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’Problems set # 12‘ Physics 169 May 12, 2015

1. Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges
+@Q. The empty space between the spheres is half-filled by a hemispherical shell of dielectric (of
dielectric constant €/¢y), as shown in Fig. 1. (i) Find the electric field everywhere between the
spheres. (ii) Calculate the surface-charge distribution on the inner sphere. (i) Calculate the
polarization-charge density induced on the surface of the dielectric at r = a.

Solution This is a somewhat curious problem. It should be obvious that without any dielectric

the electric field between the spheres would be radial E = -2 7 We cannot expect this to be

Ameq r2
unmodified by the dielectric. However, we note that the radial electric field is tangential to the
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is automatically satisfied. At the same time there is no perpendicular component to the interface,

interface between the dielectric and empty region. Thus the tangential matching condition E|1|

so there is nothing to worry about for the Di- = D3 matching condition. This suggests that we
guess a solution of the radial form E = A7/r?, where A is a constant to be determined. This guess
is perhaps not completely obvious because one may have expected the field lines to bend into or out
of the dielectric region. However, we could also recall that parallel fields do not get bent across the
dielectric interface. We may use the integral form of Gauss law in a medium to determine the above
constant A, i.e., @ﬁﬁdfl =Q = T—2A27rr2 + %27rr2 =Q,or A= m Hence, E = %}2
Note that (¢4 €p)/2 may be viewed as the average permittivity in the volume between the spheres.
(i) The surface-charge density is given by o = D'|,—,, where either D+ = ¢gE+ or D+ = eE+
depending on region. This gives
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Note that the total charge obtained by integrating o over the surface of the inner sphere glves
Q as expected (m) The polarization charge density is given by ppo = v P where P =

eoer = (e — eo)E. Since the surface of the dielectric at » = a is against the inner sphere, we
can take the polarization to be zero inside the metal (“outside” the dielectric). Gauss’ law in this

case gives opol = —Pl—y = —(e — €)Et ey = —;Eg 2212. Note that when this is combined
with (1), the total (free and polarization) charge density is oior = 0 + Opol = ;—2027{?&2 on either

half of the sphere. Since this is uniform, this is why the resulting electric field is radially symmetric.

2. A coaxial capacitor of length [ = 6 cm uses an insulating dielectric material with €/ey = 9,
see Fig. 2. The radii of the cylindrical conductors are 0.5 cm and 1 cm. If the voltage applied
across the capacitor is V() = 50sin(1207t) what is the displacement current?

Solution To find the displacement current, we need to know E in the dielectric space between

the cylindrical conductors. Using Gauss law we obtain E = Q 5o and so V= Qﬂd In(a/b).
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Therefore, E = —Hn&/b)f = 505?8?””7@ = — 21 in(1207t)7 V/m. This implies that D = eE =




kepE = —9-8.85 x 10712 - 2L 4in(1207t)F = Msm(l%mﬁ)r C/m?. The displacement
current flows between the conductors through an imaginary cylindrical surface of length [ and
radius r. The current flowing from the outer conductor to the inner conductor along —7 crosses
surface S where S = —2mrlf. Therefore, I; = 8t S = 5 {M sm(lQOwt)} - (—=r27rl) =
5.75 x 10721207 - 27l cos(1207t) = 0.82 cos(1207t) pA. Alternatively, since the coaxial capacitor is
lossless, its displacement current has to be equal to the conduction current flowing through the wires

connected to the voltage sources. The capacitance of a coaxial capacitor is given by C = %.
The current is [ = C% = IHQ(”;Z)[IQOW x 50 cos(1207t)] = 0.82cos(1207t) wA, which is the same

answer we obtained before.

3. The parallel-plate capacitor shown in Fig. 3 is filled with a lossy dielectric material of relative
permittivity £ and conductivity o. The separation between the plates is d and each plate is of area
A. The capacitor is connected to a time-varying voltage source V' (t). (i) Obtain an expression for
1., the conduction current flowing between the plates inside the capacitor, in terms of the given
quantities. (77) Obtain an expression for I, the displacement current flowing inside the capacitor.
(i4i) Based on your expressions for parts (i) and (ii), give an equivalent-circuit representation for
the capacitor. (iv) Evaluate the values of the circuit elements for A = 4 cm?, d = 0.5 cm, k = 4,
o =25 (S/m), and V(¢) = 10cos(37103¢) V. [Hint: 1 S = 1Q7!, (S stands for siemens)]

Solution The resistance is R = a%’ and so I, = % = V%:A. (7i) The electric field is E = V/d and
so Iy = at DA — AaE = edA%/. (i4i) The conduction current is directly proportional to V, as char-
acteristic of a resistor, Whereas the displacement current varies as 0V/0t, which is characteristic of

a capacitor. Hence, R = % and C' = & The circuit is shown in Fig. 3. (i) R = % =50
_ 48.85x107'2 4><10‘ 12
and C = 4885X10° 24101 _ 9 84 5 10~ 12 F.

4. Figure 4 shows a plane electromagnetic sinusoidal wave propagating in the x-direction. Sup-
pose that the wavelength is 50 m, and the electric field vibrates in the zy plane with an amplitude
of 22 V/m. Calculate (i) the frequency of the wave and (i) the magnitude and direction of the
magnetic field when the electric field has its maximum value in the negative y-direction. (7ii) Write
an expression for the magnetic field with the correct unit vector, with numerical values for By ax,
k, and w, and its magnitude in the form B = By cos(kx — wt).

Solution (i) During one oscillation (one period) the wave moves by a distance equal to the
wavelength of the wave. Therefore T' = A/c. If one oscillation take time 7', in one second the

number of oscillations will be f = T—! = ¢/\ = 220/ HT/ > =6 MHz. (%) The magnetic flux through

the vertical, differential surface indicated on Fig. 4 is proportional to the magnitude of the mag-

netic field. Therefore the rate at which this magnetic flux changes is related only to the rate at

which the magnetic field varies. The flux is % = %(B dx dy) = %—? dx dy. The linear integral of

the electric field vector can be related directly to the electric field strength at the location of the
differential surface § F-ds = 0+ E(x+dx)dy+0— E(x)dy = {E(:):) + 24y — E(x)} dy = 2Edz dy.
Therefore, from Faraday’s law (using the general form for a sinusoidal wave), the above equa-

tion requires that —FEpaxksin(kr — wt) = %—f = %]f = —Bpaxwsin(kx — wt), from which
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73.3 nT. Using the right-hand rule, when the y-component of the electric field is negative,

the magnitude of the magnetic field is Bpax = %Emax =

the z-component of the magnetic field is negative too; hence B = —73.3 nTk. We can arrive
at the same solution from Ampere-Maxwell’s law. From the definition, the displacement cur-
rent through the horizontal, differential surface is related to the rate of change in the electric
flux I = 60% = 60%(dedz) = eo%drvdy. The linear integral of the magnetic field vector
can be related directly to the magnetic field strength at the location of the differential surface
§B-ds = 0— B(x + dx)dz + 0 + B(z)dz = [—B(x) — %—fdw + B(x)} dz = —%—fdxdz. Ampere-
Maxwell’s law yields —Bpaxk sin(kz — wt) = %—f = —uoeo%—]f = — oo Pmaxw sin(kx — wt), from
which Brax = p0€0% Emax = % that leads to the same answer. (74) From the frequency of the
wave, its angular frequency is w = 27 f = 27 - 6 MHz = 37.7 MHz. From the given wavelength,

the value of the z-component of the propagation vector is k = 27” = 53’Tm = 0.126 m~*. (The
peak value of the magnetic field was found in part (ii)). Hence B(z,t) = Buax cos(ka — wt)k =

73.3 nT cos(0.126 m~! - 2 — 37.7 MHz - t)k.

5. Some science fiction writers have described solar sails that could propel interstellar spaceships.
Imagine a giant sail on a spacecraft subjected to radiation pressure from our Sun. (i) Explain why
this arrangement works better if the sail is highly reflective rather than highly absorptive. (i) If
the sail is assumed highly reflective, show that the force exerted by the sunlight on the spacecraft’s
21;%40, where P is the power output of the Sun (3.8 x 1026 W), A is the

surface area of the sail, r is the distance from the Sun, and c¢ is the speed of light. (Assume that

sail is given by Fi.q =

the area of the sail is much larger than the area of the spacecraft so that all the force is due to
radiation pressure on the sail, only. (ii) Using a reasonable value for A, compute the force on the
spacecraft due to the radiation pressure and the force on the spacecraft due to the gravitational
force of the Sun on the spacecraft. Does this result imply that such a system will work? Explain
your answer.

Solution (i) If the sail is reflective then it gets twice as much of a momentum kick from the light
as it does if it was absorptive. This is because the reflective sail has to reflect the light back, pushing
the sail back harder. This accelerates the sail better than simply absorbing the light. (i) The radi-
ation force can be expressed in terms of the radiation pressure, Fiaq = Praq A, where A is the area of
the sail. The radiation pressure is 21 /¢, where I is the intensity, and the factor of 2 comes from the
fact that the sail is reflective. Now, the intensity comes from the sun, and can be written as I = 41;%
where r is the distance to the sail. Thus, we finally find that the force is Fi,q = Pod (i7i) The ratio
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of the radiation force to the Newtonian gravitational force is Tl = Tadly = anGaymMac All of

2
these are constants, except for the area, A, and mass, m, of the ship. So, plugging in the numbers

Frug PoA _ 3.8x1026 A — 0.0015 &
Fa — 2rGymMee — 2m6.672x10-11.2.00x1030.3x108 m — - m*
In order for this to be an effective means of propulsion we need Fi,q/Fg > 1, which requires that

0.0015% >1— m/A < 0.0015. So, we would need a tremendously huge sail, and a very light ship.
For example, for a 1000 kg ship we would need an area bigger of at least 670,000 square meters,

for everything except m and A,

would be a circle of more than 460 meters! It seems like this would be a practically difficult method
of space travel, at least if powered by the Sun. However, perhaps by firing lasers from the surface



of the Earth to the sail and pushing it with extra light we could build up a good speed.

6. A pulsed laser fires a 1000 MW pulse that has a 200 ns duration at a small object that has
a mass equal to 10.0 mg and is suspended by a fine fiber that is 4.00 cm long. If the radiation
is completely absorbed by the object, what is the maximum angle of deflection of this pendulum?
[Hint: Think of the system as a ballistic pendulum and assume the small object was hanging ver-
tically before the radiation hit it.]

Solution Consider the pendulum in Fig. 5. Initially the object has zero energy, but it is then hit
with the pulse which gives it a kick, lifting it up to a height h, which can be expressed in terms of
the angle as h = L — Lcosf = L(1 — cosf). When it is pushed up to the height h, the object has a
potental energy Ep = mgh = mgL(1—cos ). Equating this to the initial kinetic energy of the pulse
Ex = mgL(1—cosf). Solving this expression for the angle gives § = cos™! [ — %} . Now, we just
need to figure out the kinetic energy of the pulse. The pulse carries momentum, which transfers to
the object. Hence, ppuise = Pobject; Which gives it kinetic energy equal to the kinetic energy of the

2
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To finish we just need to find the momentum of the pulse. This can be found by looking at the

2 o
object _ Tpulse Honce, § = cos™! |1 —
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pulse. Hence, EK,pulse = EK,object- Now, EK,object =

energy of the wave, which is related to the momentum by E = pc, and the energy can be related

to the power, P , by E = PAt, which, finally, gives § = cos™! [1 — %]. Thus, we can plug in

the numbers to find 6 = cos™! [1 - %} = cos™! {1 — 2(0.(511)0;();%3;)02_.;);0.04} = 0.0061°.

7. An electromagnetic wave has a frequency of 100 MHz and is traveling in a vacuum. The
magnetic field is given by B(z,t) = 1.00 x 1078 cos(kz — wt)i. (i) Find the wavelength and the
direction of propagation of this wave. (ii) Find the electric field vector, E(z,t). (iii) Determine
the Poynting vector, and use it to find the intensity of the wave.

Solution (i) The direction is easy to find by looking at the sign of the wt term in the wave.
Since it is negative, this tells us that the wave is traveling to the right. Because wave depends on
z, this tells us that the wave is moving along the z direction. Furthermore, since Af = ¢, where A
is the wavelength, f is the frequency, and c is the speed of light, we can solve for the wavelength,
A=3= 3x10° - — 3 00 m. (7i) The electric field has the same form as the magnetic field, but

100x 108
it points along —y (it has to be perpendicular to both the direction of the magnetic field and the

direction of the propagation of the wave, such that Ex B points along z). We also know that the
amplitude of the electric field is related to the amplitude of the magnetic field by £ = ¢B. Thus,
E =1.00x1078.3x10% = 3 V/m. Hence, the electric field is E = —3.00 V/m cos(kz—wt)j. (iii) The
Poynting vector is § = %E x B = —M—IOEOBO cos?(kz —wt)jxi = iEoBo cos?(kz —wt)j x k. Plug-
ging in for the amplitudes and p gives S = % cos?(kz —wt)k = 0.024 W/m? cos? (kz — wt) k.
The intensity of the wave is given by the average of the Poynting vector, which gives a factor of

1/2 from the cosine term. Thus, I = %222 = 12 mW /m?.

8. A dish antenna having a diameter of 20 m receives (at normal incidence) a radio signal from a
distant source as shown in Fig. 6. The radio signal is a continuous sinusoidal wave with amplitude



En = 0.2uV/m. Assume the antenna absorbs all the radiation that falls on the dish. (i) What is
the amplitude of the magnetic field in this wave? (i) What is the intensity of the radiation received
by the antenna? (i74) What is the power received by the antenna? (iv) What force is exerted by
the radio waves on the antenna?

Solution (i) The magnitude of the electric field vector and the magnitude of the magnetic field

—6
vector are proportional to each other By, = Ey,/c = W = 6.7x10716 T. (4i) By definition,
the intensity of electromagnetic wave is equal to the average value of the magnitude of the Poynting

vector. It can also be expressed in terms of the magnitude of the electric field vector or the magni-
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tude of the magnetic field vector. The intensity is I = (S) = 2%;]0 = % = 3X102_ 4;% Sl(g‘_ix,}?n A o

5.31 x 10717 W/m?. (iii) The power received by the antenna is related to the size of the antenna
2
and the intensity of the approaching wave (P) = I”TDQ =5.31x10717 %@ =1.67x10"1* W.

(iv) The force exerted on the antenna is equal to product of the antenas area and the wave pressure,
(S) xD? __ 5.31x10"'7 W/m? 7(20 m)? _
e 4 T 3x108 m/s 4 -

related to the magnitude of the Poyting vector F' = PA =
5.56 x 10723 N.

9. Show that any function of the form y(z,t) = f(z —ct)+g(x +ct) satisfies the one-dimensional
2 2
wave equation for light, % — c%% =0.

Solution This problem relies on using the chain rule. Suppose that we call u = x + ¢t
(t?is takes care of bo(;ch functions at oncgz. Then,aé%f(a: —ct) = %f(u) = %% = %, while
0 o) o (9 0 o) 0
sz flr —ct) = 5 (a—ic) = 5 (Q—D = 8758% = 87]20' Furthermore, & f(x — ct) = g5 f(u) =

. 2 2 2 .
%%IZ = ic%, while %f(ﬂf —ct) = % (%{) = ic% (%) = ic%%—? = 02%. This means that
1 20%f 9’ f 1 0% _ 9*f  9f _

1 82 82
?Wf(a: — Ct) = 6726 BNy = 92’ and so 87;21 T 22 T 9w 9w T 0. Thus, we see that these

functions do, indeed, satisfy the one-dimensional wave equation for light.

10. Suppose that we have a cylindrical capacitor, as seen in the Fig. 7. Suppose further that we
put an AC current across the plates, starting at a low frequency, w. As the voltage alternates, the
positive charge on the top plate is take off and negative charge is put on. While that is happening,
the electric field disappears and then builds up in the opposite direction. As the charge sloshes
back and forth slowly, the electric field follows. At each instant the electric field is uniform, as
shown in the figure, except for some edge effects which we are going to disregard. We can write the
electric field as £ = Eqcos(wt), where Eg = Qo/egA is constant, and A = 7wa? is the area of the
plate. Now will this continue to be right as the frequency goes up? No, because as the electric field
is going up and down, there is a flux of electric field through any circular loop, say I', of radius r
inside the capacitor. And, as you know, a changing electric field acts to produce a magnetic field.
From Maxwell’s equations, the magnetic field is given by a

o [(7 7 d Y 2 d 2
c %B-dﬁz—/E-dAéc B2nr = —(E7r?),
dt dt
or
B = —%Eo sin(wt).

So, the changing electric field has produced a magnetic field circulating around inside the capacitor,



and oscillating at the same frequency as the electric field. Now, are we done? No! This magnetic
field also oscillates, which produces a new electric field! The uniform field, Fy = Ejcos(wt), is
only the first term! The changing magnetic field produces a new electric field, Es, such that the
total field is ' = FE1 + E5. Now, in general, Es is also oscillating! This means that there will be
a new magnetic field from FEs, which will be oscillating, which will create a new electric field, E3,
which will create a new magnetic field.... Your task is to calculate the first four terms of the series,
enough to get the pattern, and write the total electric field, taking the field at the center of the
capacitor to be exactly Fycos(wt), (i.e., there is no correction at the center). Then, compare your
result with Bessel functions, and see if you can write the full electric field you find in terms of one
of the Bessel functions, in closed form. Can you find an exact expression in terms of one of the
Bessel functions for the magnetic field?

Solution As given above, the uniform field generates a magnetic field, B = —5% Epsin(wt).
Now, Faraday’s law reads fﬁ - d§ = —% fg - dA Now, we want to take a loop for which the
electric field is constant everywhere along the integration path. We’ll take a rectangular loop,
that goes up along the axis of the capacitor, out to a radial distance r along the top plate, down
vertically to the bottom plate, and then back to the axis. Now, the field is £ = E; + E5, but the
loop integral of Ej is zero, since Fj is uniform. Therefore, only Es contributes. Now along the
loop, E5 = 0 at the center, as per our assumption, while the part of the loop running along the
plates is zero since the field is perpendicular to the path. So, the whole integral is just —Fs(r)h,
where h is the distance between the plates. The negative sign comes in because the path travels
down while the field is pointing up. Now, the flux of B through the surface bounded by the
loop is just ®p = [ BdA = h [y Bdr, since the loop is a rectangle of height h, and we have
to integrate over the width of the rectangle, since B changes with distance. Now, using our
expression for B = — % Egsin(wt), then h [ Bdr = — ‘Z—Z;EO sin(wt), and so, from Faraday’s law,
Es(r) = (wt). So, we have so far that E = E1+FEs, or E = (1 — S 2) Ey cos(wt). Now,
we need to continue on. This new term, Fy will produce a new magnetic field. Let’s call the magnetic
field that we found before B;. Then Fs produces a new magnetic field By such that the total field
is B = By + By. To get By, we apply the same trick that we used to find By, that is ¢? ¢ Eg ds =
x d [ Ey - dA. Taking the same loop gives c2By(27r) for the left hand side. Now because Ey varies
with radlus the right hand integral reads [EdA = 2 [; Ezrdr = 21> ©* B cos(wt) [y r3dr =

EO sin(wt). But, we need to keep

—2rt 4202 Eo cos(wt). Thus, taking the derivative gives By =

24c4
going! This changing magnetic field produces a new electric field, F53, which we can calculate just

as before for Fy. Doing so gives E3 = Eo cos(wt). This, again, produces a new magnetic

2242 4
field, which produces a new electric field... The pattern keeps continuing, and we keep iterating.
The next correction to the electric ﬁeld is By = —ﬁ (%)6 Eycos(wt). So, the electric field is
given by E = Ej [1 — (1})2 (&2 ) + (2,)2 (‘2%)4 - (3})2 (%)6 +-- } cos(wt). Now, we can look up the

Bessel functions, and we find that the zeroth-order function, Jy(x) =1 — (1,)2 (*) + (2,) (£)4 -
(3})2 (%)6 + -+, and so, we finally find that the electric field is given by E = EyJy (£F) cos(wt).
We can look up the series for the magnetic field to find the first-order Bessel function, Ji(z) =

(%) — % (%)3 + o7 (%)5 — -+, to find B = —£0J; (“Z) sin(wt). (We could also plug the electric

field back into the Maxwell equations, noting that [ Ji(x)dx = —Jy(x).) That completely solves
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Figure 3: Problem 3.

Figure 4: Problem 4.
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Figure 5: Problem 6.



Figure 6: Problem 8.

Figure 7: Problem 10.



