1. Let \mathbb{A} be a square finite-dimensional matrix (real elements) such that $\mathbb{A}^{T}=\mathbb{1}$. (i) Show that $\mathbb{A}^{T} \mathbb{A}=\mathbb{1}$ (ii) Does this result hold for infinite dimensional matrices?
2. Let us define a state using a hardness basis $\{|h\rangle,|s\rangle\}$, where

$$
\hat{O}_{\text {HARDNESS }}|h\rangle=|h\rangle \quad \text { and } \quad \hat{O}_{\text {HARDNESS }}|s\rangle=-|s\rangle .
$$

Suppose that we are in the state

$$
|A\rangle=\cos \theta|h\rangle+e^{i \phi} \sin \theta|s\rangle
$$

(i) Is this state normalized? Show your work. If not, normalize it. (ii) Find the state $|B\rangle$ that is orthogonal to $|A\rangle$. Make sure $|B\rangle$ is normalized. (iii) Express $|h\rangle$ and $|s\rangle$ in the $\{|A\rangle,|B\rangle\}$ basis. (iv) What are the possible outcomes of a hardness measurement on state $|A\rangle$ and with what probability will each occur? [Hint: Recall that eigenstates of hermitian operators with different eigenvalues are orthogonal to each other.]
3. If the states $\{|1\rangle,|2\rangle|3\rangle\}$ form an orthonormal basis and if the operator \hat{G} has the properties

$$
\begin{aligned}
\hat{G}|1\rangle & =2|1\rangle-4|2\rangle+7|3\rangle \\
\hat{G}|2\rangle & =-2|1\rangle+3|3\rangle \\
\hat{G}|3\rangle & =11|1\rangle+|2\rangle-6|3\rangle
\end{aligned}
$$

What is the matrix representation of \hat{G} in the $|1\rangle,|2\rangle|3\rangle$ basis?
4. Given particles in state

$$
|\alpha\rangle=\frac{1}{\sqrt{83}}(-3|1\rangle+5|2\rangle+7|3\rangle)
$$

where $\{|1\rangle,|2\rangle,|3\rangle\}$ form an orthonormal basis, what are the possible experimental results for a measurement of

$$
\hat{Y}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -6
\end{array}\right)
$$

(written in this basis) and with what probabilities do they occur?

1. (i) Since

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B), \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right), \operatorname{det}(I)=1
$$

we have

$$
\operatorname{det}\left(A A^{T}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{T}\right)=\operatorname{det}\left(A^{2}\right)=\operatorname{det}(I)=1
$$

Therefore the inverse of A exists and we have $A^{T}=A^{-1}$ with $A^{-1} A=$ $A A^{-1}=I$.
($i i)$ The answer is no. We have a counterexample. Let

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
\cdot & \cdot & . & . & . & \cdot \\
\cdot & \cdot & . & \cdot & \cdot & \cdot
\end{array}\right)
$$

Then the transpose matrix A^{T} of A is given by

$$
A^{T}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & . \\
. & . & . & . & . & .
\end{array}\right)
$$

It follows that

$$
A A^{T}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 1 & 0 & . \\
. & . & . & . & . & .
\end{array}\right)=I
$$

and

$$
A^{T} A=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 1 & 0 & . \\
\cdot & . & . & . & . & .
\end{array}\right) \neq I
$$

Consequently,

$$
A A^{T} \neq A^{T} A
$$

2.(i) $\langle A \mid A\rangle=\left(\cos \theta\langle h|+e^{-i \varphi} \sin \theta\langle s|\right)\left(\cos \theta|h\rangle+e^{i \varphi} \sin \theta|s\rangle\right)$

$$
\begin{aligned}
& =\cos ^{2} \theta\langle h \mid h\rangle+e^{i \varphi} \sin \theta \cos \theta\langle h \mid s\rangle+e^{-i \varphi} \sin \theta \cos \theta\langle s \mid h\rangle+\sin ^{2} \theta\langle s \mid s\rangle \\
& =\cos ^{2} \theta+\sin ^{2} \theta=1
\end{aligned}
$$

which says that the vector is normalized.
(ii) $\quad|B\rangle=\alpha|h\rangle+\beta|s\rangle$

$$
\begin{aligned}
& \langle A \mid B\rangle=\left(\cos \theta\langle h|+e^{-i \varphi} \sin \theta\langle s|\right)(\alpha|h\rangle+\beta|s\rangle)=0 \\
& \quad 0=\alpha \cos \theta+e^{-i \varphi} \beta \sin \theta \Rightarrow \beta=-e^{i \varphi} \alpha \cot \theta \\
& \langle B \mid B\rangle=\left(\alpha^{*}\langle h|+\beta^{*}\langle s|\right)(\alpha|h\rangle+\beta|s\rangle)=|\alpha|^{2}+|\beta|^{2}=1 \\
& |\alpha|^{2}+\cot ^{2} \theta|\alpha|^{2}=1 \Rightarrow|\alpha|^{2}=\frac{1}{1+\cot ^{2} \theta}=\sin ^{2} \theta \\
& \alpha=\sin \theta \quad \beta=-e^{i \varphi} \cos \theta \\
& |B\rangle=\sin \theta|h\rangle-e^{i \varphi} \cos \theta|s\rangle
\end{aligned}
$$

(iii) $\quad \begin{aligned} & |A\rangle=\cos \theta|h\rangle+e^{i \varphi} \sin \theta|s\rangle \\ & |B\rangle=\sin \theta|h\rangle-e^{i \varphi} \cos \theta|s\rangle\end{aligned}$
$\langle h \mid A\rangle=\cos \theta=\langle A \mid h\rangle \quad, \quad\langle h \mid B\rangle=\sin \theta=\langle B \mid h\rangle$
$\langle s \mid A\rangle=e^{i \varphi} \sin \theta=\langle A \mid s\rangle^{*} \quad, \quad\langle s \mid B\rangle=-e^{i \varphi} \cos \theta=\langle B \mid s\rangle^{*}$
$|h\rangle=\langle A \mid h\rangle|A\rangle+\langle B \mid h\rangle|B\rangle=\cos \theta|A\rangle+\sin \theta|B\rangle$
$|s\rangle=\langle A \mid s\rangle|A\rangle+\langle B \mid s\rangle|B\rangle$
$=e^{-i \varphi} \sin \theta|A\rangle-e^{-i \varphi} \cos \theta|B\rangle=e^{-i \varphi}(\sin \theta|A\rangle-\cos \theta|B\rangle)$
$|s\rangle=\sin \theta|A\rangle-\cos \theta|B\rangle$
since overall phase factors are irrelevant.
(iv) $\quad P(h \mid A)=|\langle h \mid A\rangle|^{2}=\cos ^{2} \theta$

$$
P(s \mid A)=|\langle s \mid A\rangle|^{2}=\sin ^{2} \theta
$$

3. $\langle 1| \hat{G}|1\rangle=2\langle 1 \mid 1\rangle-4\langle 1 \mid 2\rangle+7\langle 1 \mid 3\rangle=2=G_{11}$

$$
\langle 2| \hat{G}|1\rangle=2\langle 2 \mid 1\rangle-4\langle 2 \mid 2\rangle+7\langle 2 \mid 3\rangle=-4=G_{21}
$$

$$
\langle 3| \hat{G}|1\rangle=2\langle 3 \mid 1\rangle-4\langle 3 \mid 2\rangle+7\langle 3 \mid 3\rangle=7=G_{31}
$$

$$
\langle 1| \hat{G}|2\rangle=-2\langle 1 \mid 1\rangle+3\langle 1 \mid 3\rangle=-2=G_{12}
$$

$$
\langle 2| \hat{G}|2\rangle=-2\langle 2 \mid 1\rangle+3\langle 2 \mid 3\rangle=0=G_{22}
$$

$$
\langle 3| \hat{G}|2\rangle=-2\langle 3 \mid 1\rangle+3\langle 3 \mid 3\rangle=3=G_{32}
$$

$$
\langle 1| \hat{G}|3\rangle=11\langle 1 \mid 1\rangle+2\langle 1 \mid 2\rangle-6\langle 1 \mid 3\rangle=11=G_{13}
$$

$$
\langle 2| \hat{G}|3\rangle=11\langle 2 \mid 1\rangle+2\langle 2 \mid 2\rangle-6\langle 2 \mid 3\rangle=2=G_{23}
$$

$$
\langle 3| \hat{G}|3\rangle=11\langle 3 \mid 1\rangle+2\langle 3 \mid 2\rangle-6\langle 3 \mid 3\rangle=-6=G_{33}
$$

$$
G=\left(\begin{array}{ccc}
2 & -2 & 11 \\
-4 & 0 & 2 \\
7 & 3 & -6
\end{array}\right)
$$

4. We have

$$
|\alpha\rangle=\frac{1}{\sqrt{83}}(-3|1\rangle+5|2\rangle+7|3\rangle)
$$

where the $\{|1\rangle,|2\rangle,|3\rangle\}$ basis is the set of vectors

$$
|1\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad, \quad|2\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad, \quad|3\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

The observable

$$
\hat{Y}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -6
\end{array}\right)
$$

has eigenvectors $\{|1\rangle,|2\rangle,|3\rangle\}$ and eigenvalues $2,3,-6$. The possible values of any measurement are the eigenvalues and the probabilities are given by

$$
\begin{aligned}
& P(2 \mid \alpha)=|\langle 1 \mid \alpha\rangle|^{2}=\frac{1}{83}|-3\langle 1 \mid 1\rangle+5\langle 1 \mid 2\rangle+7\langle 1 \mid 3\rangle|^{2}=\frac{9}{83} \\
& P(3 \mid \alpha)=|\langle 2 \mid \alpha\rangle|^{2}=\frac{1}{83}|-3\langle 2 \mid 1\rangle+5\langle 2 \mid 2\rangle+7\langle 2 \mid 3\rangle|^{2}=\frac{25}{83} \\
& P(-6 \mid \alpha)=|\langle 3 \mid \alpha\rangle|^{2}=\frac{1}{83}|-3\langle 3 \mid 1\rangle+5\langle 3 \mid 2\rangle+7\langle 3 \mid 3\rangle|^{2}=\frac{49}{83}
\end{aligned}
$$

