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Problems set # 2 Physics 400 February 14, 2019

1. The peak of the radiation curve for a certain blackbody occurs at a wavelength of λa = 1 µm.

If the temperature is raised so that the total radiated power is increased 16-fold, at what wavelength

λb will the new intensity maximum be found?

2. (i) Show that

〈E〉 =

∫∞
0 P (E)E dE∫∞
0 P (E) dE

= · · · = kT ,

where

P (E) dE =
e−E/kT

kT
dE ,

k = 1.38 × 10−23 J K−1 is the Boltzmann’s constant, and T the absolute temperature. (ii) Show

that the average energy of an oscillator is given by the discrete sum

〈E〉 =

∑∞
n=0En P (En)∑∞
n=0 P (En)

= · · · = hc/λ

ehc/(λkT ) − 1
,

where ∆E = hν, with h = 6.626× 10−34 J s the Planck’s constant.

3. Verify that if you integrate

Bλ(λ, T ) =
2c

λ4
〈E〉 =

2c

λ4
hc/λ

ehc/(λkT ) − 1

over all wavelengths and solid angles you can reproduce Stefan-Boltzmann law F (T ) = σT 4.

4. Show that Wien’s displacement law can be derived by determining the maximum of

Bλ(λ, T ) =
2c

λ4
〈E〉 =

2c

λ4
hc/λ

ehc/(λkT ) − 1
.

5. A compilation of experimental measurements of the CMB reveals an accurate blackbody

spectrum. Actually, according to the FIRAS (Far InfraRed Absolute Spectrometer) instrument

aboard the COBE (Cosmic Background Explorer) satellite, which measured a temperature of T =

2.726 ± 0.010 K, the CMB is the most perfect blackbody ever seen. (i) Write down an integral

which determines how many photons per cubic centimeter are contained in the CMB. Estimate

the result within an order of magnitude. (ii) Convince yourself that the average energy of a CMB

photon is 〈ECMB
γ 〉 ≈ 6 × 10−4 eV (iii) Show that a freely expanding blackbody radiation remains

described by the Planck formula, but with a temperature that drops in proportion to the scale

expansion.



SOLUTIONS

1. The wavelength of the intensity maximum is inversely related to the temperature by Wein’s

law λT = constant, while the total radiated power is related to the temperature to the fourth power

by Stefans law L = σAT 4. Thus if the power goes up by a factor of 16, the temperature must have

increased by a factor of 2, since 24 = 16. If the temperature doubled, then the wavelength of the

peak of the radiation curve must have halved, so λb = λa/2 = 0.5 µm.

2.
∫∞
0 P (E) dE =

∫∞
0 e−E/(kT )/(kT ) dE = −(kT )e−E/(kT )/(kT )

∣∣∞
0

= 1. To calculate
∫∞
0 E P (E) dE

we adopt the following change of variables, u = E and dv = e−E/(kT )dE, yielding du = dE and v =

−kTe−E/(kT ). Then,
∫∞
0 Ee−E/(kT )dE = uv−

∫
vdu = E(−kT )e−E/(kT )

∣∣∞
0
−
∫∞
0 (−kT )e−E/(kT )dE =

kT
∫∞
0 e−E/(kT )dE = (kT )2. Thus 〈E〉 =

∫∞
0 E P (E) dE = (kT )2/(kT ) = kT . We now take

En = nhν = nhc/λ,

〈E〉 =

∑∞
n=0

nhc
λkT e

−nhc/(λkT )

1
kT

∑∞
n=0 e

−nhc/(λkT ) = kT

∑∞
n=0 nαe

−nα∑∞
n=0 e

−nα , (1)

where α = hc/(λkT ). First we note that

−α d

dα
ln

[ ∞∑
n=0

e−nα

]
=

∑∞
n=0 nαe

−nα∑∞
n=0 e

−nα , (2)

and so substituting (2) into (1) we have

〈E〉 = kT

[
−α d

dα
ln

( ∞∑
n=0

e−nα

)]
= −hc

λ

[
d

dα
ln

( ∞∑
n=0

e−nα

)]
= −hc

λ

{
d

dα
ln
[
(1− e−α)−1

]}
,

(3)

where in the last equality we have used the sum of a geometric series
∑∞

n=0 e
−nα = (1 − e−α)−1.

Now, we calculate

d

dα
ln(1− e−α)−1 = (−1)

(1− e−α)−2e−α

(1− e−α)−1
=
−e−α

1− e−α

(
eα

eα

)
= − 1

(eα − 1)
. (4)

Substituting (4) into (3) we obtain the desired result.

3. In the frequency domain

F (T ) =

∫ ∞
0

∫ π/2

θ=0

∫ 2π

φ=0
Bλ(λ, T )

dA cos θ

dA
dΩdλ

can be rewritten as

F (T ) = π

∫ ∞
0

2hν3

c2
1

ehν/(kT ) − 1
dν . (5)

This is an integral over frequency alone. Change the variable to x = hν/(kT ) to obtain an integral

of the form
∫

[x3(ex−1)−1]dx. Solutions of this type of integral include the Riemann zeta function.

It is straightforward to show that the result of the integration can be written as F (T ) = σT 4, with

σ = 2π5k4/(15c2h3) = 5.67× 10−8 W m−2 K−4.



4. The first derivative of

Bλ(λ, T ) =
2c

λ4
〈E〉 =

2c

λ4
hc/λ

ehc/(λkT ) − 1

in the frequency domain reads

∂

∂ν
Bν(ν, T ) =

2hν2

c2
[
ehν/(kT ) − 1

]2 {3
[
ehν/(kT ) − 1

]
− hν

kT
ehν/(kT )

}
. (6)

This derivative is only equal to zero when the numerator is equal to zero. The corresponding

denominator is larger than zero for 0 < ν < ∞. Demanding the numerator to vanish we obtain

3(exν − 1) = xνe
xν , with xν = hν/(kT ). This transcendental function can only be solved numeri-

cally. We find xν ' 2.82, and in a further step νext/T = xνk/h, where νext is the frequency at which

the extreme (either a minimum or a maximum) of the Planck function in the frequency domain

occurs. It can simply be proved that for this extreme the second derivative fulfills the condition

∂2Bν/∂ν
2 < 0 so that the extreme corresponds to a maximum, νmax. The form of Wien’s displace-

ment law in terms of maximum spectral emittance per unit wavelength is derived using similar

methods, but starting with the form of Planck’s law expressed in the wavelength domain. The ef-

fective result is to substitute 3 for 5 in the equation for the peak frequency, i.e. 5(exλ − 1) = xλe
xλ ,

where xλ = hc/(λkT ). This solves with xλ = 4.96, yielding λmaxT = ch/(xνk) ' 2.90× 10−3 m K.

5. The total energy density in the blackbody radiation is

u =

∫ ∞
0

8πhc

λ5
dλ

1

ehc/λkT − 1
. (7)

Change the variable x = hc/λkT to obtain an integral of the form
∫

[x3(ex− 1)−1]dx, which can be

solved using the Riemann zeta function; we obatain

u =
8π5(kT )4

15(hc)3
= 7.56464× 10−15 (T/K)4 erg/cm3 . (8)

(Recall that 1 J ≡ 107 erg = 6.24 × 1018 eV.) We can easily interpret the Planck distribution in

terms of quanta of light or photons. Each photon has an energy Eγ = hc/λ. Hence the number

dnγ of photons per unit volume in blackbody radiation in a narrow range of wavelengths from λ to

λ+ dλ is

dnγ =
du

hc/λ
=

8π

λ4
dλ

1

ehc/λkT − 1
. (9)

Then the total number of photons per unit volume is

nγ =

∫ ∞
0

dnγ = 8π

(
kT

hc

)3 ∫ ∞
0

x2 dx

ex − 1
, (10)

where x = hc/(λkT ). The integral cannot be expressed in terms of elementary functions, but∫
[x2(ex − 1)−1]dx = Γ(3)ζ(3) ≈ 2.4. Therefore, the number photon density is

nγ = 60.42198

(
kT

hc

)3

= 20.28

(
T

K

)3

photons cm−3 ≈ 400 photons cm−3, (11)



and the average photon energy is

〈Eγ〉 = u/nγ = 3.73× 10−16 (T/K) erg . (12)

For a temperature of 2.726 K, the number density of CMB photons is ≈ 410 cm−3 and the typical

photon energy is ≈ 6 × 10−4 eV in agreement with the values adopted in exercise 8.9. (iii) Now,

let’s consider what happens to blackbody radiation in an expanding universe. Suppose the size of

the universe changes by a factor f , for example, if it doubles in size, then f = 2. As predicted

by the Doppler effect, the wavelengths will change in proportion to the size of the universe to a

new value λ′ = fλ. After the expansion, the energy density du′ in the new wavelength range λ′

to λ′ + dλ′ is less than the original energy density du in the old wavelength range λ+ dλ, for two

different reasons: (1) since the volume of the universe has increased by a factor of f3, as long as

no photons have been created or destroyed, the number of photons per unit volume has decreased

by a factor of 1/f3; (2) the energy of each photon is inversely proportional to its wavelength, and

therefore is decreased by a factor of 1/f . It follows that the energy density is decreased by an

overall factor 1/f3 × 1/f = 1/f4:

du′ =
1

f4
du =

8πhc

λ5f4
dλ

1

ehc/λkT − 1
. (13)

If we rewrite the previous equation in terms of the new wavelengths λ′, it becomes

du′ =
8πhc

λ′5
dλ′

1

ehcf/λ′kT − 1
, (14)

which is exactly the same as the old formula for du in terms of λ and dλ, except that T has been

replaced by a new temperature T ′ = T/f . Therefore, we conclude that freely expanding blackbody

radiation remains described by the Planck formula, but with a temperature that drops in inverse

proportion to the scale of expansion.


