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HEAT CAPACITY

In most cases adding heat to system leads to increase of its I’

_ 0@

- dT (28)

Heat capacity = C

Heat capacity is proportional to system size and so is extensive variable

Introduce specific quantities = heat and heat capacity per kilomole

c = — =

@ ¢ _ oq (29)
n n dT

S
]

Heat capacity depends on the type of the process
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HEAT CAPACITY (isobaric and isochoric processes)

If heat is added to system while volume is kept constant dV = 0

we obtain the isochoric heat capacity ¢, — <2§%> (30)
.
If we keep a constant pressure dP = (
0
we obtain the isobaric heat capacity C'p = <d§%> (31)
P

In isochoric case no work is done

so heat fully converts into internal energy and temperature increases

In the isobaric case system usually expands upon heating
and a negative work is done on it

This leads to smaller increase of U and thus smaller increase of 7
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HEAT CAPACITY (isothermal and adiabatic processes)

In isothermal process system receives or lose heat but dI' = 0

CT = + 00
In adiabatic process )() = ( but the temperature changes

Cs =0

Subscript S refers to entropy =~ state function

conserved in reversible adiabatic processes
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ISOCHORIC HEAT CAPACITY
Let us rewrite first law of thermodynamics (25) with (17) in form
0Q)Q = dU + PdV (32)

Considering energy as a function of 7' and V

oU oU
dU = <(‘9T>VdT + (av)TdV (33)

Combining this with the previous equation

oU oU
vV T

At constant volume this equation yields 0Q) = (OU /0T )y dT so

oU
- (57),
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ISOBARIC HEAT CAPACITY

To find isobaric heat capacity C'p we must take into account that
at constant > the V' in (32) changes because of thermal expansion,

oV
dV = | — dTl’
v <8T>P

Inserting this into (34) we obtain
oU oV oV
T P P

[ oU | (ov
ot <W>T o <8T>P %

5Q =

SO
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MAYER’S RELATION

Because of of negligibly weak interaction between particles
energy of ideal gas depends only on 7' = (OU/OV )7 = 0

From the equation of state (5) we obtain = (OV/OT)y = nR/P

Substituting these in (38) we obtain Mayer's relation for ideal gas
Cp = Cy +nR (39)

or cp = cy + R for heat capacities per kilomole

In terms of number of particles N Mayer's relation becomes
Cp =Cy + Nkp (40)

orCp = Cy + KB for heat capacities per particle
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ADIABATIC PROCESS OF IDEAL GAS

For ideal gas internal energy is a function of femperature only

oU
dU = (W)VdTCVdT (44)

In adiabatic process 0Q) = 0
Substituting these two results in (25) and using (17) we obtain

Cydl = —PdV (4D)
Either P or V can be eliminated with help of (5)
dV
Cvdl'= —nRT v (46)

This can be integrated if temperature dependence C'y (T') is known
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PERFECT GAS
For perfect gas = (yy = const > integration of (46) yields
nR
InT" = ———1nV + const (47)
Cy
or equivalently TV R/Cv — copst (48)
. Cp
it is convenient to introduce = — (49)
Cyv
with help of Mayer's relation (39)
R R
Cy = — Cp = (50)
v —1 v —1
Adiabatic equation (48) becomes » TV 7! — const (51)
Using (5) we can rewrite (51)as  PV"7 = const (52)
orelseas TPY71 = const (53)
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WORK DONE IN ADIABATIC PROCESS

Using (52)

V2 V2 dV 1 1_ 1_
Wis = / P dV = Const/ — = ——(V, 7 =V, (54)
Vi w Vo 1=v

Substituting const = P1V17 = PQV; info (54)

1
Wig = G(PQVQ — P ) (55)

Using (5) and (50) one can simplify this formula to

nR
—

Wia = 7 (Ip =T1) = Cy (11 — 1) (56)
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ALTERNATIVELY...

According to first law of thermodynamics
in adiabatic process work is equal to change of internal energy

Wig =U; — Uz
For ideal gasmU = U(T) and dU/dT = Cy

Internal energy of ideal gas is givenby U(T') = / Cyv (T)dT  (57)

For perfect gas = ('}, = const
(58)

UT)=CyT + U Uy = const
U —U; = Cv(Tl — TQ) (59)
so that (56) follows
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HEAT MACHINES

Heat machines were a major application of thermodynamics in XIX century
Basis of their understanding is first law of thermodynamics (25)

Heat machine includes two reservoirs with different temperatures
and a system that exchanges heat with two reservoirs
and does work in a cyclic process

There are three types of heat machines:

engines, refrigerators and heat pumps

Engines of XIX century used steam as a source of heat
(obtained by heating water by fire)

Contemporary motors use fuel that burns and generates heat directly

Refrigerators and heat pumps also use agents other than water
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HEAT ENGINE

During one cycle system receives heat ()2 from hot reservoir
gives heat Q)1 to cold reservoir and makes work 11/

heat bath
heat¢Q2

W:Q2—Q1

—
) heatlQ1

work
heat bath

1,
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EFFICIENCY OF HEAT ENGINE

Efficiency of engine » ratio of output energy fo input energy

n = K (91 is lost energy) (60)
Q2
In cyclic processes internal energy of system does not change:
AU = 7{ dU = 0 (61)

Integrating (25) over cycle

ozjf(acg—avv):Q—W:Qz—Ql—W (62)

so that the work done by the systemis W = () — Q1

Inserting this into (60)m 1) = 1 — % (63)

2
Note that 1 < 1

To make efficiency 7 as high as possible we should minimize Q1
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CARNOT CYCLE

Carnot cycle consists of two isotherms 17 and T, and two adiabats

A (working body being ideal gas)
CARNOT CYCLE

pressure p

T=T, C

volume V

Cycle goes clockwise w work done by system W = %Pdv > 0
Heat (s is received on the isothermal path AB at T = T5

Heat Q1 is given away on isothermal path CDat T = T}
There is no heat exchange on the adiabatic paths BC and D A
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CARNOT ENGINE
For ideal gas ' = U(T') = alongisotherms [/ = const
dU = o0Q) — oW =20
Using (20): V.
Q2= Qap = Wap = nRTyIn —
Va v, (64)
Ql — _QCD S —WCD — TLRTQ In— >0
Vb
Using (51):
VI =1nvi! VIt =1Vt (65)
Dividing these equations by each other = Vg /V4 = Vo /Vp
Q0 T
Q T (66)
(63) gives Carnot formula for temperature scale
13
=1 - — 67
n T, (67)
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EFFICIENCY OF CARNOT ENGINE

Efficiency 7) becomes close tolas 77 — 0
practically it is impossible to realize

In standard engines 11 is temperature at normal conditions 11 = 300 K

12 of hot reservoir must essentially exceed 11

eg.for 7o, = 600K =~ n = 0.5

In practice w processes in heat engines deviate from Carnot cycle

this leads to further decrease of efficiency 7
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REFRIGERATOR

Refrigerators are inverted heat engines
Work is done on system that extracts heat (1 from cold reservoir
(eventually lowering its temperature)

and gives heat 92 to hot reservoir w .
the environment

heat bath

heat T Qs

W=0Q,-Q1
heatTQl

(_
heat bath

1,

work

1

(environment at 15)
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EFFICIENCY OF REFRIGERATOR

Efficiency of refrigerator

output (1 (1 (68)

input W Qs — Q1

For Carnot refrigerator with help of (66)

I P

¢ (69)

Efficiency of a refrigerator can be very high if 11and 12 are close

This is the situation when the refrigerator starts to work

As 171 decreases well below 12 (environmental 300 K )
efficiency becomes small
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HEAT PUMP

Similar to refrigerator but interpretation of reservoirs 1 and 2 changes

1 is the environment from where heat is being pumped
whereas 2 is the reservoir that is being heated (e.g. a house)

heat bath

heat T Qs

W=0,—-0
" I

work
heat T Q4

heat bath

1,

I

(environment at 17 )
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EFFICIENCY OF HEAT PUMP
Efficiency

output Qo Qo

c= input W - Qs — Q1 7o)

For Carnot heat pump efficiency becomes inverse of that of Carnot engine

g 12 (71)
Ty — TG

Efficiency of heat pump is always greater than 1

If Thand 12 are close to each other w d becomes large

This characterizes the initial stage of the work of a heat pump

After T, increases well above T';m efficiency becomes close to 1

Heating a house in winter involves 17 ~ 270 K while T5 ~ 300 K
= d ~ 10

In reality there are losses that lower heat pump efficiency
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THE SECOND LAW OF THERMODYNAMICS

Postulate of Lord Kelvin:

A transformation whose only final result is to extract heat from a source
at fixeo temperature and transform that heat into work Ls Limpossible

Postulate of Clausius:
A transformation whose only result is to transfer heat from a body

at a given tewperature to a body at a higher temperature Ls Limpossible

heat bath - heat bath
heatl@ heat IQ—W
W =0qQ 4%
> -—
work work
(a) a perfect engine (b) a perfect waste of time

These postulates which have been repeatedly validated by empirical observations
constitute the Second Law of Thermodynamics
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CARNOT’S THEOREM

Efficiency of any reversible heat engine operating between heat reservolrs
with temperatures T1 and 12 s equal to the efficiency of Carnot engine

N = 1—T1/T2

while the efficiency of any irreversible heat engine is lower thaw this

To prove Carnot's theorem m assume that wicked awesome wonder engine
has an efficiency greater than Carnot engine

Key feature of Carnot engine is its reversibility
we can go around its cycle in opposite direction m creating a Carnot refrigerator

Envision wonder engine to driving a Carnot refrigerator
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WONDER ENGINE DRIVING CARNOT’S REFRIGERATOR

heat bath

1
heat l Q- heat T Q5

W:Qz—legﬁz - Qll =W

>

work

heatl Q, heat T Q]

heat bath
wonder engine Carnot refrigerator
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NOTHING BEATS A CARNOT ENGINE

We assume W W’

~ nWOl’l er > 77 arno — A/ (72)
Q2 d C t Q/2

Looking @ figure W=0Qs—901=05,-Q, =W

According to second law of thermodynamics = () — Q/Q >0  (73)

Difference of efficiencies

W W W W (95— @Qs)
_ e — O
T, Qy Q2 Qo Q2Q5 7o

that proves Carnot's theorem

In reversible case no heat flows from hot to cold reservoir and w 77' =1
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INFINITESIMALLY CARNOT CYCLE

Rewrite (74) using (63) for (arbitrary body) and (67) for (ideal gas)

(1 Tn G T
=14 = 14 - = =+ — <0 (75)
T 2 T Q2 T3
- @1 Q2
Since > ()™ - ~= <0
Q2 T + T, S (76)
0 0
For an infinitesimally narrow Carnot cycle % + % <0 (77)
1 2
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Arbitrary curve in PV plane can be decomposed (o arbitrary accuracy)

pressure p

CLAUSIUS INEQUALITY

as combination of Carnot cycles

NN s
\\§\Q y=35

Clausius inequality

volume V

Q
7{ T <0 (78)

with equality holding if all cycles are reversibles
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ENTROPY

Consequence of second law is existence of entropy:

a state function @ thermodynamic equilibrium whose differential is given by

0Q =1T1dS (79)

S being a state function = does not change in any reversible cyclic process:

fg-

Since () is extensive w so is .S

Units of entropy are [S] — J/K
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