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Provisional Course Qutline
(Please note this may be revised during the course

to match coverage of material during lectures, ete.)
1st weelk - AV\QLUELC Functions
2rd week - Integration i the Complex Plane
3rd week - Isolated Singularities and Residues
4th week - Elements of Linear Algebra
Sth weelk - Initial Value Problem (Picard’s Theorem)
&bh weele = Initial Value Problem (Green Makbrix)
7th weelk - Boundary Value Problem (Sturm-Licuville Operator)

¥th week - Boundary Value Problem (Special Functions)

oth week - Fourier Series and Fourier Transform

10th week - Hyperbolic Partial Differential Equation (Wave equation)

11th week - Parabolic Partial Differential Equation (Diffusion equation)
12kh week - Elliptic Partial Differential Equation (Laplace equation)

Mmidterm-exams (October &, November 7, December 12)

Final-exam (December 19 —- 3:48 pm to §:45 pm)
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CORMPLEX ANALYSIS |

1.1 COMPL&X Atgﬁbra

1.2 Functions of a Complex Variable

1.3 Cauckv’s Theorem and iks APPLLCQELOMS

14 Isolated Sinqularities and Residues

HEY, YOU GUYS WANT TO
MEET MY NEW
FRIEND?

SURE. BUT WHERE IS HE?

HE’S RIGHT HERE!
/
- e s

WHY CAN'T ANYONE
ELSE SEE YOU?

BEATS ME.
~
@
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Comptex Atgebr&

Real number system is adequate for solving many mathematical
and physical problems

Ik is hecessary o extend such a s'js&em ko solve equa&inm

:132 + 1 = 0 because when we square a real number
wWe ge& a hov\negaﬁiva number

Definibion 1.1.1.

We define i to be imaginary number equal to square root of —1
That is § = V=1 m which implies e |

Proposition 1.1.1.

We can combine bthe sebk real numbers R

with this new imaginary number

to form set complex numbers C
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Definition 1.1.2.

A complex humber 2 is an ordered pair (Z,9) withz € R,y € R
T is colled real part of 2 w x = Re

Y is called imaginary part of 2 w y = JMm 2

Geometric representation of 2 as a point in complex plane

Herein C denoctes set of all complex numbers

C={z:z=zx+wy,xeR,y e R}
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‘?ragosi&icm 5 15

Addition and subtraction is defined exactly as in R?

for axampi.e w f 21 =21 Y1 and 2o = X2 + 12
then we define 21 + 20 = (21 + x2) + 1(y1 + y2)

Multiplication makes C different from R?
We define
2122 = (21 + i1 ) (@2 + iy2) = (2122 — Y1y2) + i(T1y2 + T2y1)
We can define division of complex numbers
U 29 %~ 0 then we define
1 A REoNs ey

Z9 37% G y%

and therefore
21 g W1 (z1 + 91 ) (w2 — 1y2) i (122 + y1y2) + i(z2y1 — T1Y2)

Zo  To+tyz (oSS x5 + Y5
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Definikion 1.1.3,

I 2=+ is a complex number
then its conjuqgate is defined by 2" =2 — iy

Remark 1.1.1.
Conjugation has following properties
which follow directly from the definition:

Rez=(z4+2")/2
Smz=—(2—2")/2

(71 + 22)" =2 + 23 (7122)" = 2123

it follows from this last property that f A € R w e — )\

Remarie 1.1.2.
Unlikke real numbers

complex numbers do not have a natural ordering

so there is ho analog of complex-valued inequalities
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‘Proposi&ion 1.1.3,

Let 2 =2 . FDE complex number with T and U both nonzero
exisks T € (O, OO) and € (—7T,7T]

such that 2 =7€”  with € = cosd + isind
Coordinates of polar O
are related ko iks Cartesian ﬁOMPOV\EV\ES according to
r=lzl=v22+y2 and U =tan '(y/z)
Y erivxcipat arqgument of 2 u,su.a\uy written as U = Argz
Reason to restrict ¢} in(—, 7| is to get uniqueness of representation
2T rotation does not change the point Argz = argz + 2km

Theorem 1.1.1. De Moivre's theorem integer )
LFZ <7 (COS 2 + 7S81n 19) and N is a Fasi&ive EM&QE}QI‘
w 2" = [r(cos? + isind)|" = r"*(cos n + i sin nd)

This says that to take N-th power of a complex number

we talke N-th power of the modulus and mulkiply argument by n
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Ccrottm‘j 1t B b

De Moivres Theorem w
n-th root of complex number 2 is a complex number w

such that " = 2
writing these two numbers in polar form
w = s(cosp +isiny) & z=r(cosV + isind)

Using De Moivre's = s"(cosnyp + isinny) = r(cos v + ¢sin v)

equality of these two complex numbers shows that

170

s=r"'"cosnp =cos?¥ and sinng = sind

sine and cosine have period 27w o S Dk

complex number 2 has N disktinet rooks

3 + 2k A
wy, = i [COS( i W) —1—7Jsin< i W)] (1,2.1.)
n n
with £=0,1,...
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Kemark 1.1.3.

Notice that each of n-th rools of 2 has modulus |wy| = rl/n

all N -th roots of Z Lie on circle of radius AR

since arqument of each successive 1-th root
exceeds argument of previous root bj Disihicri

we see that n -th roots of 2 are equally spaced on this circle

Examyte I %

Six sixth rooks of z = —8

are showin here w
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Functions of a Complex Variable

domain of f range of f

Definibion 1.2.1.

A function | from a set A to a set B is a rule of correspondence

that assigns to each element in A one and only one element in B

When domain A is a set of complex numbers
we say that mapping is a function of a complex variable

(or a complex function for short)
which we dencte ) = f(z) — u(gj7 y) e z’v(gj, y) {1.2:20)
Fuictions U and U can be thought of as real valued functions
defined on subsets of R? w u=%ef ond v=Smf
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Proposition 1.2.1,
Given 29 € C and 7 > 0 we denote ball of radius 1 around 2o

B (z9) ={2€C: |z — 2| <71}
Definibion 1.2.2.

Let A C C 55 (40 ) O8d ola il s
Then f is differentiable at 2o if Limit

i 20 ORI z0) T . CHOTRIe

dz—0 A 0z =72 de-0 )z B dz i

f/ (Zo) (1.2.3.)

is independent of direction of approach to point 2

Recall that for a single real variable we require that

right-hand Limit (where one approaches 1 from x> 20)

and left-hand Limit (approaching o from z < o)

be equal for derivative df(z)/dr to exist ok z = x
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For 2 = 20 =™ sowe F.'OEME . a F’Lahe
apprcmc:k must be generalized

Let 07 & 0y be increments of x & vy 6z = 6x + idy
writihg [ =u+ 10 = §f = fu+idv and so Of  Ou+idv
5z  dx+ 10
Talke limit (1.2.3.) using two different directions of approach
o B 0y =0 =~ oL 0
of <5u _(51}) Ou =& 0

by 00 ou v\ Ou ov
55zlr—>no 0z 5:3%0 5aj+z5aj 8x+23x

i é;;z: el 180 653/ — 0 J
| of bu 51;):_2,(% v

|l = i =
b 8 5ylg>10< Z5y+5y &y_'—@y

|

1f derivative i exists ak 20 m Ehese Limiks must be identical
z

Equating real & imaginary parts m Cauchy-Riemann conditions
/1123/ T -_—-/1]217
ov

g
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We have seen that for [ /(Zo) bo exist m CR conditions
must be sakisfied

Conversely m if CR conditions hold
and partial derivatives of u(z,y) and vV(T,y) are continuous

derivative f'(2) = u; + 10, exists

This can be seen b:j writing
0 frsillily 10, )0% . 8]0y

dividing bj Sz

of (a0 T o ey, 0

0z 0x + 10Y
(s "FET T e, a0
1 + 0y /ox
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If 0f/0z is to have a unique value

then dependence on 0y /0x has to be eliminated

Applying Cauchy-Riemann conditions to Y derivatives yields

U g R U (1.2.13.)

Substituting (1.2.13.) into (1.2.12.) cancels out Jy/0z dependence

0f (1.224.)

and leaves us with w ae o

02

which shows that 0f /02 is independent of direction of approach

Frovid&d Far&iai derivakives are conkinuous

Hence w ['(2) exists
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Definition 1.2.3.

£ f(2) s differentiable ot 2 = 2
and in some small region around <0

we say I\ (Z) Ls amaivﬁit or koiomarpkac B =—=ron

In addition w if f/(20) £ 0
we say that f(z) is conformal at 20

1f fa analytic everywhere in (finite) complex plane

we call ik an entire function

¥ f'(2) does nob exist ak 2 = 2
then 20 is labeled a singular point
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Example 1.2.1.

Let f(z) =8

Multiplying (z + iy)(x + iy) = o° — y° + 2izy
we idem&ifv real part i — 7% — y2

and imaginary part v(z,y) = 22y

From (1.2.9.)

Uy = 20—V, frand- sl i) L S82.1 5.

We see that f(2) = 5 satisfies Cauchy--Riemanin conditions

throughout COMPL&X ptame

Since par&io&. derivakives are e.vi,cie.m&tv conbkinuous

we conclude that f(2) = 27 is analytic
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Example 1.2.2.
et f(z) = 2°
Now U= and U= —Y
Applying Cauchy--Riemann conditions
e oy
Cauchy--Riemann conditions are not satisfied

and  f(z) = 2" is not an analytic function of =

However w ote Ehal f (Z) — 2" s conkinuous

providiv\g example of a function that is everywhere continuous

but nowhere differentiable in complex plane

Wednesday, August 31, 16



Definition 1.2.4.
[ eE e — 11 1y =R

the expanen?:i,ad. function e” is defined for every =z C ®

e® = e*(cosy + isiny) (2217)
U we write €® =u(x,y) +ww(z,y)

u(z,y) =elidlay . andk T e — e 5in y

e’ is an entire function >

Easy to check that Cauchy-Riemann conditions are satisfied

for every 2z € C
Kemark 1.2.3,

Note that
= Uy + v, = €T cosy + e’ siny = e*(cosy + isiny) = e® (1.2.1%.)

so Fhalt e® is iks own derivative
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Coroi.i.&rv 1.2.2.

For every Yt Gge = R we have

G T cos(y1 <l y2) T isin(yl = y2)
= (cosy; +isinyp)(cosys + ¢sinys) (1.2.19.)
— oW1 ,tY2

On the other hand w if 71,290 € R

L1712 (Y1 +y2) (exlexz)(eiyleiyz) td (ewleiyl)(exz eiyz) (1.2.20.)

writing 21 = 21 + 11 and 22 = T2 + 1Yo
we deduce addition formula ! 772 = %12
Remark 1.2.4,

Note that |€*| = |e¥(cosy + isiny)| = e*|cosy + isiny| = e”

Since ¥ is never zero it follows that )

e is non-zero for every z € C e expz: C — Cy
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Corottarv 1.2.3.
Exponential function e” is periodic in C
B =i ) ke€Z iswnon-zero

It follows that
[l e” and arg w =y + 2k

Usually we make choice arg w =y with restriction that —7 <y < 7

This reskriction means that 2 Lies on horizontal sErEF
A, ={zeli-0co<r <00 - st @t (12.21)

Restrickion —7 < arg w < 7 can alse be indicaked
on complex w-plane by a cut along negative real axis

Upper edqe of cut w corresponding ko arg w =m
is regarded as part of cut W -plane

Lower edge of cub w «corresyamdims €0 ALl — 1T

is not regarded as part of cut w-plane
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Effect of f(2) =€° on kwo domains

is mapped in a one-to-one fashion
on a plane that is cut along negative real axis

Rectangle B ={0<z <z, —7 <y <7} of height 27
is mapped in a ohe-to-one fashion

on an anihulus that is cut along negative real axis
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Kemarke 1.2.5.

Region A, is usually known as a fundamental region

Easy to see that every set of bype

ke Z

A ={z € Ci=00 28 < o0, 12k & it < y < (2]
= {z€Ci-0 <z <00,@h-Dr<y<@h+lr} =7

has same representation than A
Corattarj 1.2 .4,

Since exp: Ay - &5 is opesto=ome anek onko

there is an hverse function

Definikion 1.2.8.

Function f: Cy — A,
Log w.= zawith e A, and efe— (1.2.23.)

is called principal logarithmic function
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Suppose that 2 = T+ 1Y and w=u-+gy e 2,y uve R
Suppose further that we impose restriction —7 By < T

If w=e"from (12172) ™ y=e€"cosy and v =e"siny
w| = (u?2 +02)12=¢® and y=Argw (1224
Arg w w principal argument of W

Therefore W» x =1In \w\ and Yy = Arg w

or equiv&tem&i.j

Logw = In |w| + ¢ Arg w (1.2.25.)

In many practical situations one can define log w = Infw| +iarg w
where arqument is chosen in order to malke Llogarithmic function

continuous in its domain of definition (i this is at all possible)
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Definition 1.2.6.
‘Su,rzfmse that 2z € C

Then trigonometric functions cos 2z and sin 2

are defined in terms of exponential the function

eiz » e—z'z : 673,2 o e—iz
COSE = > apel - SHlz = % (1.2.26)
()

Since exponenkial runckion s an entire runckion
P

from (1.2.26) both COS z and Sin z are entire functions

Easy 2C from (1.2.26.) that
d d

—cosz=—sinz and —sinz =cosz {1.2.27)
dz dz

We can define functions tan z, cot z, sec z, csc z

in terms of functions COS 2 and sinz as in real variables
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Definition 1.2.7.
Su,[apose that z € C

Then hyperbolic functions coshz and sinh 2
are defined in terms of exponential function

i e : e* —e ?
coskli 2= 5 and . sinh z = 5 (1.2.2%.)

Since exponenkial runction ts an enktire frunction
P

from (1.2.2%.) bobh coshz and sinhz are entire functions

Easy 2C Afgam (1.2.2%.) that :

— coshz =sinhz and —sinhz=coshz (1.2.29.)
dz dz

We can define functions tanh z, coth z, sech z, csch z

in berms of functions cosh z and sinh z as in real variables
Remark 1.2.6. Comparing (1.2.26.) and (1.2.2%.) = we obtain

cosh z =S amae " sinh' 2. —= 151z (1.2.30.)
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Definition 1.2.%.

A series of form Py
Zan(z—zo)” w a4, €EC and z5 € C
n=0

is called a power series around point 2o
Theorem 1.2.2.

xo
If a power series g i
n=0

then it converges for all 2z € C such bhat |2]| < |2

converqges for some 29 € C

(which is a disc without boundary around origin with radius 20(3

Proof.
It follows from hypothesis that there exist M >0

such thakt ’anzm <M forall nc N)
2 z
e e M | (1.2.31)

Z0 20
Kenmarlke 1.2.7.

@)

Note thab if series Z Gn 2 diverges then so does series for|z| > |20

=1}
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Definikion 1.29. o

n
Radius of convergence of a power series D an

n=0

o
defined as = maxiiz Z anz", converges} (1.2.32.)
=0

R>0 w BUT of course it is possible that R =0

2| < R (or|z| > R) then power series converges (or diverges)

convergence

20 °\
R
divergence

Circle of o convergence of a power series
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Theorem 1.2.3.

o0
if Z anz" has radius of convergence R > 0

ri=
1

©.@)
n_
: NG, 2 : :
the series "7 has precisely same radius of converqgence

—1
Proof. %

Fix 20 with|z] < R and pick 2 such that |z] < |z9| < R

Series E anZ) converges and therefore li_>m g =10
mn ©,Q)

We con thus find a number M such that |an2y| < M, Vn

We now wrike

S tevp ot

n—1 n—1 0 n

ne;, z — Al = = —QanZ (1.2.33)
20 20 20

Introducing p = [2/29| < 1 we have
1 = |
<0

Inay, (1.2.34)
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Now = stice b
n
lim p— [0 1 (1.2.35.)

n— oo T

©.@,
: — 1 il
series g AP a2, converqges
n=0

Since 20 was a arbi&mrj number with 20| < R

series converges uniformly for |z| < R

This shows that radius of convergence R’

of series of derivatives satisfies R > R
Theorem 1.2.4.

1f z_%a”’zn has radius of convergence R > (
then w F(2) = Zanz” is differentiable on S={z€ C:|z| < R}
=40

©.@)
and derivative is f(Z) = Z nanzn_l
=l
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Proof.
We will show Ehat

HF(Z—I— h) i F(Z)]/h 5 f(Z)‘ S 0as h = (0 whenever ’Z’ 2877

Usiing binomial theorem w (Z 5 h)n = Z (Z) e we qgel
k=0

- (z + )" — 2™ — hnz" 1

Za” B

11=0

>0 |5 ()t
71,220

ianh
— |

Z anh

=

where in last line we have kaken ] = k — 2
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we obkain

HEt D=0 ey = WY ntn=Dlaal |3 (757 ) llal=?

h

= [h] Y n(n — Dlan|(J2] + [R])"2 (1.2.36.)

n=_ 3@

We already lnow that series Z nii= Dla.||z|"7¢
n=0 converges for |z| < R

Now wm for|z| < Rand h — () we have |z| + |h| < R eventually

1k Ehus §ottows lim Flgs hf)L — F(z) — f(2) =0 (1.2.37)
h—0

whenever |z| < R
Exercise 1.2.2.
Using theorems 2.2.3. and 2.2.4. show that

O
& E Z%n)
n=0
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Definition 1.3.1.

Suppose (' is a curve parameterized by z = f(t),y = g(t),a
and A and B are points (f(a), g(a)) and (£(b), g(b))
We say that:

> (' is a smooth curve if | / and g’ are continuous on [CL, b]
and not simultaneously zero on (a,b)

> ) e Fie{:&wise smooth E.,{ CL—al 7 UPCS Ll
C,Cy,...,C, smooth curves

> (' is a closed curve f A=B

> (' is a simple closed curve f A =B
and curve does ot cross ibself
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Definition 1.3.2.

Let  f(2) =u(z,y) +1w(x,y) be defined ok all points

on a smooth curve C

Dw:,c{e C’ m&o n sub*arr:s O = S e of [a,, b,
| v =2(t) Bl y(l), a S ]

on each sub-arc
Leb Azp =2k — 2k 1,with k = N )
HP | = norm of partition

(maxinmum value of |Azk|)

| Choose sampi& F»OEM& Zk - 331; i @yk

n
- , . i lim E 2 ) Az, exists
Form sum Zf 2V Azp £ 1Pl[50 2 f(zg) Az

k=
and is w\civapemdemﬁ of details of e:hc,)osms) points 2,

Zf 20 N —/ f(2)dz (1.3.39)
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Kemark 1.3.1.

As an alternative m contour integral may be defined by

29 (x2,y2)
| 1@ da= /( [u(z, y) + iv(, y)][de + idy

1,Y1)
(r2,y2) | (x2,y2)
— /( [u(z,y)dr —v(x,y)dy] + Z/ w(z,y)dr + u(z,y)dy]

mlayl) (mlayl)

with path joining (z1,71) and (29,y2) specified
This reduces complex integral to complex sum of real integrals
Theorem 1.3.1. [ML- inequati&:,]

I f is continuous on a smooth curve C

and i |f(2)| <M forall 2 on (O

Ehewn ’/ f(2)dz]| < ML where m [ is length of (O
C

Wednesday, August 31, 16



Proof.

usthg |z + 20 + 23 + - + 2| < || + |22] + |23| - - + |24

D> [z A
f=il

< flze)] A%< M YRR | (4340
=11 R

Azi| is length of chord Joining points 2 and Zk-—1

Since sum of lengths of chords cannct be greater than C' length

(.3.40.) becomes Z flzp)Az| < ML
2l

w  last inequality yield / dz| < ML
i [|P|| — 0 ast nequality yields | Cf(,z) 2|
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fUBE
FNNTINNED. .
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