, defined as h↵| K̂ |↵i, in the
state

|↵i =
1

p
83

(�3 |1i+ 5 |2i+ 7 |3i)

We have

|↵i =
1

p
83

(�3 |1i+ 5 |2i+ 7 |3i)

and
D
K̂
E
= h↵| K̂ |↵i =

3X

n=1

knP (kn)

We will evaluate this in three ways.

Matrix Multiplication:

D
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E
= h↵| K̂ |↵i =

1
p
83

(�3, 5, 7)
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1
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4.22.15 Measurement Results

Given particles in state
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(written in this basis) and with what probabilities do they occur?

We have

|↵i =
1

p
83

(�3 |1i+ 5 |2i+ 7 |3i)

where the {|1i , |2i , |3i} basis is the set of vectors

|1i =

0

@
1
0
0

1

A , |2i =

0

@
0
1
0

1

A , |3i =

0

@
0
0
1

1

A

The observable

Ŷ =

0

@
2 0 0
0 3 0
0 0 �6

1

A

has eigenvectors {|1i , |2i , |3i} and eigenvalues 2, 3,�6. The possible values of
any measurement are the eigenvalues and the probabilities are given by

P (2|↵) = |h1 | ↵i|2 = 1
83 |�3 h1 | 1i+ 5 h1 | 2i+ 7 h1 | 3i|2 = 9

83

P (3|↵) = |h2 | ↵i|2 = 1
83 |�3 h2 | 1i+ 5 h2 | 2i+ 7 h2 | 3i|2 = 25

83

P (�6|↵) = |h3 | ↵i|2 = 1
83 |�3 h3 | 1i+ 5 h3 | 2i+ 7 h3 | 3i|2 = 49

83

4.22.16 Expectation Values

Let

R =


6 �2
�2 9

�

represent an observable, and

| i =


a
b

�

be an arbitrary state vector(with |a|2 + |b|2 = 1). Calculate
⌦
R2

↵
in two ways:

40
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