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10th week - Hyperbolic Partial Differential Equation (Wave equation) 

Provisional Course Outline 
(Please note this may be revised during the course 
to match coverage of material during lectures, etc.)

1st week - Analytic Functions 

2rd week - Integration in the Complex Plane

3rd week - Isolated Singularities and Residues

6th week -

8th week - Boundary Value Problem (Special Functions)  

7th week -  Boundary Value Problem (Sturm-Liouville Operator)

9th week - Fourier Series and Fourier Transform 

12th week - Elliptic Partial Differential Equation (Laplace equation) 

11th week - Parabolic Partial Differential Equation  (Diffusion equation)

5th week - Initial Value Problem (Picard’s Theorem)

Midterm-exams (October 6, November 7, December 12) 

Initial Value Problem (Green Matrix)

4th week - Elements of Linear Algebra 

Final-exam   (December 19 -- 3:45 pm to 5:45 pm)
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Complex Analysis I

 1.1 Complex Algebra

1.2 Functions of a Complex Variable 

1.3 Cauchy’s Theorem and its Applications
1.4 Isolated Singularities and Residues
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Complex Algebra
Real number system is adequate for solving many mathematical 
and physical problems

x

2 + 1 = 0
we get a nonnegative number

It is necessary to extend such a system to solve equation

because when we square a real number 

Definition 1.1.1.

We define   to be imaginary number equal to square root of i �1

☛ which implies That is i =
p
�1 i2 = �1

Proposition 1.1.1.

We can combine the set real numbers                                      R

Cto form set complex numbers

with this new imaginary number
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is called real part of

is called imaginary part of 

x

Definition 1.1.2.

A complex number   is an ordered pair z (x, y) with 
x 2 R, y 2 R

y z y = =m z

Geometric representation of   as a point in complex plane z

Herein    denotes set of all complex numbersC
C = {z : z = x+ iy, x 2 R, y 2 R}

COMPLEX NUMBERS

A complex number can be represented by an expression of the form , where and
are real numbers and is a symbol with the property that . The complex num-

ber can also be represented by the ordered pair and plotted as a point in a
plane (called the Argand plane) as in Figure 1. Thus, the complex number is
identified with the point .

The real part of the complex number is the real number and the imaginary
part is the real number . Thus, the real part of is and the imaginary part is .
Two complex numbers and are equal if and , that is, their real
parts are equal and their imaginary parts are equal. In the Argand plane the horizontal axis
is called the real axis and the vertical axis is called the imaginary axis.

The sum and difference of two complex numbers are defined by adding or subtracting
their real parts and their imaginary parts:

For instance,

The product of complex numbers is defined so that the usual commutative and distributive
laws hold:

Since , this becomes

EXAMPLE 1

EXAMPLE 2 Express the number in the form .

SOLUTION We multiply numerator and denominator by the complex conjugate of ,
namely , and we take advantage of the result of Example 1:

The geometric interpretation of the complex conjugate is shown in Figure 2: is the
reflection of in the real axis. We list some of the properties of the complex conjugate in
the following box. The proofs follow from the definition and are requested in Exercise 18.

Properties of Conjugates

z n ! z nzw ! z wz ! w ! z ! w

z
z

"1 ! 3i
2 ! 5i

!
"1 ! 3i
2 ! 5i

!
2 " 5i
2 " 5i

!
13 ! 11i
22 ! 52 !

13
29

!
11
29

 i

2 " 5i
2 ! 5i

a ! bi
"1 ! 3i
2 ! 5i

 ! "2 ! 5i ! 6i " 15!"1" ! 13 ! 11i

 !"1 ! 3i"!2 " 5i" ! !"1"!2 " 5i" ! 3i!2 " 5i"

!a ! bi"!c ! di" ! !ac " bd " ! !ad ! bc"i

i 2 ! "1

 ! ac ! adi ! bci ! bdi 2

 !a ! bi"!c ! di" ! a!c ! di" ! !bi"!c ! di"

!1 " i" ! !4 ! 7i" ! !1 ! 4" ! !"1 ! 7"i ! 5 ! 6i

 !a ! bi" " !c ! di" ! !a " c" ! !b " d "i

 !a ! bi " ! !c ! di" ! !a ! c" ! !b ! d "i

b ! da ! cc ! dia ! bi
"344 " 3ib

aa ! bi
!0, 1"

i ! 0 ! 1 ! i
!a, b"a ! bi

i 2 ! "1ib
aa ! bi

1

FIGURE 1
Complex numbers as points in
the Argand plane

Re

Im

0

i

_2-2i
_i

3-2i

2+3i
_4+2i

1

Re

Im

0

i

_i

z=a-bi–

z=a+bi

FIGURE 2

Division of complex numbers is much like rationalizing the denominator of a rational
expression. For the complex number , we define its complex conjugate to be

. To find the quotient of two complex numbers we multiply numerator and
denominator by the complex conjugate of the denominator.
z ! a ! bi

z ! a " bi

Th
om

so
n 

Br
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ks
-C
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e 

co
py

rig
ht

 2
00

7

z
x = <e☛

☛
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Proposition 1.1.2.

Addition and subtraction is defined exactly as in R2

for example ☛ if and
z2 = x2 + iy2

then we define
z1 + z2 = (x1 + x2) + i(y1 + y2)

Multiplication makes    different from C R2

We define 

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 � y1y2) + i(x1y2 + x2y1)

We can define division of complex numbers

then we define if z2 6= 0

1

z2
=

x2 � iy2

x

2
2 + y

2
2and therefore

z1

z2
=

x1 + iy1

x2 + iy2
=

(x1 + iy1)(x2 � iy2)

(x2 + iy2)(x2 � iy2)
=

(x1x2 + y1y2) + i(x2y1 � x1y2)

x

2
2 + y

2
2

z1 = x1 + iy1

7Wednesday, August 31, 16



Definition 1.1.3.

is a complex number z = x+ iyIf
is defined by 

z

⇤ = x� iy

Remark 1.1.1.
Conjugation has following properties 

<e z = (z + z⇤)/2

which follow directly from the  definition:

=m z = �(z � z⇤)/2

(z1 + z2)
⇤ = z⇤! + z⇤2 ; (z1z2)

⇤ = z⇤1z
⇤
2

it follows from this last property that if � 2 R (�z)⇤ = �z⇤

Remark 1.1.2.

so there is no analog of complex-valued inequalities

then its conjugate 

☛

complex numbers do not have a natural ordering

Unlike real numbers
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Proposition 1.1.3.

be a complex number with   and    both nonzeroLet 
z = x+ iy

x

y

 exists r 2 (0,1) and # 2 (�⇡,⇡]

such that z = r ei#  with ei# = cos#+ i sin#
Coordinates of polar form of    z

r = |z| =
p
x

2 + y

2 and 

components  according to

# = tan�1(y/x)

  principal argument of     written as z# # = Arg z
Reason to restrict   in         is to get uniqueness of representation#
2⇡ Argz = argz + 2k⇡     rotation does not change the point 

(�⇡,⇡]
usually

are related to its Cartesian  

☛

Theorem 1.1.1. De Moivre's theorem
Ifz = r (cos#+ i sin#) and is a positive integern

☛
This says that to take   -th power of a complex number
we take  -th power of the modulus and multiply argument by

n
n n

 integer

zn = [r(cos#+ i sin#)]n = rn(cosn#+ i sinn#)

9Wednesday, August 31, 16



De Moivre’s Theorem     
Corollary 1.1.1.

   -th root of complex number    is a complex number  
such that
n z w

wn = z
writing these two numbers in polar form 

w = s(cos'+ i sin') & z = r(cos#+ i sin#)

equality of these two complex numbers shows that

s = r1/n, cosn' = cos# and sinn' = sin#

 sine and cosine have period     2⇡ n' = #+ 2k⇡

 complex number   has   distinct rootsz n

wk = r1/n

cos

✓
#+ 2k⇡

n

◆
+ i sin

✓
#+ 2k⇡

n

◆�

with k = 0, 1, . . . , n� 1

(1.1.1.)

☛

Using De Moivre’s      ☛

☛

sn(cosn'+ i sinn') = r(cos#+ i sin#)
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Remark 1.1.3.

Notice that each of   -th roots of   has modulus 

 all   -th roots of   lie on circle of radius r1/nn z

zn |wk| = r1/n

are equally spaced on this circle
argument of previous root by       

since argument of each successive   -th root

Example 1.1.1.

Six sixth roots of           z = �8

z

n
2⇡/n

n
6 ! COMPLEX  NUMBERS

All these points lie on the circle of radius as shown in Figure 9.

COMPLEX EXPONENTIALS

We also need to give a meaning to the expression when is a complex num-
ber. The theory of infinite series as developed in Chapter 8 can be extended to the case
where the terms are complex numbers. Using the Taylor series for 
we define

and it turns out that this complex exponential function has the same properties as the real
exponential function. In particular, it is true that

If we put , where is a real number, in Equation 4, and use the facts that

. . .

we get

Here we have used the Taylor series for and (Equations 8.7.17 and 8.7.16). 
The result is a famous formula called Euler’s formula:

Combining Euler’s formula with Equation 5, we get

ex!iy ! exe iy ! ex!cos y ! i sin y"7

e iy ! cos y ! i sin y6

sin ycos y

 ! cos y ! i sin y

 ! #1 "
 y 2

2!
!

 y 4

4!
"

 y 6

6!
! # # #$ ! i#y "

 y 3

3!
!

 y 5

5!
" # # #$

 ! 1 ! iy "
 y 2

2!
" i 

 y 3

3!
!

 y 4

4!
! i 

 y 5

5!
! # # #

 e iy ! 1 ! iy !
!iy"2

2!
!

!iy"3

3!
!

!iy"4

4!
!

!iy"5

5!
! # # #

i 5 ! i,i 4 ! 1,i 3 ! i 2i ! "i,i 2 ! "1,

yz ! iy

e z1!z2 ! e z1e z25

e z ! %
$

n!0
 
z n

n!
! 1 ! z !

z2

2!
!

z3

3!
! # # #4

ex

z ! x ! iye z

s2

 w5 ! 81&6#cos 
11%

6
! i sin 

11%

6 $ ! s2 #s3
2

"
1
2

 i$
 w4 ! 81&6#cos 

3%

2
! i sin 

3%

2 $ ! "s2 i

 w3 ! 81&6#cos 
7%

6
! i sin 

7%

6 $ ! s2 #"
s3
2

"
1
2

 i$

FIGURE 9
The six sixth roots of z=_8
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are shown here ☛

we see that   -th roots of
exceeds
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Functions of a Complex Variable

 17.4 Functions of a Complex Variable 773

In Problems 1–8, sketch the graph of the given equation.

 1. Re(z) ! 5 2. Im(z) ! "2
 3. Im(z # 3i) ! 6
 4. Im(z " i) ! Re(z # 4 " 3i)
 5. Zz " 3i Z ! 2 6. Z2z # 1 Z ! 4
 7. Zz " 4 # 3i Z ! 5 8. Zz # 2 # 2i Z ! 2

In Problems 9–22, sketch the set of points in the complex plane 
satisfying the given inequality. Determine whether the set is a 
 domain.

 9. Re(z) $ "1 10. ZRe(z) Z % 2
 11. Im(z) % 3 12. Im(z " i) $ 5
 13. 2 $ Re(z " 1) $ 4 14. "1 & Im(z) $ 4

 15. Re(z 2) % 0 16. Im(1/z) $ 1
2

 17. 0 & arg (z) & 2p/3 18. Zarg (z) Z $ p/4

 19. Zz " i Z % 1 20. Zz " i Z % 0 

 21. 2 $ Zz " i Z $ 3 22. 1 & Zz " 1 " i Z $ 2
 23. Describe the set of points in the complex plane that  satisfies 

Zz # 1 Z ! Zz " i Z.
 24. Describe the set of points in the complex plane that  satisfies 

ZRe(z) Z & Zz Z.
 25. Describe the set of points in the complex plane that  satisfies 

z2 # z 2 ! 2.
 26. Describe the set of points in the complex plane that  satisfies 

Zz " i Z # Zz # i Z ! 1.

 17.3 Exercises Answers to selected odd-numbered problems begin on page ANS-000.  

17.4 Functions of a Complex Variable

Introduction One of the most important concepts in mathematics is that of a function. You 
may recall from previous courses that a function is a certain kind of correspondence between two 
sets; more specifically: A function f from a set A to a set B is a rule of correspondence that assigns 
to each element in A one and only one element in B. If b is the element in the set B assigned to the 
element a in the set A by f, we say that b is the image of a and write b ! f (a). The set A is called 
the domain of the function f (but is not necessarily a domain in the sense defined in Section 17.3). 
The set of all images in B is called the range of the function. For example, suppose the set A 
is a set of real numbers defined by 3 & x $ q and the function is given by f (x) ! !x 2 3; 
then f (3) ! 0, f (4) ! 1, f (8) ! !5, and so on. In other words, the range of f is the set given by 
0 & y $ q. Since A is a set of real numbers, we say f is a function of a real variable x.

Functions of a Complex Variable When the domain A in the foregoing definition of a function 
is a set of complex numbers z, we naturally say that f is a function of a complex variable z or a 
complex function for short. The image w of a complex number z will be some complex number 
u # iv; that is, 

 w ! f (z) ! u(x, y) # iv(x, y),  (1)

where u and v are the real and imaginary parts of w and are real-valued functions. Inherent in the 
mathematical statement (1) is the fact that we cannot draw a graph of a complex function w ! f (z) 
since a graph would require four axes in a four-dimensional coordinate system.

Some examples of functions of a complex variable are

 f (z) ! z2 " 4z,  z any complex number

 f 1z2 5 z
z2 1 1

, z 2 i and z 2 2i

 f (z) ! z # Re(z),   z any complex number.

Each of these functions can be expressed in form (1). For example, 

 f (z) ! z2 " 4z ! (x # iy)2 " 4(x # iy) ! (x2 " y2 " 4x) # i(2xy " 4y).

Thus, u(x, y) ! x2 " y2 " 4x, and v(x, y) ! 2xy " 4y.
Although we cannot draw a graph, a complex function w ! f (z) can be interpreted as a mapping 

or transformation from the z-plane to the w-plane. See FIGURE 17.4.1.
FIGURE 17.4.1 Mapping from z-plane to 
w-plane

y v

x u

z
w

(a) z-plane (b) w-plane

domain of f range of f

w = f (z)

79665_CH17_FINAL.indd   77379665_CH17_FINAL.indd   773 11/2/09   3:08:14 PM11/2/09   3:08:14 PM

Definition 1.2.1.
f A

B

A

B

Athat assigns to each element in   one and only one element in 
A function from a set is a rule of correspondenceto a set

we say that mapping is a function of a complex variable 
(or a complex function for short) 

When domain  is a set

w = f(z) = u(x, y) + iv(x, y) (1.2.2.)

of complex numbers

which we denote
Functions   and   can be thought of as real valued functionsu v

defined on subsets of R2 and v = =m fu = <e f☛
12Wednesday, August 31, 16



Proposition 1.2.1.

Given z0 2 C r > 0and  we denote ball of radius aroundr z0

Br(z0) = {z 2 C : |z � z0| < r}
Definition 1.2.2.

(1.2.3.)

A ⇢ C, Br(z0) ⇢ ALet f : A ! Cand

fThen is differentiable at z0 if limit

lim
�z!0

f(z0 + �z)� f(z0)

z + �z � z
= lim

�z!0

�f(z)

�z
=

df

dz
= f 0(z0)

is independent of direction of approach to point z0
Recall that for a single real variable we require that                     

x0limit (where one approaches x > x0from         ) 

(approaching x0 x < x0from

 be equal for derivative
df(x)/dx to exist at

x = x0

)and left-hand limit 

right-hand
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For          ☛  some point in a plane 
approach must be generalized

z = z0

Let & be increments of  &�x �y y
x

�z = �x+ i�y

f = u+ ivwriting and so�f = �u+ i�v �f

�z

=
�u+ i�v

�x+ i�y

 ☛  

Take limit (1.2.3.) using two different directions of approach
4 CHAPTER 1. COMPLEX ANALYSIS

332 Chapter 6 Functions of a Complex Variable I

y

x

z0

dx = 0
dy → 0

dx → 0

dy = 0

Figure 6.5

Alternate
Approaches to z0

Also,

δ f = δu + iδv (6.24)

so that
δ f
δz

= δu + iδv
δx + iδy

. (6.25)

Let us take the limit indicated by Eq. (6.23) by two different approaches as
shown in Fig. 6.5. First, with δy = 0, we let δx → 0. Equation (6.24) yields

lim
δz→0

δ f
δz

= lim
δx→0

(

δu
δx

+ i
δv

δx

)

= ∂u
∂x

+ i
∂v

∂x
, (6.26)

assuming the partial derivatives exist. For a second approach, we set δx = 0
and then let δy → 0. This leads to

lim
δz→0

δ f
δz

= lim
δy→0

(

−i
δu
δy

+ δv

δy

)

= −i
∂u
∂y

+ ∂v

∂y
. (6.27)

If we are to have a derivative df/dz, Eqs. (6.26) and (6.27) must be identical.
Equating real parts to real parts and imaginary parts to imaginary parts (like
components of vectors), we obtain

∂u
∂x

= ∂v

∂y
,

∂u
∂y

= −∂v

∂x
. (6.28)

These are the famous Cauchy–Riemann conditions. They were discovered
by Cauchy and used extensively by Riemann in his theory of analytic func-
tions. These Cauchy–Riemann conditions are necessary for the existence of
a derivative of f (z); that is, if df/dz exists, the Cauchy–Riemann conditions
must hold. They may be interpreted geometrically as follows. Let us write
them as a product of ratios of partial derivatives

ux

uy
· vx

vy
= −1, (6.29)

with the abbreviations
∂u
∂x

≡ ux,
∂u
∂y

≡ uy,
∂v

∂x
≡ vx,

∂v

∂y
≡ vy.

y

x

�y ! 0
�x = 0

�y = 0
�x ! 0 z0

Figure 1.3: Alternative approaches to z0.

is independent of the direction of approach to the point z0. Recall that for a single real
variable we require that the right-hand limit (where one approaches x0 from x > x0) and
the left-hand limit (approaching x0 from x < x0) be equal for the derivative df(x)/dx to
exist at x = x0. In the current case, where z = z0 is some point in a plane, our requirement
that the limit be independent of the direction of approach must be generalized. Let �x and
�y be increments of the variables x and y, respectively; then

�z = �x+ i�y . (1.4)

Writing f = u+ iv,
�f = �u+ i�v, (1.5)

and so
�f

�z
=

�u+ i�v

�x+ i�y
. (1.6)

Let us take the limit indicated by (1.3) using two different directions of approach, as shown
in Fig. 1.3. First, with �y = 0, we let �x ⇥ 0; (1.5) leads to

lim
�z�0

�f

�z
= lim

�x�0

�
�u

�x
+ i

�v

�x

⇥
=

⌥u

⌥x
+ i

⌥v

⌥x
, (1.7)

assuming that the partial derivatives exist. To approach from a second direction, we set
�x = 0 and then let �y ⇥ 0. This yields

lim
�z�0

�f

�z
= lim

�y�0

�
�i

�u

�y
+

�v

�y

⇥
= �i

⌥u

⌥y
+

⌥v

⌥y
, (1.8)

If the derivative df/dz exists at z0, (1.8) and (1.7) must be identical. Equating the real and
imaginary parts we obtain the famous Cauchy–Riemann conditions

ux = vy uy = �vx, (1.9)

�y = 0  ☛

lim
�z!0

�f

�z

= lim
�x!0

✓
�u

�x

+ i

�v

�x

◆
=

@u

@x

+ i

@v

@x

�x ! 0

�x = 0 ☛ �y ! 0

lim
�z!0

�f

�z
= lim

�y!0

✓
�i

�u

�y
+

�v

�y

◆
= �i

@u

@y
+

@v

@y

If derivative exists at     ☛  these limits must be identical            
df

dz
z0

Equating real & imaginary parts ☛ Cauchy-Riemann conditions

@u

@x

⌘ u

x

,

@u

@y

⌘ u

y

,

@v

@x

⌘ v

x

,

@v

@y

⌘ v

y

⤶

⤶

u
x

= v
y

u
y

= �v
x
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We have seen that for to exist ☛ CR conditions f 0(z0)
must be satisfied

Conversely ☛ if CR conditions hold
are continuousand

exists

u(x, y) v(x, y)

This can be seen by writing

dividing by �z

�f

�z

=
(u

x

+ iv

x

)�x+ (u
y

+ iv

y

)�y

�x+ i�y

=
(u

x

+ iv

x

) + (u
y

+ iv

y

)�y/�x

1 + i�y/�x

(1.2.12.)

(1.2.11.)

and partial derivatives of

derivative

�f = (u
x

+ iv

x

)�x+ (u
y

+ iv

y

)�y

f 0(z) = u
x

+ iv
x
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If is to have a unique value�f/�z

�y/�x

has to be eliminated

(1.2.13.)

Applying Cauchy-Riemann conditions to    derivatives yieldsy

u
y

+ iv
y

= �v
x

+ iu
x

Substituting (1.2.13.) into (1.2.12.) cancels out        dependence

and leaves us with ☛

�y/�x

�f

�z
= u

x

+ iv
x

(1.2.14.)

Hence  ☛ exists

�f/�zwhich shows that is independent of direction of approach
provided partial derivatives are continuous

f 0(z)

then dependence on 
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Definition 1.2.3.

is differentiable atIf

and in some small region 

 we say that is analytic or holomorphic at 

f(z) z = z0
around z0

f(z) z = z0

In addition ☛ if f 0(z0) 6= 0

we say that f(z) z0is conformal at

If is analytic everywhere in (finite) complex plane

we call it an entire function

f 0(z)

f(z)

If does not exist at z = z0
z0then is labeled a singular point

17Wednesday, August 31, 16



 Example 1.2.1.

Let

Multiplying

we identify real part 

f(z) = z2

(x+ iy)(x+ iy) = x

2 � y

2 + 2ixy

u(x, y) = x

2 � y

2

and imaginary part v(x, y) = 2xy

u

x

= 2x = v

y

and u

y

= �2y = �v

x

From

We see that f(z) = z2 satisfies Cauchy--Riemann conditions 

throughout complex plane

Since partial derivatives are evidently continuous

we conclude that              is analyticf(z) = z2

(1.2.15.)

(1.2.9.)
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 Example 1.2.2.

Applying Cauchy--Riemann conditions

u
x

= 1 6= v
y

= �1

f(z) = z⇤

u = x

v = �y

Let

Now and

 Cauchy--Riemann conditions are not satisfied 

f(z) = z⇤ is not an analytic function of z

However ☛ note that

and 

is continuousf(z) = z⇤

providing example of a function that is everywhere continuous

 but nowhere differentiable in complex plane
19Wednesday, August 31, 16



Definition 1.2.4.

Let

the exponential function is defined for every 

z = x+ iy

x, y 2 R

ez z 2 C

ez = ex(cos y + i sin y)

if we write e

z = u(x, y) + iv(x, y)

u(x, y) = e

x

cos y

and
v(x, y) = e

x sin y

Easy to check that Cauchy-Riemann conditions are satisfied
 for every z 2 C

ez is an entire function

Note that
d

dz
ez = u

x

+ iv
x

= ex cos y + iex sin y = ex(cos y + i sin y) = ez

Remark 1.2.3.

so that     is its own derivativeez

(1.2.17.)

(1.2.18.)
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(1.2.19.)

For every  we have y1, y2 2 R

ei(y1+y2)
= cos(y1 + y2) + i sin(y1 + y2)

= (cos y1 + i sin y1)(cos y2 + i sin y2)

= eiy1eiy2

Corollary 1.2.2.

On the other hand ☛ if x1, x2 2 R
ex1+x2ei(y1+y2) = (ex1ex2)(eiy1eiy2) = (ex1eiy1)(ex2eiy2) (1.2.20.)

writing andz1 = x1 + iy1 z2 = x2 + iy2

ez1+z2 = ez1ez2addition formula
Remark 1.2.4.
Note that |ez| = |ex(cos y + i sin y)| = ex| cos y + i sin y| = ex

Since is never zero it follows that

is non-zero for every 

ex

ez z 2 C i.e. exp z : C ! C0

 we deduce
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Corollary 1.2.3.

Exponential function is periodic inez C
! = 2⇡ki k 2 Z is non-zero

It follows that 
|w| = ex and arg w = y + 2k

Usually we make choice  with restriction that arg w = y �⇡ < y  ⇡

zThis restriction means that   lies on horizontal strip 
A? = {z 2 C : �1 < x < 1,�⇡ < y  ⇡} (1.2.21.)

Restriction can also be indicated
-plane by a cut along negative real axis

�⇡ < arg w  ⇡
w

Upper edge of cut ☛ corresponding to 

w
arg w = ⇡
as part of cut is regarded -plane

Lower edge of cut ☛ corresponding to arg w = �⇡

as part of cut    -plane is not regarded w

on complex
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The restriction �� < arg w ⇥ � can also be indicated on the complex w-
plane by a cut along the negative real axis. The upper edge of the cut,
corresponding to arg w = �, is regarded as part of the cut w-plane. The
lower edge of the cut, corresponding to arg w = ��, is not regarded as part
of the cut w-plane. See Fig. 1.4.

A? B

�⇡

⇡

x

y

exp(z)

v

u

Figure 1.4: The e�ect of f(z) = ez on two domains. The fundamental

region of the exponential function A� is mapped in a one-to-one fashion

on a plane that has been cut along the negative real axis. The rectangle

B = {0 < x < x0, �� < y ⇥ �} of height 2� is mapped in a one-to-one

fashion on an annulus that has been cut along the negative real axis.

Remark 1.2.5. The region A� is usually known as a fundamental region
of the exponential function. In fact, it is easy to see that every set of the
type

Ak = {z ⇧ C : �⌅ < x <⌅, (2k � 1)� < y ⇥ (2k + 1)�} , (1.2.22)

where k ⇧ Z, has this same property as A�.
Corollary 1.2.4. Since exp : A� ⇤ C0 is one-to-one and onto, there is

an inverse function.
Definition 1.2.5. The function f : C0 ⇤ A�, defined by

Log w = z with z ⇧ A� and ez = w (1.2.23)

is called the principal logarithmic function. Suppose that z = x + iy and
w = u + iv, where x, y, u, v ⇧ R. Suppose further that we impose the

13

Effect of on two domainsf(z) = ez

Fundamental region of exponential function A?

in a one-to-one fashionis mapped
negative real axis

Rectangle B = {0 < x < x0, �⇡ < y  ⇡} of height 2⇡

is mapped in a one-to-one fashion

on a plane that is cut along

on an annulus that is cut along negative real axis
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 Remark 1.2.5.

Region A? is usually known as a fundamental region

Easy to see that every set of type

Ak = {z 2 C : �1 < x < 1, (2k � 1)⇡ < y  (2k + 1)⇡} k 2 Z

A?has same representation than

Since

Corollary 1.2.4.

exp : A? ! C0

there is an inverse function
 is one-to-one and onto

Definition 1.2.5.

Function f : C0 ! A?

Log w = z with z 2 A? and ez = w

(1.2.22.)

(1.2.23.)

is called principal logarithmic function
24Wednesday, August 31, 16



Suppose that z = x+ iy w = u+ iv x, y, u, v 2 Rand

Suppose further that we impose restriction �⇡ < y  ⇡

w = ez from (1.2.17.) ☛ If u = ex cos y v = ex sin yand

|w| = (u2 + v2)1/2 = ex and y = Arg w

Arg w ☛ principal argument of w

Therefore 
x = ln |w| y = Arg wand

or equivalently 

Logw = ln |w|+ i Arg w (1.2.25.)

(1.2.24.)

In many practical situations one can define log w = ln |w|+ i arg w

where argument is chosen in order to make logarithmic function

continuous in its domain of definition (if this is at all possible)

☛

☛
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Definition 1.2.6.
Suppose that z 2 C

cos z sin zThen trigonometric functions and

in terms of exponential the function are defined 

cos z =

eiz + e�iz

2

and sin z =

eiz � e�iz

2i
(1.2.26.)

 from (1.2.26)  both       and       are entire functions

Since exponential function is an entire function 

cos z sin z

Easy  2C from (1.2.26.) that

(1.2.27.)
d

dz
cos z = � sin z and

d

dz
sin z = cos z

We can define functions 

in terms of functions as in real variablesand
cos z sin z

tan z, cot z, sec z, csc z
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Definition 1.2.7.

Suppose that z 2 C
Then hyperbolic functions

of exponential function 
andcosh z sinh z

cosh z =

ez + e�z

2

and sinh z =

ez � e�z

2

are defined in terms 

(1.2.28.)

Since exponential function is an entire function

cosh z from (1.2.28.)  both and sinh z are entire functions

Easy 2C from (1.2.28.) that 

(1.2.29.)
d

dz
cosh z = sinh z and

d

dz
sinh z = cosh z

We can define functions

in terms of functions cosh z sinh zand as in real variables

tanh z, coth z, sech z, csch z

Remark 1.2.6. Comparing (1.2.26.) and (1.2.28.) ☛ we obtain 

cosh z = cos iz and sinh z = i sin iz (1.2.30.)
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Definition 1.2.8.

A series of form
1X

n=0

an(z � z0)
n an 2 C z0 2 Cand

is called a power series around point z0
Theorem 1.2.2.

If a power series
1X

n=0

anz
n

converges for some z0 2 C
then it converges for all z 2 C such that |z| < |z0|
(which is a disc without boundary around origin with radius |z0|)

(1.2.31.)

Proof.
 It follows from hypothesis that there exist M � 0

such that |anzn0 |  M for all n 2 N
|anzn| = |anz0|n

����
z

z0

����
n

 M

����
z

z0

����
n

Remark 1.2.7.

Note that if series

1X

n=0

anz
n
0  diverges then so does series for |z| > |z0|

☛

28Wednesday, August 31, 16



Radius of convergence of a power series 

Definition 1.2.9. 1X

n=0

anz
n
0

 defined as R = max{|z| :
1X

n=0

anz
n, converges} (1.2.32.)

BUT of course it is possible that

) then power series converges (or diverges)

R � 0 R = 0

|z| < R |z| > R(or

822 CHAPTER 19 Series and Residues

Power Series The notion of a power series is important in the study of analytic functions. 
An infinite series of the form

 aq
k50

ak(z ! z0)
k " a0 # a1(z ! z0) # a2(z ! z0)

2 # … ,  (11)

where the coefficients ak are complex constants, is called a power series in z ! z0. The power 
series (11) is said to be centered at z0, and the complex point z0 is referred to as the center of 
the series. In (11), it is also convenient to define (z ! z0)

0 " 1 even when z " z0.

Circle of Convergence Every complex power series has radius of convergence R. Analogous 
to the concept of an interval of convergence in real calculus, when 0 $ R $ q, a complex power 
series (11) has a circle of convergence defined by |z ! z0| " R. The power series converges 
absolutely for all z satisfying |z ! z0| $ R and diverges for |z ! z0| % R. See FIGURE 19.1.3. The 
radius R of convergence can be

 (i) zero (in which case (11) converges at only z " z0), 
 (ii) a finite number (in which case (11) converges at all interior points of the circle |z ! z0| " R), or
 (iii) q (in which case (11) converges for all z).

A power series may converge at some, all, or none of the points on the actual circle of convergence.

��EXAMPLE 5 Circle of Convergence
Consider the power series gqk51 (zk#1/k). By the ratio test (9),

 lim
nSq

 4  zn12

n 1 1

 
zn11

n

4 5 lim
nSq

 
n

n 1 1
 Zz Z 5 Zz Z.

Thus the series converges absolutely for |z| $ 1. The circle of convergence is |z| " 1 and the 
radius of convergence is R " 1. Note that on the circle of convergence, the series does not 
converge absolutely, since the series of absolute values is the well-known divergent harmonic 
series gqk51 (1/k). Bear in mind this does not say, however, that the series diverges on the 
circle of convergence. In fact, at z " !1, gqk51 ((!1)k#1/k) is the convergent alternating 
harmonic series. Indeed, it can be shown that the series converges at all points on the circle 
|z| " 1 except at z " 1.

It should be clear from Theorem 19.1.4 and Example 5 that for a power series gqk50 ak(z ! z0)
k, 

the limit (9) depends on only the coefficients ak. Thus, if

 (i) lim
nSq

 2 an11

an
2 " L & 0, the radius of convergence is R " 1/L;

 (ii) lim
nSq

 2 an11

an
2 " 0, the radius of convergence is q;

 (iii) lim
nSq

 2 an11

an
2 " q, the radius of convergence is R " 0.

Similar remarks can be made for the root test (10) by utilizing limnSq2n Zan Z.

��EXAMPLE 6 Radius of Convergence

Consider the power series aq
k51

 
1212k111z 2 1 2 i2k

k!
. Identifying an " (!1)n#1/n!, we have

 lim
nSq

 4  1212n121n 1 12!
 
1212n11

n!

4 5 lim
nSq

 
1

n 1 1
5 0.

y

x

R

z0

convergence

divergence

|z–z0| = R

FIGURE 19.1.3 A power series 
converges at all points within the 
circle of convergence

!"##$%&'("%)*+,-./011222344!"##$%&'("%)*+,-./011222344 ((5456"22278(689!2:;((5456"22278(689!2:;

Figure 1.5: Circle of convergence of a power series.

Now, since

lim
n⇥⌅

m + 1

n
� = � < 1 , (1.2.35)

the series
⇧⌅

n=0 An�n�1/|z0| converges.1 Since z0 was an arbitrary number
with |z0| < R, the series converges uniformly for |z| < R. This shows that
the radius of convergence R⇤ of the series of derivatives satisfies R⇤ ⇥ R.

Theorem 1.2.4. If
⇧⌅

n=0 anzn has radius of convergence R > 0, then
the function F (z) =

⇧⌅
n=0 anzn is di�erentiable on S = {z ⌅ C : |z| < R},

and the derivative is f(z) =
⇧⌅

n=1 nanzn�1

Proof. We will show that |[F (z + h) � F (z)]/h � f(z)| ⇤ 0 as h ⇤
0 (in C), whenever |z| < R. Using the binomial theorem (z + h)n =⇧

k=0 n (n
k) hkznk we get

F (z + h)� F (z)

h
� f(z) =

⌅⌃

n=0

an
(z + h)n � zn � hnzn�1

h

=
⌅⌃

n=0

an

h

⇤
n⌃

k=2

�
n

k

⇥
hkzn�k

⌅

=
⌅⌃

n=0

anh

⇤
n⌃

k=2

�
n

k

⇥
hk�2zn�k

⌅

=
⌅⌃

n=0

anh

⇤
n�2⌃

j=0

�
n

j + 2

⇥
hjzn�2�j

⌅
,

1Recall that a series
⇧1

n=0 bn converges if limn!1 bn+1/bn < 1.

16

Circle of a convergence of a power series

☛
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Theorem 1.2.3.

(1.2.33.)

(1.2.34.)

1X

n=0

anz
n has radius of convergence

then series 

If R > 0
1X

n=1

nanz
n�1

has precisely same radius of convergence

Fix

Proof.
z0 z|z0| < Rwith and pick such that |z| < |z0| < R

Series converges and therefore lim
n!1

anz
n
0 = 0

X
anz

n
0

We can thus find a number such thatM |anzn0 |  M, 8n

We now write 

nanz
n�1 = nanz

n�1

✓
z0
z0

◆n

=
n

z0
anz

n
0

✓
z

z0

◆n�1

|nanzn�1| = | n
z0

anz
n
0 ⇢

n�1|  M

|z0|
n⇢n�1

Introducing ⇢ = |z/z0| < 1 we have
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Now ☛ since

series

(1.2.35.)

converges

Since z0 was an arbitrary number with |z0| < R

uniformly forseries converges |z| < R

of series of derivatives

This shows that radius of convergenceR0

R0 � Rsatisfies
Theorem 1.2.4.

has radius of convergence If
1X

n=0

anz
n

R > 0

then ☛ F (z) =
1X

n=0

anz
n is differentiable on S = {z 2 C : |z| < R}

and derivative is f(z) =
1X

n=1

nanz
n�1

lim
n!1

n+ 1

n
⇢ = ⇢ < 1

1X

n=0

nan⇢
n�1zn�1

0
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Proof.

We will show that 

|[F (z + h)� F (z)]/h� f(z)| ! 0 h ! 0as  whenever |z| < R

Using binomial theorem ☛ we get

F (z + h)� F (z)

h
� f(z) =

1X

n=0

an
(z + h)n � zn � hnzn�1

h

=
1X

n=0

an
h

"
nX

k=2

✓
n
k

◆
hkzn�k

#

=
1X

n=0

anh

"
nX

k=2

✓
n
k

◆
hk�2zn�k

#

=
1X

n=0

anh

2

4
n�2X

j=0

✓
n

j + 2

◆
hjzn�2�j

3

5

where in last line we have taken j = k � 2

(z + h)n =
nX

k=0

(nk )h
kzn�k
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 Using we obtain

(1.2.36.)

We already know that series
1X

n=0

n(n� 1)|an||z|n�2

converges for |z| < R

Now ☛ for |z| < R h ! 0and |z|+ |h| < Rwe have eventually

It thus follows lim
h!0

F (z + h)� F (z)

h
� f(z) = 0

|z| < Rwhenever

Using theorems 2.2.3. and  2.2.4. show that 

ez =
1X

n=0

zn/n!

Exercise 1.2.2.

(1.2.37.)

�
n

j+2

�
 n(n� 1)

�
n�2
j

�

F (z + h)� F (z)

h
� f(z) = |h|

1X

n=0

n(n� 1)|an|

2

4
n�2X

j=0

✓
n� 2
j

◆
|h|j |z|n�2�j

3

5

= |h|
1X

n=0

n(n� 1)|an|(|z|+ |h|)n�2
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Definition 1.3.1.
is a curve parameterized by Suppose C

x = f(t), y = g(t), a  t  b

A B (f(a), g(a))
We say that:
and and are points (f(b), g(b))and

➣

➣

➣

➣

C

C

C

C

f 0 g0 is a smooth curve if are continuous on and
and not simultaneously zero on (a, b)

[a, b]

is piecewise smooth if 
C1, C2, . . . , Cn

C = C1 [ C2 [ · · · [ Cn

is a closed curve if A = B

is a simple closed curve if A = B

does not cross itselfand curve 

smooth curves 

where in the last line we have taken j = k�2. Now, using the easily verifiable
fact that

�
n
j+2

⇥
⇥ n(n� 1)

�
n�2
j

⇥
we obtain

F (z + h)� F (z)

h
� f(z) = |h|

⇤�

n=0

n(n� 1)|an|
⇧

n�2�

j=0

⇤
n

j + 2

⌅
|h|j|z|n�2�j

⌃

= |h|
⇤�

n=0

n(n� 1)|an|(|z| + |h|)n�2 . (1.2.36)

We already know that the series
⌥⇤

n=0 n(n� 1)|an||z|n�2 converges for |z| <
R. Now, for |z| < R and h ⇤ 0 we have |z| + |h| < R eventually. It thus
follows from the above that

lim
h⇥0

F (z + h)� F (z)

h
� f(z) = 0 , (1.2.37)

whenever |z| < R.
Example 1.2.4. Using theorems 1.2.3. and 1.2.4. it is easily seen that

ez =
⇤�

n=0

zn/n! . (1.2.38)

1.3 Cauchy’s Theorem and Its Applications
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9.8 Line Integrals

Introduction The notion of the definite integral !b
a f (x)  dx; that is, integration of a function 

defined over an interval, can be generalized to integration of a function defined along a curve. 
To this end we need to introduce some terminology about curves.

Terminology Suppose C is a curve parameterized by x ! f (t), y ! g(t), a " t " b, and A and 
B are the points (  f (a), g(a)) and (  f (b), g(b)), respectively. We say that
 (i)  C is a smooth curve if f # and g# are continuous on the closed interval [a, b] and not 

simultaneously zero on the open interval (a, b).
 (ii)  C is piecewise smooth if it consists of a finite number of smooth curves 

C1, C2, . . . , Cn joined end to end—that is, C ! C1 ´ C2 ´ . . .  ´ Cn.
 (iii) C is a closed curve if A ! B.
 (iv) C is a simple closed curve if A ! B and the curve does not cross itself.
 (v)  If C is not a closed curve, then the positive direction on C is the direction corresponding 

to increasing values of t.

FIGURE 9.8.1 illustrates each type of curve defined in (i)$(iv).
This same terminology carries over in a natural manner to curves in space. For example, a 

curve C defined by x ! f (t), y ! g(t), z ! h(t), a " t " b, is smooth if f #, g#, and h# are continu-
ous on [a, b] and not simultaneously zero on (a, b).

Definite Integral Before defining integration along a curve, let us review the five steps lead-
ing to the definition of the definite integral.
 1. Let y ! f (x) be defined on a closed interval [a, b].
 2. Partition the interval [a, b] into n subintervals [xk$1, xk] of lengths %xk ! xk $ xk$1. Let P 

denote the partition shown in FIGURE 9.8.2(a).
 3. Let iPi  be the length of the longest subinterval. The number iPi  is called the norm of the 

partition P.
 4. Choose a sample point x*

k  in each subinterval. See Figure 9.8.2(b).

 5. Form the sum an
k51

  
f 1x*

k2Dxk.

The definite integral of a function of a single variable is given by the limit of a sum:

 #
b

a
f 1x2dx 5 lim

iPiS0 a
n

k51
 f 1x*

k2Dxk.

Line Integrals in the Plane The following analogous five steps lead to the definitions of 
three line integrals* in the plane.
 1. Let z ! G (x, y) be defined in some region that contains the smooth curve C 

defined by x ! f (t), y ! g(t), a " t " b.
 2. Divide C into n subarcs of lengths %sk according to the partition 
  a ! t0 &t1 & t 2 & p & tn ! b of [a, b]. Let the projection of each subarc 

onto the x- and y-axes have lengths %xk and %yk, respectively.
 3. Let iP i  be the norm of the partition or the length of the longest subarc.
 4. Choose a sample point (x*

k , y*
k) on each subarc. See FIGURE 9.8.3.

 5. Form the sums

 an
k51

G1x*
k, y

*
k 
2 Dxk,  an

k51
G1x*

k, y
*
k 
2 Dyk,  an

k51
G1x*

k, y
*
k 
2 Dsk.

*An unfortunate choice of names. Curve integrals would be more appropriate.

FIGURE 9.8.1 Various curves

A

B B
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(c) Closed
      but not      
     simple

(a) Smooth
      curve

(b) Piecewise-
      smooth curve

(d) Simple
     closed
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A = B

C2C1 C3

FIGURE 9.8.2 Sample point in k th 
subinterval

a = x0 xn = bxk –1 xk

xk
*

a = x0

a = x0 <x1 <x2 < ... <xn–1 < xn = b

x1 xn = bxk –1 xk

(a)

(b)

FIGURE 9.8.3 Sample point in k th subarc

x

y

C

B

A

∆sk

∆yk (x*k, y*k)

∆xk
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9.8 Line Integrals

Introduction The notion of the definite integral !b
a f (x)  dx; that is, integration of a function 

defined over an interval, can be generalized to integration of a function defined along a curve. 
To this end we need to introduce some terminology about curves.

Terminology Suppose C is a curve parameterized by x ! f (t), y ! g(t), a " t " b, and A and 
B are the points (  f (a), g(a)) and (  f (b), g(b)), respectively. We say that
 (i)  C is a smooth curve if f # and g# are continuous on the closed interval [a, b] and not 

simultaneously zero on the open interval (a, b).
 (ii)  C is piecewise smooth if it consists of a finite number of smooth curves 

C1, C2, . . . , Cn joined end to end—that is, C ! C1 ´ C2 ´ . . .  ´ Cn.
 (iii) C is a closed curve if A ! B.
 (iv) C is a simple closed curve if A ! B and the curve does not cross itself.
 (v)  If C is not a closed curve, then the positive direction on C is the direction corresponding 

to increasing values of t.

FIGURE 9.8.1 illustrates each type of curve defined in (i)$(iv).
This same terminology carries over in a natural manner to curves in space. For example, a 

curve C defined by x ! f (t), y ! g(t), z ! h(t), a " t " b, is smooth if f #, g#, and h# are continu-
ous on [a, b] and not simultaneously zero on (a, b).

Definite Integral Before defining integration along a curve, let us review the five steps lead-
ing to the definition of the definite integral.
 1. Let y ! f (x) be defined on a closed interval [a, b].
 2. Partition the interval [a, b] into n subintervals [xk$1, xk] of lengths %xk ! xk $ xk$1. Let P 

denote the partition shown in FIGURE 9.8.2(a).
 3. Let iPi  be the length of the longest subinterval. The number iPi  is called the norm of the 

partition P.
 4. Choose a sample point x*

k  in each subinterval. See Figure 9.8.2(b).

 5. Form the sum an
k51

  
f 1x*

k2Dxk.

The definite integral of a function of a single variable is given by the limit of a sum:

 #
b

a
f 1x2dx 5 lim

iPiS0 a
n

k51
 f 1x*

k2Dxk.

Line Integrals in the Plane The following analogous five steps lead to the definitions of 
three line integrals* in the plane.
 1. Let z ! G (x, y) be defined in some region that contains the smooth curve C 

defined by x ! f (t), y ! g(t), a " t " b.
 2. Divide C into n subarcs of lengths %sk according to the partition 
  a ! t0 &t1 & t 2 & p & tn ! b of [a, b]. Let the projection of each subarc 

onto the x- and y-axes have lengths %xk and %yk, respectively.
 3. Let iP i  be the norm of the partition or the length of the longest subarc.
 4. Choose a sample point (x*

k , y*
k) on each subarc. See FIGURE 9.8.3.

 5. Form the sums

 an
k51

G1x*
k, y

*
k 
2 Dxk,  an

k51
G1x*

k, y
*
k 
2 Dyk,  an

k51
G1x*

k, y
*
k 
2 Dsk.

*An unfortunate choice of names. Curve integrals would be more appropriate.
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9.8 Line Integrals

Introduction The notion of the definite integral !b
a f (x)  dx; that is, integration of a function 

defined over an interval, can be generalized to integration of a function defined along a curve. 
To this end we need to introduce some terminology about curves.
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 (iii) C is a closed curve if A ! B.
 (iv) C is a simple closed curve if A ! B and the curve does not cross itself.
 (v)  If C is not a closed curve, then the positive direction on C is the direction corresponding 

to increasing values of t.

FIGURE 9.8.1 illustrates each type of curve defined in (i)$(iv).
This same terminology carries over in a natural manner to curves in space. For example, a 
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Figure 1.6: Examples of various curves. From left to right: smooth curve,

picewise smooth curve, simple closed curve, and closed but not simple.

Defnition 1.3.1. Suppose C is a curve parameterized by x = f(t),
y = g(t), a ⇥ t ⇥ b, and A and B are the points (f(a), g(a)) and (f(b), g(b)),
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Definition 1.3.2.

f(z) = u(x, y) + iv(x, y)Let

on a smooth curve 

be defined at all points

C

x = x(t), y = y(t), a  t  b

Divide     into   sub-arcs  a = t0 < t1 < · · · < tn = b [a, b, ]ofC n

�zk = zk � zk�1,

respectively. We say that:

C is a smooth curve if f � and g� are continuous on the closed interval
[a, b] and not simultaneously zero on the open interval (a, b);

C is piecewise smooth if it consists of a finite number of smooth curves
C1, C2, . . . , Cn joined end to end, i.e., C = C1 ⇤ C2 ⇤ · · · ⇤ Cn;

C is a closed curve if A = B;

C is a simple closed curve if A = B and the curve does not cross itself;

If C is not a closed curve, then the positive direction on C is the
direction corresponding to increasing values of t.

The various curves are shown in Fig. 1.6.
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18.1 Contour Integrals

Introduction In Section 9.8 we saw that the definition of the definite integral eb
a !f 1x2  dx starts 

with a real function y ! f (x) that is defined on an interval [a, b] on the x-axis. Because a planar 
curve is the two-dimensional analogue of an interval, we then generalized the definition of the 
definite integral to integrals of real functions of two variables defined on a curve C in the Cartesian 
plane. We shall see in this section that a complex integral is defined in a manner that is quite 
similar to that of a line integral in the Cartesian plane. In case you have not studied Sections 9.8 
and 9.9, a review of those sections is recommended.

A Definition Integration in the complex plane is defined in a manner similar to that of a line 
integral in the plane. In other words, we shall be dealing with an integral of a complex function 
f (z) that is defined along a curve C in the complex plane. These curves are defined in terms of 
parametric equations x ! x(t), y ! y(t), a " t " b, where t is a real parameter. By using x(t) and 
y(t) as real and imaginary parts, we can also describe a curve C in the complex plane by means 
of a complex-valued function of a real variable t: z(t) ! x(t) # iy(t), a " t " b. For example, 
x ! cos t, y ! sin t, 0 " t " 2p, describes a unit circle centered at the origin. This circle can also 
be described by z(t) ! cos t # i sin t, or even more compactly by z(t) ! eit, 0 " t " 2p. The same 
definitions of smooth curve, piecewise-smooth curve, closed curve, and simple closed curve given 
in Section 9.8 carry over to this discussion. As before, we shall assume that the positive direction 
on C corresponds to increasing values of t. In complex variables, a piecewise-smooth curve C is 
also called a contour or path. An integral of f (z) on C is denoted by !C f (z) dz or " 

C f (z) dz if the 
contour C is closed; it is referred to as a contour integral or a complex line integral.
 1. Let f (z) ! u(x, y) # iv(x, y) be defined at all points on a smooth curve C defined by x ! x(t), 

y ! y(t), a " t " b.
 2. Divide C into n subarcs according to the partition a ! t0 $ t1 $ … $ tn ! b of [a, b]. 

The corresponding points on the curve C are z0 ! x0 # iy0 ! x(t0) # iy(t0), z1 ! x1 # iy1 ! 
x(t1) # iy(t1), … , zn ! xn # iyn ! x(tn) # iy(tn). Let %zk ! zk & zk&1, k ! 1, 2, … , n.

 3. Let #P# be the norm of the partition; that is, the maximum value of |%zk|.
 4. Choose a sample point z*

k 5 x*
k 1 iy*

k  on each subarc. See FIGURE 18.1.1.

 5. Form the sum gn

k51
 f 1z*

k2  %zk.

Defi nition 18.1.1 Contour Integral

Let f be defined at points of a smooth curve C defined by x ! x(t), y ! y(t), a " t " b. The 
contour integral of f along C is

 #
C
f 1z2  dz 5 lim

iPiS0
 an
k51

 f 1z*
k2 Dzk. (1)

The limit in (1) exists if f is continuous at all points on C and C is either smooth or piecewise 
smooth. Consequently we shall, hereafter, assume these conditions as a matter of course.

A Method of Evaluation We shall turn now to the question of evaluating a contour integral. 
To facilitate the discussion, let us suppress the subscripts and write (1) in the abbreviated 
form

 #
C

 f (z) dz ! lim '(u # iv)(%x # i %y) 

 ! lim ['(u%x & v%y) # i '(v%x # u%y)].

This means #
C

 f (z) dz ! #
C

 u dx & v dy # i #
C

 v dx # u dy. (2)

FIGURE 18.1.1 Sample point 
on kth subarc
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Figure 1.7: Sample point of k-th subarc..

Definition 1.3.2. Let f(z) = u(x, y) + iv(x, y) be defined at all points
on a smooth curve C, defined by x = x(t), y = y(t), a ⇥ t ⇥ b. Divide
C into n subarcs according to the partition a = t0 < t1 < · · · < tn = b
of [a, b, ]. The corresponding points on the curve C are z0 = x0 + iy0 =

18

Let with k = 1, 2, . . . , n
kPk ☛ norm of partition

(maximum value of        )     |�zk|
Choose sample point z

⇤
k = x

⇤
k + iy

⇤
k

on each sub-arc

Form sum 

lim
kPk!0

nX

k=1

f(z⇤k)�zk =

Z

C
f(z) dz

nX

k=1

f(z⇤k)�zk
☛ if                          exists

and is independent of details of choosing points z⇤k

(1.3.39)

lim
||P ||!0

nX

k=1

f(z⇤k)�zk
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Remark 1.3.1.

As an alternative ☛ contour integral may be defined by 

with path joining (x1, y1) (x2, y2)and specified

This reduces complex integral to complex sum of real integrals

is continuous on a smooth curve 

Theorem 1.3.1. [ML- inequality]

fIf

and if

C

|f(z)|  M for all on Cz

|
Z

C
f(z)dz|  ML is length ofwhere ☛ L Cthen

Z
z2

z1

f(z) dz =

Z (x2,y2)

(x1,y1)
[u(x, y) + iv(x, y)][dx+ idy]

=

Z (x2,y2)

(x1,y1)
[u(x, y)dx� v(x, y)dy] + i

Z (x2,y2)

(x1,y1)
[v(x, y)dx+ u(x, y)dy]
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Proof.

using

�����

nX

k=1

f(z⇤k)�zk

����� 
nX

k=1

|f(z⇤k)| |�zk|  M
nX

k=1

|�zk|

is length of chord joining points  and |�zk| zk zk�1

Since sum of lengths of chords cannot be greater than    length 

 (2.3.40.) becomes 

C

(1.3.40.)

�����

nX

k=1

f(z⇤k)�zk

�����  ML

kPk ! 0If  last inequality yields |
Z

C
f(z)dz|  ML☛

|z1 + z2 + z3 + · · ·+ zn|  |z1|+ |z2|+ |z3| · · ·+ |zn|
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