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BOLTZMANN STATISTICS

Equilibrium configuration for system of     distinguishable noninteracting particles

subject to constraints  ☛ 
nX

j=1

Nj = N and
nX

j=1

Nj"j = U

N

# of ways of selecting         particles from total of     to be place in              level N1 N j = 1
✓

N
N1

◆
=

N !

N1!(N �N1)!

# of ways these       particles can be arranged if there are       quantum states  

✓
N
N1

◆
=

N !gN1
1

N1!(N �N1)!

N1 g1
for each particle there are      choices ☛                possibilities in all

# of ways to put        particles into a level containing      distinct options                     

g1

g1

(g1)
N1

N1

(40)
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BOLTZMANN STATISTICS II

For               ☛  same situationj = 2
(N �N1)except that there are only                      particles remaining to deal with

(N �N1)!g
N2
2

N2!(N �N1 �N2)!
Continuing process

We now have to maximize        subject to  constraints 

!B(N1, N2, Nn) =
N !gN1

1

N1!(N �N1)!
⇥ (N �N1)!g

N2
2

N2!(N �N1 �N2)!

⇥ (N �N1 �N2)!g
N3
3

N3!(N �N1 �N2 �N3)!
· · ·

= N !
gN1
1 gN2

2 gN3
3 · · ·

N1!N2!N3! · · ·
= N !

nY

j=1

g
Nj

j

Nj !

!B (40)

↴
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LAGRANGE MULTIPLIERS
Maximization of                  subject to constraint

f(x, y) �(x, y) = constant

df =
@f

@x

dx+
@f

@y

dy = 0

If         and         were independent  ☛    @f

@x

=
@f

@y

= 0

@f/@x

@�/@x

=
@f/@y

@�/@y

dx dy

However ☛ subject to constraint equation
d� =

@�

@x

dx+
@�

@y

dy = 0

☟

@f

@x

+ ↵

@�

@x

= 0
@f

@y

+ ↵

@�

@y

= 0

↵For constant ratio

and

expressions we would get if we attempt to maximize                     without constraint f + ↵�
For     variables and two constraint relations

@f

@xi
+ ↵

@�

@xi
+ �

@ 

@xi
= 0, i = 1, 2, 3 · · ·n

n
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BOLTZMANN DISTRIBUTION

Search for maximum of target function using Lagrange multipliers

w

NTask ☛ find maximum of        with respect to all     that satisfy constraints (40)

In practice ☛ more convenient to maximize           than      itself

!B

ln!

ln! = lnN ! +
nX

i=1

Ni ln gi �
nX

i=1

lnNi!

ln! = lnN ! +
nX

i=1

Ni ln gi �
nX

i=1

Ni lnNi +
X

i

Ni

We are concerned with                  ☛  use Stirling’s asymptotic expansion 

@

@Nj

"
X

i

Ni ln gi �
X

i

Ni lnNi +
X

i

Ni

#
+ ↵

@

@Nj

 
X

i

Ni

!
+ �

@

@Nj

 
X

i

Ni"i

!
= 0

↴

Ni � 1

Neglecting relatively small last term in (41)

(41)lnN ! ' N lnN �N + ln
p
2⇡N + · · ·

(42)
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In working out the derivatives ☛ only contribution comes from terms with j = i

(46)

(43)

(46)

(45)

(44)

ln gj � lnNj �
Nj

Nj
+ 1

| {z }
=0

+↵+ �"j = 0

Nj

gj
= e↵+�"j = fj("j)

# of particles per quantum state for equilibrium of the system
For every energy level

Constants       and      are related to physical properties of the system

Multiply (43) by         and sum over    

↵ �

Nj j
X

j

Nj ln gj �
X

j

Nj lnNj + ↵
X

j

Nj + �
X

j

Nj"j = 0
↴
☟

BOLTZMANN DISTRIBUTION II

X

j

Nj ln gj �
X

j

Nj lnNj = �↵N � �U
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TEMPERATURE AS A LAGRANGE MULTIPLIER

Substituting (42) ☛

simplifying ☛

ln! = lnN ! +N � ↵N � �U

ln! = C � �U

S = k ln! = S0 � k�UIdentification with Boltzmann entropy yields ☛

dS =
dU

dT
+

PdV

T
=

✓
@S

@U

◆

V

dU +

✓
@S

@V

◆

U

dVFrom classical theory ☛

giving ☛
✓
@S

@U

◆

V

=
1

T

From (47) ☛

giving ☛

Constancy of      is implied in  (40) ☛ becauseV ✏j / V �2/3

✓
@S

@U

◆

V

= �k�

� = � 1

kT

(47)

(48)
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PARTITION FUNCTION

Substituting (48) into (44)  ☛

so        can be easily found from (40) ☛↵
j

partition function (German Zustandssumme) 

Boltzmann distribution becomes ☛

↴

☟

Z ⌘
nX

j=1

gje
�✏j/kT

Nj = gje
↵e�"j/kT

N =
X

Nj = e↵
X

j

gje
�"j/kT

e↵ =
NP

j gje
�"j/kT

fj =
Nj

gj
=

N e�"j/kT

P
j gje

�"j/kT
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ENERGY LEVELS CROWDED TOGETHER VERY CLOSELY

f(") ⌘ N(")

⇢(")
=

Ne�"/kT

R
⇢(")e�"/kT d"

degeneracy      replaced by                 ☛ # of states in energy rangegj ⇢(")d"

correspondingly

(", "+ d")

(", "+ d")Nj replaced by N(")d" ☛ # of particles in range

Continuous distribution function is analogous to discrete case

Occupation numbers are fully determined by temperature and volume

Set of occupation numbers that maximize        specify equilibrium macrostate!

Two states variables define a thermodynamic state exactly as in classical theory!
Conclusion:

Z =

Z
⇢(") e�"j/kT d"
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FERMI-DIRAC STATISTICS

Particles are identical (indistinguishable) and they obey Pauli’s exclusion principle

Taking spin into account ☛ no quantum state can accept more than 1 particle 

half-integer spin  ☛ fermions
☟

1 particle or 0 particle occupies a given state  ☛  Nj  gj 8j
☟

In determining     for given macrostate ☛ group of      states divisible into subgroups!
are to contain 1 particle and                     must be unoccupied

gj

counting problem same as coin-tossing experiment ☛ for   -th level 

!j =
gj !

Nj !(gj �Nj)!

fermions in quantum states with energy

!FD(N1, N2, · · · , Nn) =
nY

j=1

gj !

Nj !(gj �Nj)!

j
(gj �Nj)gj

↴

"j

Total # of microstates for allowable configuration↴
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FERMI-DIRAC & LAGRANGE

ln!FD =
X

i

ln gi!�
X

i

lnNi!�
X

i

ln(gi �Ni)!

ln!FD =
X

i

[gi ln gi � gi �Ni lnNi +Ni � (g �Ni) ln(gi �Ni) + (gi �Ni)]

=
X

i

[gi ln gi �Ni lnNi � (gi �Ni) ln(gi �Ni)]

X

i

Ni = N
X

i

Ni"i = U

� @

@Nj

"
X

i

Ni lnNi +
X

i

(gi �Ni) ln(gi �Ni)

#
+ ↵

@

@Nj

 
X

i

Ni

!
+ �

@

@Nj

 
X

i

Ni"i

!
= 0

☟

↴

using ☛

using Stirling’s

� @

@Nj

 
X

i

gi ln gi

!
= 0 � lnNj �

Nj

Nj|{z}
1

+ ln(gj �Nj)�
(gj �Nj)

(gj �Nj)
(�1)

| {z }
�1

= �↵� �"j

Note that ↴
and
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FERMI-DIRAC DISTRIBUTION

ln

✓
gj
Nj

� 1

◆
= �↵� �"j )

Nj

gj
=

1

e�↵��"j + 1

fj =
Nj

gj
=

1

e("j�µ)/kT + 1

f(") =
1

e("�µ)/kT + 1
continuous energy spectrum  ☛

Fermi-Dirac distribution  ☛

� = � 1

kT

provisionally define ☛                  

once again ☛

↵ =
µ

kT ↴
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BOSE-EINSTEIN STATISTICS
Statistics for indistinguishable particles

any number of which can occupy given quantum state

zero or integer spin ☛ bosons

bosons in quantum states with energy "j

Convenient to depict arrangement of        particles among       states
by                 partitions or lines and       dots
Nj gj

(gj � 1) Nj

new microstates obtained by shuffling lines and dots while keeping       and      fixNjgj

binomial problem of coin-tossing experiment

!j =
(Nj + gj � 1)!

Nj !(gj � 1)!

!BE(N1, N2, · · · , Nn) =
nY

j=1

(Nj + gj � 1)!

Nj !(gj � 1)!

Total # of microstates for allowable configuration↴
☛ for   -th level ↴j☟
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BOSE-EISNTEIN & LAGRANGE

ln!BE =
X

i

ln(Ni + gi � 1)!�
X

i

lnNi!�
X

i

ln(gi � 1)!

ln!BE =
X

i

[(Ni + gi � 1) ln(Ni + gi � 1)� (Ni + gi � 1)�Ni lnNi

+Ni � (gi � 1) ln(gi � 1) + (gi � 1)]

=
X

i

[(Ni + gi � 1) ln(Ni + gi � 1)�Ni lnNi � (gi � 1) ln(gi � 1)]

@

@Nj

"
X

i

(Ni + gi � 1) ln(Ni + gi � 1)�
X

i

Ni lnNi

#
+ ↵

@

@Nj

 
X

i

Ni

!
+ �

@

@Nj

 
X

i

Ni"i

!
= 0

using Stirling’s↴

using ☛
X

i

Ni = N
X

i

Ni"i = U

☟

Note that ↴ln(Nj + gj � 1) +
Nj + gj � 1

Nj + gj � 1
| {z }

1

� lnNj �
Nj

Nj|{z}
1

= �↵� �"j
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BOSE-EINSTEIN DISTRIBUTION

ln

✓
Nj + gj + 1

Nj

◆
= �↵� �"j

☟
neglecting unity compared to      ☛ Nj

gi
=

1

e�↵��"j � 1

Using                            and 

Bose-Eisntein distribution  ☛ fj =
Nj

gi
=

1

e("j�µ)/kT � 1

f(") =
1

e("�µ)/kT � 1
continuous energy spectrum  ☛

� = � 1

kT
↵ =

µ

kT ↴
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MAXWELL-BOLTZMANN STATISTICS
Dilute gas ☛  for all energy levels occupations numbers are very small 

compared with available number of quantum states 

FD and BE statistics should be approximately identical in dilute gas limit 

Extremely unlikely more than 1 particle will occupy given state 
whether or not particles obey Pauli exclusion principle becomes irrelevant 

!FD =
Y

j

gj !

Nj !(gj �Nj)!
!BE =

Y

j

(gj +Nj � 1)!

Nj !(gj � 1)!

gj !

(gj �Nj)!
=

gj(gj � 1)(gj � 2) · · · (gj �Nj + 1)(gj �Nj)!

(gj � nj)!
⇡ gNj

(gj +Nj � 1)! = (gj +Nj � 1)(gj +Nj � 2) · · · (gj +Nj �Nj)(gj � 1)!

⇡ g
Nj

j (gj � 1)!

!FD ⇡ !BE ⇡
Y

j

g
Nj

j

Nj !

Nj ⌧ gjFor ↴
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MAXWELL-BOLTZMANN DISTRIBUTION

!MB =
Y

j

g
Nj

j

Nj !
) !B = N ! !MB

Maxwell-Boltzmann distribution  ☛

Distribution of particles among energy levels ☛  found using Lagrange multipliers

Result can be written down immediately observing that 
              and            differ only by a constant

Difference between Boltzmann and Maxwell-Boltzmann statistics

 Boltzmann statistics assumes distinguishable (localizable) particles

!B !MB

Much larger Boltzmann probability includes  permutation ☛ N !

Nof      identifiable particles giving rise to additional microstates

fj ⌘
Nj

gj
=

N e�"j/kT

Z
(49)
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CONNECTION BETWEEN CLASSICAL AN STATISTICAL THERMODYNAMICS

dU = TdS � PdV + µdN

F = U � TS dF = �SdT � PdV + µdN

µ =

✓
@F

@N

◆

TV

!MB =
Y

j

gNj
Nj !

,
Nj

gj
=

N

Z
e�"j/kT

S = k ln! = k

2

4
X

j

Nj ln gj �
X

j

lnNj !

3

5

= k

2

4
X

j

Nj ln gj �
X

j

Nj lnNj +
X

j

Nj

3

5

= k

2

4N �
X

j

Nj ln

✓
Nj

gj

◆3

5

when matter is added or taken from open system change of internal energy is↴
define Helmholtz function  ☛

Calculate     and    for MB statistics ☛S F

(50)
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S = k

2

4N � lnN
X

j

Nj + lnZ
X

j

Nj +
1

kT

X

j

Nj"j

3

5

=
U

T
+Nk(lnZ � lnN + 1)

F = U � TS = �NkT (lnZ � lnN + 1)

µ = �kT (lnZ � lnN + 1) +
nkT

N

= kT ln

✓
N

Z

◆

N

Z
= eµ/kT ) fj ⌘

Nj

gj

1

e("j�µ)/kT

CONNECTION BETWEEN CLASSICAL AN STATISTICAL THERMODYNAMICS II

Using (50)  ☛
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COMPARISON OF THE DISTRIBUTIONS
Distribution functions for identical indistinguishable particles

Nj

gj
=

1

e("j�µ)/kT + a
  ☛ a =

8
<

:

+1 for FD statistics

�1 for BE statistics

0 for MB statistics
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STATISTICAL THERMODYNAMICS OF IDEAL GAS

Number of particles in quantum states within energy interval                                 
# of particles in one state            times # of states         in this energy interval

Consider ideal gas in a sufficiently large container
 Levels of system are quantized so finely  ☛ introduce density of states         

With            given by (49) 

For finely quantized levels ☛ replace summation  by integration

 Partition function ☛ 

⇢(")

dn"

d"

X

i

... )
Z

d"⇢ (")...

Z =

Z
d" ⇢ (") e��"

f(")

f(")

dN" = f(")dn" =
N

Z
e��"⇢(✏)d"
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MAXWELL SPEED DISTRIBUTION
For quantum particles in a rigid box

Using                            and            

                         coincides with result from kinetic theory of gases

Plank’s constant     ☛  link to quantum mechanics disappeared from final result

Z =
V

(2⇡)2

⇣2m
~

⌘3/2
Z 1

0
d"

p
"e��" =

V

(2⇡)2

⇣2m
~2

⌘3/2
p
⇡

2�3/2
= V

⇣mk�T

2⇡~2
⌘3/2

d" = mvdv" = mv2/2

dv

~

f(v) =
1

Z
e��" ⇢ (")mv =

1

V

⇣ 2⇡~2
mkBT

⌘3/2 V

(2⇡)2

⇣2m
~2

⌘3/2
r

m

2
vmve��"

=

⇣ m

2⇡kBT

⌘3/2
4⇡v2exp

⇣
� mv2

2kBT

⌘

 number of particles in speed interval ☛  

☟

dNv = N(v)dv = N f(v) dv

(51)
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EQUATION OF STATE OF IDEAL GAS
Internal energy of ideal gas is its kinetic energy

being average kinetic energy of an atom

From kinetic theory ☛
           corresponding to three translational degrees of freedom

Same result  obtained from (51) and

U = N "̄

"̄ = mv̄2/2

"̄ =
f

2
kBT

f = 3

U = �N
@ lnZ

@�
= �N

@

@�
V ln

⇣ m

2⇡~2�

⌘3/2
=

3

2
N

@

@�
ln� =

3

2
N

1

�
=

3

2
NkBT

P     is defined by thermodynamic formula ☛ P = �
⇣@F
@V

⌘

T

With help of (51) 

P = NkBT
@ lnZ

@V
= NkBT

@ lnV

@V
=

NkBT

V
that amounts to equation of state of ideal gas PV = NkBT

U =
nX

i=1

"iNi =
N

Z

nX

i=1

e��"i = �N

Z

@Z

@�
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