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Problems set # 12 Physics 169 May 12, 2015

1. Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges

±Q. The empty space between the spheres is half-filled by a hemispherical shell of dielectric (of

dielectric constant ε/ε0), as shown in Fig. 1. (i) Find the electric field everywhere between the

spheres. (ii) Calculate the surface-charge distribution on the inner sphere. (iii) Calculate the

polarization-charge density induced on the surface of the dielectric at r = a.

2. A coaxial capacitor of length l = 6 cm uses an insulating dielectric material with ε/ε0 = 9,

see Fig. 2. The radii of the cylindrical conductors are 0.5 cm and 1 cm. If the voltage applied

across the capacitor is V (t) = 50 sin(120πt) what is the displacement current?

3. The parallel-plate capacitor shown in Fig. 3 is filled with a lossy dielectric material of relative

permittivity κ and conductivity σ. The separation between the plates is d and each plate is of area

A. The capacitor is connected to a time-varying voltage source V (t). (i) Obtain an expression for

Ic, the conduction current flowing between the plates inside the capacitor, in terms of the given

quantities. (ii) Obtain an expression for Id, the displacement current flowing inside the capacitor.

(iii) Based on your expressions for parts (i) and (ii), give an equivalent-circuit representation for

the capacitor. (iv) Evaluate the values of the circuit elements for A = 4 cm2, d = 0.5 cm, κ = 4,

σ = 2.5 (S/m), and V (t) = 10 cos(3π103t) V. [Hint: 1 S = 1Ω−1, (S stands for siemens)]

4. Figure 4 shows a plane electromagnetic sinusoidal wave propagating in the x-direction. Sup-

pose that the wavelength is 50 m, and the electric field vibrates in the xy plane with an amplitude

of 22 V/m. Calculate (i) the frequency of the wave and (ii) the magnitude and direction of the

magnetic field when the electric field has its maximum value in the negative y-direction. (iii) Write

an expression for the magnetic field with the correct unit vector, with numerical values for Bmax,

k, and ω, and its magnitude in the form B = Bmax cos(kx− ωt).
5. Some science fiction writers have described solar sails that could propel interstellar spaceships.

Imagine a giant sail on a spacecraft subjected to radiation pressure from our Sun. (i) Explain why

this arrangement works better if the sail is highly reflective rather than highly absorptive. (ii) If

the sail is assumed highly reflective, show that the force exerted by the sunlight on the spacecraft’s

sail is given by Frad = P�A
2πr2c

, where P� is the power output of the Sun (3.8 × 1026 W), A is the

surface area of the sail, r is the distance from the Sun, and c is the speed of light. (Assume that

the area of the sail is much larger than the area of the spacecraft so that all the force is due to

radiation pressure on the sail, only. (iii) Using a reasonable value for A, compute the force on the

spacecraft due to the radiation pressure and the force on the spacecraft due to the gravitational

force of the Sun on the spacecraft. Does this result imply that such a system will work? Explain

your answer.

6. A pulsed laser fires a 1000 MW pulse that has a 200 ns duration at a small object that has

a mass equal to 10.0 mg and is suspended by a fine fiber that is 4.00 cm long. If the radiation

is completely absorbed by the object, what is the maximum angle of deflection of this pendulum?

[Hint: Think of the system as a ballistic pendulum and assume the small object was hanging

vertically before the radiation hit it.]

7. An electromagnetic wave has a frequency of 100 MHz and is traveling in a vacuum. The



magnetic field is given by B(z, t) = 1.00 × 10−8 cos(kz − ωt)̂ı. (i) Find the wavelength and the

direction of propagation of this wave. (ii) Find the electric field vector, ~E(z, t). (iii) Determine

the Poynting vector, and use it to find the intensity of the wave.

8. A dish antenna having a diameter of 20 m receives (at normal incidence) a radio signal from a

distant source as shown in Fig. 5. The radio signal is a continuous sinusoidal wave with amplitude

Em = 0.2µV/m. Assume the antenna absorbs all the radiation that falls on the dish. (i) What is

the amplitude of the magnetic field in this wave? (ii) What is the intensity of the radiation received

by the antenna? (iii) What is the power received by the antenna? (iv) What force is exerted by

the radio waves on the antenna?

9. Show that any function of the form y(x, t) = f(x−ct)+g(x+ct) satisfies the one-dimensional

wave equation for light, ∂2y
∂x2
− 1

c2
∂2y
∂t2

= 0.

10. Suppose that we have a cylindrical capacitor, as seen in the Fig. 6. Suppose further that we

put an AC current across the plates, starting at a low frequency, ω. As the voltage alternates, the

positive charge on the top plate is take off and negative charge is put on. While that is happening,

the electric field disappears and then builds up in the opposite direction. As the charge sloshes

back and forth slowly, the electric field follows. At each instant the electric field is uniform, as

shown in the figure, except for some edge effects which we are going to disregard. We can write the

electric field as E = E0 cos(ωt), where E0 = Q0/ε0A is constant, and A = πa2 is the area of the

plate. Now will this continue to be right as the frequency goes up? No, because as the electric field

is going up and down, there is a flux of electric field through any circular loop, say Γ, of radius r

inside the capacitor. And, as you know, a changing electric field acts to produce a magnetic field.

From Maxwell’s equations, the magnetic field is given by a

c2
∮
~B · d~̀=

d

dt

∫
~E · d ~A⇒ c2B2πr =

d

dt
(Eπr2),

or

B = − ωr
2c2

E0 sin(ωt).

So, the changing electric field has produced a magnetic field circulating around inside the capacitor,

and oscillating at the same frequency as the electric field. Now, are we done? No! This magnetic

field also oscillates, which produces a new electric field! The uniform field, E1 = E0 cos(ωt), is

only the first term! The changing magnetic field produces a new electric field, E2, such that the

total field is E = E1 + E2. Now, in general, E2 is also oscillating! This means that there will be

a new magnetic field from E2, which will be oscillating, which will create a new electric field, E3,

which will create a new magnetic field.... Your task is to calculate the first four terms of the series,

enough to get the pattern, and write the total electric field, taking the field at the center of the

capacitor to be exactly E0 cos(ωt), (i.e., there is no correction at the center). Then, compare your

result with Bessel functions, and see if you can write the full electric field you find in terms of one

of the Bessel functions, in closed form. Can you find an exact expression in terms of one of the

Bessel functions for the magnetic field?
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Homework Assignment #7 — Solutions

Textbook problems: Ch. 4: 4.10
Ch. 5: 5.3, 5.6, 5.7

4.10 Two concentric conducting spheres of inner and outer radii a and b, respectively, carry
charges ±Q. The empty space between the spheres is half-filled by a hemispherical
shell of dielectric (of dielectric constant ✏/✏00, as shown in the figure.

aQ−

Q+

b

a) Find the electric field everywhere between the spheres.

This is a somewhat curious problem. It should be obvious that without any
dielectric the electric field between the spheres would be radial

~E =
Q

4⇡✏0

r̂

r2

We cannot expect this to be unmodified by the dielectric. However, we note that
the radial electric field is tangential to the interface between the dielectric and

empty region. Thus the tangential matching condition E
k
1 = E

k
2 is automatically

satisfied. At the same time there is no perpendicular component to the interface,
so there is nothing to worry about for the D?

1 = D?
2 matching condition. This

suggests that we guess a solution of the radial form

~E = A
r̂

r2

where A is a constant to be determined. This guess is perhaps not completely
obvious because one may have expected the field lines to bend into or out of the
dielectric region. However, we could also recall that parallel fields do not get bent
across the dielectric interface.

We may use the integral form of Gauss’ law in a medium to determine the above
constant A

I
~D · n̂ da = Q ) ✏0A

r2
(2⇡r2) +

✏A

r2
(2⇡r2) = Q

Figure 1: Problem 1.

Problem 6.15 A coaxial capacitor of length l = 6 cm uses an insulating dielectric
material with εr = 9. The radii of the cylindrical conductors are 0.5 cm and 1 cm. If
the voltage applied across the capacitor is

V (t) = 50sin(120πt) (V)

what is the displacement current?
Solution:

l

r

Id

+

-
V(t) 2a 2b

Figure P6.15:

To find the displacement current, we need to knowE in the dielectric space between
the cylindrical conductors. From Eqs. (4.114) and (4.115),

E= −r̂ Q
2πεrl

,

V =
Q
2πεl

ln
(
b
a

)
.

Hence,

E= −r̂ V
r ln

(b
a
) = −r̂ 50sin(120πt)

r ln2
= −r̂ 72.1

r
sin(120πt) (V/m),

D= εE
= εrε0E

= −r̂9×8.85×10−12× 72.1
r
sin(120πt)

= −r̂ 5.75×10−9

r
sin(120πt) (C/m2).

The displacement current flows between the conductors through an imaginary
cylindrical surface of length l and radius r. The current flowing from the outer
conductor to the inner conductor along −r̂ crosses surface S where

S= −r̂2πrl.

Figure 2: Problem 2.

Problem 6.16 The parallel-plate capacitor shown in Fig. P6.16 is filled with a lossy
dielectric material of relative permittivity εr and conductivity σ . The separation
between the plates is d and each plate is of area A. The capacitor is connected to
a time-varying voltage source V (t).

V(t)

I

A

dε, σ

Figure P6.16: Parallel-plate capacitor containing a lossy dielectric material (Problem 6.16).

(a) Obtain an expression for Ic, the conduction current flowing between the plates
inside the capacitor, in terms of the given quantities.

(b) Obtain an expression for Id, the displacement current flowing inside the
capacitor.

(c) Based on your expressions for parts (a) and (b), give an equivalent-circuit
representation for the capacitor.

(d) Evaluate the values of the circuit elements for A= 4 cm2, d = 0.5 cm, εr = 4,
σ = 2.5 (S/m), and V (t) = 10cos(3π×103t) (V).

Solution:
(a)

R=
d
σA

, Ic =
V
R

=
VσA
d

.

(b)
E =

V
d

, Id =
∂D
∂ t

·A= εA
∂E
∂ t

=
εA
d
∂V
∂ t

.

(c) The conduction current is directly proportional to V , as characteristic of a
resistor, whereas the displacement current varies as ∂V/∂ t, which is characteristic

Figure 3: Problem 3.
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Problem 34.9 
Figure 34.4b shows a plane electromagnetic sinusoidal wave propagating in the 
x-direction. Suppose that the wavelength is 50 m, and the electric field vibrates in 
the xy plane with an amplitude of 22 V/m. Calculate (a) the frequency of the wave 
and (b) the magnitude and direction of the magnetic field when the electric field 
has its maximum value in the negative y-direction. (c) Write an expression for the 
magnetic field with the correct unit vector, with numerical values for Bmax, k, and 
Z, and its magnitude in the form 

B = Bmax cos (kx-Zt). 

 

 
 
 
 
 
 
 
 
 
 
 
a) Solution 1 (formal) 
Wave phase speed is determined by the relation between these 
two quantities. It moves with such a way that the phase remains 
constant value 
 � � .constttkx  Z�  

From which 
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wavelength antenna for a transmitter generating ELF
waves of frequency 75.0 Hz. How practical is this?

46. What are the wavelength ranges in (a) the AM radio band
(540–1 600 kHz), and (b) the FM radio band (88.0–-
108 MHz)?

Additional Problems

47. Assume that the intensity of solar radiation incident on
the cloudtops of the Earth is 1 340 W/m2. (a) Calculate
the total power radiated by the Sun, taking the average
Earth–Sun separation to be 1.496 ! 1011 m. (b) Deter-
mine the maximum values of the electric and magnetic
fields in the sunlight at the Earth’s location.

48. The intensity of solar radiation at the top of the Earth’s
atmosphere is 1 340 W/m2. Assuming that 60% of the
incoming solar energy reaches the Earth’s surface and
assuming that you absorb 50% of the incident energy,
make an order-of-magnitude estimate of the amount of
solar energy you absorb in a 60-min sunbath.

Review problem. In the absence of cable input or a
satellite dish, a television set can use a dipole-receiving
antenna for VHF channels and a loop antenna for
UHF channels (Fig. Q34.12). The UHF antenna
produces an emf from the changing magnetic flux
through the loop. The TV station broadcasts a signal
with a frequency f, and the signal has an electric-field
amplitude E max and a magnetic-field amplitude B max at
the location of the receiving antenna. (a) Using
Faraday’s law, derive an expression for the amplitude of
the emf that appears in a single-turn circular loop
antenna with a radius r, which is small compared with
the wavelength of the wave. (b) If the electric field in the
signal points vertically, what orientation of the loop gives
the best reception?

50. Consider a small, spherical particle of radius r located
in space a distance R from the Sun. (a) Show that the
ratio Frad/Fgrav is proportional to 1/r, where Frad is
the force exerted by solar radiation and Fgrav is the force
of gravitational attraction. (b) The result of part
(a) means that, for a sufficiently small value of r, the
force exerted on the particle by solar radiation exceeds
the force of gravitational attraction. Calculate the value
of r for which the particle is in equilibrium under
the two forces. (Assume that the particle has a perfectly
absorbing surface and a mass density of 1.50 g/cm3. Let
the particle be located 3.75 ! 1011 m from the Sun, and
use 214 W/m2 as the value of the solar intensity at that
point.)

A dish antenna having a diameter of 20.0 m receives
(at normal incidence) a radio signal from a distant
source, as shown in Figure P34.51. The radio signal
is a continuous sinusoidal wave with amplitude
E max " 0.200 #V/m. Assume the antenna absorbs all
the radiation that falls on the dish. (a) What is the
amplitude of the magnetic field in this wave? (b) What
is the intensity of the radiation received by this
antenna? (c) What is the power received by the antenna?
(d) What force is exerted by the radio waves on the
antenna?

51.

49.

Figure P34.51

Figure P34.54

52. One goal of the Russian space program is to illuminate
dark northern cities with sunlight reflected to Earth
from a 200-m diameter mirrored surface in orbit. Several
smaller prototypes have already been constructed and
put into orbit. (a) Assume that sunlight with intensity
1 340 W/m2 falls on the mirror nearly perpendicularly
and that the atmosphere of the Earth allows 74.6% of
the energy of sunlight to pass through it in clear
weather. What is the power received by a city when the
space mirror is reflecting light to it? (b) The plan is for
the reflected sunlight to cover a circle of diameter 
8.00 km. What is the intensity of light (the average mag-
nitude of the Poynting vector) received by the city? 
(c) This intensity is what percentage of the vertical com-
ponent of sunlight at Saint Petersburg in January, when
the sun reaches an angle of 7.00° above the horizon at
noon?

In 1965, Arno Penzias and Robert Wilson discovered the
cosmic microwave radiation left over from the Big Bang
expansion of the Universe. Suppose the energy density of
this background radiation is 4.00 ! 10$14 J/m3. Deter-
mine the corresponding electric field amplitude.

54. A hand-held cellular telephone operates in the 860- to
900-MHz band and has a power output of 0.600 W
from an antenna 10.0 cm long (Fig. P34.54). (a) Find
the average magnitude of the Poynting vector 4.00 cm
from the antenna, at the location of a typical person’s

53.
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Figure 5: Problem 8.



This problem is 15 points extra credit!

Suppose that we have a cylindrical capacitor, as
seen in the figure. Suppose further that, instead
of DC, we put an AC current across the plates,
starting at a low frequency, !. As the voltage
alternates, the positive charge on the top plate
is take o↵ and negative charge is put on. While
that is happening, the electric field disappears and
then builds up in the opposite direction. As the
charge sloshes back and forth slowly, the electric
field follows. At each instant the electric field is
uniform, as shown in the figure, except for some
edge e↵ects which we are going to disregard.

a

E

B

We can write the electric field as

E = E0 cos (!t) ,

where E0 = Q0/✏0A is constant, and A = ⇡a2 is the area of the plate. Now will this
continue to be right as the frequency goes up? No, because as the electric field is going
up and down, there is a flux of electric field through any circular loop, say �, of radius
r inside the capacitor. And, as you know, a changing electric field acts to produce a
magnetic field. From Maxwell’s equations, the magnetic field is given by

c2

I
~B · d~̀=

d

dt

Z
~E · d ~A ) c2B (2⇡r) =

d

dt
E
�
⇡r2

�
,

or
B = �! r

2c2
E0 sin (!t) .

So, the changing electric field has produced a magnetic field circulating around inside
the capacitor, and oscillating at the same frequency as the electric field. Now, are we
done? No! This magnetic field also oscillates, which produces a new electric field ! The
uniform field, E1 ⌘ E0 cos (!t), is only the first term! The changing magnetic field
produces a new electric field, E2, such that the total field is E = E1 + E2. Now, in
general, E2 is also oscillating! This means that there will be a new magnetic field from
E2, which will be oscillating, which will create a new electric field, E3, which will create
a new magnetic field....

Your task is to calculate the first four terms of the series, enough to get
the pattern, and write the total electric field, taking the field at the center
of the capacitor to be exactly E0 cos (!t), (i.e., there is no correction at the
center). Then, look up Bessel functions, either in a book on di↵erential
equations, or on Wikipedia, say, and see if you can write the full electric
field you find in terms of one of the Bessel functions, in closed form. Can
you find an exact expression in terms of one of the Bessel functions for
the magnetic field? Bessel functions are the general solutions to the wave
equation in cylindrical coordinates.

8

Figure 6: Problem 10.


