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HEAT CAPACITY

In most cases adding heat to system leads to increase of its

 Heat capacity ☛ C =
�Q

dT
(28) 

Heat capacity is proportional to system size and so is extensive variable

Introduce specific quantities ☛ heat and heat capacity per kilomole

q ⌘ Q

n
c =

C

n
=

�q

dT
(29) 

Heat capacity depends on the type of the process

T
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HEAT CAPACITY (isobaric and isochoric processes)

If heat is added to system while volume is kept constant                dV = 0

CV =

 
�Q

dT

!

V

(30) 

If we keep a constant pressure          

we obtain the isobaric heat capacity

we obtain the isochoric heat capacity

dP = 0

CP =

 
�Q

dT

!

P

(31) 

In isochoric case no work is done

so heat fully converts into internal energy and temperature increases

In the isobaric case system usually expands upon heating
and a negative work is done on it

This leads to smaller increase of    and thus smaller increase of U T
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HEAT CAPACITY (isothermal and adiabatic processes)

In isothermal process system receives or lose heat but             dT = 0

CT = ±1

In adiabatic process            but the temperature changes�Q = 0

CS = 0

Subscript     refers to entropy ☛ state function S
conserved in reversible adiabatic processes        
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ISOCHORIC HEAT CAPACITY

Let us rewrite first law of thermodynamics (25) with (17) in form

�Q = dU + PdV (32)

Considering energy as a function of     and   T V

dU =

 
@U

@T

!

V

dT +

 
@U

@V

!

T

dV (33)

Combining this with the previous equation

�Q =

 
@U

@T

!

V

dT +

" 
@U

@V

!

T

+ P

#
dV (34)

At constant volume this equation yields                             so

CV =

 
@U

@T

!

V
(35)

�Q = (@U/@T )V dT
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ISOBARIC HEAT CAPACITY

To find isobaric heat capacity      we must take into account that          
at constant     the    in (32) changes because of thermal expansion,

Inserting this into (34) we obtain

�Q =

"
CV +

 
@U

@V

!

T

 
@V

@T

!

P

+ P

 
@V

@T

!

P

#
dT (37)

CP
P V

dV =

✓
@V

@T

◆

P

dT

CP = CV +

" 
@U

@V

!

T

+ P

# 
@V

@T

!

P

so

(38)
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MAYER’S RELATION

 From the equation of state (5)  we obtain ☛       

In terms of number of particles     Mayer’s relation becomes

(39)

(40)

T (@U/@V )T = 0

CP = CV + nR

CP = CV + N kB

N

for heat capacities per particleor cP = cV + kB

cP = cV + R

Substituting these in (38) we obtain Mayer’s relation for ideal gas

energy of ideal gas depends only on    ☛

or                     for heat capacities per kilomole 

Because of of negligibly weak interaction between particles

(@V/@T )V = nR/P
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ADIABATIC PROCESS OF IDEAL GAS

(44)

(45)

(46)

For ideal gas internal energy is a function of temperature only

dU =

 
@U

@T

!

V

dT = CV dT

In adiabatic process 
Substituting these two results in (25) and using (17) we obtain

�Q = 0

CV dT = �PdV

Either      or      can be eliminated with help of  (5)
                      

P V

CV dT = �nRT
dV

V

This  can be integrated if temperature dependence               is knownCV (T )
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PERFECT GAS 

(47)

For perfect gas  ☛                          ➣ integration of (46) yieldsCV = const

or equivalently (48)TV nR/CV
= const

it is convenient to introduce � ⌘ CP

CV
(49)

with help of Mayer’s relation (39)

CV =
nR

� � 1
CP =

nR�

� � 1
(50)

Adiabatic equation (48) becomes ☛ TV ��1
= const

(51)

Using (5) we can rewrite (51) as

or else as

PV �
= const

(52)

TP 1/��1
= const (53)

lnT = �nR

CV
lnV + const
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WORK DONE IN ADIABATIC PROCESS

Using (52)  

Substituting                                              into  (54)

Using  (5) and (50) one can simplify this formula to

(55)

(54)

(56)

const = P1V
�
1 = P2V

�
2

W12 =

Z V2

V1

P dV = const

Z V2

V1

dV

V
=

1

1� �
(V 1��

2 � V 1��
1 )

W12 =
1

1� �
(P2V2 � P1V1)

W12 =
nR

1� �
(T2 � T1) = CV (T1 � T2)
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ALTERNATIVELY...

 For ideal gas ☛ andU = U(T ) dU/dT = CV

Internal energy of ideal gas is given by U(T ) =

Z
CV (T ) dT (57)

For perfect gas  ☛                     

U(T ) = CV T + U0 U0 = const

CV = const

so that (56) follows

(58)

(59)

According to first law of thermodynamics 
in adiabatic process work is equal to change of internal energy

W12 = U1 � U2

U1 � U2 = CV (T1 � T2)
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HEAT MACHINES
Heat machines were a major application of thermodynamics in XIX century

Basis of their understanding is first law of thermodynamics (25)

Heat machine includes two reservoirs with different temperatures                              

There are three types of heat machines:

 engines, refrigerators and heat pumps

Refrigerators and heat pumps also use agents other than water 

Contemporary motors use fuel that burns and generates heat directly 

Engines of XIX century used steam as a source of heat

(obtained by heating water by fire)

and does work in a cyclic process
and a system that exchanges heat with two reservoirs 

⬇
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HEAT ENGINE

gives heat       to cold reservoir and makes work
Q2During one cycle system receives heat        from hot reservoir

�

�

�

2.6. HEAT ENGINES AND THE SECOND LAW OF THERMODYNAMICS 35

Figure 2.12: An engine (left) extracts heat Q2 from a reservoir at temperature T2 and deposits a smaller amount of
heat Q1 into a reservoir at a lower temperature T1, during each cycle. The difference W = Q2−Q1 is transformed
into mechanical work. A refrigerator (right) performs the inverse process, drawing heat Q1 from a low tempera-
ture reservoir and depositing heat Q2 = Q1 +W into a high temperature reservoir, where W is the mechanical (or
electrical) work done per cycle.

must produce the maximum amount of work W , and that the amount of work produced is independent of the
material properties of the engine. We call any such engine a Carnot engine.

The efficiency of a Carnot engine may be used to define a temperature scale. We know from Carnot’s observations
that the efficiency ηC can only be a function of the temperatures T1 and T2: ηC = ηC(T1, T2). We can then define

T1

T2

≡ 1− ηC(T1, T2) . (2.58)

Below, in §2.6.4, we will see that how, using an ideal gas as the ‘working substance’ of the Carnot engine, this
temperature scale coincides precisely with the ideal gas temperature scale from §2.2.4.

2.6.3 Nothing beats a Carnot engine

The Carnot engine is the most efficient engine possible operating between two thermal reservoirs. To see this,
let’s suppose that an amazing wonder engine has an efficiency even greater than that of the Carnot engine. A key
feature of the Carnot engine is its reversibility – we can just go around its cycle in the opposite direction, creating
a Carnot refrigerator. Let’s use our notional wonder engine to drive a Carnot refrigerator, as depicted in Fig. 2.13.

We assume that
W

Q2

= ηwonder > ηCarnot =
W ′

Q′
2

. (2.59)

But from the figure, we have W = W ′, and therefore the heat energy Q′
2 −Q2 transferred to the upper reservoir is

positive. From
W = Q2 −Q1 = Q′

2 −Q′
1 = W ′ , (2.60)

we see that this is equal to the heat energy extracted from the lower reservoir, since no external work is done on
the system:

Q′
2 −Q2 = Q′

1 −Q1 > 0 . (2.61)

Q1 W
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EFFICIENCY OF HEAT ENGINE

so that the work done by the system is

Integrating (25) over cycle

Note that 

(62)

(63)

⌘ < 1

⌘To make efficiency     as high as possible we should minimize 

Inserting this into (60) ☛ 

�U =

I
dU = 0

In cyclic processes internal energy of system does not change:

Efficiency of engine ☛ ratio of output energy to input energy

(       is lost energy)

(61)

(60)

⌘ = 1� Q1

Q2

Q1

Q1⌘ =
W

Q2

0 =

I
(�Q� �W ) = Q�W = Q2 �Q1 �W

W = Q2 �Q1
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CARNOT CYCLE

Carnot cycle  consists of two isotherms       and       and two adiabats 

 Heat       is received on the isothermal path        at                                

Cycle goes clockwise ☛ work done by system 

There is no heat exchange on the adiabatic paths         and 

Q2

T2T1

AB T = T2

T = T1CD

BC DA

(working body being ideal gas)

Heat        is given away on isothermal path        at

2.6. HEAT ENGINES AND THE SECOND LAW OF THERMODYNAMICS 37

Figure 2.14: The Carnot cycle consists of two adiabats (dark red) and two isotherms (blue).

AB: This stage is an isothermal expansion at temperature T2. It is the ‘power stroke’ of the engine. We have

WAB =

VB∫

VA

dV
νRT2

V
= νRT2 ln

(
VB

VA

)
(2.68)

EA = EB =
νRT2

γ − 1
, (2.69)

hence

QAB = ∆EAB + WAB = νRT2 ln

(
VB

VA

)
. (2.70)

BC: This stage is an adiabatic expansion. We have

QBC = 0 (2.71)

∆EBC = EC − EB =
νR

γ − 1
(T1 − T2) . (2.72)

The energy change is negative, and the heat exchange is zero, so the engine still does some work during this
stage:

WBC = QBC −∆EBC =
νR

γ − 1
(T2 − T1) . (2.73)

CD: This stage is an isothermal compression, and we may apply the analysis of the isothermal expansion, mutatis
mutandis:

WCD =

VD∫

VC

dV
νRT2

V
= νRT1 ln

(
VD

VC

)
(2.74)

EC = ED =
νRT1

γ − 1
, (2.75)

hence

QCD = ∆ECD + WCD = νRT1 ln

(
VD

VC

)
. (2.76)

�Q = 0

�Q = 0

Q1

W =

I
PdV > 0
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CARNOT ENGINE
For ideal gas                     

(64)

Using (51):

(65)T2V
��1
B = T1V

��1
C T2V

��1
A = T1V

��1
D

U = U(T ) U = const

Using (20):

 ☛ along isotherms                         

Dividing these equations by each other  ☛

(63) gives Carnot formula for temperature scale

VB/VA = VC/VD

⌘ = 1 � T1

T2

(66)

(67)

Q1

Q2
=

T1

T2

dU = �Q� �W = 0

Q2 = QAB = WAB = nRT2 ln
VB

VA

Q1 = �QCD = �WCD = nRT2 ln
VC

VD
> 0
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EFFICIENCY OF CARNOT ENGINE

Efficiency     becomes close to 1 as  

this leads to further decrease of efficiency

In practice ☛ processes in heat engines deviate from Carnot cycle

e.g. for                          ☛     

of hot reservoir must essentially exceed 

In standard engines      is temperature at normal conditions 

practically it is impossible to realize
⌘

⌘

T1 T1 = 300K

T2 = 600K ⌘ = 0.5

T2 T1

T1 ! 0
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REFRIGERATOR
Refrigerators are inverted heat engines

Work is done on system that extracts heat       from cold reservoir Q1

the environment
and gives heat       to hot reservoir ☛   

(eventually lowering its temperature) 

(environment at      ) T2

2.6. HEAT ENGINES AND THE SECOND LAW OF THERMODYNAMICS 35

Figure 2.12: An engine (left) extracts heat Q2 from a reservoir at temperature T2 and deposits a smaller amount of
heat Q1 into a reservoir at a lower temperature T1, during each cycle. The difference W = Q2−Q1 is transformed
into mechanical work. A refrigerator (right) performs the inverse process, drawing heat Q1 from a low tempera-
ture reservoir and depositing heat Q2 = Q1 +W into a high temperature reservoir, where W is the mechanical (or
electrical) work done per cycle.

must produce the maximum amount of work W , and that the amount of work produced is independent of the
material properties of the engine. We call any such engine a Carnot engine.

The efficiency of a Carnot engine may be used to define a temperature scale. We know from Carnot’s observations
that the efficiency ηC can only be a function of the temperatures T1 and T2: ηC = ηC(T1, T2). We can then define

T1

T2

≡ 1− ηC(T1, T2) . (2.58)

Below, in §2.6.4, we will see that how, using an ideal gas as the ‘working substance’ of the Carnot engine, this
temperature scale coincides precisely with the ideal gas temperature scale from §2.2.4.

2.6.3 Nothing beats a Carnot engine

The Carnot engine is the most efficient engine possible operating between two thermal reservoirs. To see this,
let’s suppose that an amazing wonder engine has an efficiency even greater than that of the Carnot engine. A key
feature of the Carnot engine is its reversibility – we can just go around its cycle in the opposite direction, creating
a Carnot refrigerator. Let’s use our notional wonder engine to drive a Carnot refrigerator, as depicted in Fig. 2.13.

We assume that
W

Q2

= ηwonder > ηCarnot =
W ′

Q′
2

. (2.59)

But from the figure, we have W = W ′, and therefore the heat energy Q′
2 −Q2 transferred to the upper reservoir is

positive. From
W = Q2 −Q1 = Q′

2 −Q′
1 = W ′ , (2.60)

we see that this is equal to the heat energy extracted from the lower reservoir, since no external work is done on
the system:

Q′
2 −Q2 = Q′

1 −Q1 > 0 . (2.61)

Q2
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EFFICIENCY OF REFRIGERATOR

Efficiency of refrigerator

(68)

For Carnot refrigerator with help of (66)

As      decreases well below       (environmental             )

(69)

T1

T1

T2

T2

300K

c =
T1

T2 � T1

Efficiency of a refrigerator can be very high if      and        are close

This is the situation when the refrigerator starts to work

efficiency becomes small

c =
output

input

=

Q1

W =

Q1

Q2 �Q1
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Similar to refrigerator but interpretation of reservoirs 1 and 2 changes

1 is the environment from where heat is being pumped

HEAT PUMP

 whereas 2 is the reservoir that is being heated (e.g. a house)

(environment at      )T1

2.6. HEAT ENGINES AND THE SECOND LAW OF THERMODYNAMICS 35

Figure 2.12: An engine (left) extracts heat Q2 from a reservoir at temperature T2 and deposits a smaller amount of
heat Q1 into a reservoir at a lower temperature T1, during each cycle. The difference W = Q2−Q1 is transformed
into mechanical work. A refrigerator (right) performs the inverse process, drawing heat Q1 from a low tempera-
ture reservoir and depositing heat Q2 = Q1 +W into a high temperature reservoir, where W is the mechanical (or
electrical) work done per cycle.

must produce the maximum amount of work W , and that the amount of work produced is independent of the
material properties of the engine. We call any such engine a Carnot engine.

The efficiency of a Carnot engine may be used to define a temperature scale. We know from Carnot’s observations
that the efficiency ηC can only be a function of the temperatures T1 and T2: ηC = ηC(T1, T2). We can then define

T1

T2

≡ 1− ηC(T1, T2) . (2.58)

Below, in §2.6.4, we will see that how, using an ideal gas as the ‘working substance’ of the Carnot engine, this
temperature scale coincides precisely with the ideal gas temperature scale from §2.2.4.

2.6.3 Nothing beats a Carnot engine

The Carnot engine is the most efficient engine possible operating between two thermal reservoirs. To see this,
let’s suppose that an amazing wonder engine has an efficiency even greater than that of the Carnot engine. A key
feature of the Carnot engine is its reversibility – we can just go around its cycle in the opposite direction, creating
a Carnot refrigerator. Let’s use our notional wonder engine to drive a Carnot refrigerator, as depicted in Fig. 2.13.

We assume that
W

Q2

= ηwonder > ηCarnot =
W ′

Q′
2

. (2.59)

But from the figure, we have W = W ′, and therefore the heat energy Q′
2 −Q2 transferred to the upper reservoir is

positive. From
W = Q2 −Q1 = Q′

2 −Q′
1 = W ′ , (2.60)

we see that this is equal to the heat energy extracted from the lower reservoir, since no external work is done on
the system:

Q′
2 −Q2 = Q′

1 −Q1 > 0 . (2.61)
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(70)

(71)

Efficiency 

For Carnot heat pump efficiency becomes inverse of that of Carnot engine

EFFICIENCY OF HEAT PUMP

d =
T2

T2 � T1

Efficiency of heat pump is always greater than 1
If      and       are close to each other ☛    becomes largeT1 T2 d
This characterizes the initial stage of the work of a heat pump
After       increases well above     ☛ efficiency becomes close to 1T2 T1
Heating a house in winter involves                          while T1 ⇡ 270K T2 ⇡ 300K

In reality there are losses that lower heat pump efficiency
 ☛ d ⇡ 10

c =
output

input

=

Q2

W =

Q2

Q2 �Q1
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THE SECOND LAW OF THERMODYNAMICS

These postulates which have been repeatedly validated by empirical observations

A transformation whose only final result is to extract heat from a source              

at fixed temperature and transform that heat into work is impossible            

A transformation whose only result is to transfer heat from a body                            

at a given temperature to a body at a higher temperature is impossible              

constitute the Second Law of Thermodynamics

Postulate of Lord Kelvin:

Postulate of Clausius:
34 CHAPTER 2. THERMODYNAMICS

Figure 2.11: A perfect engine would extract heat Q from a thermal reservoir at some temperature T and convert it
into useful mechanical work W . This process is alas impossible, according to the Second Law of thermodynamics.
The inverse process, where work W is converted into heat Q, is always possible.

2.6.2 Engines and refrigerators

While it is not possible to convert heat into work with 100% efficiency, it is possible to transfer heat from one
thermal reservoir to another one, at lower temperature, and to convert some of that heat into work. This is what
an engine does. The energy accounting for one cycle of the engine is depicted in the left hand panel of Fig. 2.12.
An amount of heat Q2 > 0 is extracted- from the reservoir at temperature T2. Since the reservoir is assumed to
be enormous, its temperature change ∆T2 = −Q2/C2 is negligible, and its temperature remains constant – this
is what it means for an object to be a reservoir. A lesser amount of heat, Q1, with 0 < Q1 < Q2, is deposited
in a second reservoir at a lower temperature T1. Its temperature change ∆T1 = +Q1/C1 is also negligible. The
difference W = Q2 − Q1 is extracted as useful work. We define the efficiency, η, of the engine as the ratio of the
work done to the heat extracted from the upper reservoir, per cycle:

η =
W

Q2

= 1− Q1

Q2

. (2.56)

This is a natural definition of efficiency, since it will cost us fuel to maintain the temperature of the upper reservoir
over many cycles of the engine. Thus, the efficiency is proportional to the ratio of the work done to the cost of the
fuel.

A refrigerator works according to the same principles, but the process runs in reverse. An amount of heat Q1 is
extracted from the lower reservoir – the inside of our refrigerator – and is pumped into the upper reservoir. As
Clausius’ form of the Second Law asserts, it is impossible for this to be the only result of our cycle. Some amount
of work W must be performed on the refrigerator in order for it to extract the heat Q1. Since ∆E = 0 for the cycle,
a heat Q2 = W + Q1 must be deposited into the upper reservoir during each cycle. The analog of efficiency here
is called the coefficient of refrigeration, κ, defined as

κ =
Q1

W =
Q1

Q2 −Q1

. (2.57)

Thus, κ is proportional to the ratio of the heat extracted to the cost of electricity, per cycle.

Please note the deliberate notation here. I am using symbols Q and W to denote the heat supplied to the engine
(or refrigerator) and the work done by the engine, respectively, and Q and W to denote the heat taken from the
engine and the work done on the engine.

A perfect engine has Q1 = 0 and η = 1; a perfect refrigerator has Q1 = Q2 and κ = ∞. Both violate the Second
Law. Sadi Carnot7 (1796 – 1832) realized that a reversible cyclic engine operating between two thermal reservoirs

7Carnot died during cholera epidemic of 1832. His is one of the 72 names engraved on the Eiffel Tower.
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CARNOT’S THEOREM

⌘ = 1 � T1/T2

Efficiency of any reversible heat engine operating between heat reservoirs 

                            

while the efficiency of any irreversible heat engine is lower than this

with temperatures      and      is equal to the efficiency of Carnot engine T1 T2

To prove Carnot’s theorem ☛ assume that wicked awesome wonder engine
has an efficiency greater than Carnot engine

Key feature of Carnot engine is its reversibility 
we can go around its cycle in opposite direction ☛ creating a Carnot refrigerator

Envision wonder engine to driving a Carnot refrigerator
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WONDER ENGINE DRIVING CARNOT’S  REFRIGERATOR

36 CHAPTER 2. THERMODYNAMICS

Figure 2.13: A wonder engine driving a Carnot refrigerator.

Therefore, the existence of the wonder engine entails a violation of the Second Law. Since the Second Law is
correct – Lord Kelvin articulated it, and who are we to argue with a Lord? – the wonder engine cannot exist.

We further conclude that all reversible engines running between two thermal reservoirs have the same efficiency, which is
the efficiency of a Carnot engine. For an irreversible engine, we must have

η =
W

Q2

= 1− Q1

Q2

≤ 1− T1

T2

= ηC . (2.62)

Thus,
Q2

T2

− Q1

T1

≤ 0 . (2.63)

2.6.4 The Carnot cycle

Let us now consider a specific cycle, known as the Carnot cycle, depicted in Fig. 2.14. The cycle consists of two
adiabats and two isotherms. The work done per cycle is simply the area inside the curve on our p− V diagram:

W =

∮
p dV . (2.64)

The gas inside our Carnot engine is called the ‘working substance’. Whatever it may be, the system obeys the First
Law,

dE = d̄Q− d̄W = d̄Q− p dV . (2.65)

We will now assume that the working material is an ideal gas, and we compute W as well as Q1 and Q2 to find
the efficiency of this cycle. In order to do this, we will rely upon the ideal gas equations,

E =
νRT

γ − 1
, pV = νRT , (2.66)

where γ = cp/cv = 1 + 2
f , where f is the effective number of molecular degrees of freedom contributing to the

internal energy. Recall f = 3 for monatomic gases, f = 5 for diatomic gases, and f = 6 for polyatomic gases. The
finite difference form of the first law is

∆E = Ef − Ei = Qif −Wif , (2.67)

where i denotes the initial state and f the final state.
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NOTHING BEATS A CARNOT ENGINE

                ,
Difference of efficiencies

In reversible case no heat flows from hot to cold reservoir and ☛

(74)

⌘0 = ⌘

According to second law of thermodynamics ☛

that proves Carnot’s theorem

                ,
We assume       W

Q2
= ⌘

wonder

> ⌘
Carnot

=
W 0

Q0
2

W = Q2 �Q1 = Q0
2 �Q0

1 = W 0Looking @ figure

⌘ � ⌘0 =
W

Q2
� W 0

Q0
2

=
W

Q2
� W

Q2
=

W (Q0
2 �Q2)

Q2Q0
2

 0

(72)

Q2 �Q0
2 � 0 (73)
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INFINITESIMALLY CARNOT CYCLE

Since                 ☛

(75)

(76)
Q1

T1
+

Q2

T2
 0

⌘0 � ⌘ = 1 +
Q1

Q2
� 1 +

T1

T2
=

Q1

Q2
+

T1

T2
 0

Q2 > 0

Rewrite (74) using (63) for  (arbitrary body) and (67) for (ideal gas)

For an infinitesimally narrow Carnot cycle
�Q1

T1
+

�Q2

T2
 0 (77)
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CLAUSIUS INEQUALITY
Arbitrary curve in PV plane can be decomposed (to arbitrary accuracy)        

�Q = TdS

T

46 CHAPTER 2. THERMODYNAMICS

Figure 2.19: An arbitrarily shaped cycle in the p − V plane can be decomposed into a number of smaller Carnot
cycles. Red curves indicate isotherms and blue curves adiabats, with γ = 5

3 .

process:

dS =
d̄Q

T
=⇒ SB − SA =

B∫

A

d̄Q

T
. (2.135)

Since Q is extensive, so is S; the units of entropy are [S] = J/K.

2.7.2 The Third Law of Thermodynamics

Eqn. 2.135 determines the entropy up to a constant. By choosing a standard state Υ, we can define SΥ = 0, and
then by taking A = Υ in the above equation, we can define the absolute entropy S for any state. However, it
turns out that this seemingly arbitrary constant SΥ in the entropy does have consequences, for example in the
theory of gaseous equilibrium. The proper definition of entropy, from the point of view of statistical mechanics,
will lead us to understand how the zero temperature entropy of a system is related to its quantum mechanical
ground state degeneracy. Walther Nernst, in 1906, articulated a principle which is sometimes called the Third
Law of Thermodynamics,

The entropy of every system at absolute zero temperature always vanishes.

Again, this is not quite correct, and quantum mechanics tells us that S(T = 0) = kB ln g, where g is the ground
state degeneracy. Nernst’s law holds when g = 1.

We can combine the First and Second laws to write

dE + d̄W = d̄Q ≤ T dS , (2.136)

where the equality holds for reversible processes.

as combination of Carnot cycles

isotherms 
adiabats 

� = 5
3

I
�Q

T
 0 Clausius inequality (78)

with equality holding if all cycles are reversibles
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ENTROPY

Consequence of second law is existence of entropy: 

a state function @ thermodynamic equilibrium whose differential is given by

being a state function ☛ does not change in any reversible cyclic process:S

(79)

Since       is extensive ☛ so is Q S

 Units of entropy are [S] = J/K

I
�Q

T
= 0

�Q = T dS
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