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Warping Spacetime Metric Spaces

The hunter and the bear
A hunter is tracking a bear

Starting at his camp + he walks one mile due south

The bear changes direction and the hunter follows it due east

After one mile + the hunter loses the bear’s track

He turns north and walks for another mile
at which point he arrives back at his camp

What was the color of the bear?
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Warping Spacetime Metric Spaces

G This certainly does not work everywhere on Earth
but it does if you start at North pole

2/14/16, 7:36 AMDimensions and Distortions | World of Mathematics

Page 2 of 10http://world.mathigon.org/Dimensions_and_Distortions

All these things are based on that fact geometry works
differently in flat space than it does on curved surfaces like
a sphere. There are many other kinds of geometry, different
kinds of space, with different properties. In this article we
will explore a few of them.

Metric Spaces

One of the most fundamental concepts in geometry is that
of distance. Intuitively, the distance between two points is
the length of the straight line which connects them. There are no straight lines on the surface of a
sphere, but even on a flat surface we can find a number of different ways to define the meaning of
distance:

EUCLIDEAN METRIC
The most intuitive way to measure
distance is the straight line between

two points.

MANHATTAN METRIC
On the other hand, in some cities,
the distance between two points is
only measured along horizontal or

vertical lines, not directly.

BRITISH RAIL METRIC
In the UK, the distance, via rail,

between two distinct points always
has to go via London.

We can define the distance between two points in space, like above, but we can also define the
distance between other objects. For example, the distance between two images could tell you about
their similarity: if the images are similar their distance is small, and if they look very different their
distance is large. The distance between two human beings could tell you about how closely they are
related.

We need some more information to accurately describe these two new “distance functions”, but there
are three properties which all distance functions must have in common:

The distance between a point and itself is zero, and the distance between two distinct points is
never zero.

G Therefore + color of bear has to be white
G Surprisingly + sum of all three angles is greater than 180◦

G This implies space is curved
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Warping Spacetime Metric Spaces

To understand the idea of curved metric space
we’ll simplify discussion considering only 2-dimensional surfaces
Parameterization of surface maps points (u, v) in domain

to points~σ(u, v) in space

~σ(u, v) =

 x(u, v)
y(u, v)
z(u, v)

 (1)

First derivatives +~σu(u, v) and~σv(u, v)
span tangent plane to surface at point~σ(u, v)

Surface normal n̂ at point~σ

n̂(~σ) =
~σu ×~σv

||~σu ×~σv||
(2)

Tangent vectors and surface normal
define orthogonal coordinate system at point~σ(u, v)
which is framework for describing local shape of surface

L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 3-1-2016 6 / 24



Warping Spacetime Metric Spaces

First fundamental form

I ≡ ds2 = d~σ · d~σ = (~σudu +~σvdv) · (~σudu +~σvdv)
= (~σu ·~σu)du2 + 2(~σu ·~σv)dudv + (~σv ·~σv)dv2

= Edu2 + 2Fdudv + Gdv2 (3)

+ distance of neighboring points on surface
with parameters (u, v) and (u + du, v + dv)

Area bounded by vertices
~σ(u, v),~σ(u + δu, v),~σ(u, v + δv),~σ(u + δu, v + δv)

δA = |~σu δu×~σv δv| =
√

EG− F2 δu δv (4)

In differential form

dA =
√

EG− F2 du dv (5)

Expression under square root +|~σu ×~σv|
and so it is strictly positive at regular points
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Warping Spacetime Metric Spaces

Gaussian curvature
At any point on~σ we can find n̂
Planes containing normal vector are called normal planes
Intersection of normal plane and~σ forms curve + normal section
Curvature of normal section + normal curvature
For most points on most surfaces

different sections will have different curvatures
Maximum (κ2) and minimum (κ1) values + principal curvatures
Gaussian curvature + K = κ1κ2

E.g. +

(Henderson, 1998). At each grid point where these values are
known two matrices are created, the matrix of the first funda-
mental form:

I¼
!

E F
F G

"
ð8Þ

and the matrix of the second fundamental form:

II¼
!

L M
M N

"
ð9Þ

From these the so-called shape operator may be calculated:

L¼ I$1II ð10Þ

where I$1 is the inverse of the matrix I.
The magnitudes of the principle curvatures at the given

point are the eigenvalues of L while the orientations of the
principle curvatures in the parameter plane are the associated
eigenvectors of L. The author’s MATLAB codes for the calcu-
lations in this paper are available at: http://pangea.stanford.
edu/projects/structural_geology/chapters/chapter03/index.html.

In the case of the half-cylinder kmax is the reciprocal of the
radius R of the cylinder (Fig. 1), and in general the radius of
curvature and scalar curvature are related as R ¼ 1=k.

The radius of curvature is an insightful measure of the cur-
vature of a surface in a particular direction. While the radius of
curvature has units of length (m), the units of curvature are
inverse length (m$1). For the rest of this paper, measurements
of curvature are given first followed by the associated radius of
curvature in parentheses. Because such distinctions are useful
in a geologic context, convex upward surfaces have arbitrarily
been assigned positive curvature values and concave upward
surfaces are assigned negative values.

2.3. Geologic curvature and the curvature threshold

One measure of curvature already used to some extent in
geologic applications (Lisle, 1994; Bergbauer, 2002; Mallet,
2002) is the Gaussian curvature kG ¼ kminkmax. If the Gaussian
curvature equals zero at a point, then at least one of the prin-
cipal curvatures must be zero. If only one principal curvature
is zero, the surface locally is cylindrically shaped and is either
synformal or antiformal. If both principal curvatures are zero,
the surface is locally planar. If kG < 0, then the signs of the

two principal curvatures are opposite, and the surface locally
forms a saddle. If kG > 0, then the two principal curvatures
have the same sign and the surface at this point will have a lo-
cal extremum, making it either a dome or basin.

In a geologic context, it is often important to indicate the ori-
entation of a structure, e.g. basin versus dome. We therefore in-
troduce the concept of geologic curvature, which expands upon
the classification schemes of Roberts (2001) and Bergbauer
(2002) by including variously oriented saddles as suggested
by Lisle (2004, figure 3.17). The orientation of a point can be de-
termined using the mean curvature, kM ¼ ðkmin þ kmaxÞ=2. By
defining the Gaussian and mean curvatures at a point on
a surface, the shape and orientation can be described (Lisle
and Toimil, unpublished). Fig. 2 shows the geologic curvature
classification scheme for points on a surface as a function of the
mean and Gaussian curvature. For the half-cylinder (Fig. 1) the
Gaussian and mean curvatures are kG ¼ ð0Þð1=RÞ ¼ 0 and kM ¼
ð1=2Þð0þ 1=RÞ > 0. Using the geologic curvature classifica-
tion, the half-cylinder is an antiform. This scheme is congruous
with and complementary to the more mathematically oriented
one presented by Lisle and Toimil (unpublished), wherein the
domes and basins of Fig. 2 are classified as synclastic antiforms
and synforms respectively and the antiformal and synformal
saddles are classified as anticlastic antiforms and synforms
respectively.

The geologic curvature classification differs from that of
Lisle and Toimil (unpublished) by including idealized forms,
such as the cylindrical antiform and synform, the plane and the
perfect saddle (Fig. 2). These shapes are in fact non-existent
in geologic data sets, as they require at least one principal
curvature to precisely equal zero. Measurement error and the
inherent irregularity of geologic surfaces preclude this possi-
bility, although geologists often approximate folds as cylindri-
cal to simplify description and analysis, knowing such perfect
shapes do not exist. However, it is useful to approximate some
geologic surfaces as idealized, or to quantify how far a geo-
logic surface is from the ideal.

To allow for and quantify these approximations we utilize the
curvature threshold, kt, introduced by Bergbauer (2002). This
threshold specifies an absolute curvature value below which cal-
culated principal curvatures of either sign are set to zero, thereby
allowing the classification of ‘‘idealized’’ shapes. A 2-D demon-
stration of this process is shown for the example of the parabola
y ¼ x2 with arbitrary units of meters (Fig. 3). As x goes to infin-
ity, so do y and the radius of curvature R, making k¼$1=R go to
0 (note the curvature is negative).

Fig. 1. Half-cylinder of radius R. The scalar curvature values at a point on the surface are shown for various directions.

1258 I. Mynatt et al. / Journal of Structural Geology 29 (2007) 1256e1266

1 = 0

2 = 1/R
1 <  < 2
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Warping Spacetime Metric Spaces

Second fundamental form

II = (~σuu · n̂) du2 + 2(~σuv · n̂) dudv + (~σvv · n̂) dv2

= e du2 + 2 f du dv + g dv2 (6)

K + calculated using first and second fundamental coefficients
At each grid point + 2 matrices are defined
Matrix of first fundamental form

I =
(

E F
F G

)
(7)

Matrix of second fundamental form

II =
(

e f
f g

)
(8)

Gaussian curvature
K =

det II
det I

(9)
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Warping Spacetime Metric Spaces

Geometry classification according to Gaussian curvature
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Warping Spacetime Metric Spaces

Gedesic + curve γ(t) on surface~σ(u, v)
for which at every point γ̈(t) is either 0 or ‖ to n̂

Straight line distances are not shortest route on Earth
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Warping Spacetime Metric Spaces

Ricci sacalar
Scalar curvature R

simplest curvature invariant of n-dimensional hypersurface

To each point on hypersurface
assigns number determined by intrinsic geometry near that point

R measures degree to which given metric
might differ from that of ordinary Euclidean n-space

In two dimensions + R = 2K
and completely characterizes curvature of surface

In more than two dimensions + curvature of hypersurfaces
involves more than one functionally independent quantity
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Warping Spacetime Schwarzschild metric

Consider freely falling spacecraft in gravitational field
of radially symmetric mass distribution with total mass M

Because spacecraft is freely falling
no effects of gravity are felt inside

Spacetime coordinates from r → ∞ + valid inside spacecraft
~Σ∞(t∞, x∞, y∞, z∞) + x∞ ‖ to movement & y∞, z∞ ⊥ to movement

Spacecraft has velocity v at the distance r from mass M
measured in system ~Σ = (r, θ, φ, t) with mass M at rest @ r = 0

As long as the gravitational field is weak
to first order approximation laws of special relativity hold

Lorentz transformation relates ~Σ @ rest and ~Σ∞ moving with β
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Warping Spacetime Schwarzschild metric

We’ll define shortly what “weak” means in this context
For the moment + assume effects of gravity are small→ v� c
If this were case

dt∞ = dt
√

1− β2

dx∞ =
dr√

1− β2

dy∞ = rdθ

dz∞ = r sin θdφ (10)

Infinitesimal distance between two spacetime events

ds2 = gµνdxµdxν = c2dt2
∞ − dx2

∞ − dy2
∞ − dz2

∞ (11)

for case at hand

ds2 = (1− β2)c2dt2 − dr2

1− β2 + r2(dθ2 + sin2 dφ2) (12)
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Warping Spacetime Schwarzschild metric

Consider energy of spacecraft with rest mass m

(γ− 1)mc2 − GγmM
r

= 0 (13)

Dividing by γmc2 (
1− 1

γ

)
− GM

rc2 = 0 (14)

Introducing α = GM/c2 √
1− β2 = 1− α

r
(15)

yielding

1− β2 = 1− 2α

r
+

α2

r2 ≈ 1− 2α

r
(16)

Schwarzschild line element

ds2 =

(
1− 2α

r

)
c2dt2 −

(
1− 2α

r

)−1

dr2 − r2dΩ2 (17)
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Warping Spacetime Schwarzschild metric

ds2 + time and spatial distance between two spacetime events
t measured by observer in instantaneous rest frame + dτ = ds/c
∆t between two events at same point + dxi = 0
Consider two static observers at position r and r′ in Sch. metric
then + dr = dφ = dθ = 0

dτ(r)
dτ(r′)

=

√
g00(r)dt√
g00(r′)dt

=

√
g00(r)
g00(r′)

(18)

Time intervals dτ(r′) and dτ(r) are different
time measured by clocks at different r from M will differ too

In particular + time τ∞ measured by observer at infinity
will pass faster than time experienced in gravitational field

τ∞ =
τ(r)√

1− 2α/r
< τ(r) (19)
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Warping Spacetime Schwarzschild metric

Gravitational redshift
Since frequencies are inversely proportional to time

frequency of photon traveling from r to r′

will be affected by gravitational field

ν(r′)
ν(r)

=

√
1− 2α/r
1− 2αr′

(20)

Observer @ r′ → ∞ will receive photons emitted @ r with ν

ν∞ =

√
1− 2GM

rc2 ν(r) (21)

Photon frequency is redshifted by gravitational field

Size of effect is of order Φ/c2

Φ = −GM/r + Newtonian gravitational potential

Weak gravitational field + As long as |Φ|/c2 � 1 deviation of

g00 = 1− 2GM
rc2 ≈ 1− 2

Φ(r)
c2 (22)

from g00 = 1 of Minkowski spacetime is small
and Newtonian gravity is sufficient approximation
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Warping Spacetime Schwarzschild metric

Event horizon
What is the meaning of r = RSch = 2α?
At

RSch =
2GM

c2 = 3 km
M

M�
(23)

Schwarschild oordinate system becomes ill-defined
Apparent singularity

physical quantities like tidal forces doesn’t become infinite
Whether or not singularity is moved to origin

only depends on coordinate frame used
and has no physical significance whatsoever

If gravitating mass is concentrated inside radius smaller than RSch
we can’t obtain any information about what is going on inside RSch

r = RSch + defines event horizon
Black hole + object smaller than its Schwarzschild radius

object that has “cut itself off” from rest of universe
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Warping Spacetime Schwarzschild metric

Light rays are characterized by ds2 = 0

Consider light ray traveling in radial direction + dφ = dθ = 0

dr
dt

=

(
1− 2α

r

)
c (24)

As seen from far away + light ray approaching a massive star
will travel slower and slower as it comes closer to RSch

For observer at infinity
signal will reach r = RSch only asymptotically for t→ ∞

Factors (1− 2α/r) in line element control bending of light
phenomenon known as gravitational lensing

First observation of light deflection
change in position of stars as they passed near the Sun

Observations performed in May 1919 during total solar eclipse
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Warping Spacetime Schwarzschild metric

Animated simulation of gravitational lensing caused by a black hole
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Warping Spacetime Eddington luminosity and black hole growth

Binary X-ray sources + places to find black hole candidates
Companion star + source of infalling material for black hole
As matter falls or is pulled towards black hole
it gains kinetic energy, heats up, and is squeezed by tidal forces
Heating ionizes atoms + atoms emit X-rays when T > 106 K
X-rays are sent off into space before the matter crosses RSch
Then + we can see this X-ray emission
Cygnus X-1 first black hole candidate
There is natural limit to luminosity L

that can be radiated by compact object of mass M
Limit arises because both:

(i) attractive gravitational force acting on an electron-ion pair
(ii) repulsive force due to radiation pressure

decrease inversely with square of distance from black hole
When luminosity exceeds Eddington limit

LEdd = 30, 000(M/M�)L� (25)

gas will be blown away by radiation
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Warping Spacetime Eddington luminosity and black hole growth

Active galactic nuclei

AGNs are galaxies that harbor compact masses at center
exhibiting intense non-thermal emission that is often variable

which indicates small sizes (light months to light years)

Under favorable conditions
accretion leads to formation of highly relativistic collimated jet

Formation of the jet is not well constrained + overall:

magnetic-field-dominated near central engine
particle dominated beyond pc distances

AGN taxonomy + controlled by
dichotomy between radio-quiet and radio-loud classes
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Warping Spacetime Eddington luminosity and black hole growth

AGN taxonomy

1.1. QUASARS, AGN AND BLAZARS 27

added: a dusty torus or a wrapped disk obscuring the light of type 2
objects.

The unification scheme that has emerged combining these ingredi-
ents (black hole, disk, jet, torus and clouds) is usually attributed to
Antonucci (1993) and Urry & Padovani (1995). As shown in Fig. 6, it
is based on orientation effects compared to the line of sight.

Figure 6. Unification scheme of AGN. The acronyms
for the different sub-classes of AGN are given in Fig. 2.
Adapted from Urry & Padovani (1995) .
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Warping Spacetime Maximal extension of Schwarzschild metric

Kruskal coordinates

Elegant coordinate substitution + xy =
( r

2M − 1
)

er/(2M) and x/y = et/(2M)

Schwarzschild line element becomes

ds2 = −16M2
(

1− 2M
r

)
dx
x

dy
y
− r2dΩ2 = −32M3

r
e−r/(2M) dx dy− r2dΩ2

Zero and pole at r = 2M have cancelled out

0 2M

t

r

ho
riz

on

y

xxy  = −1

fut
ure

 ho
riz

on

past horizon

xy = −1

ΙΙ

Ι
0

b)a)

Figure 2: a ) The black hole in the Schwarzschild coordinates r, t . The horizon
is at r = 2M . b ) Kruskal-Szekeres coordinates; here, the coordinates of the
horizon are at x = 0 and at y = 0 . The orientation of the local lightcones is
indicated. Thin red lines are the time = Constant limes in the physical part
of space-time.

(6.3) and is regular in the entire region x y > °1 . In particular, nothing special seems to
happen on the two lines x = 0 and y = 0 . Apparently, there is no physical singularity
or curvature singularity at r ! 2M . We do notice that the line x = 0, µ and ' both
constant, is lightlike, since two neighboring points on that line obey dx = dµ = d' = 0 ,
and this implies that ds = 0 , regardless the value of dy . similarly, the line y = 0 is
lightlike. Indeed, we can also read oÆ from the original expression (6.1) that if r = 2M ,
the lines with constant µ and ' are lightlike, as ds = 0 regardless the value of dt .
The line y = 0 is called the future horizon and the line x = 0 is the past horizon (see
Section 10).

An other important thing to observe is that Eq. (6.4) attaches a real value for the
time t when x and y both have the same sign, such as is the case in the region marked
I in Fig. 2 b , but if x y < 0 , as in region II , the coordinate t gets an imaginary part.
This means that region II is not part of our universe. Actually, t does not serve as a
time coordinate there, but as a space coordinate, since there, dt2 enters with a positive
sign in the metric (6.1). r is then the time coordinate.

Even if we restrict ourselves to the regions where t is real, we find that, in general,
every point (r, t) in the physical region of space-time is mapped onto two points in the
(x, y) plane: the points (x, y) and (°x,°y) are mapped onto the same point (r, r) . This
leads to the picture of a black hole being a wormhole connecting our universe to another
universe, or perhaps another region of the space-time of our universe. However, there are
no timelike or light like paths connecting these two universes. If this is a wormhole at all,
it is a purely spacelike one.

12
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