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Torque

Position and direction of force matter as well

To make an object start rotating a force is needed

Perpendicular distance from axis of rotation                                  
to line along which force acts is called lever arm
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Torque (Cont’d)

Torque is defined as ☛ ⌧ = r? F
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Torque (Cont’d)

Lever arm for         is distance from knob to hinge

Lever arm for         is as shown

Lever arm for         is zero

FA

FD

FC
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Rotational Dynamics ☛ Torque and Rotational Inertia

Knowing that ☛
This is for a single point mass

What about an extended object?

As angular acceleration is same for whole object we can write

F = ma ⌧ = mr2 ↵

X
⌧i, net = (

X
mi r

2
i )↵

~F

mr
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Various Moment of Inertia

Rotational inertia of an object depends 

not only on its mass distribution but 

also location of axis of rotation                   

– compare (f) and (g), for example -
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Spinning Cylindrical Satellite

To get a flat, uniform cylindrical satellite spinning at correct rate, 

engineers fire four tangential rockets as shown in figure 

If satellite has a mass of 3600 kg and a radius of 4 m, what is required 

steady force of each rocket if satellite is to reach 32 rpm in 5 min? 

End view of cylindrical satellite
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The ring of rockets will create a torque with zero net force

⌧net = 4FR

⌧net = I↵

I =
1

2
MR2

↵ =
�!

�t

4FR = I↵ =
1

2
MR2�!

�t
) F =

1

8
MR

�!

�t
⇡ 20 N
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Rolling
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“Why is it that when a body is rolling on a plane without slipping 

A simple answer to this question is quite simply: “because the body does not slip”

the point of contact with the plane does not move?”

 Why? Because “slipping” implies 2 bodies in contact moving relative to each other

Therefore ☛ the point of contact and the plane don’t move relative to each other

However for those still unconvinced

We’ll work out a mathematical argument which should help

Here ☛ there is no slipping

 Therefore  ☛ the point of contact does not move

Intuitive Question
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Nonslip conditions

Imagine a cylinder moving forward at speed      on a plane without slipping                                                                 

It is clear that     is completely determined by      and vice-versa 

because if we change      (say ☛ make the cylinder move faster) 
must also increase  (the cylinder must roll faster) 

Our aim is to find the relation between      and 
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The “No-Slip” Condition in a Rolling Body 
 

Many people came up to me after class today as asked me 

“Why is it that when a body is rolling on a plane without slipping, 

the point of contact with the plane does not move?” 

The simple answer to this question is, quite simply, “because the body does not 

slip”! Why? Because “slipping” implies two bodies in contact moving relative to 

each other. Here, there is no slipping. Therefore, the point of contact and the 

plane do not move relative to each other. Therefore, the point of contact does 

not move. 

 

However, for those still unconvinced, I’ll present a mathematical solution which 

should help. 

 

1. The “no-slip” condition 

Let’s imagine a body moving forward at speed v on a plane by rolling without 

slipping: 

 
As we indicated in the diagram above, the cylinder must also be rotating about 

its axis, because it is rolling, at an angular speed ω . 

 

It is clear that ω  is completely determined by v and vice-versa, because if we 

change v (ie: make the cylinder move faster), ω  must also increase (ie: the 

cylinder must roll faster). Our aim is to find the relation between v and ω . 

 

ω

v

R

v

As indicated in diagram ☛ cylinder must also be rotating about its axis
because it is rolling at an angular speed

v

v

v

!

!

!
!
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 To do this ☛ consider cylinder moving forward a distance 

As a result ☛ it will rotate through angle
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To do this, consider the cylinder moving forward a distance x. As a result, it will 

rotate through an angle θ : 

 
Now, consider the following argument 

• On purely mathematical grounds, the length of the bold arc of the circle is 

Rθ . 

• However, this is equal to x, because the distance the circle has moved 

forward is equal to the arc length. So x Rθ= . 

We have thus found 

x Rθ=  

Consider differentiating each side of this equation (remember R is constant) 

d d
d d
x

R
t t

θ
=  

But dx/dt is the velocity, and d dtθ /  is the angular velocity. As such 

v Rω=  

These two boxed items are the no-slip conditions. We have found what we 

wanted.1 

 

                                                 
1 Note – this is the same relationship, v = ωR, that we had obtained for circular motion. However, 

it’s important to realise that the v in each equation is different. In circular motion, v refers to a 

point on the rim of the circle. Here, v refers to the velocity of the centre of mass. After reading 

the next section, you should be able to convince yourself that they have to be the same, as 

predicted by these equations. 

R

x

θ θ

Now ☛ consider following argument 

On purely mathematical grounds ☛  length of bold arc of the circle is R✓

because the distance the circle has move forward is equal to the arc length   

However ☛  this is equal to                                                                             

Nonslip conditions

x

x

✓
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Nonslip conditions

We have found thus ☛ 
x = R✓

Consider differentiating each side of this equation 

dx

dt

= R

d✓

dt

BUT ☛         is the velocity and        is the angular velocitydx

dt

d✓

dt

As such ☛ v = R!

These two equations are the non-slip conditions 

   Let’s convince ourselves they have to be the same as predicted by these equations

is the same relationship that we had obtained for circular motion

However ☛ it’s important to realize that the v in each equation is different
In circular motion ☛    refers to a point on the rim of the circle

 Here ☛    refers to the velocity of the centre of mass

v = R!

v
v
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Point of contact
Consider cylinder rolling on a plane again 

What are the velocities of points at very top and very bottom of circle? 

The No-Slip Condition  Page 3 of 3 
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2. The point of contact 

Now, consider a body rolling on a plane again. We might ask the question “what 

are the velocities of the points at the very top and very bottom of the circle?” 

The answers are as follows: 

 
Let’s see why this is: 

• Top point – moving forward at v (because the cylinder is moving forward 

at v) but also has an extra forward speed Rω  because of the rotation. 

• Bottom point – moving forward at v (for the same reason) but is now 

moving backwards at Rω  because of the rotation (think about it – 

because the circle is rotating clockwise, it’s moving back at its bottom 

point). 

 

However, we found above that v Rω= . Feeding this into our diagram 

 
As indeed expected, we find that the velocity of the point of contact is 0. It does 

not move. 

ω

v

R

2 Rω

0

ω

v

R

R vω +

R vω −

• Top point – moving forward at v (because the cylinder is moving forward at v)      
but also has an extra forward speed ωR because of the rotation
• Bottom point – moving forward at v (for the same reason)                                          
but is now moving backwards at ωR because of the rotation                                        
(because the circle is rotating clockwise ☛ it’s moving back at its bottom point)
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Point of contact (cont’d)
However ☛  we have found that  

Feeding this into our diagram  
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  Daniel Guetta – guetta@mit.edu 

2. The point of contact 

Now, consider a body rolling on a plane again. We might ask the question “what 

are the velocities of the points at the very top and very bottom of the circle?” 

The answers are as follows: 

 
Let’s see why this is: 

• Top point – moving forward at v (because the cylinder is moving forward 

at v) but also has an extra forward speed Rω  because of the rotation. 

• Bottom point – moving forward at v (for the same reason) but is now 

moving backwards at Rω  because of the rotation (think about it – 

because the circle is rotating clockwise, it’s moving back at its bottom 

point). 

 

However, we found above that v Rω= . Feeding this into our diagram 

 
As indeed expected, we find that the velocity of the point of contact is 0. It does 

not move. 

ω

v

R

2 Rω

0

ω

v

R

R vω +

R vω −

As indeed expected    
we have found that the velocity of the point of contact is zero  

It does not move!!!

v = ! R

Differentiating on both sides the non-slip condition with respect to time
aT = R↵

(e.g. for string not to slip on a pulley wheel) 
tangential acceleration ☛
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Atwood’s machine

An Atwood's machine consists of two masses,        and        which are 
connected by a mass less inelastic cord that passes over a pulley

m1 m2

If pulley has radius      and moment of inertia     about its axle 
determine acceleration of masses        and m2m1

R I

Force pulling pulley so it can rotate is

FT2 � FT1

and it is at displacement    away 
from axis of rotation 

R
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Assume                      and so pulley will accelerate clockwisem2 > m1

X
Fy1 = m1a ) FT1 �m1g = m1a

FT1 = m1g +m1a

FT2 = m2g �m2a

clockwise ☛ positive

Substituting the force relation in the torque equation 

a =
(m2 �m1)

(m1 +m2 + I/R2)
g

X
Fy2 = m2a ) m2g � FT2 = m2a

Align coordinate system with acceleration

�

�

X
⌧ = I↵ ) FT2R� FT1R = I↵ = I

a

R
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Question
A bowling ball that has             radius and              mass is rolling without 

on a horizontal ball return
It continues to roll without slipping up a hill to a height    before momentarily 
coming to rest and then rolling back down hill

Model ball as a uniform sphere and find

11 cm 7.2 kg

slipping at 2m/s
h

h
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Answer

�Emech = 0

Uf +Kf = Ui +Ki ) Mgh =
1

2
Mv2CMi

+
1

2
ICM!2

i

ICM =
2

5
MR2 ) Mgh =

1

2
Mv2CMi

+
1

2

✓
2

5
MR2

◆
v2CMi

R2

Mgh =
7

10
Mv2CMi

) h = 29 cm
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Rolling with slipping

When an object slips (skids) as it rolls nonslip condition                     does not hold        

Kinetic frictional force will both reduce its linear speed                                        
and increase its angular speed       until nonslip condition                      is reached                                       

after which balls rolls without slipping

vcm = R!

vcm > R!

vcm = R!

vcm
!

(!0 = 0)Suppose a bowler releases a ball with no initial rotation

as ball skids along bowling lane
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Conservation Theorems: Angular Momentum 

22Saturday, December 26, 20



C. B.-Champagne 2

Overview

Luis Anchordoqui

Vector Nature of Rotation

Torque is expressed mathematically as a vector product of    and~r ~F

If     and      are both perpendicular to      axis ☛         is parallel to     axis~F ~r ~⌧

~⌧ = ~r ⇥ ~F

z z
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Vector product

Vector product of two vectors      and      is a vector  

that is perpendicular to both      and 

and has a magnitude

equals area of parallelogram shown

~A ~B ~C

A B

|C| = |A| |B| sin �

~C = ~A ⇥ ~B = AB sin �

| ~C|

24Saturday, December 26, 20



C. B.-Champagne 2

Overview

Luis Anchordoqui

Vector product (cont’d)
Direction of                 is given by right-hand rule                                          

when fingers are rotated from direction of      toward      through angle

Defines a right-handed cartesian system

~A ⇥ ~B
~A ~B �

25Saturday, December 26, 20



C. B.-Champagne 2

Overview

Luis Anchordoqui

Vector product (cont’d)

Throughout this course we adopt right handed coordinate systems

If we take vector product by going around figure in direction of arrows 
(clockwise) sign is positive

Going around against arrows  ☛ sign is negative

~ı ⇥ ~| = k

ı̂ ⇥ k̂ = �|̂
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Angular momentum
Angular momentum       of particle relative to origin    ~L

~r ~pis defined to be vector product of     and

O

~L = ~r ⇥ ~p
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Figure shows particle of mass       attached to circular disk                           
of negligible mass moving in a circle in        plane with its center at origin

disk is spinning about    -axis with angular speed

Angular momentum is in same direction as angular velocity vector

Because           is moment of inertia for a single particle we have
~L = I~!

mr2

xy

z !

~L = ~r ⇥ ~p = ~r ⇥ m~v = rmv k̂ = mr2 ! k̂ = mr2 ~!

Angular momentum (cont’d)
m
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Angular momentum (cont’d)
Angular momentum of this particle about a general point on      axis                   

is not parallel to angular velocity vector

Angular momentum       for same particle attached to same disk but with 
computed about a point on     axis that is not at center of circle

~L0 ~L0

z

z
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We now attach a second particle of equal mass to spinning disk                           
at a point diametrically opposite to first particle

Total angular momentum
is again parallel to angular

In this case axis of rotation passes through center of mass of two-particle 
system and mass distribution is symmetric about this axis

Such an axis is called a symmetry axis

For any system of particles that rotates about a symmetry axis 

(which is sum of angular momenta of individual particles )  

is parallel to angular velocity

a symmetry axis total angular momentum
For any system of particles that rotates about

~L = I ~!

~L0 = ~L0
1 + ~L0

2

 velocity vector ~!

Angular momentum (cont’d)
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Conservation of angular momentum 

Angular momentum of a particle  ☛                                                          
(with respect to origin from which position vector      is measured )       ~r

~L = ~r ⇥ ~p

Torque (or moment of force) with respect to same origin is ☛ ~⌧ = ~r ⇥ ~F
Position vector from origin to point where force is applied  ☛

But of course  ➟ 

~⌧ = ~r ⇥ ~̇p

~̇L =
d

dt
(~r ⇥ ~p) = (~̇r ⇥ ~p) + (~r ⇥ ~̇p)

If is a vector constant in time
If net external torque acting on a system about some point is zero
total angular momentum of system about that point remains constant

~̇r ⇥ ~p = ~̇r ⇥ mv = m(~̇r ⇥ ~̇r) = 0

~̇L = ~r ⇥ ~̇p = ~⌧

~⌧ = 0 ) ~̇L = 0 ) L

~r
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(a) Use conservation of angular momentum to estimate angular velocity of a 
neutron star which has collapsed to a diameter of             , from a star whose 
radius was equal to that of Sun               ,         of mass                                  
and which rotated like our Sun once a month

(b) By what factor rotational kinetic energy change after collapse? 

Bright dot in middle is believed to be hot young neutron star                        
result of a supernova explosion from about 300 years ago

1.5M�(7 ⇥ 108 m)
10 km
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(I!)initial = (I!)final

!final = !initial

✓
Iinitial
Ifinal

◆
= !initial

✓ 2
5MR2

initial
2
5MR2

final

◆

!final = 1 rev/month

✓
7⇥ 10

8
m

1⇥ 10

4
m

◆2

= 4.9⇥ 10

9
rev/month = 1900 rev/s

K =
1

2
I!2

ⓐ  Conservation of angular momentum

ⓑ Rotational kinetic energy ☛

Kf

Ki
=

1
2If!

2
f

1
2Ii!

2
i

=

✓
Rf!f

Ri!i

◆2

= 1.3⇥ 10104⇥ 109
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Angular Momentum of a System of Particles

Net external torque about a fixed point acting on a system equals rate 
of change of angular momentum of system about same point

Newton’s second law for angular motion 

Angular impulse

It is often useful to split total angular momentum of a system about an 
arbitrary point O into orbital angular momentum and spin angular momentum

~⌧
net,ext =

d~L
sys

dt

~L
sys

= ~L
orbit

+ ~L
spin

�~L
sys

=

Z tf

ti

~⌧
net, ext dt
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Angular Momentum of a System of Particles

Newton’s second law for angular motion (cont’d) 

Earth has spin angular momentum due to its spinning motion about 
its rotational axis and it has orbital angular momentum about 

center of Sun due to its orbital motion around Sun

~L
orbit

= ~r
cm

⇥ M� ~v
cm

= M� r2
cm

!
yearly

= 2.7 ⇥ 1040 kgm2/s
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Pulling Through a Hole 
A particle of mass        moves with speed      in a circle with radius      

Particle is attached to a string that passes through a hole in table 
String is slowly pulled downward until particle is a distance    from hole

ⓒ Calculate work done on particle by tension force      by integrating 

ⓐ Find final velocity in terms of     , 
ⓑ Find tension when particle is moving in a circle of radius    

Express your answer in terms of     and 

m

v0r0

r0v0

r
r

m

~L
~T ~T · d

and r
r

and angular momentum r

L0r

on a frictionless table top

after which particle moves in a circle  of radius

in terms of   ,             
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Pulling Through a Hole (cont’d)

Because particle is being pulled in slowly                                           
acceleration is virtually same as if particle were moving in a circle

Lf = L0 ) vf =
r0v0
rf

T ⇡ m
v2

r
~L = ~r ⇥ ~p = rmv cos � ⇡ rmv

� ⌧ 1 ! cos � ⇡ 1

T = m
v2

r
=

m

r

⇣ L

mr

⌘2
=

L2

mr3
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Pulling Through a Hole (cont’d)

dr = �|dr|

W = �
Z rf

r0

T dr = �L2

m

Z rf

r0

r�3 dr =
L2

2m

⇣ 1

r2f
� 1

r20

⌘

dW =

~T · d~̀= Td` cos�

|dr| = d` cos� ) dW = T |dr| = �Tdr
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