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Fourier Analysis
Cownsider Sturm-Licuville eigenvalue probiem L="—d* / dz? el
f(=m)=0 and f(r)=0 (3.4.316.)

eigenfunctions are = b, sin(nz) with n € Z
Sturm-Liocuville Eheorem states )

4 f(x) is of class C?[—m, 7] and satisfies (3.4.316.)

it can be expanded in a convergent series

flale— Z b, sin(nx)

U we replace boundary conditions w fi(—=m) and f'(7m)=0

We are now speaking of quite a different Sturm-Liocuville system

Un this space eigenfunctions are m a, cos(nz) with n € Z

flzre= % + Z ay, cos(nx)
n=1
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Fourter series
Central idea of todays class

investigate to what extent it is possible

to expand 1 (:1:) §§ CQ[—W, 7T] i an infinite series

5 @0 + Z[an cos(nx) + b, sin(nx)] (3.4.319.)

n=1

1sk order of business is ko determine coefficients Gn and by

ov\bj then will we deal with convergence issues
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Definibion 3.4.1.
Assuming expansion (3.4.319.) holds we can determine Gp and b,

using orthogonality (and norm) of sin(nx) and cos(nx)

integrating on both sides of (3.4.319.) over |—T,7T| we obtain

fifmiedr = Tag (3.4.320.)

ao 1 i
note that 5 = / (517) dx (3.4.321.)

T
is average value of f(Z) i the inkerval [—7T, 7|
To calculate A with n £ 0

mulkiply both sides of (3.4.319) by cos(kw),k # 0 and integrate

s |
ap, = — f(z) cos(kz) de, withk=0,1,2,3,...,00 {(34.322)
T

Similarly = mulkiplying b? sin(kz) and inkegrating
]_ {15

b, = — f(z) sin(ka) diemailit k= 1y 2.8, ¢, .00 {3.4.323.)
7T S [
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Coefficients so determined are called Fourier coefficients

Associlaked Fouriler series is glven bj

jileas — %/_ fier) da?—l—%Z/_ dx' f(x") [cos(nx) cos(nx')
ot (3.4.324.)

+  sin(nz) sin(nx’)]
which can be written in a more compact form as

@ =+ el @) el -] Gwme

The interval [—77, 7T] was chosen rather arbi&mribj

Llaker o w we will consider obther nkervals
Ccrottarv 3.4.1.

: e - :
Since cos(nz) (eml‘ sy Ry ) we can rewrite (3.4.319.)

i SIGITE) = o 5 S i
% m OS5 Q power series in €
flz) =co + g cne’" e el = ﬂ}l_rgo E caet™ (3.4.326.)
=il nN—-—11

1 i} 3 .
with ¢, = ¢ = — (@il —/ ke e (3.4.327.)
2 o e
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Definition 3.4.2.
f(x) is said to be plecewise continuous o an interval a, b]
U ik s defined and continuous
except possibly at a finite number of points Ty
such that at each point of discontinuity left- and right-hand Limiks
flap) = lim f(2), flaf)= lim f(a) (3425

T—X, . 4 e 54 5
k extisk k

At endpoints a,b only require Limits fa™) and f (b7) to exist

Note that we do ot require that f(x)be defined at
Even if f(xy) ts defined
it does not necessarily equal either left- or right-hand Limit

A function (1) defined for all © € R s plecewise continuous
Frc}vided ik s plecewise continuous on every bounded inkerval

Points Tk are khowh as jump discontinuities of f(z)

difference between + and - Limits is magnitude of jump
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Definition 3.4.3.
A “f uhction f(z)is called Faie«cewise (e Lon an tnkerval [CL, b]
if ik is defined continuous and continuously differentiable
except possibly ot a finite number of points 1y
such that at each exceptional point left- and right-hand Limits

Fr ) = Nim sil@), f(x:)— hm f( 1

fllzg) = lim fi(z), fi=7)= hm f'(z)

x—)x; exisk x—)a:k
ak endyaih&s we cmtv require appropria&e one-sided Limiks Fo exisk

fa™), f(omf (a Tl {6)

For a plecewise continuous 1 function
an excep&ianat F’OEV\E Lk ts either:

(L) a jump discontinuily of f

but where left- and right-hand derivatives exisk

(it) a corner

meaining a point where f is continuous m so J (Zp) = f (xl:_)

but has different Left- and right-hand derivatives f'(z, ) # f /(QSZ)
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Lemma 3.4.1. [Riemann-Lebesque lemma]

if g(iE) is plecewise continuous i interval [a, b]
b

then lim g(x) sin(sx + a) de =0 (3.4.329.)
Proof. n e

1f g(z) € C*([a,b]) = then integration by parts leads to

/a " o(e) SR 1 o) / e d‘i [COS(S“O‘)] e

cos(sx + ) :

— gl

which qoes to zero as § — OO

same reasoning is valid U g (33) s diftferentiable

except perhaps at a finite number of points in interval

where one-sided directional derivatives must exist and be finite
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Next m we discuss case in which ¢(2) is continuous in [a, b]
Consider a partition of closed interval [a,b], 29 = a,21,...,2, = b
with Ti —Ti—1 = (b—a)/n

It follows that ;

/ab g(x)sin(sx + ) dx

| cos(sz; + ar) — cos(sx;_1 + )|

S

(3.4.330)
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M is maxinmum value of J in |a, D]

where 4 m; is maximum value of \g(x) e g(iL‘z)\ th [5137;—17 337,]

M, is maximum value of m;
Wikh Ehis in mind,

b
lim / glz) sinfsw) dr| < MED — a) 5 (34,3208

S— OO

Note thatlim M, =0 w because § is continuous and so
Vi R A® 3]

M, can be as small as desired by increasing n

Same applies U we replace sin(sx + «) b:j COS(Sx = Oz)
This proves lemma even U g (CU) is not differentiable ot ahy point

£ g is plecewise continuous
we can separa&e Jump c&i,s«cm\&nui&-j paim&s L
Te+E€E

through integrals of form / g(x)sin(sz + a)dz
Ty
which g0 to zero for € — () » because J is bounded

We repeat previous reasoning in remaining intervals where 9
s continuous
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Definibion 3.4.3, ++
A function is said to have period 2L if f(x +2L) = f(x) Vo
For notational simplicity

we shall restrict our discussion to functions of period 27
There is no loss of generalilty in doing so
since we can always use a simple change of scale T = Ly/m

to convert a function of period 2L into one of period 2m
the rescaled function F (y§ = f(Ly/7) Llives on |—m, 7]
Theorem 3.4.1, [Fourier convergence theorem]

1f f (33) s aly 27T Fvermda‘: p&e«cemise C : function

then w for any = € R iks Fourier series converqges to:

g if f is continuous at x
1 i & . o 4 ; e (3.4.330.)
ARG if x is a jump discontinuity
Fourier series converqes to f(x) at all Poim&s of con&:‘,hu&j
At discontinuities m Fourier series cannot decide

whether to converge to right- or left-hand Limit

and so ends up splitting difference by converging to their average
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Prooft.

Part i Let f(z) be a differentiable function (therefore continuocus)
n interval |a, D]

We will show Ehat identity (3.4.325.) is valid V@ € (—, )

If in addition = f(—7) =

we will show that series converges to f (aj) i [—7T i1 ]

n -th partial sum 0{ (3.4.326.) is given bj

Sp (9 1ao + Z Ay, cOS(M) + by sin(ma)

Tuesday, April 21, 15



We multiply both sides of (3.4.332.) by sin(s/2)

and use relation 2sina cos f = sin(a + B) + sin(a — ) to obtain
sin (g) Kols)h= {sm % +Z Sm k+ —Sin[(k— %) s]}

ohe recognizes a telescopic sum
: 1
= all terms except sin (n+3)s] cancel

sin | {4 5 8] (3.4.333.)

Therefore m K, (5) = Zain (5/9)

Note that I (k7)) = lim K,(s)=n+1 fez (34.334)

s— 2k

ik is easily seen from sum of cosines that defines Kn(S) that )

T

Kpt—z)dt=m (3.4.335.)

=7
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Therefore m by adding and subtracting f(7) to (3.4.331.) we have
1 T
Su@) = f@+ [ ) - f@) Kalt-2)dt (34336

= . flalb = /_7T QSﬁilt[)(t_—fg(;)?Q] sin [(n+ 3) (t —z)| dt

For { 7 T wm the fu,hc?:ic;h ) F0) = flz)
9= o) o

is conbkinuous Vit € [_777 77]

(3.4.337.)

Since f(z) € CH[—T, 7] we have

f(t[>(t_—f§)? o ol

deolgil:

and so integral in (3.4.336.) vanishes for 1 — o0

yielding lim~8,(x) = fle e e (—mmn) (3.4.2329.)

n—oo
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1f v = &7 w the denominator of ¢ (1) is canceled
for both t > T and t — —7

However m f T = 7, K, (t — ) is an even function of t

sin [ (n+ 3) (tF
2sin|(t F )

sin | (n+ 3) (—
2 sin|(—t -

SIN [(n T %) —t F
2 sin|(—t 3

K (t a5

0 s
Thus K,(t—x) dt = / Kp(t—z)di =37 (34.341)
0

TRl
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For © = =7 we can bhen write

Flm) + fem, 1 (7T A
2 Tl o g R (0 - Mo et

1 el ) i Rl
7w J_. 2sin|[(t — x)/2] [( +2)(t )] dt

(3.4.342)

ks )

wibh e 2l

t—+n 2sin[(t — x)/2] =[S (3.4.343.)

Applying Riemann-Lebesque lemma to (3.4.342.) we obtain

lim S, (47) = fm+ 7T (aazaad

n— 00 2

which gives desired resultk w E:f f( ) — f (—W)
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Part II Let f(x) be a 27 periodic plecewise C k function

We will show that (3.4.330.) holds for any = € R
If T is o point of differentiability of function f
we repeat previous reasoning
I{ L L8 corner = {u,hc?:i,on g(t) as glven in (&%331.)
is continuocus for T # T mw and remains bounded for ¢t —
satisfying hypotheses of Riemann-Lebesque lemma
Therefore m Fourier series also converges to f
1f function f has a jump at point z
we caih use (3.3.341.) and 27 periodicity of kernel K, to write
5. - L@ 2 ke i) - £ a

1 T+

T Bl = ey )] dt

By a similar argument to one used in case
for which T is a point of differentiability of function f

we obkain desired oubtcome m Ehab is nh_{lgo Sl = 5 [f(@™) + f(a7)]
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Definition 3.4.8.

Most familiar convergence mechanism for sequence of functions S, (z)
Ls Foih&wise converqgence,

This requires that functions' values ot each individual point
converge in usual sense:

I 2 @808 ) = f () Ve € I € Re

n—=00

Pointwise convergence requires that for every e > () and every I € 1

there exists an integer IV depending on € and T such that
Sn(z) = f@)| <eVn =N

Pointwise convergence can be viewed as the function space version
of the convergence of the components of a vector
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Definition 3.4.6.
A sktronger mode of convergence
s defined bj demanding all points
to approach at more or less same rate to Limit function
More precisely m a sequence of functions S (7)

s said to converge u,hi,aformtv to a function f (:C) o a subset [ C R
U for any € > 0
there exists an integer [V —- depending solely on €-- such that

1Sp(x) — f(z)|<e VxelandVn> N (3.4.34%.)

Uniformly convergent sequence of functions converges pointwise

but converse does not hold

Key difference and reason for term uniform converqence

is that integer N defaev\ds ombj upon € and nobk on Fm»im& rel
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According to (3.4.34%.) the sequence converges uniformly
if and only if for any small €
graphs of functions eventually lie inside a band of widkth 2¢

centered around graph of Limiting function

non-uniform

A key feature of uniform convergence is that it preserves continuity
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Theorem 3.4.2.
1f each 5, (2)is continuous and S, () — f(2) converges uniformly

then f (l‘) s also a continuous function
Proof.

The proof is by reductio ad absurdum

Intuitively w if [(2) were to have a discontinuity

then a sufficiently small band around its graph
would ot connect together

and this prevents the connected graph of any continuous function
such as S, (1)

from remaining entirely within the band

Uniform convergence demands

all points to behave similarly in thelr approaching Limit

Therefore w it respects continuily and integration

but that mode of convergence is —— as e.xper:&eci -— not easy to get
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For a nhormed veckor space

ohe might instead consider an error of form

lim (|, (x) — f(z)]| 0 (3:4.349)

This last one seems to be one of the best ways

of wmeasuring error in case of Fourier series

For finite-dimensional vector spaces such as R”

convergence in horm is equivalent to ordinary convergence

On infinite-dimensional function spaces

convergence in norm differs from pointwise convergence

For instance m it is possible to construct a sequence of functions

that converges in norm but does notb colhverge Poinﬁwise ahvwhe_r@.

(We'll see this is the case in Example 3.4.3.)
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Exampte_ 3.4.1.

For f(x) =2 with T € [—m, 7|

we obkain

T

an =0Vn  and —/ rsin(nx) dx

TR

n

Tkerenfc)re Bi=t Z(_l)n—l—l Slﬂ(nCE’)
n=1

As T — LT series converqges to

1
2

Series converges bto 2T periodic extension

f(x) = o — 2ng | 0k L0+ SR R IS ST

and is discontinuocus ab * = 7+ 2nn
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Exampi.e 342,

For f(x) = 2

Ccos n:z:)

Therefore w 12 = — —|— 4 Z 1%

x| <7

Fourier expansion also converges at = +7 because f(m)
For =0 and T =T Fourier expansion leads to
S (_1)n—|—1

T
Thssl
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Exampte_ 3.4 .3,

(2a) 1 if |z| < G-
0 if, || =

we obtain b, = 0, a, = sin(na)/(nma) ¥ 1> 1 and g =1/

1 = sin(na)
Therefore m f(2) = ") Z posnr) |, el < 7w

For T = da series converges to (4@)

I a—=0 the f(2) = 0(T) with

1 i .
5 T Zcos(na:) —5 nlggo R S AR s
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We had to truncate last two graphs; spikes extend beyond the top
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Series does not cohverge pointwise
but it converges as a distribution ko 0(x) for |x| < 7
Indeed m 7-th partial sum

1 & . - shl[(TL—%-%):E]
& B nz_:l COS(M)_ ~  2rsin(z/2)

satisfies / Spleisde =, V8
B and

=  f(0)+ lim [r f(sfgl(;

s OO

f(0)
/2)
= f(0) V | test functions

Actually = Fourier series converges to

27 periodic extension of original function
3 i g
Jm 3 o= anm = |54 3 eosfne)| = fim 5o 3 e

0 == N n=-—m

sin [(n + %) :C} dx

consisting of a periodic array of delka spikes
concentrated at all integer multiples of 2
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Exampt@_ 344,

~or

- { e

1
we obtain b, = / o) sintamolidr — 0
i

1
: e R () ' odd
and  a, = /_1 FLEl cosinry) dr.= { 0 e

1

n-th partial sum reads Sn(T) = 50 i Z am COS(MTT)

=1

1

i5.c)/ds = 8= A L) R

Near jumps there should be a consistent overshoot of about 9%

So-called Gribbs overshoob is a mqn&fes&a&iav\

of subtle non-uniform converqgence of Fourier series
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Definition 3.49.
Consider complex form of Fourier series of [f(z):[-L,L] =+ R

oo

. e |
Z c, eznwm/L’ C,, = E[L f(x>€—zn7m:/L dx

=00
We can rewrite this series as

f(x) N e A (3.4.370.)
k
where k =nn/L, Ak =n/L

T, s L e 1 - tkx
and & F(E} = o /_ ; Jretide | (3.4.373.)

Leb us now consider Limik L — o0
In such a case AL — () while (3.4.370.) and (3.4.373.)

il i /OO e " (3.4.375.)

appraaah o 2T

f(:v)z\/%—w / Flk) e di R

assuming that both integrals converqge
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AN

f:R — R Fourier transform of function f(f: R — R)

Fourier transform operator f(k’) B ()]

maps each (sufficiently nice) function of spatial variable T

to a function of frequency variable k

Expression which retrieves [ from f

is inverse of Fourier transform operator f(z) = F ! {

F & F~! are generalization of Fourier series

for functions | defined on  (—oo0, )

a2 s square-integrable
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Before proceeding we show validiby of (3.4.378.) and (3.4.379.)

for functions [ which are plecewise ( Land sa&is{!j / e | flx)|dx < o0

=S

Proof is very similar to one carried out for Fourier series

(3.4.378) and (3.4.379.) entail

f@= | &, [ / T eike—2) dk] f(') da’

@) 27T T30 OO

so whalt must be shownn is thak

oo ©.©)

o Bl I 6(x — ') N‘/

g 00

{ 1 ezrt_e

S
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ne= Integrate[ (Sin[x]) / x, x]

oufsl- SinIntegral [x]

nf1:= Plot[SinIntegral([x], {x, -8, 8}]

2

Out[11]=

-2

iz~ Plot[SinIntegral[x], {x, -100000000, 100000 000}]

15F

1.0

Out[12]= I
-1x108

35



Therefore :

f(z)

sin [r(

m(x —x')

sin(rt)

For T — OO second berm cancels

because [f(ﬂf 13 t) S f(x)]/t remains bounded for t — ()
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Equation (3.4.3%2.) also implies

& T 0 ol
/ P (T) pr(T) do = — e F=F) dg = §(k — k') (34.3%6.)

e i S

5 :
indicating that functions ¥k (2] — 8 2 cieTthogoisal iwith

9

wikh raspeﬁf: to ner produ,t:?: <U,U> s / U*(f) U(l’) dx

= (XY

and are normalized wikh respect to variable

Note that convergence of integrals (3.4.3%2.) and (3.4.3%6.)

should be understood as diskribuktions
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Example 3.4.8.
Fourier transform of rectangular pulse,

1 S L <. @
Oz +a)—06(z—a) = { 0 | > a (3.4.3%9.)

(ak.a. box function of width 2a) is easily computed

f(k) /. 1 /a’ Wiy o plas e._’”m e \/?sin(ak)
P hrk V 2Tk T e ke (3.4.390)

Reconstruction of pulse via tnverse transform (3.4.379.) tells us that

£ | —a<x<a

/ i Sllcn(a ) dk=1{ 1/2 1=+a (3.4.391.)
T o 0 ‘ZC‘ =

N

Note convergence to middle of Jump discontinuities at = = S5
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Real part of this complex integral
Pradwt:e_s a striking trigonometbric integral E,dehfzi,&j

1 —a < x<a
dk = 1/2 T o=t
0 x| > a

> cos(kx) sin(ak)

k

- X8

identity resulting from imaginary part

> sin(kz) sin(ak)

k

G —9

nok sur[ﬁrisms because imﬁegrahd s odd
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Non-uniform convergence of the integral
leads to appearance of a Gibbs phenomenon ot two discontinuities
similar to the non-uniform convergence of a Fourier series

Since we are dealing with an infinite integral

must breale off numerical integrator restricting it to a finite interval
Left graph is obtained b:j integrating from —5 < k£ <5

Right graph is obtained by integrating from —10 <k <10
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