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Particle Decay and Collisions Two-body scattering

In high energy physics+ cross sections and decay rates
are written using kinematic variables that are relativistic invariants

For any “two particle to two particle” process ab→ cd
we have at our disposal 4-momenta associated with each particle

Invariant variables are six scalar products:
pa · pb, pa · pc, pa · pd, pb · pc, pb · pd, pc · pd

25

in.6) We can write this in the form

X⇤
pi = 0 (116)

where a di↵erent value of i = 1, 2, · · · is assigned to each
particle going in and to each particle coming out, and

P⇤

is a sum that counts pre-collision terms positively and
post-collision terms negatively. For a closed system, the
conservation of the total 4-momentum can be shown to
be the result of the homogeneity of spacetime.7 Whether
the law is actually true must, of course, be decided by
experiment. As you have no doubt guessed, the verdict
is clear. Countless experiments have shown that the total
4-momentum of an isolated system is constant.

If we have a system of particles, with 4-momenta
pi, subject to no forces except mutual collisions, the
total 4-momentum ptot =

P
pi is timelike and future-

pointing, so there exists an inertial frame S in which the
spatial components of ptot vanish. S should be called
the center-of-momentum frame, but it is usually called
the center-of-mass (CM) frame.

EXERCISE 8.1 (i) Show that the 4-momentum of
any material particle (m > 0) is forward timelike. (ii)
Show that the sum of any two forward timelike vectors
is itself forward timelike, and hence that the sum of
any number of forward time-like vectors is itself forward
time-like. (iii) Use the results in (i) and (ii) to convince
yourself that for any number of particles there exists a
center-of-mass frame, that is a frame in which the total
3-momentum is zero. (iv) Relative to an arbitrary frame
S, show that the velocity of the center-of-mass frame is
given by � =

P
~pc/

P
E.

EXERCISE 8.2 Consider the elastic, head-on
collision, in which two particles of (masses ma and
mb) approach one another traveling along the x-axis,
collide and emerge traveling along the same axis. In
the center-of-mass frame (by its definition) ~p in

a = �~p in
b .

Use the conservation of 4-momentum to show that
~p fin

a = �~p in
a ; that is, the momentum of particle a (and

likewise b) just reverses itself in the center-of-mass frame.

B. Mandelstam variables

In high energy physics, cross sections and decay rates
are written using kinematic variables that are relativistic
invariants. For any “two particle to two particle” process
(ab ! cd) we have at our disposal the four-momenta
associated with each particle, and thus invariant variables
are the scalar products pa ·pb, pa ·pc, pa ·pd. Rather than
these, it is conventional to use the related (Mandelstam)

variables

s = c2(pa + pb)
2 ,

t = c2(pa � pc)
2 , (117)

u = c2(pa � pd)
2 .

However, because p2
i = m2

i c
2 (with i = a, b, c, d) and

pa+pb = pc+pd due to energy momentum conservation,

s + t + u =
X

i

m2
i c

4 + c2
⇥
2p2

a + 2pa.(pb � pc � pd)
⇤

=
X

i

m2
i c

2, (118)

i.e., only two of the three variables are independent.

As an illustration, we take a look at Moller scatter-
ing scattering, which is the process shown in Fig. Sub-

stituting pa = (E,~ki), pb = (E,�~ki), pc = (E,~kf ),

pd = (E,�~kf ), into (118) it is straightforward to show
that in the CM frame

s = 4(k2c2 + m2
ec

4),

t = �c2(~ki � ~kf )2 = �2k2c2(1 � cos ✓),

u = �c2(~ki + ~kf )2 = �2k2c2(1 + cos ✓), (119)

where E = (k2c2 + m2
ec

4)1/2, me is the electron mass,

and ✓ is the CM scattering angle, i.e., ~ki . ~kf = k2 cos ✓.
As k2 � 0, we have s � 4m2

ec
4; and since �1  cos ✓  1,

we have t  0 and u  0. Note that t = 0 (u = 0)
corresponds to forward (backward) scattering.

In the CM frame for the reaction ab ! cd, s is equal
to the square CM energy E2

CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
square of the momentum transfer between particles a and
d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
Elab

a . Use the invariance of s to find the relation between
ECM and Elab

a . Note that for energies � masses,

ECM ⇠
p

2mbc2Elab
a , so that the useful energy ECM

increases only as the square root of Elab
a . This is why

modern particle accelerators are usually colliding beams
rather than fixed-target machines.)

[1] G. Galilei, Discorsi e Dimostrazioni Matematiche, in-
torno á due nuoue scienze, (1638). Reprinted on On the

Shoulders of Giants: The Great Works of Physics and
Astronomy, (Ed. S. Hawking, Running Press, Philadel-
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Figure 2.2: Two-particle scattering. The kinematical constraints are energy-momentum

conservation and the mass shell condition (a). Visualization of Mandelstam variables (b).

Four of them have to be linearly dependent, since there are only two degrees of freedom

in the system (center of mass energy and scattering angle).

We now define the Mandelstam variables (see Fig. 2.2(b))

s = (p1 + p2)
2

t = (p1 ⇥ p3)
2

u = (p1 ⇥ p4)
2,

where s denotes total center of mass energy squared (positive) and t is the four-momentum

transfer squared (negative). Note also that s+ t+ u =

⌘4
i=1 m

2
i .

The center of mass frame is defined by

#»p 1 +
#»p 2 = 0 =

#»p 3 +
#»p 4. (2.8)

The corresponding variables are asterisked: (cm., pi = p⌅i ). The laboratory frame is defined

by

#»p 2 = 0 (fixed target) and variables are labelled with an L : (lab., pi = pLi ). In deep

inelastic scattering the Breit system (pi = pBi ) is used, which is defined by

#»p 1 +
#»p 3 = 0.

In the following we take a closer look at the center of mass frame, see Fig. 2.3. Equation

(2.8) leads to

#»p ⌅
1 = ⇥ #»p ⌅

2 =

#»p
#»p ⌅

3 = ⇥ #»p ⌅
4 =

#»p ⇤

p1 =
�
E⌅

1 =

✓
#»p 2

+m2
1,

#»p
 

p2 =
�
E⌅

2 =

✓
#»p 2

+m2
2,⇥ #»p

 

p3 = (E⌅
3 ,

#»p ⇤
)

p4 = (E⌅
4 ,⇥ #»p ⇤

).
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Rather than these + use Mandelstam variables
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2
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i = m2

i c2 (with i = a, b, c, d) and pa + pb = pc + pd

s + t + u = ∑
i

m2
i c4 + c2 [2p2

a + 2pa.(pb − pc − pd)
]
= ∑

i
m2

i c4

�� ��Only 2 of 3 variables are independent
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pd = (E,�~kf ), into (118) it is straightforward to show
that in the CM frame

s = 4(k2c2 + m2
ec

4),

t = �c2(~ki � ~kf )2 = �2k2c2(1 � cos ✓),

u = �c2(~ki + ~kf )2 = �2k2c2(1 + cos ✓), (119)

where E = (k2c2 + m2
ec

4)1/2, me is the electron mass,

and ✓ is the CM scattering angle, i.e., ~ki . ~kf = k2 cos ✓.
As k2 � 0, we have s � 4m2

ec
4; and since �1  cos ✓  1,

we have t  0 and u  0. Note that t = 0 (u = 0)
corresponds to forward (backward) scattering.

In the CM frame for the reaction ab ! cd, s is equal
to the square CM energy E2

CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
square of the momentum transfer between particles a and
d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
Elab

a . Use the invariance of s to find the relation between
ECM and Elab

a . Note that for energies � masses,

ECM ⇠
p

2mbc2Elab
a , so that the useful energy ECM

increases only as the square root of Elab
a . This is why

modern particle accelerators are usually colliding beams
rather than fixed-target machines.)
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in.6) We can write this in the form

X⇤
pi = 0 (116)

where a di↵erent value of i = 1, 2, · · · is assigned to each
particle going in and to each particle coming out, and

P⇤

is a sum that counts pre-collision terms positively and
post-collision terms negatively. For a closed system, the
conservation of the total 4-momentum can be shown to
be the result of the homogeneity of spacetime.7 Whether
the law is actually true must, of course, be decided by
experiment. As you have no doubt guessed, the verdict
is clear. Countless experiments have shown that the total
4-momentum of an isolated system is constant.

If we have a system of particles, with 4-momenta
pi, subject to no forces except mutual collisions, the
total 4-momentum ptot =

P
pi is timelike and future-

pointing, so there exists an inertial frame S in which the
spatial components of ptot vanish. S should be called
the center-of-momentum frame, but it is usually called
the center-of-mass (CM) frame.

EXERCISE 8.1 (i) Show that the 4-momentum of
any material particle (m > 0) is forward timelike. (ii)
Show that the sum of any two forward timelike vectors
is itself forward timelike, and hence that the sum of
any number of forward time-like vectors is itself forward
time-like. (iii) Use the results in (i) and (ii) to convince
yourself that for any number of particles there exists a
center-of-mass frame, that is a frame in which the total
3-momentum is zero. (iv) Relative to an arbitrary frame
S, show that the velocity of the center-of-mass frame is
given by � =

P
~pc/

P
E.

EXERCISE 8.2 Consider the elastic, head-on
collision, in which two particles of (masses ma and
mb) approach one another traveling along the x-axis,
collide and emerge traveling along the same axis. In
the center-of-mass frame (by its definition) ~p in

a = �~p in
b .

Use the conservation of 4-momentum to show that
~p fin

a = �~p in
a ; that is, the momentum of particle a (and

likewise b) just reverses itself in the center-of-mass frame.

B. Mandelstam variables

In high energy physics, cross sections and decay rates
are written using kinematic variables that are relativistic
invariants. For any “two particle to two particle” process
(ab ! cd) we have at our disposal the four-momenta
associated with each particle, and thus invariant variables
are the scalar products pa ·pb, pa ·pc, pa ·pd. Rather than
these, it is conventional to use the related (Mandelstam)

variables

s = c2(pa + pb)
2 ,

t = c2(pa � pc)
2 , (117)
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i.e., only two of the three variables are independent.

As an illustration, we take a look at Moller scatter-
ing scattering, which is the process shown in Fig. Sub-

stituting pa = (E,~ki), pb = (E,�~ki), pc = (E,~kf ),

pd = (E,�~kf ), into (118) it is straightforward to show
that in the CM frame

s = 4(k2c2 + m2
ec

4),

t = �c2(~ki � ~kf )2 = �2k2c2(1 � cos ✓),

u = �c2(~ki + ~kf )2 = �2k2c2(1 + cos ✓), (119)

where E = (k2c2 + m2
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4)1/2, me is the electron mass,

and ✓ is the CM scattering angle, i.e., ~ki . ~kf = k2 cos ✓.
As k2 � 0, we have s � 4m2

ec
4; and since �1  cos ✓  1,

we have t  0 and u  0. Note that t = 0 (u = 0)
corresponds to forward (backward) scattering.

In the CM frame for the reaction ab ! cd, s is equal
to the square CM energy E2

CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
square of the momentum transfer between particles a and
d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
Elab

a . Use the invariance of s to find the relation between
ECM and Elab

a . Note that for energies � masses,

ECM ⇠
p

2mbc2Elab
a , so that the useful energy ECM

increases only as the square root of Elab
a . This is why

modern particle accelerators are usually colliding beams
rather than fixed-target machines.)

[1] G. Galilei, Discorsi e Dimostrazioni Matematiche, in-
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conservation of the total 4-momentum can be shown to
be the result of the homogeneity of spacetime.7 Whether
the law is actually true must, of course, be decided by
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is clear. Countless experiments have shown that the total
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As an illustration, we take a look at Moller scatter-
ing scattering, which is the process shown in Fig. Sub-
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we have t  0 and u  0. Note that t = 0 (u = 0)
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CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
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d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
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post-collision terms negatively. For a closed system, the
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the law is actually true must, of course, be decided by
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given by � =
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a = �~p in
a ; that is, the momentum of particle a (and
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In high energy physics, cross sections and decay rates
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(ab ! cd) we have at our disposal the four-momenta
associated with each particle, and thus invariant variables
are the scalar products pa ·pb, pa ·pc, pa ·pd. Rather than
these, it is conventional to use the related (Mandelstam)
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2 ,
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As an illustration, we take a look at Moller scatter-
ing scattering, which is the process shown in Fig. Sub-
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we have t  0 and u  0. Note that t = 0 (u = 0)
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In the CM frame for the reaction ab ! cd, s is equal
to the square CM energy E2

CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
square of the momentum transfer between particles a and
d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.
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ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
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Figure 2.2: Two-particle scattering. The kinematical constraints are energy-momentum

conservation and the mass shell condition (a). Visualization of Mandelstam variables (b).

Four of them have to be linearly dependent, since there are only two degrees of freedom

in the system (center of mass energy and scattering angle).

We now define the Mandelstam variables (see Fig. 2.2(b))

s = (p1 + p2)
2

t = (p1 ⇥ p3)
2

u = (p1 ⇥ p4)
2,

where s denotes total center of mass energy squared (positive) and t is the four-momentum

transfer squared (negative). Note also that s+ t+ u =

⌘4
i=1 m

2
i .

The center of mass frame is defined by

#»p 1 +
#»p 2 = 0 =

#»p 3 +
#»p 4. (2.8)

The corresponding variables are asterisked: (cm., pi = p⌅i ). The laboratory frame is defined

by

#»p 2 = 0 (fixed target) and variables are labelled with an L : (lab., pi = pLi ). In deep

inelastic scattering the Breit system (pi = pBi ) is used, which is defined by

#»p 1 +
#»p 3 = 0.

In the following we take a closer look at the center of mass frame, see Fig. 2.3. Equation

(2.8) leads to

#»p ⌅
1 = ⇥ #»p ⌅

2 =

#»p
#»p ⌅

3 = ⇥ #»p ⌅
4 =

#»p ⇤

p1 =
�
E⌅

1 =

✓
#»p 2

+m2
1,

#»p
 

p2 =
�
E⌅

2 =

✓
#»p 2

+m2
2,⇥ #»p

 

p3 = (E⌅
3 ,

#»p ⇤
)

p4 = (E⌅
4 ,⇥ #»p ⇤

).
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in.6) We can write this in the form

X⇤
pi = 0 (116)

where a di↵erent value of i = 1, 2, · · · is assigned to each
particle going in and to each particle coming out, and

P⇤

is a sum that counts pre-collision terms positively and
post-collision terms negatively. For a closed system, the
conservation of the total 4-momentum can be shown to
be the result of the homogeneity of spacetime.7 Whether
the law is actually true must, of course, be decided by
experiment. As you have no doubt guessed, the verdict
is clear. Countless experiments have shown that the total
4-momentum of an isolated system is constant.

If we have a system of particles, with 4-momenta
pi, subject to no forces except mutual collisions, the
total 4-momentum ptot =

P
pi is timelike and future-

pointing, so there exists an inertial frame S in which the
spatial components of ptot vanish. S should be called
the center-of-momentum frame, but it is usually called
the center-of-mass (CM) frame.

EXERCISE 8.1 (i) Show that the 4-momentum of
any material particle (m > 0) is forward timelike. (ii)
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time-like. (iii) Use the results in (i) and (ii) to convince
yourself that for any number of particles there exists a
center-of-mass frame, that is a frame in which the total
3-momentum is zero. (iv) Relative to an arbitrary frame
S, show that the velocity of the center-of-mass frame is
given by � =
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the center-of-mass frame (by its definition) ~p in

a = �~p in
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Use the conservation of 4-momentum to show that
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a = �~p in
a ; that is, the momentum of particle a (and

likewise b) just reverses itself in the center-of-mass frame.

B. Mandelstam variables

In high energy physics, cross sections and decay rates
are written using kinematic variables that are relativistic
invariants. For any “two particle to two particle” process
(ab ! cd) we have at our disposal the four-momenta
associated with each particle, and thus invariant variables
are the scalar products pa ·pb, pa ·pc, pa ·pd. Rather than
these, it is conventional to use the related (Mandelstam)
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s = c2(pa + pb)
2 ,
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2 , (117)
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i.e., only two of the three variables are independent.

As an illustration, we take a look at Moller scatter-
ing scattering, which is the process shown in Fig. Sub-

stituting pa = (E,~ki), pb = (E,�~ki), pc = (E,~kf ),

pd = (E,�~kf ), into (118) it is straightforward to show
that in the CM frame
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4),
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where E = (k2c2 + m2
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and ✓ is the CM scattering angle, i.e., ~ki . ~kf = k2 cos ✓.
As k2 � 0, we have s � 4m2
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4; and since �1  cos ✓  1,

we have t  0 and u  0. Note that t = 0 (u = 0)
corresponds to forward (backward) scattering.

In the CM frame for the reaction ab ! cd, s is equal
to the square CM energy E2

CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
square of the momentum transfer between particles a and
d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
Elab

a . Use the invariance of s to find the relation between
ECM and Elab

a . Note that for energies � masses,

ECM ⇠
p

2mbc2Elab
a , so that the useful energy ECM

increases only as the square root of Elab
a . This is why

modern particle accelerators are usually colliding beams
rather than fixed-target machines.)
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Figure 2.8: Dalitz plot of s-, t-, and u-channels.
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Figure 2.9: Møller scattering (a) and Bhabha scattering (b).

Example We take a look at the Møller scattering,

e⇥e⇥ � e⇥e⇥,

which is the s-channel of the reaction depicted on Figure 2.9(a). By crossing, we get as

u-channel reaction the Bhabha scattering,

e+e⇥ � e+e⇥,

which is the reaction depicted on Figure 2.9(b).

The considerations of this chapter enable us to derive constraints on the possible dynamics

but are not suScient to decide on the dynamics. To “get” the dynamics we must calculate

and compare to experiments decay rates and scattering cross-sections.
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in.6) We can write this in the form
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where a di↵erent value of i = 1, 2, · · · is assigned to each
particle going in and to each particle coming out, and
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is a sum that counts pre-collision terms positively and
post-collision terms negatively. For a closed system, the
conservation of the total 4-momentum can be shown to
be the result of the homogeneity of spacetime.7 Whether
the law is actually true must, of course, be decided by
experiment. As you have no doubt guessed, the verdict
is clear. Countless experiments have shown that the total
4-momentum of an isolated system is constant.

If we have a system of particles, with 4-momenta
pi, subject to no forces except mutual collisions, the
total 4-momentum ptot =
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pointing, so there exists an inertial frame S in which the
spatial components of ptot vanish. S should be called
the center-of-momentum frame, but it is usually called
the center-of-mass (CM) frame.

EXERCISE 8.1 (i) Show that the 4-momentum of
any material particle (m > 0) is forward timelike. (ii)
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is itself forward timelike, and hence that the sum of
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time-like. (iii) Use the results in (i) and (ii) to convince
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3-momentum is zero. (iv) Relative to an arbitrary frame
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given by � =

P
~pc/

P
E.

EXERCISE 8.2 Consider the elastic, head-on
collision, in which two particles of (masses ma and
mb) approach one another traveling along the x-axis,
collide and emerge traveling along the same axis. In
the center-of-mass frame (by its definition) ~p in
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Use the conservation of 4-momentum to show that
~p fin

a = �~p in
a ; that is, the momentum of particle a (and

likewise b) just reverses itself in the center-of-mass frame.

B. Mandelstam variables

In high energy physics, cross sections and decay rates
are written using kinematic variables that are relativistic
invariants. For any “two particle to two particle” process
(ab ! cd) we have at our disposal the four-momenta
associated with each particle, and thus invariant variables
are the scalar products pa ·pb, pa ·pc, pa ·pd. Rather than
these, it is conventional to use the related (Mandelstam)

variables

s = c2(pa + pb)
2 ,

t = c2(pa � pc)
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i.e., only two of the three variables are independent.

As an illustration, we take a look at Moller scatter-
ing scattering, which is the process shown in Fig. Sub-

stituting pa = (E,~ki), pb = (E,�~ki), pc = (E,~kf ),

pd = (E,�~kf ), into (118) it is straightforward to show
that in the CM frame

s = 4(k2c2 + m2
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4),
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4)1/2, me is the electron mass,

and ✓ is the CM scattering angle, i.e., ~ki . ~kf = k2 cos ✓.
As k2 � 0, we have s � 4m2

ec
4; and since �1  cos ✓  1,

we have t  0 and u  0. Note that t = 0 (u = 0)
corresponds to forward (backward) scattering.

In the CM frame for the reaction ab ! cd, s is equal
to the square CM energy E2

CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
square of the momentum transfer between particles a and
d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
Elab

a . Use the invariance of s to find the relation between
ECM and Elab

a . Note that for energies � masses,

ECM ⇠
p

2mbc2Elab
a , so that the useful energy ECM

increases only as the square root of Elab
a . This is why

modern particle accelerators are usually colliding beams
rather than fixed-target machines.)
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where a di↵erent value of i = 1, 2, · · · is assigned to each
particle going in and to each particle coming out, and
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is a sum that counts pre-collision terms positively and
post-collision terms negatively. For a closed system, the
conservation of the total 4-momentum can be shown to
be the result of the homogeneity of spacetime.7 Whether
the law is actually true must, of course, be decided by
experiment. As you have no doubt guessed, the verdict
is clear. Countless experiments have shown that the total
4-momentum of an isolated system is constant.

If we have a system of particles, with 4-momenta
pi, subject to no forces except mutual collisions, the
total 4-momentum ptot =

P
pi is timelike and future-

pointing, so there exists an inertial frame S in which the
spatial components of ptot vanish. S should be called
the center-of-momentum frame, but it is usually called
the center-of-mass (CM) frame.

EXERCISE 8.1 (i) Show that the 4-momentum of
any material particle (m > 0) is forward timelike. (ii)
Show that the sum of any two forward timelike vectors
is itself forward timelike, and hence that the sum of
any number of forward time-like vectors is itself forward
time-like. (iii) Use the results in (i) and (ii) to convince
yourself that for any number of particles there exists a
center-of-mass frame, that is a frame in which the total
3-momentum is zero. (iv) Relative to an arbitrary frame
S, show that the velocity of the center-of-mass frame is
given by � =
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EXERCISE 8.2 Consider the elastic, head-on
collision, in which two particles of (masses ma and
mb) approach one another traveling along the x-axis,
collide and emerge traveling along the same axis. In
the center-of-mass frame (by its definition) ~p in

a = �~p in
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Use the conservation of 4-momentum to show that
~p fin

a = �~p in
a ; that is, the momentum of particle a (and

likewise b) just reverses itself in the center-of-mass frame.

6 An elastic collision is an encounter between two bodies in which
the total kinetic energy of the two bodies after the encounter is
equal to their total kinetic energy before the encounter. Elastic
collisions occur only if there is no net conversion of kinetic energy
into other forms

7 Indeed, the invariance under translations in the description of
physical systems (homogeniety of spacetime) implies through
Noether theorem the conservation of the 4-momentum. The in-
variance under rotations (isotropy of spacetime) yields the con-
servation of the angular momentum.
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ECM ⇠
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2mbc2Elab
a , so that the useful energy ECM

increases only as the square root of Elab
a . This is why

modern particle accelerators are usually colliding beams
rather than fixed-target machines.)
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in.6) We can write this in the form

X⇤
pi = 0 (116)

where a di↵erent value of i = 1, 2, · · · is assigned to each
particle going in and to each particle coming out, and

P⇤

is a sum that counts pre-collision terms positively and
post-collision terms negatively. For a closed system, the
conservation of the total 4-momentum can be shown to
be the result of the homogeneity of spacetime.7 Whether
the law is actually true must, of course, be decided by
experiment. As you have no doubt guessed, the verdict
is clear. Countless experiments have shown that the total
4-momentum of an isolated system is constant.

If we have a system of particles, with 4-momenta
pi, subject to no forces except mutual collisions, the
total 4-momentum ptot =

P
pi is timelike and future-

pointing, so there exists an inertial frame S in which the
spatial components of ptot vanish. S should be called
the center-of-momentum frame, but it is usually called
the center-of-mass (CM) frame.

EXERCISE 8.1 (i) Show that the 4-momentum of
any material particle (m > 0) is forward timelike. (ii)
Show that the sum of any two forward timelike vectors
is itself forward timelike, and hence that the sum of
any number of forward time-like vectors is itself forward
time-like. (iii) Use the results in (i) and (ii) to convince
yourself that for any number of particles there exists a
center-of-mass frame, that is a frame in which the total
3-momentum is zero. (iv) Relative to an arbitrary frame
S, show that the velocity of the center-of-mass frame is
given by � =

P
~pc/

P
E.

EXERCISE 8.2 Consider the elastic, head-on
collision, in which two particles of (masses ma and
mb) approach one another traveling along the x-axis,
collide and emerge traveling along the same axis. In
the center-of-mass frame (by its definition) ~p in

a = �~p in
b .

Use the conservation of 4-momentum to show that
~p fin

a = �~p in
a ; that is, the momentum of particle a (and

likewise b) just reverses itself in the center-of-mass frame.

B. Mandelstam variables

In high energy physics, cross sections and decay rates
are written using kinematic variables that are relativistic
invariants. For any “two particle to two particle” process
(ab ! cd) we have at our disposal the four-momenta
associated with each particle, and thus invariant variables
are the scalar products pa ·pb, pa ·pc, pa ·pd. Rather than
these, it is conventional to use the related (Mandelstam)

variables
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2 ,

t = c2(pa � pc)
2 , (117)
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i.e., only two of the three variables are independent.

As an illustration, we take a look at Moller scatter-
ing scattering, which is the process shown in Fig. Sub-
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4; and since �1  cos ✓  1,

we have t  0 and u  0. Note that t = 0 (u = 0)
corresponds to forward (backward) scattering.

In the CM frame for the reaction ab ! cd, s is equal
to the square CM energy E2

CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
square of the momentum transfer between particles a and
d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
Elab

a . Use the invariance of s to find the relation between
ECM and Elab

a . Note that for energies � masses,

ECM ⇠
p

2mbc2Elab
a , so that the useful energy ECM

increases only as the square root of Elab
a . This is why
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rather than fixed-target machines.)
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we have t  0 and u  0. Note that t = 0 (u = 0)
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CM, where ECM is the sum of
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in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
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Figure 2.2: Two-particle scattering. The kinematical constraints are energy-momentum

conservation and the mass shell condition (a). Visualization of Mandelstam variables (b).

Four of them have to be linearly dependent, since there are only two degrees of freedom

in the system (center of mass energy and scattering angle).

We now define the Mandelstam variables (see Fig. 2.2(b))

s = (p1 + p2)
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t = (p1 ⇥ p3)
2

u = (p1 ⇥ p4)
2,

where s denotes total center of mass energy squared (positive) and t is the four-momentum

transfer squared (negative). Note also that s+ t+ u =

⌘4
i=1 m

2
i .

The center of mass frame is defined by

#»p 1 +
#»p 2 = 0 =

#»p 3 +
#»p 4. (2.8)

The corresponding variables are asterisked: (cm., pi = p⌅i ). The laboratory frame is defined

by

#»p 2 = 0 (fixed target) and variables are labelled with an L : (lab., pi = pLi ). In deep

inelastic scattering the Breit system (pi = pBi ) is used, which is defined by

#»p 1 +
#»p 3 = 0.

In the following we take a closer look at the center of mass frame, see Fig. 2.3. Equation

(2.8) leads to
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FIG. 24: Two particle to two particle scattering.
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in.6) We can write this in the form

X⇤
pi = 0 (116)

where a di↵erent value of i = 1, 2, · · · is assigned to each
particle going in and to each particle coming out, and

P⇤

is a sum that counts pre-collision terms positively and
post-collision terms negatively. For a closed system, the
conservation of the total 4-momentum can be shown to
be the result of the homogeneity of spacetime.7 Whether
the law is actually true must, of course, be decided by
experiment. As you have no doubt guessed, the verdict
is clear. Countless experiments have shown that the total
4-momentum of an isolated system is constant.

If we have a system of particles, with 4-momenta
pi, subject to no forces except mutual collisions, the
total 4-momentum ptot =

P
pi is timelike and future-

pointing, so there exists an inertial frame S in which the
spatial components of ptot vanish. S should be called
the center-of-momentum frame, but it is usually called
the center-of-mass (CM) frame.

EXERCISE 8.1 (i) Show that the 4-momentum of
any material particle (m > 0) is forward timelike. (ii)
Show that the sum of any two forward timelike vectors
is itself forward timelike, and hence that the sum of
any number of forward time-like vectors is itself forward
time-like. (iii) Use the results in (i) and (ii) to convince
yourself that for any number of particles there exists a
center-of-mass frame, that is a frame in which the total
3-momentum is zero. (iv) Relative to an arbitrary frame
S, show that the velocity of the center-of-mass frame is
given by � =

P
~pc/

P
E.

EXERCISE 8.2 Consider the elastic, head-on
collision, in which two particles of (masses ma and
mb) approach one another traveling along the x-axis,
collide and emerge traveling along the same axis. In
the center-of-mass frame (by its definition) ~p in

a = �~p in
b .

Use the conservation of 4-momentum to show that
~p fin

a = �~p in
a ; that is, the momentum of particle a (and

likewise b) just reverses itself in the center-of-mass frame.

B. Mandelstam variables

In high energy physics, cross sections and decay rates
are written using kinematic variables that are relativistic
invariants. For any “two particle to two particle” process
(ab ! cd) we have at our disposal the four-momenta
associated with each particle, and thus invariant variables
are the scalar products pa ·pb, pa ·pc, pa ·pd. Rather than
these, it is conventional to use the related (Mandelstam)

variables

s = c2(pa + pb)
2 ,

t = c2(pa � pc)
2 , (117)

u = c2(pa � pd)
2 .

However, because p2
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2 (with i = a, b, c, d) and

pa+pb = pc+pd due to energy momentum conservation,
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⇤

=
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i.e., only two of the three variables are independent.

As an illustration, we take a look at Moller scatter-
ing scattering, which is the process shown in Fig. Sub-

stituting pa = (E,~ki), pb = (E,�~ki), pc = (E,~kf ),

pd = (E,�~kf ), into (118) it is straightforward to show
that in the CM frame

s = 4(k2c2 + m2
ec

4),

t = �c2(~ki � ~kf )2 = �2k2c2(1 � cos ✓),

u = �c2(~ki + ~kf )2 = �2k2c2(1 + cos ✓), (119)

where E = (k2c2 + m2
ec

4)1/2, me is the electron mass,

and ✓ is the CM scattering angle, i.e., ~ki . ~kf = k2 cos ✓.
As k2 � 0, we have s � 4m2

ec
4; and since �1  cos ✓  1,

we have t  0 and u  0. Note that t = 0 (u = 0)
corresponds to forward (backward) scattering.

In the CM frame for the reaction ab ! cd, s is equal
to the square CM energy E2

CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
square of the momentum transfer between particles a and
d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
Elab

a . Use the invariance of s to find the relation between
ECM and Elab

a . Note that for energies � masses,

ECM ⇠
p

2mbc2Elab
a , so that the useful energy ECM

increases only as the square root of Elab
a . This is why

modern particle accelerators are usually colliding beams
rather than fixed-target machines.)
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where a di↵erent value of i = 1, 2, · · · is assigned to each
particle going in and to each particle coming out, and

P⇤

is a sum that counts pre-collision terms positively and
post-collision terms negatively. For a closed system, the
conservation of the total 4-momentum can be shown to
be the result of the homogeneity of spacetime.7 Whether
the law is actually true must, of course, be decided by
experiment. As you have no doubt guessed, the verdict
is clear. Countless experiments have shown that the total
4-momentum of an isolated system is constant.

If we have a system of particles, with 4-momenta
pi, subject to no forces except mutual collisions, the
total 4-momentum ptot =

P
pi is timelike and future-

pointing, so there exists an inertial frame S in which the
spatial components of ptot vanish. S should be called
the center-of-momentum frame, but it is usually called
the center-of-mass (CM) frame.

EXERCISE 8.1 (i) Show that the 4-momentum of
any material particle (m > 0) is forward timelike. (ii)
Show that the sum of any two forward timelike vectors
is itself forward timelike, and hence that the sum of
any number of forward time-like vectors is itself forward
time-like. (iii) Use the results in (i) and (ii) to convince
yourself that for any number of particles there exists a
center-of-mass frame, that is a frame in which the total
3-momentum is zero. (iv) Relative to an arbitrary frame
S, show that the velocity of the center-of-mass frame is
given by � =
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mb) approach one another traveling along the x-axis,
collide and emerge traveling along the same axis. In
the center-of-mass frame (by its definition) ~p in

a = �~p in
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Use the conservation of 4-momentum to show that
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a = �~p in
a ; that is, the momentum of particle a (and

likewise b) just reverses itself in the center-of-mass frame.

B. Mandelstam variables

In high energy physics, cross sections and decay rates
are written using kinematic variables that are relativistic
invariants. For any “two particle to two particle” process
(ab ! cd) we have at our disposal the four-momenta
associated with each particle, and thus invariant variables
are the scalar products pa ·pb, pa ·pc, pa ·pd. Rather than
these, it is conventional to use the related (Mandelstam)
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2 ,

t = c2(pa � pc)
2 , (117)
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i.e., only two of the three variables are independent.

As an illustration, we take a look at Moller scatter-
ing scattering, which is the process shown in Fig. Sub-

stituting pa = (E,~ki), pb = (E,�~ki), pc = (E,~kf ),
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that in the CM frame
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we have t  0 and u  0. Note that t = 0 (u = 0)
corresponds to forward (backward) scattering.

In the CM frame for the reaction ab ! cd, s is equal
to the square CM energy E2

CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
square of the momentum transfer between particles a and
d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
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conservation of the total 4-momentum can be shown to
be the result of the homogeneity of spacetime.7 Whether
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is clear. Countless experiments have shown that the total
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In high energy physics, cross sections and decay rates
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invariants. For any “two particle to two particle” process
(ab ! cd) we have at our disposal the four-momenta
associated with each particle, and thus invariant variables
are the scalar products pa ·pb, pa ·pc, pa ·pd. Rather than
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2 ,
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As an illustration, we take a look at Moller scatter-
ing scattering, which is the process shown in Fig. Sub-
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that in the CM frame
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we have t  0 and u  0. Note that t = 0 (u = 0)
corresponds to forward (backward) scattering.

In the CM frame for the reaction ab ! cd, s is equal
to the square CM energy E2

CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
square of the momentum transfer between particles a and
d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
Elab

a . Use the invariance of s to find the relation between
ECM and Elab

a . Note that for energies � masses,

ECM ⇠
p

2mbc2Elab
a , so that the useful energy ECM

increases only as the square root of Elab
a . This is why

modern particle accelerators are usually colliding beams
rather than fixed-target machines.)
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in.6) We can write this in the form

X⇤
pi = 0 (116)

where a di↵erent value of i = 1, 2, · · · is assigned to each
particle going in and to each particle coming out, and

P⇤

is a sum that counts pre-collision terms positively and
post-collision terms negatively. For a closed system, the
conservation of the total 4-momentum can be shown to
be the result of the homogeneity of spacetime.7 Whether
the law is actually true must, of course, be decided by
experiment. As you have no doubt guessed, the verdict
is clear. Countless experiments have shown that the total
4-momentum of an isolated system is constant.

If we have a system of particles, with 4-momenta
pi, subject to no forces except mutual collisions, the
total 4-momentum ptot =

P
pi is timelike and future-

pointing, so there exists an inertial frame S in which the
spatial components of ptot vanish. S should be called
the center-of-momentum frame, but it is usually called
the center-of-mass (CM) frame.

EXERCISE 8.1 (i) Show that the 4-momentum of
any material particle (m > 0) is forward timelike. (ii)
Show that the sum of any two forward timelike vectors
is itself forward timelike, and hence that the sum of
any number of forward time-like vectors is itself forward
time-like. (iii) Use the results in (i) and (ii) to convince
yourself that for any number of particles there exists a
center-of-mass frame, that is a frame in which the total
3-momentum is zero. (iv) Relative to an arbitrary frame
S, show that the velocity of the center-of-mass frame is
given by � =

P
~pc/

P
E.

EXERCISE 8.2 Consider the elastic, head-on
collision, in which two particles of (masses ma and
mb) approach one another traveling along the x-axis,
collide and emerge traveling along the same axis. In
the center-of-mass frame (by its definition) ~p in

a = �~p in
b .

Use the conservation of 4-momentum to show that
~p fin

a = �~p in
a ; that is, the momentum of particle a (and

likewise b) just reverses itself in the center-of-mass frame.

B. Mandelstam variables

In high energy physics, cross sections and decay rates
are written using kinematic variables that are relativistic
invariants. For any “two particle to two particle” process
(ab ! cd) we have at our disposal the four-momenta
associated with each particle, and thus invariant variables
are the scalar products pa ·pb, pa ·pc, pa ·pd. Rather than
these, it is conventional to use the related (Mandelstam)

variables

s = c2(pa + pb)
2 ,

t = c2(pa � pc)
2 , (117)

u = c2(pa � pd)
2 .

However, because p2
i = m2

i c
2 (with i = a, b, c, d) and

pa+pb = pc+pd due to energy momentum conservation,

s + t + u =
X

i

m2
i c

4 + c2
⇥
2p2

a + 2pa.(pb � pc � pd)
⇤

=
X

i

m2
i c

2, (118)

i.e., only two of the three variables are independent.

As an illustration, we take a look at Moller scatter-
ing scattering, which is the process shown in Fig. Sub-

stituting pa = (E,~ki), pb = (E,�~ki), pc = (E,~kf ),

pd = (E,�~kf ), into (118) it is straightforward to show
that in the CM frame

s = 4(k2c2 + m2
ec

4),

t = �c2(~ki � ~kf )2 = �2k2c2(1 � cos ✓),

u = �c2(~ki + ~kf )2 = �2k2c2(1 + cos ✓), (119)

where E = (k2c2 + m2
ec

4)1/2, me is the electron mass,

and ✓ is the CM scattering angle, i.e., ~ki . ~kf = k2 cos ✓.
As k2 � 0, we have s � 4m2

ec
4; and since �1  cos ✓  1,

we have t  0 and u  0. Note that t = 0 (u = 0)
corresponds to forward (backward) scattering.

In the CM frame for the reaction ab ! cd, s is equal
to the square CM energy E2

CM, where ECM is the sum of
the energies of particles a and b, t represents the square
of the momentum transfer between particles a and c, and
u (which is not an independent variable) represents the
square of the momentum transfer between particles a and
d. This is called the s-channel process. As we have seen,
in the s-channel s is positive, while t and u are negatives.

EXERCISE 8.3 Consider the scattering process
ab ! cd. Determine s in the lab frame in which particle
b is at rest and the projectile a (beam) has an energy
Elab

a . Use the invariance of s to find the relation between
ECM and Elab

a . Note that for energies � masses,

ECM ⇠
p

2mbc2Elab
a , so that the useful energy ECM

increases only as the square root of Elab
a . This is why

modern particle accelerators are usually colliding beams
rather than fixed-target machines.)

[1] G. Galilei, Discorsi e Dimostrazioni Matematiche, in-
torno á due nuoue scienze, (1638). Reprinted on On the

Shoulders of Giants: The Great Works of Physics and
Astronomy, (Ed. S. Hawking, Running Press, Philadel-
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p2

p1

p3

p4

(a)

s

t

2

1

4

3

uu

(b)

Figure 2.2: Two-particle scattering. The kinematical constraints are energy-momentum

conservation and the mass shell condition (a). Visualization of Mandelstam variables (b).

Four of them have to be linearly dependent, since there are only two degrees of freedom

in the system (center of mass energy and scattering angle).

We now define the Mandelstam variables (see Fig. 2.2(b))

s = (p1 + p2)
2

t = (p1 ⇥ p3)
2

u = (p1 ⇥ p4)
2,

where s denotes total center of mass energy squared (positive) and t is the four-momentum

transfer squared (negative). Note also that s+ t+ u =

⌘4
i=1 m

2
i .

The center of mass frame is defined by

#»p 1 +
#»p 2 = 0 =

#»p 3 +
#»p 4. (2.8)

The corresponding variables are asterisked: (cm., pi = p⌅i ). The laboratory frame is defined

by

#»p 2 = 0 (fixed target) and variables are labelled with an L : (lab., pi = pLi ). In deep

inelastic scattering the Breit system (pi = pBi ) is used, which is defined by

#»p 1 +
#»p 3 = 0.

In the following we take a closer look at the center of mass frame, see Fig. 2.3. Equation

(2.8) leads to

#»p ⌅
1 = ⇥ #»p ⌅

2 =

#»p
#»p ⌅

3 = ⇥ #»p ⌅
4 =

#»p ⇤

p1 =
�
E⌅

1 =

✓
#»p 2

+m2
1,

#»p
 

p2 =
�
E⌅

2 =

✓
#»p 2

+m2
2,⇥ #»p

 

p3 = (E⌅
3 ,

#»p ⇤
)

p4 = (E⌅
4 ,⇥ #»p ⇤

).

FIG. 25: Mandelstam variables.

B. Mandelstam variables

In high energy physics, cross sections and decay rates
are written using kinematic variables that are relativistic
invariants. For any “two particle to two particle” pro-
cess ab ! cd shown in Fig. 24, we have at our disposal
the four-momenta associated with each particle. The in-
variant variables are six scalar products: pa · pb, pa · pc,
pa · pd, pb · pc, pb · pd, pc · pd. Rather than these, it is
conventional to use the related (Mandelstam) variables

s = c2(pa + pb)
2 ,

t = c2(pa � pc)
2 ,

u = c2(pa � pd)
2 . (117)

Because p2
i = m2

i c
2 (with i = a, b, c, d) and pa + pb =

pc+pd (due to energy momentum conservation) it follows
that

s + t + u =
X

i

m2
i c

4 + c2
⇥
2p2

a + 2pa.(pb � pc � pd)
⇤

=
X

i

m2
i c

4, (118)

i.e., only two of the three variables are independent. A
visualization of Mandelstam variables is shown in Fig. 25.
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Particle Decay and Collisions Two-body scattering

Møller scattering scattering in CM frame
4-momenta are

pa = (E/c,~pi), pb = (E/c,−~pi), pc = (E/c,~p f ), pd = (E/c,−~p f )

E = (p2c2 + m2
e c4)1/2 + mass-shell condition

s = 4(p2c2 + m2
e c4)

t = −c2(~pi − ~p f )
2 = −2p2c2(1− cos θ∗)

u = −c2(~pi + ~p f )
2 = −2p2c2(1 + cos θ∗)

θ∗ + scattering angle⇒ ~pi · ~p f = p2 cos θ∗

As p2 ≥ 0 + s ≥ 4m2
e c4

Since −1 ≤ cos θ∗ ≤ 1 + t ≤ 0 and u ≤ 0
t = 0 (u = 0) corresponds to forward (backward) scattering

L. A. Anchordoqui (CUNY) Modern Physics 10-5-2023 7 / 21



Particle Decay and Collisions Two-body scattering

In CM frame for reaction ab→ cd
s ≡ square CM energy E2

CM + ECM = Ea + Eb

t ≡ square of momentum transfer between particles a and c

u ≡ square of momentum transfer between particles a and d
(not independent variable)

This is called s-channel process

In s-channel + s is positive while t and u are negatives

The process is elastic if ma = mc and mb = md

L. A. Anchordoqui (CUNY) Modern Physics 10-5-2023 8 / 21



Particle Decay and Collisions Two-body scattering�� ��Take a closer look at general process ab→ cd

CM frame is defined by + ~pa + ~pb =~0 = ~pc + ~pd
4-momenta are

pa = (E∗a /c,~pi), pb = (E∗b /c,−~pi), pc = (E∗c /c,~p f ), pd = (E∗d/c,−~p f )�� ��On-shell conditions lead to

E∗a =
√
~p 2

i c2 + m2
ac4 E∗b =

√
~p 2

i c2 + m2
bc4

E∗c =
√
~p 2

f c2 + m2
c c4 E∗d =

√
~p 2

f c2 + m2
dc4�� ��After some algebra . . .

we express E∗a,b,c,d, |~pi|, |~p f | in terms of s = c2(pa + pb)
2 = (E∗a + E∗b )

2

E∗a,c =
1

2
√

s

(
s + m2

a,cc4 −m2
b,dc4

)
E∗b,d =

1
2
√

s

(
s + m2

b,dc4 −m2
a,cc4

)

p2
i c2 = E∗2a −m2

ac4 =
1
4s

λ(s, m2
ac4, m2

bc4) p2
f c2 =

1
4s

λ(s, m2
c c4, m2

dc4)

Källen (triangle) function + λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc
L. A. Anchordoqui (CUNY) Modern Physics 10-5-2023 9 / 21



Particle Decay and Collisions Two-body scattering

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc

=
[

a− (
√

b +
√

c)2
] [

a− (
√

b−
√

c)2
]

= a2 − 2a(b + c) + (b− c)2

Properties of Källen function
λ is symmetric under a↔ b↔ c

λ(a, b, c)→ a2, for a� b, c

This enables to determine properties of scattering processes

High energy limit + s� m2
a,b,c,dc4

E∗a,b,c,d, |~pi|, and |~p f | simplify because of asymptotic behavior of λ

E∗a = E∗b = E∗c = E∗d = c|~pi| = c|~p f | =
√

s/2
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Particle Decay and Collisions Two-body scattering

In CM frame scattering angle defined by

~pi · ~p f = |~pi| · |~p f | cos θ∗

using

pa · pc = E∗a E∗c /c2 − |~p ∗a ||~p ∗c | cos θ∗

and
t = c2(pa − pc)

2 = (m2
a + m2

c)c
4 − 2c2 pa · pc

= (m2
a + m2

c)c
4 − 2EaEc + 2c2~pa · ~pc

= (m2
a + m2

c)c
4 − 2EaEc + 2c2 pi p f cos θ∗ = c2(pb − pd)

2

2.2. TWO-PARTICLE SCATTERING 11

#»p ⇥ #»p

#»p ⇤

⇥ #»p ⇤

E
⌅

4

1 2

3

Figure 2.3: Two-particle scattering in center of mass frame. For the constraints on the

scattering angle E
⌅
see section 2.2.1.

The sum

p1 + p2 = (E⌅
1 + E⌅

2� �✏ ⇣
⇧
s

,
#»
0 )

is no Lorentz invariant, whereas

s = (p1 + p2)
2
= (E⌅

1 + E⌅
2)

2

is one. Now we can express E⌅
i , | #»p |, and | #»p ⇤| in terms of s (see exercise sheet 1):

E⌅
1,3 =

1

2

 
s
(s+m2

1,3 ⇥m2
2,4) (2.9)

#»p 2
= (E⌅

1)
2 ⇥m2

1 =
1

4s
◆(s,m2

1,m
2
2), (2.10)

where we have used the Källen function (triangle function) which is defined by

◆(a, b, c) = a2 + b2 + c2 ⇥ 2ab⇥ 2ac⇥ 2bc

=

◆
a⇥ (

 
b+
 
c)2

◆
a⇥ (

 
b⇥
 
c)2



= a2 ⇥ 2a(b+ c) + (b⇥ c)2.

We can see that the Källen function has the following properties:

• symmetric under a⌦ b⌦ c and

• asymptotic behavior: a↵ b, c : ◆(a, b, c, )� a2.

✓⇤

a b

c

d

f

f

ii

we write scattering angle as function of s, t, m2
a,b,c,d

cos θ∗ =
s(t− u) + (m2

a −m2
b)(m

2
c −m2

d)c
8

√
λ(s, m2

ac4, m2
bc4)

√
λ(s, m2

c c4, m2
dc4)

This means that 2→ 2 scattering is described by two variables:
(
√

s, θ∗) or else (
√

s, t)
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Particle Decay and Collisions Threshold energy

One way to create exotic heavy particle X
is to arrange collision between two lighter particles

a + b→ X + d + e + · · ·+ g

d, e, . . . , g are other possible particles produced in reaction

In all such cases + theoretical minimum expenditure of energy
occurs when all end-products are mutually at rest

Consider projectile a and stationary target b with pa and pb

If emergent particles have 4-momenta pi (i = 1, 2, · · · )

pa + pb = pX + pd + pe · · ·+ pg = ∑
i

pi (1)
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Particle Decay and Collisions Threshold energy

Interlude
Consider two particles with pa and pb and relative speed vab

(vab + speed of one in rest-frame of the other)

pa · pb = maEb = mbEa = c2γ(vab)mamb (2)

ma + rest-mass of first particle
Eb + energy of second particle in rest-frame of first

To verify (2) +

evaluate pa · pb in rest-frame of either particle
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Particle Decay and Collisions Threshold energy

Squaring (1)

m2
a + m2

b +
2mbEa

c2 = ∑
i

m2
i + 2 ∑

(i<j)
mimjγ(vij) (3)

All the masses in (3) are fixed
Only variable on l.h.s. is Ea + energy of projectile relative to lab
Minimum of r.h.s. when all Lorentz factors are unity
there is no relative motion between any of the outgoing particles
Threshold energy of projectile

Ea =
c2

2mb



(

∑
i

mi

)2

−m2
a −m2

b


 (4)

(4) also applies if projectile is γ︸︷︷︸
photon

getting absorbed in collision
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Particle Decay and Collisions Threshold energy

Example

pp→ ppπ0

Ep −mpc2 = c2
(

2mπ +
m2

π

2mp

)

Efficiency k + ratio of π rest energy to p kinetic energy

k = mπ

(
2mπ +

m2
π

2mp

)−1

=
2

4 + (mπ/mp)

Efficiency + always less than 50%
For pp→ ppπ0+ mπ/mp ≈ 0.14 and k ≈ 48%
If mX � me, mg, · · ·

k ≈ 2mb/mX
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Particle Decay and Collisions Threshold energy

Example

e+e− → J/ψ + k ∼ 1/1850

Colliding beams to the rescue + almost 100% efficiency

Both target and projectile particles are accelerated to high energy

No “waste” kinetic energy need be present after collision
since there was no net momentum going in

For mb = me ≈ 0.5 MeV/c2 and mJ/ψ ≈ 3100 MeV/c

ECM ≈ mJ/ψc2 ≈ 3100 MeV

whereas

Elab ≈
m2

J/ψc2

2me
= 9600000 MeV
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Particle Decay and Collisions Transverse mass, rapidity, and pseudorapidity

Introduce invariants of common use in collider physics
which derive from the fact that

velocities of colliding particles are along beam axis

Invariants with respect to observers
who are Lorentz boosted with respect to the z-axis

What is special about these observers?

Accelerators collide particles
whose momentum is not equal and opposite

but whose directions are down a common beam z-axis

CM frame is moving at some velocity down z-axis
so you will often wish to study physics in this frame

However + if you are stuck in lab frame
you are boosted with some velocity vz with respect to this frame

and the direction of the boost is parallel to the beam axis
L. A. Anchordoqui (CUNY) Modern Physics 10-5-2023 17 / 21



Particle Decay and Collisions Transverse mass, rapidity, and pseudorapidity

Rapidity

y =
1
2

ln
(

E + pzc
E− pzc

)

Why would you want to define such a quantity?
Suppose we are dealing with high energy product of a collision

(highly relativistic regime)
If particle is directed in x-y ⊥ to beam direction

pz will be small + y→ 0
If particle is directed down beam axis + say in +z direction

E ' pzc + y→ +∞.
Similarly + if particle is travelling down beam axis in −z direction

E ' −pzc + y→ −∞
Rapidity related to:

angle between x-y plane and direction of secondary product
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Particle Decay and Collisions Transverse mass, rapidity, and pseudorapidity

Transverse mass
E and pz can separately be expressed as functions of rapidity
Rewrite energy-momentum-mass relation

E2 = M2
Tc4 + p2

zc2 (5)

in terms of transverse mass

M2
Tc4 = p2

xc2 + p2
yc2 + m2c4

x and y components of momentum and particle mass
are all invariant with respect to boosts parallel to z-axis

Rewriting (5) as
(

E
MTc2

)2
−
(

pz
MTc

)2
= 1

and comparing with cosh2 y− sinh2 y = 1

p ≡ (E/c = MTc cosh y, px, py, pz = MTc sinh y)
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Particle Decay and Collisions Transverse mass, rapidity, and pseudorapidity

Upon Lorentz boost parallel to beam axis with velocity v = βc
equation for transformation on rapidity is a particularly simple one

y′ = y− tanh−1 β

Assume two secondaries have rapidities y1 and y2 measured in S

Another observer moving along z-axis in S′ measures y′1 and y′2

Difference between rapidities

y′1 − y′2 = y1 − tanh−1 β− y2 + tanh−1 β = y1 − y2

is invariant with respect to Lorentz boosts along z-axis

Key variable in accelerator physics:
Histograms binned in rapidity separation of events
are undistorted by CM frame boosts parallel to beam axis
as dependent variable is invariant wrt sub-class of Lorentz boosts
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Particle Decay and Collisions Transverse mass, rapidity, and pseudorapidity

Rapidity can be hard to measure for highly relativistic particles
need to measure both energy and total momentum

@ high rapidities where z component of momentum is large
+ beam pipe can prevent measuring momentum precisely

Define quantity that is almost same as rapidity
but it is much easier to measure

y ' η = − ln
(

tan
θ

2

)

θ + angle made by particle trajectory with beam pipe

Pseudorapidity η is particularly useful in hadron colliders
+ composite nature of colliding protons means that interactions
rarely have their CM frame coincident with detector rest frame
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