Prof. Anchordoqui

Problems set # 3‘ Physics 169 February 24, 2015

1. A point charge ¢ is located at the center of a uniform ring having linear charge density A
and radius a, as shown in Fig. 1. Determine the total electric flux through a sphere centered at the
point charge and having radius R, where R < a.

Solution Only the charge inside radius R contributes to the total flux, hence ®p = ¢/¢.

2. A point charge @ is located just above the center of the flat face of a hemisphere of radius
R as shown in Fig. 2. What is the electric flux (i) through the curved surface and (i) through the
flat face?

Solution With § very small, all points on the hemisphere are nearly at a distance R from

the charge, so the field everywhere on the curved surface is ﬁ% radially outward (normal to
the surface). Therefore, the flux is this field strength times the area of half a sphere ®cyrveq =

J E-dA = 47350%277132 = %. (i) The closed surface encloses zero charge so Gauss’ law gives
Dirved + Paar = 0 or Pt = —Peurved = _%‘

3. The line ag in Fig. 3 is a diagonal of a cube. A point charge ¢ is located on the extension of
line ag, very close to vertex a of the cube. Determine the electric flux through each of the sides of
the cube which meet at the point a.

Solution No charge is inside the cube. The net flux through the cube is zero. Positive flux
comes out through the three faces meeting at g. These three faces together fill a solid angle equal
to one-eighth of a sphere as seen from ¢. The total flux passing through these faces is then %%.
Each face containing a intercepts equal flux going into the cube: 0 = ®g et = 3PE apcd + %.

Therefore, ®g gpea = —3 feo.

4. A sphere of radius R surrounds a point charge @ , located at its center. (i) Show that the
electric flux through a circular cap of half-angle (see Fig. 4) is &g = %(1 —cosf). What is the
flux for (i) # = 90° and (i) 6 = 180°.

Solution The charge creates a uniform E, pointing radially outward, so &g = FEA. The
arc length is ds = Rdf, and the circumference is 27rr = 27Rsinf. Hence, A = [27nrds =
f()o(QﬂRsinﬁ)RdG = 27 R? foesinﬁ d) = —2nR?cosf|} = 2rR*(1 — cosf) and ®p = ﬁ%-
2mR?(1 — cosf) = %(1 — cos#), i.e., independent of R! (i) For # = 90° (hemisphere), & =
%(1 — cos90°) = % (iii) For § = 180° (entire sphere), &g = %(1 — cos 180°) = %; this is a
formal derivation of Gauss’ law.

5. An insulating solid sphere of radius ¢ has a uniform volume charge density and carries a



total positive charge ). A spherical gaussian surface of radius r, which shares a common center
with the insulating sphere, is inflated starting from r = 0. (i) Find an expression for the electric
flux passing through the surface of the gaussian sphere as a function of r for r < a. (%) Find an
expression for the electric flux for r > a. (iii) Plot the flux versus r.

Solution The charge density is determined by @ = %TI'CLP = p = 3Q (i) The flux is that

4ma3”
created by the enclosed charge within radius r: &g = qg—é‘ = 47:;:2” = ;QO:; (ii) ®p = % Note that

the answers to parts (i) and (i) agree at r = a. (%) This is shown in Fig. 5.

6. A solid insulating sphere of radius a carries a net positive charge 3@, uniformly distributed
throughout its volume. Concentric with this sphere is a conducting spherical shell with inner radius
b and outer radius ¢, and having a net charge —@Q, as shown in Fig. 6. (i) Construct a spherical
gaussian surface of radius » > ¢ and find the net charge enclosed by this surface. (7)) What is the
direction of the electric field at r > ¢? (iii) Find the electric field at r > ¢. (i) Find the electric
field in the region with radius r where b < r < ¢ (v) Construct a spherical gaussian surface of radius
r, where b < r < ¢, and find the net charge enclosed by this surface. (vi) Construct a spherical
gaussian surface of radius r, where a < r < b, and find the net charge enclosed by this surface.
(vit) Find the electric field in the region a < r < b. (viii) Construct a spherical gaussian surface of
radius r < a, and find an expression for the net charge enclosed by this surface, as a function of r.
Note that the charge inside this surface is less than 3Q. (iz) Find the electric field in the region
r < a. ( z) Determine the charge on the inner surface of the conducting shell. (zi) Determine
the charge on the outer surface of the conducting shell. (zii) Make a plot of the magnitude of the
electric field versus r.

Solution (i) g¢in, = 3Q — Q = 2Q. (i) The charge distribution is spherically symmetric and
¢n > 0. Thus, the field is directed radially outward. (i) For r > ¢, B = % = Q

dmeg 12 2meqr? ”
(iv) Since all points within this region are located inside conducting material, £ = 0, for b < r < c.

(W) ®p=[E-dA=0= gn=eo®Pp =0. (vi) gin = 3Q. (vii) Fora<r <b, E =% = 3¢

dmeg 12 T 4mwegr?
. 3 4 3 - in i 3
(radially outward). (viii) gin = pV = éﬂ?ﬁ 3mr? =3Q%5. (ir) For 0 <r <a, E= Iy = 4W§)Z3

(radially outward). (z) From part (iv)S, for b < r < ¢, E = 0.Thus, for a spherical gaussian sur-
face with b < r < ¢, ¢in = 3Q 4 Ginner = 0 where @uner is the charge on the inner surface of the
conducting shell. This yields gnner = —3Q. (zi) Since the total charge on the conducting shell is
et = Gouter + Ginner = —@, We have gouter = —@ — Ginner = —Q — (_3Q) = 2Q. (.Z‘ZZ) This is shown
in Fig. 6.

7.Consider a long cylindrical charge distribution of radius R with a uniform charge density p.
Find the electric field at distance r from the axis where r < R.

Solution If is positive, the field must be radially outward. Choose as the gaussian surface a cylin-
der of length L and radius 7, contained inside the charged rod. Its volume is 7r?L and it encloses
charge pmr?L, see Fig. 7. Because the charge distribution is long, no electric flux passes through
the circular end caps; E - dA = EdAcos(m/2) = 0. The curved surface has E - dA = EdA cos0°,



and F must be the same strength everywhere over the curved surface. Gauss’ law, § E-dA = %,

becomes E [curvea dA = ’”WOL. Now the lateral surface area of the cylinder is 27rL, yielding

surface

2 - . . .
E2nrL = prr<L/€y. Thus, E= i 7;) radially away from the cylinder axis.

8. A solid, insulating sphere of radius a has a uniform charge density p and a total charge Q.
Concentric with this sphere is an uncharged, conducting hollow sphere whose inner and outer radii
are b and ¢, as shown in Fig. 8. (i) Find the magnitude of the electric field in the regions r < a,
a<r<b, b<r<c andr > c (it) Determine the induced charge per unit area on the inner and
outer surfaces of the hollow sphere.

Solution (i) From Gauss’ law § E - d/_f = E(4nr?) = dn Forr < a, gin = panrd, so E = 4. For
a<r<bandec<r, gn=0Q,s0F = m
(7i) Let g1 be the induced charge on the inner surface of the hollow sphere. Since E = 0 inside

Forb<r S ¢, E =0, since £ = 0 inside a Conductor.

the conductor, the total charge enclosed by a spherical surface of radius b < r < ¢ must be zero.

Therefore, g1 +Q = 0 and 01 = ;57 = — b2 Let g2 be the induced charge on the outside surface of
the hollow sphere. Since the hollow sphere is uncharged, we require ¢;+g2 = 0 and 03 = 47quc2 = 47?02 .

9. An early (incorrect) model of the hydrogen atom, suggested by J. J. Thomson, proposed
that a positive cloud of charge e was uniformly distributed throughout the volume of a sphere of
radius R, with the electron an equal-magnitude negative point charge e at the center. (i) Using
Gauss’ law, show that the electron would be in equilibrium at the center and, if displaced from the
center a distance r < R, would experience a restoring force of the form F = —kr, where k is a con-
stant. () Show that k = ﬁ. (#i) Find an expression for the frequency f of simple harmonic
oscillations that an electron of mass m, would undergo if displaced a small distance (< R) from
the center and released. (iv) Calculate a numerical value for R that would result in a frequency of
2.47x 10" Hz, the frequency of the light radiated in the most intense line in the hydrogen spectrum.

Solution First, consider the field at distance r < R from the center of a uniform sphere of positive

4 2
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charge (Q = +e) with radius R. From Gauss’ law, 4nmr°E = 42 = £= = T %0 E= gomr

directed outward. (i) The force exerted on a point charge ¢ = —e located at distance r from the
2 2

i 2
“Trems” = Tk () k= 5 (i) B = mear = —mh 50 a, =
—Meoeﬁr = —w?r. Thus, the motion is simple harmonic with frequency f = = 217r \/4”60‘3% .
8.99x109N-m?2/C2(1.60x10—19 C _
(Z?}) f =2. 47 S 11(?15 Hz = \/ X 9. 1{1;1/0 3(1 ngRa ) Wthh ylelds R3 = 105 X 10 30 1'1137 or
R=1.02x10" = 102 pm.

center is then F' = qF =

10. An infinitely long cylindrical insulating shell of inner radius a and outer radius b has a
uniform volume charge density p. A line of uniform linear charge density A is placed along the axis
of the shell. Determine the electric field everywhere.

Solution The field direction is radially outward perpendicular to the axis. The field strength
depends on r but not on the other cylindrical coordinates 6 or z. Choose a Gaussian cylinder of



radius r and length L. If r < a, &5 = ‘f—é‘ and E27nrL = AL/eq, so E=-2+p Ifa<r<b,

27reg

E27rL = [AL + pr(r? — a?)L]/eo and E = Atpr(rP=a®)p I p s b, E2nrL = [AL + prr(b* — a®)L]/eg

27reg

= Mpm(b2—a?) 4
and E = ~—5 1"

11. A particle of mass m and charge ¢ moves at high speed along the z axis. It is initially
near r = —oo, and it ends up near x = 400. A second charge @ is fixed at the point z = 0,
y = —d. As the moving charge passes the stationary charge, its  component of velocity does not
change appreciably, but it acquires a small velocity in the y direction. Determine the angle through
which the moving charge is deflected. [Hint: The integral you encounter in determining v, can be
evaluated by applying Gauss’ law to a long cylinder of radius d, centered on the stationary charge.]

Solution The vertical velocity component of the moving charge increases according to mdd%y =
F, — m%{’% = qL,, see Fig. 9. Now Cfl—f = g, has a nearly constant value v. Hence dv, = - E,dx,
yielding v, = fg) Y dv; = % fjoo.f E,dx. The radially outward compnent of the electric field varies
along the x axis; it is described by [*° E,dA = [T° F,2rddx = Q/eo. Putting all this together

fj;oo Eydr = = k2

and vy = <. The angle of deflection is described by tanf = vy,/v, so
6 = tan~!

Q
27deg

q
2megdmu?

12. Two infinite, nonconducting sheets of charge are parallel to each other, as shown in Fig. 10.
The sheet on the left has a uniform surface charge density o, and the one on the right has a uniform
charge density —o. Calculate the electric field at points (i) to the left of, (i) in between, and (i)
to the right of the two sheets. (iv) Repeat the calculations when both sheets have positive uniform
surface charge densities of value o.

Solution Consider the field due to a single sheet and let E4 and E_ represent the fields due
to the positive and negative sheets, see Fig. 10. The field at any distance from each sheet has a
magnitude given by |EL| = [E_| = 3Z-. (i) To the left of the positive sheet, £ is directed toward
the left and E_ toward the right and the net field over this region is E = 0. (77) In the region
between the sheets, £, and E_ are both directed toward the right and the net field is E=c /€0
to the right. (4ii) To the right of the negative sheet, F_ and E. are again oppositely directed and
E = 0. (iv) If both charges are positive (see Fig. 10), in the region to the left of the pair of sheets,
both fields are directed toward the left and the net field is E = /ey to the left; in the region
between the sheets, the fields due to the individual sheets are oppositely directed and the net field
is E = 0; in the region to the right of the pair of sheets, both are fields are directed toward the

right and the net field is E = o /€y to the right.

13. A sphere of radius 2a is made of a nonconducting material that has a uniform volume charge
density p. (Assume that the material does not affect the electric field.) A spherical cavity of radius
a is now removed from the sphere, as shown in Fig. 11. Show that the electric field within the
cavity is uniform and is given by E, = 0 and E, = %. [Hint: The field within the cavity is the
superposition of the field due to the original uncut sphere, plus the field due to a sphere the size of

the cavity with a uniform negative charge density —p).



Solution The resultant field within the cavity is the superposition of two fields, one E+ due to a
uniform sphere of positive charge of radius 2a, and the other E_ due to a sphere of negative Charge

of radius a centered within the cavity. From Gauss’ law we have g”:op = 47r2E,, so B, = Lot =
36 7. Using again Gauss’ law, —%m;;p =4rr?E_, so E = g:;( 71) = —3— It is easﬂy seen in
Fig. 11 that 7= a + 71, so B— — ( ), yielding E = E, + E_ = % - %4— o =42 =00+ £2).

Therefore E, = 0 and E, = % at all points within the cavity.

14. A solid insulating sphere of radius R has a nonuniform charge density that varies with r
according to the expression p = Ar?, where A is a constant and r» < R is measured from the
center of the sphere. (i) Show that the magnitude of the electric field outside (r > R) the sphere

is £ = géf;. (7i) Show that the magnitude of the electric field inside (r < R) the sphere is

E= %. [Hint: The total charge @ on the sphere is equal to the integral of pdV, where r extends

from 0 to R; also, the charge ¢ within a radius r < R is less than Q). To evaluate the integrals,
note that the volume element dV for a spherical shell of radius 7 and thickness dr is equal to 4r2dr.]

Solution From Gauss’ law fﬁ dA = E4mr? = = ¢in/€0- (i) For r > R, gin = fOR Ar?4mr? dr =
4TrAR®/5, and E = . (i) For r < R, qin = [y Ar?4nridr = AwAr® /5, and E = r’

560 .

15. A slab of insulating material (infinite in two of its three dimensions) has a uniform positive
charge density p. An edge view of the slab is shown in Fig.12. (i) Show that the magnitude of
the electric field a distance = from its center and inside the slab is £ = px/eg. (i) Suppose an
electron of charge —e and mass m, can move freely within the slab. It is released from rest at a
distance x from the center. Show that the electron exhibits simple harmonic motion with a fre-

1

quency s = 5-,/ mpe 660. (iii) A slab of insulating material has a nonuniform positive charge density

p = Cz?, where x is measured from the center of the slab as shown in Fig. 12, and C is a constant.

The slab is infinite in the y and z directions. Derive expressions for the electric field in the exterior
regions and the interior region of the slab (—d/2 < z < d/2).

Solution (i) Consider a cylindrical shaped gaussian surface perpendicular to the yz plane with
one end in the yz plane and the other end containing the point z: Use Gauss law: § E-dA = Gin/ €0
By symmetry, the electric field is zero in the yz plane and is perpendicular to dA over the wall
of the gaussian cylinder. Therefore, the only contribution to the integral is over the end cap con-
taining the point z. Hence FA = pAx/ey, so that at distance x from the mid-line of the slab,

E = px/e. (ii) Use Newton’s law to obtain a = £ = — 2%z The acceleration of the electron
is of the form a = —w?z with w = #660. Thus, the motion is simple harmonic with frequency

f—ifi pe

T 2w T 2m\/ meeo



Figure 1: Problem 1.

Figure 2: Problem 2.



Figure 3: Problem 3.

(=

Figure 4: Problem 4.
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Figure 5: Problem 5.

Figure 6: Problem 6.



Figure 7: Problem 7.
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Figure 9: Problem 11.

X

noL

+ ++++ + + +

N

+ ++++ + + +

r

i
hh o =
Il ~ o

—_
-9
E
0

Figure 10: Problem 12.

Figure 11: Problem 13.
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Figure 12: Problem 15.



