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Problems set # 3 Physics 400 February 21, 2019

1. A pendulum of length l = 0.1 m and mass m = 0.01 kg swings up to a maximum angle of

θ = 0.1 rad. If its energy is quantized, the discontinuous jumps in energy are very small. For this

angle of swing, what is the quantum number n that corresponds with the total kinetic energy of

the system? What does this mean?

2. (i) Stars behave approximately like blackbodies. Use Wien’s displacement formula to obtain

a rough estimate of the surface temperature of the Sun, assuming that it is an ideal blackbody and

that evolution on Earth worked well (i.e., that the human eye uses optimal the light from the Sun).

(ii) The solar constant (radiant flux at the surface of the Earth) is about 1.365 kW/m2. Find the

effective surface temperature of the Sun. [Hint: Astronomical data which may be helpful: radius

of Sun R� = 7× 105 km; mean Sun-Earth distance rSE = 1 AU = 1.5× 108 km.]

3. For a typical case of photoemission from sodium, show that classical theory predicts that:

(i) Kmax depends on the incident light intensity I; (ii) Kmax does not depend on the frequency of

the incident light; (iii) there is a long time lag between the start of illumination and the beginning

of the photocurrent. The work function for sodium is ϕ = 2.28 eV and an absorbed power per unit

area of 1.00× 10−7 mW/cm2 produces a measurable photocurrent in sodium.

4. A metal surface has a photoelectric cutoff wavelength of 325.6 nm. It is illuminated with

light of wavelength 259.8 nm. What is the stopping potential?

5. Another effect that revealed the quantized nature of radiation is the (elastic) scattering of

light on particles shown in Fig. 1, called the Compton effect. (i) Using conservation of energy and

momentum, derive the Compton shift formula,

λ− λ0 = λc(1− cos θ) , (1)

where λc is the Compton wavelength of the particle, which is equivalent to the wavelength of a

photon whose energy is the same as the mass of the particle. (ii) In the experiment by Compton, X-

rays are scattered by nearly free electrons (λc = 2.43×10−10 cm) in carbon (graphite). (Although no

scattering target contains actual “free” electrons, the outer or valence electrons in many materials

are very weakly attached to the atom and behave like nearly free electrons. The binding energies of

these electrons in the atom are so small compared with the energies of the incident X-ray photons

that they can be regarded as nearly “free” electrons.) A movable detector measured the energy

of the scattered X rays at various angles θ. At each angle, two peaks appear, corresponding to

scattered X-ray photons with two different energies or wavelengths. The wavelength of one peak

does not change as the angle is varied; this peak corresponds to scattering that involves “inner”

electrons of the atom, which are more tightly bound to the atom so that the photon can scatter

with no loss of energy. The wavelength of the other peak, however, varies strongly with angle. This
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Figure 1: The geometry of Compton scattering.

variation is exactly as the Compton formula predicts. Show that for a maximal scattering angle

the fractional change ∆λ/λ0 is about 7%. In summary, the particle character of light is confirmed

in Compton’s experiment and we assign the energy of E = }ω and the momentum ~p = }~k to the

(undivisible) photon, where } = h/(2π). The Compton shift formula (1) reveals a proportionality

to }, a quantum mechanical property that is confirmed by experiment. Classically no change of

the wavelength is to be expected.



SOLUTIONS

1. We first need to find the energy and frequency of the pendulum. To find the energy we

need to apply some geometry to the situation to figure out the height h that the pendulum is

lifted to. Constructing a triangle, with hypotenuse of length l and height of length (l − h) we

get the relationship: cos θ = l−h
l and so h = l − l cos θ = l(1 − cos θ). Given the acceleration of

gravity g ≈ 9.8 m/s2, the total (classical) energy of the swinging pendulum and the frequency ν of

oscillation is thus Eclass = mgh = mgl(1−cos θ) and ν = 1
2π

√
g
l . If this system were to be described

by quantum physics, the energy must satisfy the relation E = nhν, with n = 0, 1, 2, · · ·, where

h = 6.6×1034 Js is Planck’s constant. So if we set Eclass = E we get mgl(1−cos θ) = nhν = nh
2π

√
g
l

and solving for n gives us

n =
mgl

hν
(1− cos θ) =

2πm

h

√
l

g
(1− cos θ) =

2πm

h

√
gl3(1− cos θ) ≈ 4.7× 1028 ,

which is clearly a HUGE number. The adjacent energy levels for this system are only about

∆E ≈ 10−33 J apart, which fits with the calculation above. Of course variations for the values of

m, g, l, θ, etc. make it impossible to confirm the discrete quantum nature of this type of system.

According to quantum theory, n must be an integer, but of course for this calculation, there is no

way that our physical measurements of the of the system could be accurate enough to determine if

the calculated value for n is an integer or not.

2. (i) We can obtain a first estimate of the surface temperature of the Sun from the sensitivity

of the human eye to light in the range 400 − 700 nm. Assuming that the evolution worked well,

i.e. that the human eye uses optimal the light from the Sun, and that the atmosphere is for all

frequencies in the visible range similarly transparent, we identify the maximum in Wien’s law with

the center of the frequency range visible for the human eye. Thus we set λmax,� ≈ 550 nm, and

obtain T� ≈ 5270 K for the surface temperature of the Sun. (ii) The bolometric luminosity L of

a star is given by the product of its surface A = 4πR2 and the radiation emitted per area σT 4,

i.e., L = 4πR2σT 4. The radiant flux is defined by F = L/A, so that we recover the well known

inverse-square law for the energy flux at the distance r > R outside of the star, F = L/(4πr2). The

validity of the inverse-square law F (r) ∝ r−2 relies on the assumptions that no radiation is absorbed

and that relativistic effects can be neglected. The later condition requires, in particular, that the

relative velocity of observer and source is small compared to the velocity of light. The energy flux

received from the Sun at the distance of the Earth, rSE = 1 AU, is equal to F = 1365 W/m2. The

solar luminosity follows then as L� = 4πd2F = 4× 1033 erg s−1, and serves as a convenient unit in

stellar astrophysics. The Stefan-Boltzmann law can then be used to define, with R� ≈ 7×1010 cm,

the effective temperature of the Sun, T� ≈ 5780 K.

3. (i) According to classical theory, the energy in a light wave is spread out uniformly and

continuously over the wavefront. Assuming that all absorption of light occurs in the top atomic

layer of the metal, that each atom absorbs an equal amount of energy proportional to its cross

sectional area, A, and that each atom somehow funnels this energy into one of its electrons, we find

that each electron absorbs an energy K in time t given by K = εIAt where ε is a fraction accounting

for less than 100% light absorption. Because the most energetic electrons are held in the metal by a

surface energy barrier ϕ, these electrons will be emitted with Kmax once they have absorbed enough



energy to overcome the barrier. We can express this as Kmax = εIAt − ϕ. Thus, classical theory

predicts that for a fixed absorption period, t, at low light intensities when εIAt < ϕ, no electrons

must be emitted. At higher intensities, when εIAt > ϕ electrons should be emitted with higher

kinetic energies the higher the light intensity. Therefore, classical predictions contradict experiment

at both very low and very high light intensities. (ii) According to classical theory, the intensity

of a light wave is proportional to the square of the amplitude of the electric field, | ~E0|2, and it

is this electric field amplitude that increases with increasing intensity and imparts an increasing

acceleration and kinetic energy to an electron. Substituting I with a quantity proportional to | ~E0|2

in part (i) shows that Kmax should not depend at all on the frequency of the classical light wave,

again contradicting the experimental results. (iii) To estimate the time lag between the start of

illumination and the emission of electrons, we assume that an electron must accumulate just enough

light energy to overcome the work function. Setting Kmax = 0 gives 0 = εIAt− ϕ or t = ϕ/(εIA).

Taking ε = 1 and the cross sectional area of the atom A = πr2, where r = 1.0×10−8 cm is a typical

atomic radius, we have t = 1.2× 107 s ≈ 130 days. Thus we see that the classical calculation of the

time lag for photoemission does not agree with the experimental result, disagreeing by a factor of

1016!

4. At the threshold wavelength the photoelectrons have just enough energy to overcome the

work function, so Kmax = 0. Hence we have ϕ = hc/λ0 = 3.808 eV. When 259.8 nm light is used,

eV0 = hc/λ− ϕ = 0.964 eV, so V0 = 0.964 V.

5. (i) Consider an incident photon of frequency ν0 which is scattered by a stationary electron

to give a photon of frequency ν at an angle θ with respect to the original photon. Conservation of

energy gives

E0 +mc2 = E + E′, (2)

while conservation of 3-momentum gives ~p0 = ~p+~p ′ or ~p ′ = ~p0−~p. Squaring this ~p ′2 = ~p 2
o+~p 2−2~p0·~p

and using E0 = |~p0c|, E = |~pc|, and E′2 = (~p ′c)2+m2c4, we get E′2−m2c4 = E2
0 +E2−2E0E cos θ.

Now, from (2) the left-hand side of the previous relation equals (E0 − E)2 + 2mc2(E0 − E), thus

yielding

2mc2(E0 − E) = 2E0E − 2E0E − 2E0E cos θ . (3)

Using E0 = hc/λ0 and E = hc/λ we obtain the well known formula for the change in wavelength

as a function of angle

λ− λ0 =
h

mc
(1− cos θ) (4)

The quantity h/(mc) is known as the Compton wavelength (in this case, of the electron). (ii) Since

λc is very small, high energy radiation (X-rays) is needed to observe the effect. If we choose a

wavelength of 7 × 10−9 cm for the X-rays we estimate for a maximal scattering angle an effect of

∆λ/λ0 = 2λc/λXray ≈ 0.07.


