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ENTROPY MAXIMUM

When 2 bodies with 17 and 12 are brought in thermal contact

heat flows from hot to cold body so that temperatures equilibrate
This is = Second Law of thermodynamics that follows from experiment

Total entropy AS =51 + 52 in process of equilibration increases

When equilibrium is reached AS should attain its maximal value

Investigating behavior of total entropy near its maximum

is subject of first part of this class
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HEAT EXCHANGE

Consider first simplest case in which two bodies do not exchange mass
and keep their volumes unchanged

Transferred heat is the only source of the energy change

dUl = 5@1 and dUQ = 5@2
Since system of two bodies is isolated from rest of the world

0Q1 + 6Q2 =0 and dU; + dU; = 0
Corresponding changes of S up to second order in transferred energy

B 851 1 8251 9 (157)
= (i), 03 (), oo

similar expression for dS-
<aS>
oU
.

0°S

For derivatives w

Eliminating dUs = —dU; w (

dS:dS1—|_dSQZ(
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THERMODYNAMIC STABILITY

Extremum of S corresponds to 17 = 15> m thermal equilibrium

Quadratic term in (159) shows that this extremum is a maximum
provided heat capacities are positive = (7, > 0 (160)
(160) is condition of thermodynamic stability

State with Cyy < Owould be unstable = heat flow from hot to cold body
would lead to increase of I5 — 17 instead of equilibration

For Cyy < 0 w initial state with 17 = 15

would be unstable with respect to transfer of a small amount of energy
Small fluctuation would lead to avalanche-like further transfer of energ
in same direction since temperature on receiving side would decrease

Cp > Cy w Cp is also positive
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MORE ON THERMODYNAMIC STABILITY

(160) complements condition (9) of mechanical stability

% %
Cv >0 kp > 0

At equilibrium w [7 = 5 = 1" (159) becomes

1 1 1 5
= — - 161
dS T3 (CV1 CV2> (dU7) (161)

If 2nd body is much larger than 1st one w it can be considered as bath

Cy, > Cy, and second fraction in (161) can be neglected

Using dU; = C', dT} and dropping index for bathed system

_ Cy 2
dS = — 57 (dT) (162)

(162) gives entropy decrease caused by deviation of system's temperature

by a small amount dT" from bath temperature 7’
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GENERAL CASE OF THERMODYNAMIC EQUILIBRIUM

Consider 2 systems in contact that can exchange energy, volume, mass

Exchanging volume means there is a movable membrane between 2 bodies
so that bodies can do work on each other

Exchanging mass means that this membrane is penetrable by particles
Resolving (139) for d.S we obtains to first order

1 Py 1
dS1 = — dU —dV] — — dN
1 T 1 T T 1 T 1 (163)
similar expression for d52
We could include second-order terms like those in (157)

. to find extended conditions of stability
Constraints q

dU; + dUy; = 0 dVi + dVoy = 0 dN1 + dNy = 0 (164)
lead to total entropy change%

1 1 P1 PQ 1 2
is = (= — = Jauy + [ 22 — 2 )an, — (B2~ 2N
<T1 Tz) ' <T1 T2> ' <T1 Tz) ! (165)
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AL QUE QUIERE CELESTE...QUE LE CUESTE

Requiring that dS > 0 in (165) has three consequences:
(i) Energy flows from hotter body to colder body
(ii) Body with a higher pressure expands
at the expense of body with lower pressure

(iii) Particles diffuse from body with a higher chemical potential
to that with the lower U
The thermodynamic equilibrium is characterized by

1y =15 (thermal equilibrium) (166)

P =P (mechanical equilibrium) (167)

U1 = o (diffusive equilibrium) (168)
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COLLATERAL EFFECT

Total S must have maximum with respect to all 3 variables at equilibrium
Investigating this requires adding second-order terms to (165)

Analysis is somewhat cumbersome but the results can be figured out
Firstly = condition of thermal stability (160) should be satisfied

Secondly = condition of mechanical stability (9) should be satisfied

Thirdly w diffusive stability condition should exist to the effect that
adding particles to the system at constant volume and internal energy

should increase its chemical potential
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FIRST ORDER PHASE TRANSITIONS

Results for diffusive equilibrium can be applied to phase transitions

If different phases of same substance are in contact
particles can migrate from one phase to other across phase boundary

Phase with a higher chemical potential recedes
and phase with a lower chemical potential grows

Phase boundary moves across sample
until receding phase disappears completely

1st-oder phase transitions between phases occur at (P, 1) = p;(P,T)
that describes lines inP, T diagram

Phases are labeled by discrete variables 7

1 for solid 2 for liquid and 3 for a gas
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pressure P

THERMODYNAMIC PHASE DIAGRAMS
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Typical thermodynamic phase diagram of P — |/ — T’ system

triple point = 3 phase coexistence

Solid lines delineate boundaries between distinct thermodynamic phases

Along these lines we have coexistence of 2 phases

and thermodynamic potentials are singular
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P-V-T SURFACES

Equation of state for single component system may be written as

f(P,V,T)=0

This may in principle be inverted to yield
P=P(V,T) V =V(T,P) T=T(PV)
Single constraint f (P V, T) on 3 state variables
defines surface in { PV, T} space

"/ LiQuiD + vAPOR \

triple line

pressure P

molar volume
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P-V-T SURFACE OF IDEAL GAS
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Surface P(v,T) = RT'/v corresponding to ideal gas equation of state
and its projections onto (P, T), (P, v), (T, v) planes
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P-V-T SURFACE OF REAL GASES

Real P — v — " surfaces are much richer than that for ideal gas
because real systems undergo phase transitions

in which thermodynamic properties are singular
or discontinuous along certain curves on P — v — I’ surface
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High temperature isotherms
resemble those of ideal gas
but as one cools below T’
isotherms become singular

@71 = T_.isotherm P = P(v,T.)becomes perfectly horizontal @V = v,
which is critical molar volume
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PROJECTION OF THE P-V-T SURFACE
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Below /. isotherms have a flat portion
corresponding to a two-phase region where liquid and vapor coexist
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WHAT A DIFFERENCE A NEUTRON MAKES!
Phase diagrams for 3He and 4He
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Only difference between these two atoms is a neutron:
(2p + 1n + 2e) in 3He versus (2p + 2n + 2e) in 4He

As we shall learn when we study mechanical statistics

this extra neutron makes all the difference
because 3He is a fermion while 4He is a boson
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SECOND ORDER PHASE TRANSITIONS

Phases are described by order parameter 7)
that is zero in one of phases and nonzero in other phase

Most of second-order transitions are controlled by temperature
High-temperature (symmetric) phase w77 = 0

For T <T, wno (T, — T)° with 8>

For chemical potential in form 1(n)

there are boundaries between regions with different values of 7
which are associated to different values of U

Particles migrate from phase with higher (1 to that with lower p
spatial boundary between phases moves to reach equilibrium state

Since 7] can change continuously

it can adjust in uniform way without any phase boundaries
decreasing its chemical potential everywhere
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SMART MATERIALS

Tetragonal phase expands more rapidly in 2 directions than the 3rd one
becomes cubic phase that expands uniformly in 3 directions as /' is raised
There is no rearrangement of atoms at transition temperature

T<T.

@®roc @0 @iz @®rc @0 @1,z

Ferromagnetic ordering below the Curie point
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Kinetic Theory of Gases
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BASIC ASSUMPTIONS OF THE MOLECULAR THEORY

19 . 3 "
There are about 10 molecules in 1 cm” at normal conditions

Because of large number of particles
impacts of individual particles on walls merge into time-independent pressure

Characteristic distance between molecules largely exceeds molecular size
and typical radius of intermolecular forces

This assumption allows to consider gas as ideal
with internal energy dominated by kinetic energy of molecules

In describing equilibrium properties of ideal gas
collisions between molecules can be neglected

Molecules are uniformly distributed within container

Directions of velocities of molecules are also uniformly distributed
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CHARACTERISTIC LENGTHS OF GAS

Concentration of molecules n is defined by

total number of molecules

P
al (1)
n=—
%
N yolume of container
Characteristic distance g between molecules can be estimated as
1
o — —
o (2)

Let a be radius of molecule m assumption (2) requires a << 7

There are also long-range attractive forces between molecules
but they are weak and do not essentially deviate molecular trajectories
if temperature is high enough and gas is ideal
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MEAN FREE PATH

mean free path m typical distance [ travel by molecules before colliding

o
O
Diameter d Q
Considering other molecules as hon-moving ": - """::_";. O
) o :“,
Area = md? o
o
molecule under consideration will hit (on average) other molecules
that are within cylinder of height [ and cross-section ¢ = 7T(2a)2
Volume ol of this cylinder m volume per molecule 1/n
2
1 1 T0
l:_NT: — | To > T > a (3)
on a=n a

Luis Anchordoqui

Thursday, October 2, 14 21




VELOCITY DISTRIBUTION FUNCTIONS

Distribution of molecules in space is practically uniform,

Distribution in space of velocities (Vy, Uy, V) is nontrivial
Introduce the distribution function G' (v, Uy s v, ) via
dN = NG(vg,vy,v;)dv, dv, dv, (4)
number of molecules with velocities within elementary volume q
dv, dv, dv, = v = dv (5)
around velocity vector specified by its components ™ (Ug;, Uy s ?Jz)

In’regr'a’rion over the whole velocity space gives total number of molecules [V

vx,fuy,vz w  satisfies normalization condition g

+0o0 +00 +00
1 = / / / dvy dvy, dv, G(vy,vy,v,)  (6)
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DISTRIBUTION FUNCTION OF MOLECULAR SPEEDS

Since directions of molecular velocities are distributed uniformly
G (v,,vy,v,) depends only on absolute value of the velocity m the speed

v = \/U§+v§+v§ (7
Using expression for elementary volume in spherical coordinates
d>v = dv x vdf x v sin Ody = v?dv sin 8dfdy  (8)

(4) becomes m N = NG(U)U2 dvdSl g (9

d{) = sin 0dfdy

Using area of a sphere of unit radius

7 27 1
/ df) = / df sin 0/ dp = 27r/ dr = 4m
sphere 0 0 —1 %

L : x = cos 6
number of molecules within spherical shell becomes ( )

dN = NG(v)4mv?dv = N f(v)dv (12)
distribution function over molecular speeds m f(v) = 47T112G(v) (13)

normalization 1:/0 dv f(v)  (14)
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AVERAGE, MEAN SQUARE AND RMS SPEEDS

(9) can be rewritten in terms of f(v) as

ds

dN = N f(v)dv y (15)
average speed
v = /OOO dvv f(v) (16)
mean square speed
V2 = /OO dv v* f(v) (17)
0
root mean square or rms speed
Vyms = V 02 (18)
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