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7.1 Magnetic Force on Currents (cont’d)

Fall 2008Physics 231 Lecture 7-15

Magnetic Forces
We know that a single moving charge experiences a force when 
it moves in a magnetic field
What is the net effect if we have multiple charges moving 
together, as a current in a wire?
We start with a wire of length l and cross section area A in a 
magnetic field of strength B with the charges having a drift 
velocity of vd

The total number of charges in this section is 
then             where n is the charge densitynAl
The force on a single charge moving with 
drift velocity vd is given by BqvF d 
So the total force on this segment is

BlAvqnF d 
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Fall 2008Physics 231 Lecture 7-16

Magnetic Force on a Current 
Carrying Wire

We have so far that BlAvqnF d 

But we also have that dvqnJ  and AJI  

Combining these, we then have that BlIF  

The force on the wire is related to the current in the wire 
and the length of the wire in the magnetic field

If the field and the wire are not perpendicular to each the 
full relationship is 

BlIF
&&&

u 

The direction of l is the direction of the current
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Fall 2008Physics 231 Lecture 7-17

Current Loop in a Magnetic Field
Suppose that instead of a current element, we have a closed loop
in a magnetic field

We ask what happens to this loop

Example 3: Current loop in a magnetic field
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Fall 2008Physics 231 Lecture 7-18

Current Loop in a Magnetic Field
Each segment experiences a magnetic force since there is a 
current in each segment

As with the velocity, it is only the component of the wire that 
is perpendicular to B that matters

Each of the two shorter sides
experiences a force given by

Icos' BbIF  
in the directions shown

Since the magnitudes are the
same, the net force in the
y-direction is ¦  0yF

No translational motion in the y-direction
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Fall 2008Physics 231 Lecture 7-19

Current Loop in a Magnetic Field
Now for the two longer sides of length a

Each of these two sides
experiences a force given by

BaIF  
in the directions shown

But since the forces are of the 
same magnitude but in 
opposite directions we have

¦  0xF

No translational motion in the x-direction
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Fall 2008Physics 231 Lecture 7-20

Current Loop in a Magnetic Field
There is no translational motion in either the x- or y-directions

While the two forces in the 
y-direction are colinear, the 
two forces in the x-direction 
are not

Therefore there is a torque
about the y-axis

The lever arm for each force is

Isin
2
b

The net torque about the 
y-axis is IIW sinsin

2
2 baBIbF  ¸

¹
·

¨
©
§ 
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Fall 2008Physics 231 Lecture 7-21

Current Loop in a Magnetic Field
This torque is along the 
positive y-axis and is given 
by

IW sinABI 

The product IA is referred
to as the magnetic moment

AI P

We rewrite the torque as

IPW sinB 
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Fall 2008Physics 231 Lecture 7-22

Magnetic Moment
We defined the magnetic moment to be AI P

It also is a vector whose direction is given by the direction of 
the area of the loop

The direction of the area is defined by the sense of the current

B
&&&

u PWWe can now write the torque as
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7.2 Ampere’s Law
In our study of electricity 

For magnetism     Gauss’ law is simple

there are no magnetic monopoles

7.3. AMPÈRE’S LAW 89

‹
S

˛
S

�B · d �A = 0
⇥ There is no mag-
netic monopole.

A more useful law for calculating B-field for highly symmetric situations is the
Ampère’s Law:

˛
C

˛
C

�B · d�s = µ0i

˛
C

= Line intefral evaluated around a closed loop C (Amperian curve)

i = Net current that penetrates the area bounded by curve C� (topological property)

Convention : Use the right-hand screw rule to determine the sign of current.

˛
C

�B · d�s = µ0(i1 � i3 + i4 � i4)

= µ0(i1 � i3)

Applications of the Ampere’s Law :

(1) Long-straight wire

Construct an Amperian
curve of radius d:

By symmetry argument, we know �B-field only has tangential compo-
nent

�
˛
C

�B · d�s = µ0i

I

S

~B · d ~A = 0 *☛☛

For calculating   -field for highly symmetric situations ☛ Ampere’s Law

Cline integral evaluated around a closed loop
Amperian curve

net current penetrating area bounded by curve 

I

C

~B · d~s = µ0i

topological property

useful for finding   -field for systems with high level of symmetry
we noticed that inverse square force law leads to Gauss’ law

~B

I

C

☛

☛i C

7.3. AMPÈRE’S LAW 89

‹
S

˛
S

�B · d �A = 0
⇥ There is no mag-
netic monopole.

A more useful law for calculating B-field for highly symmetric situations is the
Ampère’s Law:

˛
C

˛
C

�B · d�s = µ0i

˛
C

= Line intefral evaluated around a closed loop C (Amperian curve)

i = Net current that penetrates the area bounded by curve C� (topological property)

Convention : Use the right-hand screw rule to determine the sign of current.

˛
C

�B · d�s = µ0(i1 � i3 + i4 � i4)

= µ0(i1 � i3)

Applications of the Ampere’s Law :

(1) Long-straight wire

Construct an Amperian
curve of radius d:

By symmetry argument, we know �B-field only has tangential compo-
nent

�
˛
C

�B · d�s = µ0i

I

C

~B · d~s = µ0(i1 � i3 + i4 � i4) = µ0(i1 � i3)

~E
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Applications of Ampere’s Law 

① Long-straight wire
Construct Amperian curve of radius

By symmetry argument   -field only has tangential component

7.3. AMPÈRE’S LAW 89

‹
S

˛
S

�B · d �A = 0
⇥ There is no mag-
netic monopole.

A more useful law for calculating B-field for highly symmetric situations is the
Ampère’s Law:

˛
C

˛
C

�B · d�s = µ0i

˛
C

= Line intefral evaluated around a closed loop C (Amperian curve)

i = Net current that penetrates the area bounded by curve C� (topological property)

Convention : Use the right-hand screw rule to determine the sign of current.

˛
C

�B · d�s = µ0(i1 � i3 + i4 � i4)

= µ0(i1 � i3)

Applications of the Ampere’s Law :

(1) Long-straight wire

Construct an Amperian
curve of radius d:

By symmetry argument, we know �B-field only has tangential compo-
nent

�
˛
C

�B · d�s = µ0i
)

I

C

~B · d~s = µ0i

d

Take     to be tangential vector around circular pathd~s

~B

) ~B · d~s = B ds

B

I

C
ds

| {z }
= µ0i

Circumference of circle = 2⇡d

) B(2⇡d) = µ0i

 -field due to long straight current ☛~B B =
µ0i

2⇡d
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② Inside a current-carrying wire

7.3. AMPÈRE’S LAW 90

Take d⇤s to be the tangential vector around the circular path:

� ⇤B · d⇤s = B ds

B

˛
C

ds
⇤ ⇥� ⌅

Circumference
of circle = 2�d

= µ0i

� B(2⇥d) = µ0i

B-field due to long,
straight current B =

µ0i

2⇥d
(Compare with 7.1 Example 1)

(2) Inside a current-carrying wire

Again, symmetry argument
implies that ⇤B is tangential
to the Amperian curve and
⇤B � B(r)�̂

Consider an Amperian curve of radius r(< R)˛
C

⇤B · d⇤s = B

˛
ds = B(2⇥r) = µ0iincluded

But iincluded ⇥ cross-sectional area of C

�
iincluded

i
=

⇥r2

⇥R2

� iincluded =
r2

R2
i

� B =
µ0i

2⇥R2
· r ⇥ r

Recall: Uniformly charged infinite long rod

(3) Solenoid (Ideal)

Consider the rectangular
Amperian curve 1234.

7.3. AMPÈRE’S LAW 90

Take d⇤s to be the tangential vector around the circular path:

� ⇤B · d⇤s = B ds

B

˛
C

ds
⇤ ⇥� ⌅

Circumference
of circle = 2�d

= µ0i

� B(2⇥d) = µ0i

B-field due to long,
straight current B =

µ0i

2⇥d
(Compare with 7.1 Example 1)

(2) Inside a current-carrying wire

Again, symmetry argument
implies that ⇤B is tangential
to the Amperian curve and
⇤B � B(r)�̂

Consider an Amperian curve of radius r(< R)˛
C

⇤B · d⇤s = B

˛
ds = B(2⇥r) = µ0iincluded

But iincluded ⇥ cross-sectional area of C

�
iincluded

i
=

⇥r2

⇥R2

� iincluded =
r2

R2
i

� B =
µ0i

2⇥R2
· r ⇥ r

Recall: Uniformly charged infinite long rod

(3) Solenoid (Ideal)

Consider the rectangular
Amperian curve 1234.

Again ☛ symmetry argument

Consider Amperian curve of radius

iincluded / cross-sectional area of

) iincluded
i

=
⇡r2

⇡R2

) iincluded =
r2

R2
i

) B =
µ0i

2⇡R2
· r / r

C

r(< R)

~B ~B ! B(r)✓̂implies that     is tangential to Amperian curve and
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③ Solenoid (Ideal)

Consider rectangular Amperian curve 1234 ➢

7.3. AMPÈRE’S LAW 90

Take d⇤s to be the tangential vector around the circular path:

� ⇤B · d⇤s = B ds

B

˛
C

ds
⇤ ⇥� ⌅

Circumference
of circle = 2�d

= µ0i

� B(2⇥d) = µ0i

B-field due to long,
straight current B =

µ0i

2⇥d
(Compare with 7.1 Example 1)

(2) Inside a current-carrying wire

Again, symmetry argument
implies that ⇤B is tangential
to the Amperian curve and
⇤B � B(r)�̂

Consider an Amperian curve of radius r(< R)˛
C

⇤B · d⇤s = B

˛
ds = B(2⇥r) = µ0iincluded

But iincluded ⇥ cross-sectional area of C

�
iincluded

i
=

⇥r2

⇥R2

� iincluded =
r2

R2
i

� B =
µ0i

2⇥R2
· r ⇥ r

Recall: Uniformly charged infinite long rod

(3) Solenoid (Ideal)

Consider the rectangular
Amperian curve 1234.

field perpendicular to path 

outside solenoid

But

Note

(i) Assumption that          outside ideal solenoid is only approximate
(ii)   -field everywhere inside solenoid is a constant (for ideal solenoid)

~B = 0

i
tot

= nl|{z} · i
numbers of coils included ) B = µ0ni

)
I

C

~B · d~s =

Z

1

~B · d~s = Bl = µ0itot

Z

3
= 0 * ~B = 0

Z

2
=

Z

4
= 0 *

I

C

~B · d~s =

Z

1

~B · d~s +

Z

2

~B · d~s +

Z

3

~B · d~s +

Z

4

~B · d~s

~B
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7.3. AMPÈRE’S LAW 91

˛
C

⇥B · d⇥s =

ˆ
1

⇥B · d⇥s +

�
�

�
��

ˆ
2

⇥B · d⇥s +

�
�

�
��

ˆ
3

⇥B · d⇥s +

�
�

�
��

ˆ
4

⇥B · d⇥s

ˆ
2

=

ˆ
4

= 0 ⇥
�

⇥B · d⇥s = 0 inside solenoid
⇥B = 0 outside solenoidˆ

3

= 0 ⇥ ⇥B = 0 outside solenoid

�
˛

C

⇥B · d⇥s =

ˆ
1

⇥B · d⇥s = Bl = µ0itot

But itot = nl⌅⇤⇥⇧
Number of coils included

·i

� B = µ0ni

Note :

(i) The assumption that ⇥B = 0 outside the ideal solenoid is only
approximate. (Halliday, Pg.763)

(ii) B-field everywhere inside the solenoid is a constant. (for ideal
solenoid)

(4) Toroid (A circular solenoid)

By symmetry argument, the B-field lines form concentric circles inside
the toroid.
Take Amperian curve C to be a circle of radius r inside the toroid.˛

C

⇥B · d⇥s = B

˛
C

ds = B · 2�r = µ0(Ni)

� B =
µ0Ni

2�r
inside toroid

By symmetry argument ☛  field lines form concentric circles inside toroid
Take Amperian curve    to be a circle of radius    inside toroid

inside toroid

I

C

~B · d~s = B

I

C
ds = B · 2⇡r = µ0(Ni)

) B =
µ0Ni

2⇡r

C r

Note 
constant inside toroid

(ii) Outside toroid ☛ take Amperian curve to be circle of radius 

Similarly ☛ in central cavity

(i)

④ Toroid (circular solenoid)

r > R

B 6=

) B = 0

B = 0

I

C

~B · d~s = B

I

C
ds = B · 2⇡r = µ0 · iincl = 0
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30.4 The Magnetic Field of a Solenoid

A solenoid is a long wire wound in the form of a helix. With this configuration, a
reasonably uniform magnetic field can be produced in the space surrounded by the
turns of wire—which we shall call the interior of the solenoid—when the solenoid
carries a current. When the turns are closely spaced, each can be approximated as a
circular loop, and the net magnetic field is the vector sum of the fields resulting from
all the turns.

Figure 30.17 shows the magnetic field lines surrounding a loosely wound solenoid.
Note that the field lines in the interior are nearly parallel to one another, are
uniformly distributed, and are close together, indicating that the field in this space is
strong and almost uniform.

If the turns are closely spaced and the solenoid is of finite length, the magnetic
field lines are as shown in Figure 30.18a. This field line distribution is similar to that
surrounding a bar magnet (see Fig. 30.18b). Hence, one end of the solenoid behaves
like the north pole of a magnet, and the opposite end behaves like the south pole. As
the length of the solenoid increases, the interior field becomes more uniform and the
exterior field becomes weaker. An ideal solenoid is approached when the turns are
closely spaced and the length is much greater than the radius of the turns. Figure
30.19 shows a longitudinal cross section of part of such a solenoid carrying a current I.
In this case, the external field is close to zero, and the interior field is uniform over a
great volume.

938 CHAPTE R  3 0 •  Sources of the Magnetic Field

toward the left and should also become infinite. This is
larger than the force toward the right on the right side
because this side is still far from the wire, so the loop should
be pulled into the wire with infinite force!

Does this really happen? In reality, it is impossible for
a : 0 because both wire 1 and wire 2 have finite sizes, so
that the separation of the centers of the two wires is at least
the sum of their radii.

A similar situation occurs when we re-examine the
magnetic field due to a long straight wire, given by Equation
30.5. If we could move our observation point infinitesimally
close to the wire, the magnetic field would become infinite!
But in reality, the wire has a radius, and as soon as we enter
the wire, the magnetic field starts to fall off as described by
Equation 30.15 — approaching zero as we approach the
center of the wire.

Exterior

Interior

(a)

S

N

Figure 30.17 The magnetic field
lines for a loosely wound solenoid.

Figure 30.18 (a) Magnetic field lines for a tightly wound solenoid of finite length,
carrying a steady current. The field in the interior space is strong and nearly uniform.
Note that the field lines resemble those of a bar magnet, meaning that the solenoid
effectively has north and south poles. (b) The magnetic field pattern of a bar magnet,
displayed with small iron filings on a sheet of paper.

He
nr

y L
ea

p 
an

d 
Ji

m
 Le

hm
an

(b)

30.4 The Magnetic Field of a Solenoid

A solenoid is a long wire wound in the form of a helix. With this configuration, a
reasonably uniform magnetic field can be produced in the space surrounded by the
turns of wire—which we shall call the interior of the solenoid—when the solenoid
carries a current. When the turns are closely spaced, each can be approximated as a
circular loop, and the net magnetic field is the vector sum of the fields resulting from
all the turns.

Figure 30.17 shows the magnetic field lines surrounding a loosely wound solenoid.
Note that the field lines in the interior are nearly parallel to one another, are
uniformly distributed, and are close together, indicating that the field in this space is
strong and almost uniform.

If the turns are closely spaced and the solenoid is of finite length, the magnetic
field lines are as shown in Figure 30.18a. This field line distribution is similar to that
surrounding a bar magnet (see Fig. 30.18b). Hence, one end of the solenoid behaves
like the north pole of a magnet, and the opposite end behaves like the south pole. As
the length of the solenoid increases, the interior field becomes more uniform and the
exterior field becomes weaker. An ideal solenoid is approached when the turns are
closely spaced and the length is much greater than the radius of the turns. Figure
30.19 shows a longitudinal cross section of part of such a solenoid carrying a current I.
In this case, the external field is close to zero, and the interior field is uniform over a
great volume.

938 CHAPTE R  3 0 •  Sources of the Magnetic Field

toward the left and should also become infinite. This is
larger than the force toward the right on the right side
because this side is still far from the wire, so the loop should
be pulled into the wire with infinite force!

Does this really happen? In reality, it is impossible for
a : 0 because both wire 1 and wire 2 have finite sizes, so
that the separation of the centers of the two wires is at least
the sum of their radii.

A similar situation occurs when we re-examine the
magnetic field due to a long straight wire, given by Equation
30.5. If we could move our observation point infinitesimally
close to the wire, the magnetic field would become infinite!
But in reality, the wire has a radius, and as soon as we enter
the wire, the magnetic field starts to fall off as described by
Equation 30.15 — approaching zero as we approach the
center of the wire.

Exterior

Interior

(a)

S

N

Figure 30.17 The magnetic field
lines for a loosely wound solenoid.

Figure 30.18 (a) Magnetic field lines for a tightly wound solenoid of finite length,
carrying a steady current. The field in the interior space is strong and nearly uniform.
Note that the field lines resemble those of a bar magnet, meaning that the solenoid
effectively has north and south poles. (b) The magnetic field pattern of a bar magnet,
displayed with small iron filings on a sheet of paper.

He
nr

y L
ea

p 
an

d 
Ji

m
 Le

hm
an

(b)

① Magnetic field lines for a loosely wound solenoid
② Magnetic field lines for tightly wound solenoid of finite length carrying steady current
③ Magnetic field pattern of a bar magnet

(displayed with small iron filings on sheet of paper)

meaning that solenoid effectively has north and south poles

Field lines in interior of tightly wound solenoid resemble those of a bar magnet 

③②①
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7.3 Magnetic Dipole

In §7.1 we defined magnetic dipole moment of rectangular current loop
~µ = NiAn̂

n̂ =

N =

A =

area unit vector with direction determined by right-hand rule
number of turns in current loop
area of current loop

This is actually a general definition of a magnetic dipole 

A common and symmetric example ☛ circular current

Recall from §6.1 (Example 2) 
P z

7.4. MAGNETIC DIPOLE 92

Note :

(i) B �= constant inside toroid

(ii) Outside toroid:
Take Amperian curve to be circle of radius r > R.

˛
C

⇥B · d⇥s = B

˛
C

ds = B · 2�r = µ0 · iincl = 0

� B = 0

Similarly, in the central cavity B = 0

7.4 Magnetic Dipole

Recall from §6.4, we define the magnetic dipole moment of a rectangular
current loop

⇥µ = NiAn̂

where n̂ = area unit vector with direction
determined by the right-hand rule

N = Number of turns in current loop

A = Area of current loop

This is actually a general definition of a magnetic dipole, i.e. we use it for
current loops of all shapes.

A common and symmetric example: circular current.

Recall from §7.1 Example 2, magnetic
field at point P (height z above the ring)

⇥B =
µ0iR2n̂

2(R2 + z2)3/2
=

µ0⇥µ

2�(R2 + z2)3/2

~B =
µ0iR2n̂

2(R2 + z2)3/2
=

µ0~µ

2⇡(R2 + z2)3/2

i.e. we use it for current loops of all shapes

magnetic field at point    (height   above ring)
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7.5. MAGNETIC DIPOLE IN A CONSTANT B-FIELD 93

At distance z ⇥ R,

⌅B =
µ0⌅µ

2⇥z3
⌅E =

⌅p

4⇥�0z3

due to magnetic dipole due to electric dipole
(for z ⇥ R) (for z ⇥ d)

Also, notice ⌅µ = magnetic dipole moment

�
Unit: Am2

J/T

⇥

µ0 = Permeability of free space

= 4⇥ � 10�7Tm/A

7.5 Magnetic Dipole in A Constant B-field

In the presence of a constant magnetic field, we have shown for a rectangular

current loop, it experiences a torque ⌅⇤ = ⌅µ� ⌅B . It applies to any magnetic
dipole in general.

At distance

due to magnetic dipole
(for          )

due to electric dipole
(for          )

z � R

~B =
µ0~µ

2⇡z3

z � R

~E =
~p

4⇡✏0z3

z � d

Also     note that

magnetic dipole moment

Permeability of free space

~µ =

µ0 =

= 4⇡ ⇥ 10�7Tm/A

Am2

J/T

ih
Unit:

Recall
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7.4 Magnetic Dipole in A Constant B-field

In presence of a constant magnetic field ☛ we have shown that

This applies to any magnetic dipole in general

~⌧ = ~µ ⇥ ~Brectangular current loop experiences a torque

external magnetic field aligns magnetic dipoles

7.6. MAGNETIC PROPERTIES OF MATERIALS 94

� External magnetic field aligns the magnetic
dipoles.

Similar to electric dipole in a E-field, we can con-
sider the work done in rotating the magnetic di-
pole. (refer to Chapter 2)

dW = �dU, where U is potential energy of dipole

U = ��µ · �B

Note :

(1) We cannot define the potential energy of a magnetic field in general.
However, we can define the potential energy of a magnetic dipole in a
constant magnetic field.

(2) In a non-uniform external B-field, the magnetic dipole will experience
a net force (not only net torque)

7.6 Magnetic Properties of Materials

Recall intrinsic electric dipole in molecules:

Intrinsic dipole (magnetic) in atoms:

In our classical model of atoms, electrons
revolve around a positive nuclear.

� ”Current” i =
e

P
, where P is period of one orbit around nucleus
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dipoles.
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� ”Current” i =
e

P
, where P is period of one orbit around nucleus

18Tuesday, March 16, 21



Potential energy of a magnetic dipole in a magnetic field.

When a torque is applied on an object that is free to 
rotate, work is done.  The incremental work done by the 
field when a magnetic dipole is rotated through an angle 

  dθ is: 

  dW = −τ.dθ

  = −µBsin θ.dθ,

where θ is the 
angle between   

! 
µ  

and     
! 
B .  The work 

done is equal to the decrease in potential energy of the 
system, i.e., 

  dU = −dW = µBsin θ.dθ.

    ∴U = µBsinθ∫ .dθ = −µBcosθ + U",

where     U" is an integration constant.  Choosing   U = 0 

when     θ = 90", then     U" = 0.

    ∴U = −µBcosθ = −
! 
µ •
! 
B ,

the potential energy of a magnetic dipole at angle θ to 
the direction of a magnetic field.

    
! 
B 

  
! µ 

θ

    
! 
B 

  
! µ 

  dθ

• When   θ = 0, U has its minimum value 
(stable equilibrium).

• When     θ = 180!, U has its maximum value 

(unstable equilibrium).

Note that the torque acts to align the dipole with   
" 
µ  parallel 

to     
" 
B .

θ
    
" 
B 

  
" µ 

 0  

θ

  U

    180!     360!

    
" µ 
" 
B 

    −
" µ 
" 
B 
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7.5 Magnetic Properties of Materials

Intrinsic electric dipole moment of molecules

7.6. MAGNETIC PROPERTIES OF MATERIALS 94

� External magnetic field aligns the magnetic
dipoles.

Similar to electric dipole in a E-field, we can con-
sider the work done in rotating the magnetic di-
pole. (refer to Chapter 2)

dW = �dU, where U is potential energy of dipole

U = ��µ · �B

Note :

(1) We cannot define the potential energy of a magnetic field in general.
However, we can define the potential energy of a magnetic dipole in a
constant magnetic field.

(2) In a non-uniform external B-field, the magnetic dipole will experience
a net force (not only net torque)

7.6 Magnetic Properties of Materials

Recall intrinsic electric dipole in molecules:

Intrinsic dipole (magnetic) in atoms:

In our classical model of atoms, electrons
revolve around a positive nuclear.

� ”Current” i =
e

P
, where P is period of one orbit around nucleus

Intrinsic magnetic dipole moment of atoms

In our classical model of atoms

Current         
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� External magnetic field aligns the magnetic
dipoles.

Similar to electric dipole in a E-field, we can con-
sider the work done in rotating the magnetic di-
pole. (refer to Chapter 2)

dW = �dU, where U is potential energy of dipole

U = ��µ · �B

Note :

(1) We cannot define the potential energy of a magnetic field in general.
However, we can define the potential energy of a magnetic dipole in a
constant magnetic field.

(2) In a non-uniform external B-field, the magnetic dipole will experience
a net force (not only net torque)

7.6 Magnetic Properties of Materials

Recall intrinsic electric dipole in molecules:

Intrinsic dipole (magnetic) in atoms:

In our classical model of atoms, electrons
revolve around a positive nuclear.

� ”Current” i =
e

P
, where P is period of one orbit around nucleus

electrons revolve around positive nucleus

i =
e

P

P =
2⇡r

v

is period of one orbit around nucleus

is velocity of electron
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 Magnetic dipole moment of atom

Recall ☛ angular momentum of rotation ➢

µ = iA =
⇣ ev

2⇡r

⌘
(⇡r2) =

erv

2

L = mrv

µ =
e

2m
L

magnetic moment of     is proportional to its orbital angular momentum     
Because electron is negatively charged

 vectors   and    point in opposite directions~µ ~L

e�
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and the magnetic moment of the electron is associated with this orbital motion.
Although this model has many deficiencies, some of its predictions are in 
good agreement with the correct theory, which is expressed in terms of quantum
physics.

In our classical model, we assume that an electron moves with constant speed v in a
circular orbit of radius r about the nucleus, as in Figure 30.27. Because the electron
travels a distance of 2!r (the circumference of the circle) in a time interval T, its
orbital speed is v " 2!r/T. The current I associated with this orbiting electron is its
charge e divided by T. Using T " 2!/# and # " v/r, we have

The magnitude of the magnetic moment associated with this current loop is $ " IA,
where A " !r 2 is the area enclosed by the orbit. Therefore,

(30.24)

Because the magnitude of the orbital angular momentum of the electron is L " mevr
(Eq. 11.12 with % " 90°), the magnetic moment can be written as

(30.25)

This result demonstrates that the magnetic moment of the electron is proportional
to its orbital angular momentum. Because the electron is negatively charged,
the vectors ! and L point in opposite directions. Both vectors are perpendicular to the
plane of the orbit, as indicated in Figure 30.27.

A fundamental outcome of quantum physics is that orbital angular momentum
is quantized and is equal to multiples of " h/2! " 1.05 & 10'34 J ( s, where h is
Planck’s constant (introduced in Section 11.6). The smallest nonzero value of the
electron’s magnetic moment resulting from its orbital motion is

(30.26)

We shall see in Chapter 42 how expressions such as Equation 30.26 arise.
Because all substances contain electrons, you may wonder why most substances

are not magnetic. The main reason is that in most substances, the magnetic
moment of one electron in an atom is canceled by that of another electron orbiting
in the opposite direction. The net result is that, for most materials, the magnetic
effect produced by the orbital motion of the electrons is either zero or very
small.

In addition to its orbital magnetic moment, an electron (as well as protons,
neutrons, and other particles) has an intrinsic property called spin that also
contributes to its magnetic moment. Classically, the electron might be viewed as

$ " √2 
e

2me
  )

)

$ " ! e
2me

"  L

$ " IA " ! ev
2!r " !r 

2 " 1
2evr

I "
e
T

"
e#

2!
"

ev
2!r

Orbital magnetic moment

r

µ

L

Figure 30.27 An electron moving in the direction of the gray
arrow in a circular orbit of radius r has an angular momentum
L in one direction and a magnetic moment ! in the opposite
direction. Because the electron carries a negative charge, the
direction of the current due to its motion about the nucleus is
opposite the direction of that motion.

▲ PITFALL PREVENTION 
30.3 The Electron Does

Not Spin
Do not be misled; the electron is
not physically spinning. It has an
intrinsic angular momentum as if
it were spinning, but the notion of
rotation for a point particle is
meaningless. Rotation applies
only to a rigid object, with an
extent in space, as in Chapter 10.
Spin angular momentum is actu-
ally a relativistic effect.

!

!
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P =
2�r

v
, where v is velocity of electron

� Orbit magnetic dipole of atom:

µ = iA =
� ev

2�r

⇥
(�r2) =

erv

2

Recall: angular momentum of rotation l = mrv

� µ =
e

2m
· l

In quantum mechanics, we know that

l is quantized, i.e. l = N · h

2�

where N = Any positive integer (1,2,3, ... )

h = Planck’s constant (6.63� 10�34J · s)

� Orbital magnetic dipole moment

µl =
eh

4m�⇧ ⌅⇤ ⌃
Bohr’s magneton µB=9.27⇥10�24J/T

·N

There is another source of intrinsic magnetic dipole moment inside an atom:

Spin dipole moment: coming from the intrinsic ”spin” of electrons.

Quantum mechanics suggests that e� are always spinning and it’s either an ”up”
spin or a ”down” spin

µe = 9.65� 10�27 ⇥ µB

So can there be induced magnetic dipole?
Total magnetic moment of atom is vector sum of magnetic moments

spinning about its axis as shown in Figure 30.28, but you should be very careful with
the classical interpretation. The magnitude of the angular momentum S associated
with spin is on the same order of magnitude as the magnitude of the angular momen-
tum L due to the orbital motion. The magnitude of the spin angular momentum of an
electron predicted by quantum theory is

The magnetic moment characteristically associated with the spin of an electron has the
value

(30.27)

This combination of constants is called the Bohr magneton !B:

(30.28)

Thus, atomic magnetic moments can be expressed as multiples of the Bohr magneton.
(Note that 1 J/T ! 1 A " m2.)

In atoms containing many electrons, the electrons usually pair up with their
spins opposite each other; thus, the spin magnetic moments cancel. However, atoms
containing an odd number of electrons must have at least one unpaired electron and
therefore some spin magnetic moment. The total magnetic moment of an atom is the
vector sum of the orbital and spin magnetic moments, and a few examples are given in
Table 30.1. Note that helium and neon have zero moments because their individual
spin and orbital moments cancel.

The nucleus of an atom also has a magnetic moment associated with its constituent
protons and neutrons. However, the magnetic moment of a proton or neutron is much
smaller than that of an electron and can usually be neglected. We can understand this
by inspecting Equation 30.28 and replacing the mass of the electron with the mass of a
proton or a neutron. Because the masses of the proton and neutron are much greater
than that of the electron, their magnetic moments are on the order of 103 times
smaller than that of the electron.

Magnetization Vector and Magnetic Field Strength

The magnetic state of a substance is described by a quantity called the magnetization
vector M. The magnitude of this vector is defined as the magnetic moment per
unit volume of the substance. As you might expect, the total magnetic field B at a
point within a substance depends on both the applied (external) field B0 and the
magnetization of the substance.

Consider a region in which a magnetic field B0 is produced by a current-carrying
conductor. If we now fill that region with a magnetic substance, the total magnetic field
B in the region is B ! B0 # Bm, where Bm is the field produced by the magnetic
substance.

Let us determine the relationship between Bm and M. Imagine that the field Bm is
created by a solenoid rather than by the magnetic material. Then, Bm ! $0nI, where I
is the current in the imaginary solenoid and n is the number of turns per unit length.
Let us manipulate this expression as follows:

where N is the number of turns in length !, and we have multiplied the numerator
and denominator by A, the cross sectional area of the solenoid in the last step. We
recognize the numerator NIA as the total magnetic moment of all the loops in

Bm ! $0nI ! $0 
N
!

 I ! $0 
NIA
!A

$B !
e %

2me
! 9.27 & 10'24  J/T

$ spin !
e %

2me

S !
√3
2

   %
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Magnetization vector M

spinµ

Figure 30.28 Classical model of a
spinning electron. We can adopt
this model to remind ourselves that
electrons have an intrinsic angular
momentum. The model should not
be pushed too far, however—it
gives an incorrect magnitude for
the magnetic moment, incorrect
quantum numbers, and too many
degrees of freedom.

Magnetic
Moment

Atom or Ion (10!24 J/T)

H 9.27
He 0
Ne 0
Ce3# 19.8
Yb3# 37.1

Magnetic Moments of Some
Atoms and Ions

Table 30.1
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Magnetic state of a substance is described magnetization vector 
~Mmagnitude of     ☛ magnetic moment per unit volume of substance

| ~M | = µ/V
When a substance is placed in a magnetic field

 total magnetic field in the region is expressed as
~B = µ0( ~H + ~M)~H ☛ magnetic field strength

Because                  in the torus region

To better understand these definitions
consider the torus region of a toroid that carries a current I

If this region is a vacuum         (because no magnetic material is present)~M = 0
total magnetic field is that arising from current alone

~B = µ0
~H

 number of turns per unit length of the toroid
| ~B| = µ0nI H = B/µ0 = nI

Magnetization and Magnetic Field Strength 

In general ☛ part of    -field arises from term        associated with current in toroid               
and part arises from term         due to magnetization of substance 

of which the torus is made

~B µ0
~H

µ0
~M
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Classification of Magnetic Substances 
Substances can be classified as belonging to one of three categories 

Diamagnetic materials are those made of atoms 
that do not have permanent magnetic moments

Paramagnetic and Ferromagnetic materials are those made of atoms 
that have permanent magnetic moments 

(non-cooperative behavior of orbiting electrons) 

(atoms have net magnetic moment due to unpaired electrons in partially filled orbitals) 

For paramagnetic and diamagnetic substances
magnetization vector is proportional to magnetic field strength 

~M = � ~H

~B = µ0( ~H + ~M) = µ0( ~H + � ~H) = µ0(1 + �) ~H = µm
~H

µm > µ0

µm < µ0

However when exposed to external field a negative magnetization is induced

diamagnetic materials

paramagnetic materials ☛

☛

depending on their magnetic properties 

magnetic susceptibility

magnetic permeability
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diamagnetic substances, ! is negative and M is opposite H. The susceptibilities of some
substances are given in Table 30.2.

Substituting Equation 30.32 for M into Equation 30.30 gives

or

(30.33)

where the constant "m is called the magnetic permeability of the substance and is
related to the susceptibility by

(30.34)

Substances may be classified in terms of how their magnetic permeability "m
compares with "0 (the permeability of free space), as follows:

Paramagnetic "m # "0

Diamagnetic "m $ "0

Because ! is very small for paramagnetic and diamagnetic substances (see Table 30.2),
"m is nearly equal to "0 for these substances. For ferromagnetic substances, however,
"m is typically several thousand times greater than "0 (meaning that ! is very large for
ferromagnetic substances).

Although Equation 30.33 provides a simple relationship between B and H, we must
interpret it with care when dealing with ferromagnetic substances. We find that M is not a
linear function of H for ferromagnetic substances. This is because the value of "m is not
only a characteristic of the ferromagnetic substance but also depends on the previous
state of the substance and on the process it underwent as it moved from its previous state
to its present one. We shall investigate this more deeply after the following example.

"m % "0(1 & !)

B % "m H

B % "0(H & M) % "0(H & !H) % "0(1 & !)H

948 CHAPTE R  3 0 •  Sources of the Magnetic Field

Paramagnetic Diamagnetic
Substance ! Substance !

Aluminum 2.3 ' 10(5 Bismuth ( 1.66 ' 10(5

Calcium 1.9 ' 10(5 Copper ( 9.8 ' 10(6

Chromium 2.7 ' 10(4 Diamond ( 2.2 ' 10(5

Lithium 2.1 ' 10(5 Gold ( 3.6 ' 10(5

Magnesium 1.2 ' 10(5 Lead ( 1.7 ' 10(5

Niobium 2.6 ' 10(4 Mercury ( 2.9 ' 10(5

Oxygen 2.1 ' 10(6 Nitrogen ( 5.0 ' 10(9

Platinum 2.9 ' 10(4 Silver ( 2.6 ' 10(5

Tungsten 6.8 ' 10(5 Silicon ( 4.2 ' 10(6

Magnetic Susceptibilities of Some Paramagnetic
and Diamagnetic Substances at 300 K

Table 30.2

Magnetic permeability

A toroid wound with 60.0 turns/m of wire carries a current
of 5.00 A. The torus is iron, which has a magnetic perme-
ability of "m % 5 000"0 under the given conditions. Find H
and B inside the iron.

Solution Using Equations 30.31 and 30.33, we obtain

300 A) turns/m%H % nI % (60.0 turns/m)(5.00 A)

This value of B is 5 000 times the value in the absence
of iron!

1.88 T%

% 5 000(4* ' 10(7 T)m/A)(300 A) turns/m)

B % "mH % 5 000"0H

Example 30.10 An Iron-Filled Toroid

Some crystalline substances exhibit strong magnetic effects called ferromagnetism

(e.g.   iron, cobalt, nickel, gadolinium, and dysprosium)

These substances contain permanent atomic magnetic moments 
that tend to align parallel to each other even in a weak external magnetic field 

Once moments are aligned

This permanent alignment is due to strong coupling between neighboring moments
(coupling that can be understood only in quantum-mechanical terms)

substance remains magnetized after external field is removed

the magnitude of the total field B also increases with increasing current, as shown by
the curve from point O to point a in Figure 30.31. At point O, the domains in the iron
are randomly oriented, corresponding to Bm ! 0. As the increasing current in the
primary coil causes the external field B0 to increase, the aligned domains grow in size
until nearly all magnetic moments are aligned at point a. At this point the iron core is
approaching saturation, which is the condition in which all magnetic moments in the
iron are aligned.

Next, suppose that the current is reduced to zero, and the external field is
consequently eliminated. The B-versus-H curve, called a magnetization curve, now
follows the path ab in Figure 30.31. Note that at point b, B is not zero even though the
external field B0 is zero. The reason is that the iron is now magnetized due to the
alignment of a large number of its magnetic moments (that is, B ! Bm). At this point,
the iron is said to have a remanent magnetization.

If the current in the primary coil is reversed so that the direction of the external
magnetic field is reversed, the magnetic moments reorient until the sample is again
unmagnetized at point c, where B ! 0. An increase in the reverse current causes the
iron to be magnetized in the opposite direction, approaching saturation at point d
in Figure 30.31. A similar sequence of events occurs as the current is reduced
to zero and then increased in the original (positive) direction. In this case the
magnetization curve follows the path def. If the current is increased sufficiently,
the magnetization curve returns to point a, where the sample again has its
maximum magnetization.

The effect just described, called magnetic hysteresis, shows that the magnetiza-
tion of a ferromagnetic substance depends on the history of the substance as well as
on the magnitude of the applied field. (The word hysteresis means “lagging behind.”)
It is often said that a ferromagnetic substance has a “memory” because it remains
magnetized after the external field is removed. The closed loop in Figure 30.31 is
referred to as a hysteresis loop. Its shape and size depend on the properties of 
the ferromagnetic substance and on the strength of the maximum applied field. The
hysteresis loop for “hard” ferromagnetic materials is characteristically wide like the
one shown in Figure 30.32a, corresponding to a large remanent magnetization. Such
materials cannot be easily demagnetized by an external field. “Soft” ferromagnetic
materials, such as iron, have a very narrow hysteresis loop and a small remanent
magnetization (Fig. 30.32b.) Such materials are easily magnetized and demagne-
tized. An ideal soft ferromagnet would exhibit no hysteresis and hence would have
no remanent magnetization. A ferromagnetic substance can be demagnetized by
carrying it through successive hysteresis loops, due to a decreasing applied magnetic
field, as shown in Figure 30.33.

950 CHAPTE R  3 0 •  Sources of the Magnetic Field

B

H

a

b

c

d

e

fO

B

H

(a)

B

H

(b)

B

H

Figure 30.32 Hysteresis loops for (a) a hard ferromagnetic
material and (b) a soft ferromagnetic material.

Figure 30.31 Magnetization curve
for a ferromagnetic material.

Figure 30.33 Demagnetizing a
ferromagnetic material by carrying
it through successive hysteresis
loops.

Magnetization curve for ferromagnetic material

                                                                                     
even though external field         is zero

Note that at point 
is not zero      ~B

µ0
~H

b
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Estimate the saturation magnetization in a long cylinder of
iron, assuming one unpaired electron spin per atom.

Solution The saturation magnetization is obtained when
all the magnetic moments in the sample are aligned. If
the sample contains n atoms per unit volume, then the
saturation magnetization Ms has the value

where ! is the magnetic moment per atom. Because the
molar mass of iron is 55 g/mol and its density is 7.9 g/cm3,

Ms " n!

Example 30.11 Saturation Magnetization

the value of n for iron is 8.6 # 1028 atoms/m3. Assuming
that each atom contributes one Bohr magneton (due to one
unpaired spin) to the magnetic moment, we obtain

This is about half the experimentally determined saturation
magnetization for iron, which indicates that actually two
unpaired electron spins are present per atom.

8.0 # 105 A/m"

Ms " (8.6 # 1028 atoms/m3)(9.27 # 10$24 A%m2/atom)

30.9 The Magnetic Field of the Earth

When we speak of a compass magnet having a north pole and a south pole, we should
say more properly that it has a “north-seeking” pole and a “south-seeking” pole. By this
we mean that one pole of the magnet seeks, or points to, the north geographic pole of
the Earth. Because the north pole of a magnet is attracted toward the north
geographic pole of the Earth, we conclude that the Earth’s south magnetic pole is
located near the north geographic pole, and the Earth’s north magnetic pole is
located near the south geographic pole. In fact, the configuration of the Earth’s
magnetic field, pictured in Figure 30.36, is very much like the one that would be
achieved by burying a gigantic bar magnet deep in the interior of the Earth.

If a compass needle is suspended in bearings that allow it to rotate in the vertical
plane as well as in the horizontal plane, the needle is horizontal with respect to the
Earth’s surface only near the equator. As the compass is moved northward, the
needle rotates so that it points more and more toward the surface of the Earth.
Finally, at a point near Hudson Bay in Canada, the north pole of the needle points
directly downward. This site, first found in 1832, is considered to be the location of
the south magnetic pole of the Earth. It is approximately 1 300 mi from the Earth’s
geographic North Pole, and its exact position varies slowly with time. Similarly, the
north magnetic pole of the Earth is about 1 200 mi away from the Earth’s geographic
South Pole.

Figure 30.36 The Earth’s
magnetic field lines. Note that a
south magnetic pole is near the
north geographic pole, and a
north magnetic pole is near the
south geographic pole.

North
geographic

pole

South
magnetic

pole

Geographic
equator

South
geographic

pole

North
magnetic

pole

N

S

Magnetic equator

Because north pole of magnet is attracted toward north geographic pole of Earth       
we conclude that Earth’s south magnetic pole is located near north geographic pole       
and the Earth’s north magnetic pole is located near south geographic pole

When we speak of compass magnet having north pole and south pole                              
 we should say more properly ☛ it has  “north-seeking” pole and  “south-seeking” pole  
This mean that one pole of the magnet seeks for north geographic pole of Earth 

Configuration of the Earth’s magnetic field resembles the one that would be achieved 
by burying a gigantic bar magnet deep in Earth’s interior 

7.6 Earth’s Magnetic Field 
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