Problems set # 8

Physics 169

1. The unit of magnetic flux is named for Wilhelm Weber. The practical-size unit of magnetic field is named for Johann Karl Friedrich Gauss. Both were scientists at Gottingen, Germany. Along with their individual accomplishments, together they built a telegraph in 1833. It consisted of a battery and switch, at one end of a transmission line 3 km long, operating an electromagnet at the other end. (André Ampérè suggested electrical signaling in 1821; Samuel Morse built a telegraph line between Baltimore and Washington in 1844.) Suppose that Weber and Gausss transmission line was as diagrammed in Fig. 1. Two long, parallel wires, each having a mass per unit length of 40.0 g/m, are supported in a horizontal plane by strings 6.00 cm long. When both wires carry the same current I, the wires repel each other so that the angle θ between the supporting strings is 16.0°. (i) Are the currents in the same direction or in opposite directions? (ii) Find the magnitude of the current.

<u>Solution</u> The separation between the wires is a $a = 2 \cdot 6.00 \text{ cm} \cdot \sin 8.00^\circ = 1.67 \text{ cm}$. (i) Because the wires repel, the currents are in opposite directions. (ii) Because the magnetic force acts horizontally, $\frac{F_B}{F_g} = \frac{\mu_0 I^2 \ell}{2\pi a m g} = \tan 8.00^\circ$, yielding $I^2 = \frac{mg2\pi a}{\mu_0 \ell} \tan 8.00^\circ$ and so I = 67.8 A.

2. Figure 2 is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, which is surrounded by an outer conductor, which is surrounded by another rubber layer. In a particular application, the current in the inner conductor is 1.00 A out of the page and the current in the outer conductor is 3.00 A into the page. Determine the magnitude and direction of the magnetic field at points a and b.

<u>Solution</u> From Ampere's law, the magnetic field at point *a* is given by $B_a = \frac{\mu_0 I_a}{2\pi r_a}$, where I_a is the net current through the area of the circle of radius r_a . In this case, $I_a = 1.00$ A out of the page (the current in the inner conductor), so $B_a = \frac{4\pi \times 10^{-7} \text{ T} \cdot \text{m/A} \cdot 1 \text{ A}}{2\pi \cdot 1.00 \times 10^{-3} \text{ m}} = 200 \ \mu\text{T}$ toward top of the page. Similarly at point *b*: $B_b = \frac{\mu_0 I_b}{2\pi r_b}$, where I_b is the net current through the area of the circle having radius r_b . Taking out of the page as positive, $I_b = 1.00 \text{ A} - 3.00 \text{ A} = -2.00 \text{ A}$, or $I_b = 2.00 \text{ A}$ into the page. Therefore, $B_b = \frac{4\pi \times 10^{-7} \text{ T} \cdot \text{m/A} \cdot 2 \text{ A}}{2\pi \cdot 3.00 \times 10^{-3} \text{ m}} = 133 \ \mu\text{T}$ toward the bottom of the page.

3. A long cylindrical conductor of radius R carries a current I as shown in Fig. 3. The current density J, however, is not uniform over the cross section of the conductor but is a function of the radius according to J = br, where b is a constant. Find an expression for the magnetic field B (*i*) at a distance $r_1 < R$ and (*ii*) at a distance $r_2 > R$, measured from the axis.

Solution Use Ampérè's law, $\oint \vec{B} \cdot d\vec{s} = \mu_0 I$. For current density \vec{J} , this becomes $\oint \vec{B} \cdot d\vec{s} = \mu_0 \int \vec{J} \cdot d\vec{A}$. (i) For $r_1 < R$, this gives $B2\pi r_1 = \mu_0 \int_0^{r_1} br 2\pi r dr$ and $B = \frac{\mu_0 br_1^2}{3}$ (for $r_1 < R$ or inside the cylinder. (ii) When $r_2 > R$, Ampérè's law yields $2\pi r_2 B = \mu_0 \int_0^R br 2\pi r dr = \frac{2\pi\mu_0 bR^3}{3}$ or $B = \frac{\mu_0 bR^3}{3r_2}$ (for $r_2 > R$ or outside the cylinder).

4. A toroid with a mean radius of 20.0 cm and 630 turns is filled with powdered steel whose magnetic susceptibility χ is 100. The current in the windings is 3.00 A. Find B (assumed uniform) inside the toroid.

Solution: Assuming a uniform B inside the toroid is equivalent to assuming $r \ll R$ (see Fig. 4); then $B_0 = \mu_0 H \approx \mu_0 NI$ as for a tightly wound solenoid. This leads to $B_0 = \mu_0 \frac{630 \cdot 3.00}{2\pi \cdot 0.200} = 0.00189$ T. With the steel, $B = (1 + \chi)\mu_0 H = 101 \cdot 0.00189$ T = 0.191 T.

5. In Bohrs 1913 model of the hydrogen atom, the electron is in a circular orbit of radius 5.29×10^{-11} m and its speed is 2.19×10^6 m/s. (i) What is the magnitude of the magnetic moment due to the electrons motion? (ii) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of this magnetic moment vector?

<u>Solution</u> The current induced by the electron is $I = \frac{ev}{2\pi r}$, so it is straightforward to see that the Bohr model predicts the correct magnetic moment $\mu = IA = \frac{ev}{2\pi r}\pi r^2 = 9.27 \times 10^{-24} \text{ A} \cdot \text{m}^2$. *(ii)* Because the electron has a negative charge, its [conventional] current is clockwise, as seen from above, and $\vec{\mu}$ points downward.

6. The magnetic moment of the Earth is approximately $8.00 \times 10^{22} \text{ A} \cdot \text{m}^2$. (i) If this were caused by the complete magnetization of a huge iron deposit, how many unpaired electrons would this correspond to? (ii) At two unpaired electrons per iron atom, how many kilograms of iron would this correspond to? [*Hint:* Iron has a density of 7,900 kg/m³, and approximately 8.50×10^{28} iron atoms/m³.]

<u>Solution</u> (i) Number of unpaired electrons = $\frac{8.00 \times 10^{22} \text{ A} \cdot \text{m}^2}{9.27 \times 10^{-24} \text{ A} \cdot \text{m}^2} = 8.63 \times 10^{45}$. Each iron atom has two unpaired electrons, so the number of iron atoms required is $\frac{1}{2}8.63 \times 10^{45}$. (ii) Mass = $\frac{4.31 \times 10^{45} \text{ atoms} \cdot 7,900 \text{ kg/m}^3}{8.50 \times 10^{28} \text{ atoms/m}^3} = 4.01 \times 10^{20} \text{ kg}$.

7. Find the magnetic field on the axis at a distance a above a disk of radius R with charge density σ rotating at an angular speed (clockwise when viewed from the point P).

Solution Consider a thin ring between r and r + dr as shown in Fig. 5. The charge per length on the ring is $q = \sigma dr$ and each point on it is moving at a speed $v = \omega \vec{r}$, so the current is $I = vq = \sigma \omega r dr$. By symmetry, the magnetic field is in the z direction. Using the result from the lectures, the contribution from the ring is $dB_z = \frac{\mu_0(\sigma \omega r dr)}{2} \frac{r^2}{(r^2+z^2)^{3/2}}$. The magnetic field for the entire disk is $B_z = \frac{\mu_0 \sigma \omega}{2} \int_0^R \frac{r^3}{(r^2+z^2)^{3/2}} dr$. Let $u = r^2$, so du = 2r dr. This substitution (dont forget to change limits) gives $B_z = \frac{\mu_0 \sigma \omega}{4} \int_0^{R^2} \frac{u}{(u+z^2)^{3/2}} du = \frac{\mu_0 \sigma \omega}{4} \frac{2(u+2z^2)}{(u+z^2)^{1/2}} \Big|_0^{R^2} = \frac{\mu_0 \sigma \omega}{2} \Big[\frac{R^2+2z^2}{(R^2+z^2)^{1/2}} - 2z \Big].$

8. A thin uniform ring of radius R and mass M carrying a charge +Q rotates about its axis with constant angular speed ω . Find the ratio of the magnitudes of its magnetic dipole moment to its angular momentum. (This is called the gyromagnetic ratio.)

<u>Solution</u>: The current in the ring shown in Fig. 6 is $i = \frac{Q}{T} = \frac{Q\omega}{2\pi}$. The magnetic moment is $\vec{\mu} = Ai\hat{k} = \pi R^2 \frac{Q\omega}{2\pi} \hat{k} = \frac{Q\omega R^2}{2} \hat{k}$. The angular momentum is $\vec{L} = I\omega\hat{k} = MR^2\omega\hat{k}$. So the gyromagnetic ratio is $\frac{|\vec{\mu}|}{|\vec{L}|} = \frac{Q\omega R^2/2}{MR^2\omega} = \frac{Q}{2M}$.

9. A wire ring lying in the xy-plane with its center at the origin carries a counterclockwise I. There is a uniform magnetic field $\vec{B} = B\hat{\imath}$ in the +x-direction. The magnetic moment vector μ is perpendicular to the plane of the loop and has magnitude $\mu = IA$ and the direction is given by right-hand-rule with respect to the direction of the current. What is the torque on the loop?

Solution: The torque on a current loop in a uniform field is given by $\vec{\tau} = \vec{\mu} \times \vec{B}$, where $\mu = IA$ and the vector $\hat{\imath}$ is perpendicular to the plane of the loop and right-handed with respect to the direction of current flow. The magnetic dipole moment is given by $\vec{\mu} = I\vec{A} = \pi IR^2\hat{k}$. Therefore, $\vec{\tau} = \vec{\mu} \times \vec{B} = \pi IR^2\hat{k} \times B\hat{\imath} = \pi IR^2B\hat{\jmath}$. Instead of using the above formula, we can calculate the torque directly as follows. Choose a small section of the loop of length $ds = Rd\theta$. Then the vector describing the current-carrying element is given by $Id\vec{s} = IRd\theta(-\sin\theta\hat{\imath} + \cos\theta\hat{\jmath})$. The force $d\vec{F}$ that acts on this current element is $d\vec{F} = Id\vec{s} \times \vec{B} = IRd\theta(-\sin\theta\hat{\imath} + \cos\theta\hat{\jmath}) \times B\hat{\imath} = -IRB\cos\theta d\theta \hat{k}$. The force acting on the loop can be found by integrating the above expression, $\vec{F} = \oint d\vec{F} = \int_0^{2\pi} (-IRB\cos\theta) d\theta \hat{k} = -IRB\sin\theta|_0^{2\pi}\hat{k} = 0$. We expect this because the magnetic field is uniform and the force on a current loop in a uniform magnetic field is zero. Therefore we can choose any point to calculate the torque about. Let \vec{r} be the vector from the center of the loop to the element $Id\vec{s}$. That is, $\vec{r} = R(\cos\theta\hat{\imath} + \sin\theta\hat{\jmath}) \times (-IRBd\theta\cos\theta\hat{k}) = -IR^2Bd\theta\cos\theta(\sin\theta\hat{\imath} - \cos\theta\hat{\jmath})$. Finally, integrate $d\vec{\tau}$ over the loop to find the total torque, $\vec{\tau} = \oint d\vec{\tau} = -\int_0^{2\pi} IR^2Bd\theta\cos\theta(\sin\theta\hat{\imath} - \cos\theta\hat{\jmath}) = \pi IR^2B\hat{\jmath}$. This agrees with our result above.

10. A square coil with sides equal to 25.0 cm carries a current of 2.00 A. It lies in the z = 0 plane in a magnetic field $\vec{B} = 0.40\hat{i} + 0.30\hat{k}$ T with the current counter-clockwise when viewed from a point on the positive z-axis. If the coil has 6 turns what is (i) the torque acting on the coil, and (ii) the potential energy of the coil/field system?

Solution If the current is counter-clockwise when viewed from a point on the positive z-axis, then the magnetic moment of the coil is in the positive z direction (i.e., along \hat{k}). It follows that $\vec{\mu} = niA\hat{k} = 6 \times (2.00 \text{ A}) \times (0.25 \text{ m})^2 \hat{k} = (0.75 \text{ A} \cdot \text{m}^2)\hat{k}$. (i) The torque is $\vec{\tau} = \vec{\mu} \times \vec{B} =$ $(0.75 \text{ A} \cdot \text{m}^2)\hat{k} \times (0.40\hat{i} + 0.30\hat{k}) \text{ T} = (0.30 \text{ N} \cdot \text{m})\hat{j}$. (ii) The potential energy is $U = -\vec{\mu} \cdot \vec{B} =$ $(0.75 \text{ A} \cdot \text{m}^2)\hat{k} \cdot (0.40\hat{i} + 0.30\hat{k}) \text{ T} = 0.225 \text{ J}$.

Figure 1: Problem 1.

Figure 2: Problem 2.

Figure 4: Problem 4.

Figure 5: Problem 7.

Figure 6: Problem 8.