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BOLTZMANN STATISTICS

Equilibrium configuration for system of [V distinguishable noninteracting particles

n n
subject to constraints w ZNj — N and ZNjgj = U (40)
7=1

j=1

# of ways of selecting [N particles from total of N to be placein j =1 level

N \ N!
Ni J  N{!{(N —Np)!

# of ways these [V particles can be arranged if there are §1 quantum states
)N

for each particle there are g1choices m (gl ' possibilities in all

# of ways to put V1 particles into a level containing g1 distinct options

N B N!g{v1
Ni ) N{!(N — Np)!
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BOLTZMANN STATISTICS 11

For 7 = 2 w same situation
except that there are only (N — Nl) particles remaining to deal with

(N — Ny1)lgy”
No!(N — Ny — Ny)!

Continuing process 3
N1 N2
_ Nlgy v (N — Ni)lgs
NiI(N = N7 Nol(N — Ny — Ny)!
y (N —Ni—Ny)lgs®
N3!(N — N; — Ny — N3)!

N; Ny N n N
a1 927937 gjj
— NI _NqI——

N1!N5INg! ... - N;!

wi (N1, Noy, Ny,)

J

We now have to maximize WB subject to constraints (40)
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LAGRANGE MULTIPLIERS
Maximization of f(x, 1) subject to constraint ¢(r,y) = constant

af af

df = —d —dy =10
/ ox er(‘?y v

of = of

If do and dy wereindependent m ~2 _— “7 _ )
Oor Oy
0o 9J0)

However - subject to constraint equation d¢p = —dx + —dy = 0

Ox ’ 0y
of /0x — 0f/0y
For constant ratio (¢ agb/ Ox 8§b/ Yy

of 0J0) of 9J0)
- — = d —— — =
8aﬁ+a(‘9x oo @y+a8y .

expressions we would get if we attempt to maximize f -+ quﬁ without constraint
For 7 variables and two constraint relations

Of | 00 j0v

0 ' =1,2,3--.
8azz+&8:ﬁz 6azz ’ ‘ T "

' —
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BOLTZMANN DISTRIBUTION

Task = find maximum of WB with respect to all [N that satisfy constraints (40)

In practice m more convenient to maximize Inw than w itself

lnw—lnN'+ZN In g; — ZlnN'

1=1 1=1
We are concerned with [V; > 1 m use Stirling's asymptotic expansion
IMN!'~NInN-N+Inv2aN + --- (41)

Neglecting relatively small las’r term in (41)

lnw—lnN'—l—ZN Ing; — ZN In N, +ZN (42)

1=1 1=1
Search for maximum of target function using Lagrange mul’nphers 3

aiNj ;Nilngi—;NilnNiJrzi:N +a— (ZN) +5— (ZN@> —
H
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BOLTZMANN DISTRIBUTION II

In working out the derivatives m only contribution comes from terms with 3 = 1
N;
lngj—lan—ﬁ—l—l—l-a—l-ﬁsj:O (43)
J
N———
For every energy level =0

# of particles per quantum state for equilibrium of the system

N |

—L = e¥tPe = f.(e;) (44)
9j

Constants & and (3 are related to physical properties of the system

Multiply (43) by N; and sum over ) 2

Y Njlng; — ZN In N; +aZN +BZN e; =0 (45)
J

ZNj Ing; — ZN InN; = —aN — U (46)

I II;C /\“l\l\nlﬂl‘nﬂll;
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TEMPERATURE AS A LAGRANGE MULTIPLIER

Substituting (42)m Inw =InN!+ N —aN — pU
simplifying lnw=0C — ﬁU
dentification with Boltzmann entropy yields mw S = klnw = Sy — kBU (47)

dU  PdV

05 05
From classical theory m dS = o + T = (%> dU + (W) dV
V U

gvingm (95} _ 1
ou ), ~ T

From (47) w <§_[S]> = —kf3
v

givingm 3 = _kiT

Constancy of Vis implied in (40) m because €; X V_2/3
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PARTITION FUNCTION
Substituting (48) into (44) w N;=g jeae—sj/ kT
so (¢ can be easily found from (40) m N — Z Nj — % Zgje—&‘j/kT
J @ J
o N
¢ = —e; /KT
Zj g;e -’

Nj N e—¢ci/kT

Boltzmann distribution becomes m f — _J —
J . —e:/kT
9; Zj gje e/

partition function (German Zustandssumme) 3

n
7 = Zgje_ej/kT
j=1
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ENERGY LEVELS CROWDED TOGETHER VERY CLOSELY

degeneracy Jj replaced by p(e)de w # of states in energy range (e,€ + de)

correspondingly N; replaced by N (&)de w # of particles in range (e,€ 4 de)

N(e)  Ne&/*T
ple) [ ple)e=s/*Tde

Continuous distribution function is analogous to discrete case

fe) =

7 = /,0(5) e i/FT ge

Occupation numbers are fully determined by temperature and volume

Set of occupation humbers that maximize W specify equilibrium macrostate
Conclusion:

Two states variables define a thermodynamic state exactly as in classical theory!
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FERMI-DIRAC STATISTICS

Particles are identical (indistinguishable) and they obey Pauli's exclusion principle

4

half-integer spin w fermions

Taking spin intfo account m no quantum state can accept more than 1 particle

1 particle or O particle occupies a given state w N, < g, Vj

}-lh g,-=7
energy | o | | it & fhea gk PR F] j
level N, =3

fermions in quantum states with energy €

In determining w for given macrostate m group of g; states divisible into subgroups
gj are to contain 1 particle and (gj — Nj) must be unoccupied

counting problem same as coin-tossing experiment w for J-th level 3

95
Total # of microstates for allowable configuration W; =
” ng" N,!(g; — N,)!
)=1l Njl(g; — N;)!

j=1
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FERMI-DIRAC & LAGRANGE

In wgp = Zlngi! — ZlnNi! — Zln(g —
using Stirling's Zn Z
In wpp = Z l9ilng; —g; — N;yIn N; + N; — (g — N;) In(g; — N;) + (g: — N;)]

)

= " lgitngi — Nl N; — (g; — M) In(g; — Vo)
using m ZNizN ZNiei:U
+a— (ZN) —I—B— (ZNi€i> =0
J i

0
N [Z N, In N, + zz:(gz -

Note that 3

2 (Sama) X oy
— gilngi | =0 and —InN; — = +1In(g; — N;) — -2 =(—1) = —a - B
ON; \5 7N (95 = N5) (gj—Nj>( ) !
N~~~ N ~~
1 —1
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FERMI-DIRAC DISTRIBUTION

H (Nj ) o = Pe; g; e—@—Be; 41

1

once againm [ = ——

kT

)
isionally define m v = —
provisionally define T I

. [ :
Fermi-Dirac distribution m [ = g; elEi—m/kT 11

1
tinuous spect €)=
continuous energy spectrum m  f(¢) ele—n)/kT 4 1
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BOSE-EINSTEIN STATISTICS

Statistics for indistinguishable particles
any number of which can occupy given quantum state

zero or integer spin = bosons

Convenient to depict arrangement of N j particles among g, states
by (gj — 1) partitions or lines and N dots

|
f‘h £= Y
energy e o ") o000 | 00 | ° e o0 °
level | | N, =14

bosons in quantum states with energy €;

hew microstates obtained by shuffling lines and dots while keeping g; and N fix

binomial problem of coin-tossing experiment for J-th level 3

Wy =
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BOSE-EISNTEIN 8 LAGRANGE
Inwpg = Zln(Nz- +g, — 1) — ZlnNi! — Zln(gi — 1!
using Stirling's 3
nwse = > [(Ni+gi —1)In(N; +g; —1) = (N; + g; — 1) — N;In N,

+Ni—(9: — 1 n(g; — 1) + (9: — 1)]
—Z (N;+¢9;i—1)In(N; +¢g;, — 1) — N;InN; — (9; — 1) In(g; — 1)]

using r ZNz‘:N ZNigi:U
7 % 7
0
Note that 3
Nj+g;—1 N,
ln(Nj—l—gj_l)_'_Nj_'_g;_l_thj_ ﬁj = —a — e
N ~ >4 Ny’
1 1
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BOSE-EINSTEIN DISTRIBUTION

N 41
1I1( J_I_]\ij—'_ )Z—Oz—ﬁfij

g

neglecting unity compared to  w

N; 1

g; B e—a—Bei — 1

1
Using /6 — _k_T and @ = k‘% j,
Bose-Eisntein distribution fj _ & _ 1

gi - e(gj_,u)/kT —1

1
&) = = —5

continuous energy spectrum

Luis Anchordoqui

Thursday, October 30, 14 15




MAXWELL-BOLTZMANN STATISTICS

Dilute gas = for all energy levels occupations humbers are very small
compared with available number of quantum states

Extremely unlikely more than 1 particle will occupy given state
whether or not particles obey Pauli exclusion principle becomes irrelevant

FD and BE statistics should be approximately identical in dilute gas limit

_ g;' _ | — 1)
WFD = H N;l(g; — N;)! e H N;l(g; —1)!

J J

gi'  _gilg; —1)(g; —2)---(g; —N; +1)(g; —N;)! _ w
(95 — Nj)! (95 —15)!
(95 + Nj =Dl =(g; + N; = 1)(g; + N; —2)---(g; + N;j — Nj)(g; — 1)!

N.
zgjj(gj—l)! gNj
I Y ']
j
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MAXWELL-BOLTZMANN DISTRIBUTION

Difference between Boltzmann and Maxwell-Boltzmann statistics
Boltzmann statistics assumes distinguishable (localizable) particles
g
wMBZH = wp = N! wvB
N |
J

Much larger Boltzmann probability includes permutation w V!

of /Nidentifiable particles giving rise to additional microstates

Distribution of particles among energy levels = found using Lagrange multipliers

Result can be written down immediately observing that

WB and WMB differ only by a constant

N; N e ci/kT
Maxwell-Boltzmann distribution = f, = —L = (49)

g; Z
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CONNECTION BETWEEN CLASSICAL AN STATISTICAL THERMODYNAMICS
when matter is added or taken from open system change of internal energy is 3

AU = TdS — PdV + udN
define Helmholtz function F = U — TS w dF = —5SdT — PdV + pudN

OF
_ 50
,u—( ) (50)

g;'\f Nj N —e,; /KT
Calculate .S and F'for MB statistics m WMB = H NI 0 = e

J

S=klnhw==%k Zlengj —Zlan!
J J

=k |Y Njlng;—> N;InN; + Y N,
| J J i

N
=k N—Zlen(g—?>
- ] J
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CONNECTION BETWEEN CLASSICAL AN STATISTICAL THERMODYNAMICS 11

S=k N—lnNZNj—HnZZquLkLTZstj
J J J |

= % + Nk(InZ —InN + 1)

F=U-TS=—-NkT(InZ —InN +1)

kT
Using (50) = p1= —kT(InZ —In N + 1) + nrl

N
N
= kT In| —
k n(Z>

N N, 1

2 /KT .
Z - = f] o g; e(gj_ﬂ)/kT
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COMPARISON OF THE DISTRIBUTIONS

Distribution functions for identical indistinguishable particles

N. 1 +1 for FD statistics
J

— = T n - (= —1 for BE statistics
gi ¢ a 0 for MB statistics
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STATISTICAL THERMODYNAMICS OF IDEAL GAS

Consider ideal gas in a sufficiently large container
Levels of system are quantized so finely w introduce density of states p(€)

Number of particles in quantum states within energy interval dge
# of particles in one state f(g) times # of states dn. in this energy interval

With f(&?) given by (49)

N
dN. = f(e)dn. = ?e_ﬁap(e)de

For finely quantized levels w replace summation by integration

Z...:> /dap(a)...

Partition function w 4 = / de p (5) e Pe
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MAXWELL SPEED DISTRIBUTION

For quantum particles in a rigid box

|4 2m\3/2 [ _ V 2m\3/2 /mw mkgT\3/2
— Be _ — V(e (51)
z (27)? ( h > /0 de Ve (27)2 (h2 ) 2(33/2 V( 2mwh? )

Using € = mvz/Q and de = muodv
number of particles in speed interval dv m dN,, = N (v)dv = N f(v) dv

§
1 1 /7 27h2 \3/2 V 2mN\3/2 |m
f) = zemple)yme = ¢ (kaT) (27)2 (h2 ) \ 2 e
B ( m )3/24 5 ( mu? )
~ \27ksT TSP T kLT

coincides with result from kinetic theory of gases

Plank's constant A w link to quantum mechanics disappeared from final result
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EQUATION OF STATE OF IDEAL GAS
Internal energy of ideal gas is its kinetic energy [ = N¢g&

E = mv* / 2 being average kinetic energy of an atom

From kinetic theory mw & = —kpT

f = 3 corresponding to three translational degrees of freedom

- N ¢ N 87
Same result obtained from (51) and U = ZsiNi = — Z e Pei — 7

i=1 Z i=1 Z 0P
Oln~Z 0 m 3/2 3 0 3.1 3
P d d by th d I P (8F)
. . + . - _ _ (Y
is defined by thermodynamic formula 5 )
With help of (51)
OlnZ/ olnV NkgT
P = NkrT — NkrT —
BE oy BX "oy V

that amounts to equation of state of ideal gas PV = NkgT
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