
Chapter 4

Electric Current and Resistance

4.1 The Important Stuff

4.1.1 Electric Current

The results of the last three chapters (particularly those involving conductors) apply to the
special case that electric charges are not in motion, the electrostatic case. For that case, all
the points of a single conductor were at the same potential and the electric field was zero
within the material of the conductor.

In certain situations we can maintain the motion of charges through a conductor, as when
we connect a battery across the ends of a wire. In that case electric charge (negative charge,
as it turns out) moves through the wire and there will be potential differences between the
points of the conductor.

Even though it is the electrons in the material which move it turns out that it makes no
difference if we think of positive charges moving in the opposite direction, and that is how
we will think of current.

For a long conductor the fact that electric charge doesn’t build up anywhere implies that
the amount of charge per time passing any point is the same. For clarity, we can imagine
a plane cutting through a conductor as shown in Fig. 4.1. We imagine counting the charge
per time which crosses this plane, and the amount of charge per time is the current I ,

I =
∆q

∆t
(4.1)

Electric current (as we will use it) is a scalar and from Eq. 4.1 must have units of C/s. We
define this combination of units to be the ampere,

1 ampere = 1A = 1 C
s

(4.2)
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Figure 4.1: Electric current: Charge per time passing through a cross-section of a wire.

Electric current can be related to the number density of electrons in a conductor and the
speed with which they move by:

I = nqvdA (4.3)

where n is the number density of charge carriers (electrons, usually), q is the value of their
charge, vd is the drift velocity, the speed with which the carriers actually move in the wire
(on average) and A is the cross-sectional area of the wire.

4.1.2 Ohm’s Law

For many substances it is found that the current flowing through a wire made of the material
is proportional to the potential difference across its ends: I ∝ V . We write this relation in
the following way:

V

I
= R or V = IR (4.4)

where R is constant which depends on the properties of the wire (its material and its dimen-
sions). R is called the resistance of the wire and relation 4.4 is known as Ohm’s law. It is
really an empirical relation, i.e. one which does not come directly from the laws of physics
but which is obeyed pretty well in the real world and is very useful.

From the relation R = V/I we see that the units of resistance must be V
A . This combi-

nation of units is called an ohm:

1 ohm = 1Ω = 1 V
A (4.5)
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4.1.3 Resistance and Resistivity

The resistance of a piece of material depends on the type and shape of the material. If the
piece has length L and cross-sectional area A, the resistance is

R = ρ
L

A
(4.6)

where ρ is a constant (for a given material at a given temperature) known as the resistivity
of the material. Some selected values for ρ are:

ρCopper = 1.72 × 10−8 Ω ·m ρAluminum = 2.82 × 10−8 Ω · m ρCarbon = 3.5 × 10−5 Ω · m

The resistivity of a material usually increases with temperature. It generally follows an
empirical formula given by:

ρ = ρ0[1 + α(T − T0)] (4.7)

where ρ and ρ0 are the resistivities of the material at temperatures T and T0, respectively.
The constant α is the temperature coefficient of resistivity.

4.1.4 Electric Power

As charge moves through the wires of an electric circuit, they lose electric potential energy.
(When charge ∆q moves through a potential difference V , it loses ∆qV of potential energy.)
The rate of energy loss is the power P delivered to the circuit elements,

P =
∆qV

∆t
=

∆q

∆t
V = IV

that is,

P = IV (4.8)

Electric power is measured in joules per second, or watts: 1 J
s

= 1W. (We have already
met this unit when we considered mechanical work done per unit time in first-semester
physics.)

The energy goes into heating the resistor.
Using Ohm’s law, (V = IR, or I = V/R) we can show that the power deliver to a circuit

element of resistance R can also be written as

P = I2R or P =
V 2

R
(4.9)



42 CHAPTER 4. ELECTRIC CURRENT AND RESISTANCE

!

"

!"

#"

!"

#$ !" #"

#$

!"

Figure 4.2: (a) Battery connected to two resistors and a capacitor. (b) Schematic diagram for this circuit.
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Figure 4.3: Circuit with two resistors in series.

4.1.5 Series and Parallel Circuits

We will now consider circuits which are more complicated than a single battery connected
to a single resistor. To make progress we will need to use schematic diagrams as shown
in Fig. 4.2. In these diagrams a battery is represented by two parallel lines; the longer line
represents the positive end of the battery (the one at the higher potential). A resistor is
represented by a zigzag line and a capacitor is represented by two parallel lines.

In any of these circuits, the precise shapes of the wires which connect the elements does
matter; we only need to care about the circuit elements and how they are connected to the
other elements.

The first kind of circuit we consider is where a battery is connected to two or more
resistors which are joined end-to-end. Such a circuit is shown in Fig. 4.3. In this circuit
the same current I flows through R1 and R2 (it has nowhere else to go). From Ohm’s law
the drops in potential across the two resistors are IR1 and IR2. The sum of these potential
drops must equal V , the gain in potential across the leads of the battery. So then:

IR1 + IR2 = V =⇒ V = I(R1 + R2) = IRequiv

where the equivalent resistance of the pair is the sum, R1 + R2.
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Figure 4.4: Circuit with two resistors in parallel.

This result generalizes to three or more resistors in series, so we have found that when
we have a number of resistors in series, then for the purposes of finding the common current
through them we can replace them with the equivalent resistance given by

Rser = R1 + R2 + R3 + · · · (4.10)

A different arrangement of battery and resistors is shown in Fig. 4.4. Here the end of two
resistors are at a comon potential so that the potential drop across the resistors is the same
(here, it is V , the battery volatge) but the current through each resistor is not the same. If
the current through R1 is I1 and the current through R2 is I2 then Ohm’s law gives

V = I1R1 = I2R2

so that

I1 =
V

R1
and I2 =

V

R2

Now if the total current which comes out of the battery is I , then this current splits into the
two branches, so that I = I1 + I2. Combining these results gives

I = I1 + I2 =
V

R1
+

V

R2
= V

(

1

R1
+

1

R2

)

We can write this as

V = I
(

1

R1
+

1

R2

)−1

Now, this looks like Ohm’s law where the equivalent resistance of the parallel resistors is

Requiv =
(

1

R1
+

1

R2

)−1

or
1

Requiv
=

1

R1
+

1

R2

So we have an addition rule for resistors in parallel: The reciprocal of the equivalent resistance
is the sum of the reciprocals of the individual resistances. So here it’s the reciprocals which
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add together. This rule hold for any number of resistors in parallel so we give the rule for
the parallel case as:

1

Rpar
=

1

R1
+

1

R2
+

1

R3
+ · · · (4.11)

4.1.6 Kirchhoff ’s Rules

When analyzing fairly simple circuits the rules for series and parallel resistors along with
Ohm’s law can give all the currents and potential differences. For more complicated cases—
for example networks where there are two or more batteries and resistors with multiple
connections— we need more general rules to solve for the currents.

This help is provided by Kirchhoff ’s Rules. These rules are:

Junction Rule: Consider a place where several wires meet— a junction. The sum of the
currents going into this junction equals the sum of currents coming out of this junction.

Loop Rule Consider any loop in the circuit. The sum of potential drops equals the sum of
potential rises, or more simply with signs properly given to all potential differences, the sum
of potential differences is zero.

To apply Kirchhoff’s Rules to a circuit, assign a current (with magnitude and direction)
to each branch in the circuit. Then after choosing a particular loop and a direction in which
to go around that loop, use the potential differences given by:

• If you go from the − terminal to the + terminal of a battery of voltage V , the potential
difference is +V .

• If you go from the + terminal to the − terminal of a battery of voltage V , the potential
difference is −V .

• If you go across a resistor in the direction of the current I , the potential change is −IR
(that is, this is a voltage drop).

• If you go across a resistor in the direction opposite that of the current I , the potential
change is +IR (that is, this is a potential gain).

Adding up the potential differences then gives zero for any loop.

4.2 Worked Examples

4.2.1 Electric Current

1. A certain conductor has 7.50 × 1028 free electrons per cubic meter, a cross-
sectional area of 4.00 × 10−6 m2, and carries a current of 2.50A. Find the drift
speed of the electrons in the conductor. [SF7 17-2]
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Use Eq. 4.3 and solve for vd:

I = nqvdA =⇒ vd =
I

nqA

Plug in numbers:

vd =
2.50C/s

(7.50 × 1028 m−3)(1.60 × 10−19 C)(4.00 × 10−6 m2)
= 5.2 × 10−5 m

s

(While this speed may seem implausibly slow, in fact the average drifting motion of the
electrons in a wire is slow.)

2. In a particular television picture tube, the measured beam current is 60.0µA.
How many electrons strike the screen every second? [SF7 17-4]

The given current (in amperes, or coulombs per second) gives the charge per unit time.
We can use the charge of an electron (1.60 × 10−19 C, in absolute value) to convert this to
electrons per unit time:

60.0µA = (60.0 × 10−6 C
s )

(

1 electron

(1.60 × 10−19 C)

)

= 3.75 × 1014 electrons
s

So 3.75 × 1014 electrons hit the screen every second.

4.2.2 Ohm’s Law

3. The filament of a light bulb has a resistance of 580Ω. A voltage of 120V is
connected across the filament. How much current is in the filament? [CJ6 20-3]

Ohm’s law relates V , I and R; from it, we have I = V/R. Plugging in the numbers,

I =
V

R
=

(120V)

(580Ω)
= 0.21A

4.2.3 Resistance and Resistivity

4. A cylindrical copper cable carries a current of 1200A. There is a potential
difference of 1.6 × 10−2 V between two points on the cable that are 0.24m apart.
What is the radius of the cable? [CJ7 20-11]
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Figure 4.5: Illustration of Example 4

The problem is diagrammed in Fig. 4.5. We have the current in the cable and the
potential difference for two different points, so from Ohm’s law the resistance of the part of
the cable between those two points is

R =
V

I
=

(1.6 × 10−2 V)

(1200A)
= 1.33 × 10−5 Ω

Then from Eq. 4.6, knowing R, L and the resistivity of the material (i.e. copper) we can
get the cross-sectional area:

R = ρ
L

A
=⇒ A =

ρL

R

Plug in the numbers:

A =
(1.72 × 10−8 Ω · m)(0.24m)

(1.33 × 10−5 Ω)
= 3.10 × 10−4 m2

The cable has a circular cross-section so that A = πr2. Solve for r:

r2 =
A

π
= 9.87 × 10−5 m2 =⇒ r = 9.93 × 10−3 m = 9.93mm

5. Calculate the diameter of a 2.0-cm length of tungsten filament in a small
lightbulb if its resistance is 0.050Ω. Use ρTung = 5.6 × 10−8 Ω · m. [SF7 17-13]

We have the resistance of the sample, its length and its resistivity. Use Eq. 4.6 to get the
cross-sectional area:

R = ρ
L

A
=⇒ =⇒ A =

ρL

R
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Use the given values:

A =
5.6 × 10−8 Ω · m)(2.0 × 10−2 m)

(0.050Ω)
= 2.2 × 10−8 m2

Then since A = πr2 the radius is

r2 =
A

π
=

(2.2 × 10−8 m2)

π
= 7.1 × 10−9 m2 =⇒ r = 8.4 × 10−5 m

and the diameter of the wire is

d = 2r = 1.7 × 10−4 m = 0.17mm

4.2.4 Electric Power

6. The heating element in an iron has a resistance of 24Ω. The iron is plugged
into a 120-V outlet. What is the power delivered to the iron? [CJ7 20-21]

[We need to bend the rules a bit here; actually a wall outlet delivers an alternating

voltage, not the constant voltage that we use through this chapter. It turns out that if we
treat the given voltage value as constant we do get the right answer.]

Here we are given the potential drop across the resistor (i.e. the iron) and its resistance
so that we can one of the equations from 4.9 to get

P =
V 2

R
=

(120V)2

(24Ω)
= 600W

4.2.5 Resistors in Series and in Parallel

7. A 36.0-Ω resistor and a 18.0-Ω resistor are connected in series across a 15.0-V
battery. What is the voltage across (a) the 36.0-Ω resistor and (b) the 18.0-Ω
resistor? [CJ7 20-41]

The circuit is shown in Fig. 4.6. As the resistors are in series, the equivalent resisance is
the sum of the two:

Requiv = R1 + R2 = 36.0Ω + 18.0Ω = 54.0Ω}

and with this value, Ohm’s law gives the current I :

V = IR =⇒ I =
V

R
=

15.0V

54.0Ω
= 0.278A
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Figure 4.6: Circuit for Example 7.

This is the current which goes through each resistor.
Using Ohm’s law we can find the voltage (potential difference) across each resistor:

V36.0 = IR1 = (0.278A)(36.0Ω) = 10.0V

V18.0 = IR2 = (0.278A)(18.0Ω) = 5.00V

The sum of the two potential differences is 15.0V, as it must be since that is the same as
potential difference across the terminals of the battery.

8. What resistance must be placed in parallel with a 155-Ω resistor to make the
equivalent resistance 115Ω? [CJ7 20-48]

Eq. 4.11 gives the equivalent resistance for two resistors in parallel. If one of them is
155Ω and the equivalent resistance is 115Ω, then

1

Rpar
=

1

R1
+

1

R2
+

1

R3
+ · · · =⇒

1

115Ω
=

1

155Ω
+

1

R

Solve for R:

1

R
=

1

115Ω
−

1

155Ω
= 2.24 × 10−3 Ω−1 =⇒ R = 446Ω

9. Find the equivalent resistance between points a and b in Fig. 4.7. [SF7 18-45]

First we note that the 5.1Ω and 3.5Ω resistors are in series The picture shows a bend
where they join, but that’s irrelevant!) They are equivalent to a single resistor of value

Requiv = R1 + R2 = 5.1Ω + 3.5Ω = 8.6Ω

so we can draw a (new) equvalent circuit as shown in Fig. 4.8(a). The new 8.6Ω resistor is
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Figure 4.7: Resistor combination for Example 9.
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Figure 4.8: Steps in solving Example 9.

in parallel with the 1.8Ω resistor, so their resistances combine as given in Eq. 4.11,

1

Requiv
=

1

R1
+

1

R2
=

1

1.8Ω
+

1

8.6Ω
= 0.672Ω−1 =⇒ Requiv = 1.5Ω

Then replace the parallel resistors in Fig. 4.8(a) with a single 1.5Ω resistor and we have
the circuit shown in Fig. 4.8(b). Here there are three resistors in series so the equivalent
resistance is the sum of their values:

Requiv = 2.4Ω + 1.5Ω + 3.6Ω = 7.5Ω

So the equivalent resistance between points a and b is 7.5Ω.

10. (a) Find the equivalent resistance between points a and b in Fig. 4.9. (b)
Calculate the current in each resistor if a potential difference of 34.0V is applied
between points a and b [SF7 18-5]

(a) First, find the equivalent resistance of the pair of parallel resistors in the center. (We
have to start with this; we have no other simple series or parallel combination to start with.)
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Figure 4.9: Resistor combination for Example 10.
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Figure 4.10: First steps in solving Example 10.

Using Eq.‘4.11 we get:

1

Rrmequiv

=
1

7.00Ω
+

1

10.0Ω
= 0.243Ω−1 =⇒ Requiv = 4.12Ω

so we can replace this pair by a single 4.12Ω resistor; we now have the equivalent circuit
shown in Fig. 4.10.

Now the combination is a simple series circuit and the equivalent resistance is just the
sum of the individual resistances:

Requiv = 4.00Ω + 4.12Ω + 9.00Ω = 17.1Ω

(b) With the answer to (a) we can get the total current I flowing into the network at a
and out at b:

I =
V

Requiv
=

(34.0V)

(17.1Ω)
= 1.99A

This must be the same as the current in the 4.00Ω and 9.00Ω resistors.
Using Ohm’s law we can find the potential drops across the 4.00Ω and 9.00Ω resistors.

They are

V4.00 = IR = (1.99A)(4.00Ω) = 7.96V and V9.00 = IR = (1.99A)(9.00Ω) = 17.9V
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respectively. But the total drop in potential from a to b is 34.0V so the drop across the
resistor pair must be

34.0V − 7.96V − 17.9V = 8.1V

and this is the drop in potential of each resistor in the pair. Using Ohm’s law we get the
current in each of the resistors:

I7.00 =
V

R
=

(8.1V)

(7.00Ω)
= 1.2A

I10.0 =
V

R
=

(8.1V)

(10.0Ω)
= 0.81A

Then the currents are

I4.00 = 1.99A I7.00 = 1.2A I10.0 = 0.81A I9.00 = 1.99A


