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 ABOUT THE COURSE
This course consists of two branches of physics                            
which deal with systems of large number of particles at equilibrium 

Statistical physics (to the contrary) uses the microscopic approach         
to calculate macroscopic quantities 

Thermodynamics studies relations among different macroscopic quantities
  taking many inputs from the experiment

that thermodynamics has to take from the experiment

All thermodynamic relations can be obtained from statistical mechanics   

To contrast ☛ results of statistical physics for macroscopic quantities 
are always based on a particular model and thus are less general

because they are model-independent 
The point is that thermodynamic relations are universal                   

we can’t consider statistical mechanics as superior to thermodynamics 
However
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PHYSICAL VERSUS SOCIAL SCIENCES

2.2. WHAT IS THERMODYNAMICS? 19

Figure 2.1: From microscale to macroscale : physical versus social sciences.

effectively performs time and space averages. If there are Nc collisions with a particular patch of wall during some
time interval on which our measurement device responds, then the root mean square relative fluctuations in the

local pressure will be on the order of N−1/2
c times the average. Since Nc is a very large number, the fluctuations

are negligible.

If the system is in steady state, the state variables do not change with time. If furthermore there are no macroscopic
currents of energy or particle number flowing through the system, the system is said to be in equilibrium. A
continuous succession of equilibrium states is known as a thermodynamic path, which can be represented as a
smooth curve in a multidimensional space whose axes are labeled by state variables. A thermodynamic process
is any change or succession of changes which results in a change of the state variables. In a cyclic process, the
initial and final states are the same. In a quasistatic process, the system passes through a continuous succession of
equilibria. A reversible process is one where the external conditions and the thermodynamic path of the system can
be reversed (at first this seems to be a tautology). All reversible processes are quasistatic, but not all quasistatic
processes are reversible. For example, the slow expansion of a gas against a piston head, whose counter-force is
always infinitesimally less than the force pA exerted by the gas, is reversible. To reverse this process, we simply
add infinitesimally more force to pA and the gas compresses. A quasistatic process which is not reversible: slowly
dragging a block across the floor, or the slow leak of air from a tire. Irreversible processes, as a rule, are dissipative.
Other special processes include isothermal (dT = 0) isobaric (dp = 0), isochoric (dV = 0), and adiabatic (d̄Q = 0,
i.e. no heat exchange):

reversible: d̄Q = T dS isothermal: dT = 0

spontaneous: d̄Q < T dS isochoric: dV = 0

adiabatic: d̄Q = 0 isobaric: dp = 0

quasistatic: infinitely slowly

We shall discuss later the entropy S and its connection with irreversibility.

How many state variables are necessary to fully specify the equilibrium state of a thermodynamic system? For
a single component system, such as water which is composed of one constituent molecule, the answer is three.
These can be taken to be T , p, and V . One always must specify at least one extensive variable, else we cannot
determine the overall size of the system. For a multicomponent system with g different species, we must specify
g + 2 state variables, which may be {T, p, N1, . . . , Ng}, where Na is the number of particles of species a. Another
possibility is the set (T, p, V, x1, . . . , xg−1}, where the concentration of species a is xa = Na/N . Here, N =

∑g
a=1 Na

is the total number of particles. Note that
∑g

a=1 xa = 1.

If then follows that if we specify more than g + 2 state variables, there must exist a relation among them. Such
relations are known as equations of state. The most famous example is the ideal gas law,

pV = NkBT , (2.1)

FROM MICROSCALE TO MACROSCALE
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TEXTBOOKS

H. B. Callen, Themodynamics and Introduction to Thermostatics

R. K. Pathria, Statistical Mechanics

     A. H. Carter, Classical and Statistical Thermodynamics
(Prentice-Hall,  2001) 

(John Wiley & Sons, 1985)

(Pergamon Press, 1972)

E. Fermi, Thermodynamics
(Dover,  1956) 

A very relaxed treatment appropriate for undergraduate physics majors

This outstanding and inexpensive little book is a model of clarity

A comprehensive text appropriate for an extended course on thermodynamics

Excellent graduate level text
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SYSTEM AND ENVIRONMENT

Thermodynamics studies a macroscopic system that can be in contact 
with other macroscopic systems and/or the environment

Environment (or bath, or heat reservoir) is a special type of system 
that has a very large size

The macroscopic system under consideration can change its state         
as a result of its contact to the bath ☛ but the state of the bath   
does not change due to interaction with a much smaller system

For example ☛ thermometer measuring temperature of body can be 
considered as system, whereas body itself plays role of bath
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DEFINITIONS

State of system ☛ condition uniquely specified by set of quantities
such as pressure  , temperature   , volume   , densityP T V ⇢

Equilibrium state ☛ properties of system are uniform throughout and 
don’t change in time unless system is acted upon by external influences 

Non-Equilibrium state ☛ characterizes a system in which gradients 
exist and whose properties vary with time

Equation of state ☛ is a functional relationship among state variables  
for a system in equilibrium

State variables ☛ properties that describes equilibrum states

Path ☛ is a series of states through which a system passes
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MORE DEFINITIONS
Process ☛ change of state expressed in terms of a path

Cyclical process ☛ initial and final state are the same

Quasi-static process ☛ at each instant the system departs only

Reversible process ☛ direction can be reversed

Irreversible process ☛ involves a finite change in a property           

e.g. a slow leak in a tire is quasi-static but not reversible
A reversible process is an idealization ➣ friction is always present

but a quasi-static process is not necessarily reversible 
All reversible processes are quasi-static  

such as friction are present                                   
It is a quasi-static process in which no dissipative forces 

by an infinitesimal change in some property

along the equation of state surface

infinitesimally from an equilibrium state

All natural processes are irreversible
in a given step and includes dissipation (energy loss)
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OPEN, CLOSE, ADIABATIC, AND ISOLATED SYSTEMS

Systems can be: open, closed, adiabatic, isolated

Open system can exchange mass and energy with the environment

Closed system cannot exchange mass but it can receive or lose energy 
in the form of heat due to thermal contact with bath              

Adiabatic system is thermally isolated so it can’t receive or lose heat 

Isolated system cannot exchange neither mass nor energy

or through work done on system

there is no contact between system and environment

Quasi-static compression and expansion are called adiabatic processes
Fast processes are adiabatic too because heat exchange through surface   
requires a too long time and becomes inefficient during time of process

although work can be done on this system

8Friday, September 5, 14



EXTENSIVE, INTENSIVE, AND SPECIFIC PROPERTIES

Macroscopic physical properties can be intensive and extensive

Intensive properties do not depend on size (mass) of system 
e.g.     

To make this definition more precise:                                         
if we split system into two equal parts by an imaginary membrane

V

Intensive properties of the two resulting systems remain the same while 
extensive properties of each subsystem are half of that for whole system

Extensive properties can be converted to intensive properties:

Extensive properties scale with system size
e.g.      

Specific value ⌘ value of the extensive property

mass of the system

P, T, ⇢

Luis Anchordoqui
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KILOMOLE

Kilomole is a unit of mass definied as:

 of oxygen gas        is equal to  (O2) 32 kg

The mole is a unit of mass familiar to chemists                    

32 g☛ a mole of oxygen is 

1 kilomole = mass in kilograms equal to molecular weight

1 kilomole

1 mole is equal to the mass in grams 
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AVOGADRO’S LAW

We assume that classical thermodynamics is a continuum theory 
that properties vary smoothly from point to point in the system
But if all systems are made up of atoms and molecules                     
(as definition of kilomole implies) ☛ it is reasonable to ask: 
How small a volume can we concerned with and still have confidence 

that our continuum theory is valid?
Answer by invoking Avogadro’s Law:                                                             

0�C

22.4m3

The latter is called Avogadro’s number NA

6.02 ⇥ 10

26
molecules kilomole

�1

22.4m3
kilomole

�1 = 2.69 ⇥ 10

25molecules

m

3

6.02⇥ 1026

This molecular density is sometimes called Loschmidt’s number (LNo)

At standard temperature and pressure (          and atmospheric pressure)                                  

  1 kilomole of gas occupies                and contains                       molecules
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LIMITS OF THE CONTINUUM 

Using LNo it is easily seen that a cube one millimeter on each side
1016

(10�9 m)

We can therefore be reasonably certain that classical thermodynamics   

is applicable down to very small macroscopic (& even microscopic) volumes 

but ultimately a limit is reached where the theory will break down

whereas a cube one nanometer              on a side                              

contains roughly       molecules

has a very small probability of containing even one molecule
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TEMPERATURE

Temperature is associated with notions hot and cold                                  
➣ if hot and cold bodies are brought in contact

Consider system in thermal contact with bath and make                                      
quasi-static compression or expansion plotting its states in         diagram

As bath is large ☛  its temperature remains unchanged                          
as process is slow ☛ temperature of system will have same unchanged value

In this way ☛ we obtain isothermal curve (or isotherm) in         plot

(P, V )

(P, V )

Repeating this @ different temperatures of bath we obtain many isotherms

For most of substances (except water near       )                            

We define empirical temperature    as a parameter labeling isotherms:T

4�C

� (P, V ) = T

are related and belong to a particular isothermIf andT = const

P V➣

(2)

their temperatures would eventually equilibrate

isotherms corresponding to different temperatures do not cross
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THERMOMETERS

Any monotonic functionf(T )can serve as empirical temperature as well 
so that choice of latter is not unique
(2) is the basis of thermometers using different substances              

such as alcohol or mercury

Fix     to atmospheric pressure and measure                                  
(or height of alcohol or mercury column) that changes with temperature

P V

It is convenient to choose empirical temperature in way                    
that changes of volume and temperature are proportional to each other

�T / �V
Fix    and use    to define temperature changes as �T / �PV P

What remains is to choose proportionality coefficient in above formula 
and additive constant (offset) in T

This has been done historically in a number of different ways resulting 
in Fahrenheit, Celsius, Kelvin, and other defunct temperature scales
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TEMPERATURE SCALES

0�C 100�C

Kelvin scale ➣          where volume (or pressure) of ideal gas vanishes                              

and one degree of temperature difference is same as in Celsius scale

Relation between two scales is

(3)T (�C) = T(�K) + 273.15

Celsius scale uses very natural events (ice and steam points of water)

to define basic temperature points        and

T = 0

Farenheit scale ➣ T (�F) =
9

5
T (�C) + 32
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THE ZEROTH LAW OF THERMODYNAMICS

Existence of temperature as new (non-mechanical) quantity that 

equilibrates systems in thermal contact encompass
zeroth law of thermodynamics

If two systems are separately in thermal equilibrium with a third system, 
they are in equilibrium with each other

16Friday, September 5, 14



C. B.-Champagne 2

Overview

Luis Anchordoqui

EQUATION OF STATE

We rewrite (2) symmetric with respect to thermodynamic quantities 

f(P, V, T ) = 0 (4)

This relation between three quantities is called equation of state

If two of quantities are known ☛ third can be found from (4)

If                       and     lie on curve called isothermV

T

If                       and     lie on curve called isobar

If                       and     lie on curve called isocore

T

(4) is written for a fixed amount of substance in a closed system

T = const

➣

P = const

V = const

P

➣ V

➣ P

f(P, v, T ) = 0 v ⌘ V/M = ⇢�1
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MAGNETIC SYSTEMS

Considerations thus far pertain to simplest thermodynamic systems  
such as gasses or liquids that are characterized by    and 

There are many systems described by other macroscopic quantities

e.g. magnetic systems are additionally described by:                       
magnetic induction      (intensive quantity)                                            
and magnetic moment      (extensive quantity)

B
M

Usually magnetic systems are solid and their   and    do not change

Thus equation of state for magnetic systems has form 

f (B,M, T ) = 0

P V

P V
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EQUATION OF STATE OF IDEAL GAS

Equation of state of system composed of         of a gas 

PV = nRT (5)

Since               is number of kilomoles of gas we can write

R = 8.314 ⇥ 10

3
J /(kilomoleK)

m kg
whose molecular weight is     is given approximately byM

PV =
m

M
RT

➣ universal gas constant

n ⌘ m/M

This equation is called equation of state of an ideal gas or perfect gas

which were discovered over a period of 200 years
It includes the laws of Boyle, Gay-Lussac, Charles and Avogadro
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BRIDGE FROM MACROSCOPIC TO MICROSCOPIC PHYSICS

 (5) can be rewritten as 

Downside of this form is that                is not universal 

To make connection with molecular theory we rewrite (5) as

          ☛ number of particles (atoms or molecules) in gas 

☛ Boltzmann constant

PV = N kBT (6)

N

kB = 1.38 ⇥ 10�23 J/K

The lhs of (6) ☛ macroscopic amount of pressure-volume energy

each of which has an average kinetic energy of 

PV = mR̄T

(depends on particular gas)
R̄ = R/M

representing state of the bulk gas

The rhs of (6) divides this energy into    units (1 for each gas particle) N
kBT
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ABSOLUTE ZERO

Isotherm of ideal gas is a hyperbole

Temperature in (5) and (6) is in Kelvin
and    turn to zero at P V T = 0

The beginning of Kelvin temperature scale has a deep physical meaning: 
At         molecules of ideal gas freeze and stop to fly inside container 
falling down into their state of lowest energy

T = 0

As the pressure is due to the impact of the molecules onto the walls 

T = 0

Equation of state of the ideal gas loses its applicability at low    T

 while isochore and isobar are straight lines

it vanishes at

because any actual gas becomes non-ideal  

21Friday, September 5, 14



THERMODYNAMIC COEFFICIENTS
 Writing                 we obtain for infinitesimal changes full differentialV = V (P, T )

dV =

 
@V

@P

!

T

dP +

 
@V

@T

!

P

dT (7)

(8)

Partial derivatives above enter the thermodynamic coefficients:       

To mantain mechanical stability all materials have

thermal expansivity  

isothermal compressibility 

� =
1

V

✓
@V

@T

◆

P

T = � 1

V

✓
@V

@P

◆

T

There is no general principle that could limit the range of �

Materials that consist of long polymer molecules such as rubber
Most materials expand upon heating 

         (this can be explained by their molecular motion)

T > 0

contract upon heating � < 0

� > 0

(9)
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THERMODYNAMIC COEFFICIENTS (cont’d)

Using                  we obtain the differential

dP =

 
@P

@V

!

T

dV +

 
@P

@T

!

V

dT (10)

 
@P

@V

!

T

=
1

(@V/@P )T

(11)

Both partial derivatives in (10) can be reduced to those in (7)              
with the help of two formulas from the calculus:

and the triple product rule
 
@P

@T

!

V

 
@T

@V

!

P

 
@V

@P

!

T

= �1 (12)

(13)

P = P (V, T )

✓
@P

@T

◆

V

= � (@V/@T )P
(@V/@P )T

=
�

T

the reciprocal relation
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MATHEMATICAL INTERLUDE

f(x, y, z) = 0

dx =

✓
@x

@y

◆

z

dy +

✓
@x

@z

◆

y

dz

dy =

✓
@y

@x

◆

z

dx+

✓
@y

@z

◆

x

dz

dx =

✓
@x

@y

◆

z

✓
@y

@x

◆

z

dx+

"✓
@x

@y

◆

z

✓
@y

@z

◆

x

+

✓
@x

@z

◆

y

#
dz

Consider function of 3 variables

Only  2 variables are independent ➣                        andx = x(y, z) y = y(x, z)

Substituting right into left

If we choose     and    as independent variables 
previous Eq. holds for all values of         and

x

z
dx dz

dz = 0 dx 6= 0andIf ☛ reciprocal relation

If dz 6= 0 dx = 0and

✓
@x

@y

◆

z

✓
@y

@z

◆

x

= �
✓
@x

@z

◆

y

Using reciprocal relation ☛ triple product rule

➣
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THERMODYNAMIC COEFFICIENTS FOR IDEAL GAS

Substituting                     in (8) and (9) we obtainV = nRT/P

(14)

(15)

and

(16)

Now (13) yields

� =
P

nRT

 
nR

P

!
=

1

T

 
@P

@T

!

V

=
P

T

T = � P

nRT

✓
nRT

P 2

◆
=

1

P
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EXACT AND INEXACT DIFFERENTIALS

Differential is called exact if there is function                             satisfying

dF =
kX

i=1

Ai dxi

F (x1, · · · , xn)

Ai =
@F

@xi
, @Ai

@xj
=

@Aj

@xi
8i, jwith

For exact differential  ☛ integral between fixed endpoints is path-independent

Z B

A
dF = F (xB

1 , · · · , xB
k )� F (xA

1 , · · · , xA
k )

When the cross derivatives are not identical ☛                   @Ai

@xj
6= @Aj

@xi

differential is inexact 

Integral of       is path dependent and does not depend solely on endpoints�F

�F

I
dF = 0It follows that ☛ 
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TWO DISTINCT PATHS WITH IDENTIAL END POINTS

�F = K1 y dx+K2 x dy

W

(I) = K1

Z
xB

xA

dx y

A

+K2

Z
yB

yA

dy x

B

= K1yA(xB

� x

A

) +K2xB

(y
B

� y

A

)

W

(II) = K1

Z
xB

xA

dx y

B

+K2

Z
yB

yA

dy x

A

= K1yB(xB

� x

A

) +K2xA

(y
B

� y

A

)

W (I) 6= W (II)In general ☛ 

2.4. MATHEMATICAL INTERLUDE : EXACT AND INEXACT DIFFERENTIALS 25

Figure 2.6: Two distinct paths with identical endpoints.

For exact differentials, the integral between fixed endpoints is path-independent:

B∫

A

dF = F (xB
1 , . . . , xB

k)− F (xA
1 , . . . , xA

k ) , (2.14)

from which it follows that the integral of dF around any closed path must vanish:

∮
dF = 0 . (2.15)

When the cross derivatives are not identical, i.e. when ∂Ai/∂xj ̸= ∂Aj/∂xi, the differential is inexact. In this case,
the integral of dF is path dependent, and does not depend solely on the endpoints.

As an example, consider the differential

dF = K1 y dx + K2 xdy . (2.16)

Let’s evaluate the integral of dF , which is the work done, along each of the two paths in Fig. 2.6:

W (I) = K1

xB∫

xA

dx yA + K2

yB∫

yA

dy xB = K1 yA (xB − xA) + K2 xB (yB − yA) (2.17)

W (II) = K1

xB∫

xA

dx yB + K2

yB∫

yA

dy xA = K1 yB (xB − xA) + K2 xA (yB − yA) . (2.18)

Note that in general W (I) ̸= W (II). Thus, if we start at point A, the kinetic energy at point B will depend on the
path taken, since the work done is path-dependent.
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WORK
The system and environment can exchange energy with each other
One of the ways to exchange energy is doing work

According to Newton’s third law ➣

Consider system characterized by           

(17)

We write      instead of       to emphesize ☛     is not state variable       

�W

�W dW

that can be understood in mechanical terms
work done on system by environment

and work done by system on environment differ by the sign

P, V, T

is a small increment but not an exact differential

W

contained in cylinder of area    with moving piston S

(17) is general and can also be obtained
for any type of deformations of system’s surface

�W = Fdl = PSdl = PV
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State variable is any thermodynamic quantity
STATE VARIABLE

In particular ☛ for cyclic processes system returns to same state         
at end of cycle so that all state variables assume their initial values

Nonzero work can be done in cyclic processes                                  
(the area circumscribed by the cycle in the       diagram)                                                   
so we can’t ascribe amount of work to any particular state of system

P, V

Finite work done on the way from initial state 1 to final state 2

depends on the whole way from initial to final states

(18)

That is ☛ work is a way function rather than a state function

that has a well-defined value in any particular state of the system

W12 =

Z 2

1
P dV
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For isochoric process obviously            because volume does not changeW12 = 0

For isobaric process integrand     in (18) is constantP

(19)

CALCULUS OF         FOR IDEAL GASW12

For isothermal process with help of equation of state (5) we obtain

(20) 

Positive work is done by system in isobaric and isothermal expansion

W12 =

Z 2

1
P dV = P (V2 � V1)

W12 = nRT

Z 2

1

dV

V
= nRT ln

V2

V1
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CONFIGURATIONAL AND DISSIPATIVE WORK 

Configurational work is the work in a reversible process given by            
product of some intensive variable and change in some extensive variable                                      

It is understood that dissipative work cannot be described by (17)-(18)

Total work is sum of both:

(21) 

(22) 

Next class I’ll show you that dissipative work is always done on system

In thermodynamics it is often called            work (for obvious reasons)

Dissipative work is the work done in irreversible process  

“P dV ”

�Wdissipative  0

�W = �W
configurational

+ �W
dissipative
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INTERNAL ENERGY 

Similarly to mechanics one can define internal energy    of systemU

To do this one has to thermally insulate system from the environment

Experiment shows that total amount of work                              

(configurational + dissipative)W12

is entirely determined by initial and final states 1 and 2

on adiabatic system 

We then define internal energy for any state 2 of system 

(23) 

through work on way from 1 to 2

U2 = U1 �W12
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To reach state 2 from state 1 we make (in general)

CALORIC EQUATION OF STATE

Order in which these works are done is arbitrary

Still       is same for all these paths

U2

W12

U

U = U (T, V ) (24) 

Within thermodynamics 

both configurational and dissipative work

 so that there are many paths leading from 1 to 2

     (or simply    ) is a state quantity 

 only way to obtain (24)  is to take it from the experiment

Statistical mechanics provides analytic form of caloric equation of state

in many cases
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 THE FIRST LAW OF THERMODYNAMICS
Having defined the internal energy    for any state        of system   
we can relax the condition that the system is adiabatic

U P, V

After allowing thermal contact between system and environment               
the energy balance in mechanical form is no longer satisfied

To restore energy conservation
Q

In infinitesimal form energy conservation reads

(25) 

Energy conservation law written in form of (25)

we include heat    received by the system from the environment

constitutes the first law of thermodynamics

dU = �Q� �W
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C. B.-Champagne 2

Overview

Luis Anchordoqui

HEAT

calory = amount of heat needed to increase of      water by 1�C

 mechanical equivalent of calory 

1cal = 4.19 J (26) 

The heat received in a finite process is given by

Since       depends on path between 1 and 2         

(27) 

heat is a path function rather than a state function

W12

1 g

Q12 =

Z 2

1
(dU + �W ) = U2 � U1 + �W12

35Friday, September 5, 14


