
Chapter 2

The Electric Field

2.1 The Important Stuff

2.1.1 The Electric Field

When we solved the longer Coulomb Law problems in the previous chapter we added up the
(vector) forces from charges q1, q2, . . . acting on a certain charge Q. Now, each one of these
individual forces (and hence the sum of those forces) is proportional to the charge Q. If in
each of those problems we divided the net force by the charge Q we would get a force per
unit charge at the location of Q. This quantity (which is a vector, since force is a vector)
would depend on the values and locations of the charges q1, q2 . . .. This idea is represented
in Fig. 2.1.

So, a given configuration of charges q1, q2 . . . gives rise to an electric field E such that
the force on a charge Q is given by

F = QE . (2.1)
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Figure 2.1: (a) Charge Q experiences a force F from the charges q1, q2 . . .. (b) The quantity E = F/Q
depends only on the charges q1, q2 . . ..
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Figure 2.2: (a) Point P is a distance r away from charge q. If q is positive, the electric field points away
from q. (b) If q is negative, the electric field points toward q. In both cases the magnitude of E is given by
E = k|q|/r2.

When we use this equation we mean that after we put Q in place all the little charges
q1, q2 . . . are in the same places they were when we deduced the value of E from their values
and positions! This will be true in practice if the “test charge” Q is small. Thus we give a
practical definition of the E field as

E =
F

Q
where Q is a small charge (2.2)

From Eq. 2.2 we see that the electric field is a vector and has units of N/C.

We note that finding the electric field is more useful than finding the force on a specific

charge since once we have the E field we simply multiply by the charge Q to get the force,
as given by Eq. 2.1.

2.1.2 Finding the Electric Field

It follows from Coulomb’s law that at a point which is a distance r from a point charge q,
the magnitude of the electric field is

Ept−ch = k
|q|
r2

(2.3)

and the direction of the field is away from q if q is positive and toward q if q is negative.
This is shown in Fig. 2.2.

When we need to find the electric field due a collection of point charges we find the
electric field due to each charge and then find the (vector) sum.
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Figure 2.3: Point P is at some distance z above an infinte plane of charge with charge density σ. If σ is
positive the E field points away from the sheet and has magnitude σ/(2ε0).

2.1.3 Continuous Distributions; Sheets of Charge

Many charged objects we encounter are not sets of points charges; rather they are continuous
distributions of charge. If a two-dimensional region of space contains a charge we can talk
about its charge per unit area , or surface charge density.

Surface charge density is usually given the symbol σ; it has units of C/m2.
The simplest case of a surface charge is that of an infinite planar sheet of charge with

uniform charge density σ. We want to know the value of the electric field E at a point P
which is a distance z from the plane; see Fig. 2.3.

It turns out that the answer does not depend on z. If σ is positive, the electric field at
P points away from the sheet and has magnitude

Einf−sh =
σ

2ε0
. (2.4)

Here it is easiest to express the result using the constant ε0 introduced in Eq. 1.3
If the sheet has a negative charge density then the field points toward the sheet and the

magnitude of the field is E = |σ|/(2ε0).

Next we take the case of the two very large, flat, parallel sheets of charge, as shown in
Fig. 2.4. A total charge of +Q has been placed on one sheet and a charge of −Q on the
other. We assumed the charge is spread around uniformly so that the charge density of the
positively-charge sheet is σ = Q

A
.

This situation can arise when equal and opposite charges are placed on metal plates which
are held apart at some distance. (Such a device is called a parallel–plate capacitor.) Our
approximation is suitable for the case where the plates are separated by a distance which is
small compared with the linear size of the plates.

From Eq. 2.4 it follows that the magnitude of the E field between the plates is twice that
of the single sheet,

Einf−sh =
σ

ε0
=

Q

ε0A
. (2.5)
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Figure 2.4: Point P is between two very large sheets of charge. On one sheet the total charge is +Q and
on the other it is −Q. Both sheets have area A. With σ = Q/A, the electric field between the plates has
magnitude σ/ε0.

and the field points from the positive plate to the negative plate.
This equation gives the E field anywhere between the plates and it is good as long we

can approximate the plates as “very large”. Near the edges of the plates it is not a very
good approximation.

2.1.4 Electric Field Lines

While the direction of the electric field near a point charge or between two large plates has a
simple answer, most charge distributions produce electric fields dependence on position can
be hard to visualize.

To help in seeing the direction of the electric at all points we imagine finding the direction
of the electric field at all points in space, represented by a little arrow at any point. Then if
we join nearby arrows together to form a curve we get an electric field line. This is shown
in Fig. 2.5 for a (positive) point charge; the field lines start on the charge and go outward.
(For a negative charge the field lines would go inward to the charge.)

An interesting and important configuration of charges is the electric dipole which con-
sists of two opposite charges ±q separated by a distance which is usually taken to be “small”
in some sense. Near the charge +q the electric field points mainly away from the charge
and near the charge −q the field points mainly toward the charge. At other points in space
we have to form the sum of the field from the two charges and add. The result is shown in
Fig. 2.6.

The mathematics of the electric force gives the following properties of field lines:

• Field lines begin and end only on charges; they start on positive charges and end on
negative charges.
• Field lines cannot cross one another.

Field lines give us the direction of the electric field at any point, but since we have joined
the arrows togther to form them, a single field line can’t tell the magnitude of the E field.
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Figure 2.5: (a) A representation of the electric field around a point charge using individual vectors. (b)
Representation of the electric field around a point charge using field lines.
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Figure 2.6: Field lines of an electric dipole.
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Figure 2.7: Forces on the charged mass in Example 1. The electric force is upward (in the same direction
as the E field). The force of gravity is downward.

But the mathematics of the electric force tell us that the number of field lines that we draw
originating on a charge should be proportional the the size of the charge. If we follow that
rule, then the magnitude of the electric field can be judged from the density of field lines at
any point. If the lines are closely space, the electric field is strong at that place.

2.1.5 Conductors

In conductors any excess charge is free to move through the material.

2.2 Worked Examples

2.2.1 The Electric Field

1. An object with a net charge of 24µC is placed in a uniform electric field of
610 N

C
, directed vertically. What is the mass of the object if it “floats” in the

electric field? [SF7 15-17]

The forces acting on this object (of mass m and charge q are shown in Fig. 2.7. The
force of gravity has magnitude mg and points downward. The electric force, from Eq. 2.1
has magnitude qE and points upward. (Here the charge q is positive so that the force points
in the same direction as the E field.)

The object ”floats” so the net force on it must be zero. Hence:

qE = mg =⇒ m =
qE

g
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Figure 2.8: Plastic ball suspended in uniform E field, in Example 3.

Plug in the numbers:

m =
(24 × 10−6 C)(610 N

C )

(9.80 m
s2

)
= 1.5 × 10−3 kg

So the mass of the object is 1.5 grams.

2. An electric field of 260000 N
C points due west at a certain spot. What are the

magnitude and direction of the force that acts on a charge of −7.0µC at this
spot? [CJ6 18-25]

From F = qE, the magnitude of the force is

F = |q|E = (7.0µC)(260000 N
C) = (7.0 × 10−6 C)(2.60 × 105 N

C) = 1.8N

Since the charge q is negative here, the direction of the force is opposite that of the field E,
so the force points to the East.

3. A small 2.00-g plastic ball is suspended by a 20.0-cm -long string in a uniform
electric field, as shown in Fig. 2.8. If the ball is in equilibrium when the string
makes a 15.0◦ angle with the vertical as indicated, what is the net charge on the
ball? [SF7 15-50]

First, make a free–body diagram of the forces acting on the ball. They are: The string
tension T directed along the string; the force of gravity, mg, downward; and the electric
force which must be parallel to the electric and so here it must point to the right . These
forces are shown in Fig. 2.9. The magnitude of the electric force is qE, where q is the charge
on the plastic ball; this charge must be positive since the force points in the same direction
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Figure 2.9: Forces acting on the plastic ball in Example 3.

as E. The ball is in equilibrium so the (vector) sum of the forces is zero. The condition that
the vertical force components sum to zero allows us to find T :

T cos 15.0◦−mg = 0 =⇒ T =
mg

cos 15.0◦
=

(2.00 × 10−3 kg)(9.80 m
s2 )

(cos 15.0◦)
= 2.03×10−2 N

The condition that the horizontal forces sum to zero gives us:

−T sin 15◦ + Felec = −T sin 15◦ + qE = 0 =⇒ q =
T sin 15◦

E

Plug in the numbers and get:

q =
(2.03 × 10−2 N) sin 15◦

(1.00 × 10−3 N
C
)

= 5.25 × 10−6 C = 5.25µC

4. Each of the protons in a particle beam has a kinetic energy of 3.25 × 10−15 J.
What are the magnitude and direction of the electric field that will stop these
protons in a distance of 1.25m? [SF7 15-22]

First, use the proton mass and definition of kinetic to find the initial speed of these
protons. With mp = 1.67 × 10−27 kg, we find:

KE = 1
2mpv

2 = 3.25 × 10−15 J =⇒ v2 =
2(3.25 × 10−15 J)

(1.67 × 10−27 kg)
= 3.89 × 1012 m2

s2

Then:
v = 1.97 × 106 m

s
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Figure 2.10: Proton slows to a halt in Example 4.

The motion of the proton is as shown in Fig. 2.10. Using our equations of kinematics,
we can find the acceleration of the proton:

v2 = v2
0 + 2ax =⇒ a =

v2 − v2
0

2x
=

0 − (1.97 × 106 m
s )2

2(1.25m)
= −1.56 × 1012 m

s2

which should be negative since the proton’s velocity decreases.
The force on the proton comes from the electric field, as given by Eq. 2.1:

Fx = max = qEx = +eEx

where we’ve used the fact that a proton’s charge is +e. Then:

Ex =
max

e
=

(1.67 × 10−27 kg)(−1.56 × 1012 m
s2 )

(1.60 × 10−19 C)
= −1.62 × 104 N

C

The electric field has magnitude 1.62×104 N
C and points in the −x direction, that is, opposite

the initial motion of the proton.

5. A proton accelerates from rest in a uniform electric field of 640 N
C . At some

time, its speed is 1.20 × 106 m
s . (a) Find the magnitude of the acceleration of the

proton. (b) How long does it take the proton to reach this speed? (c) How far
has it moved in that interval? (d) What is its kinetic energy at the later time?
[SF7 15-23]

(a) The facts given in the problem are diagrammed in Fig. 2.11. If the E field points in
the +x direction, then from Eq. 2.1 the force on the proton is

Fx = qEx = +eEx

and the acceleration of the proton is

ax =
Fx

mp
=

eEx

mp
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Figure 2.11: Proton is accelerated by E field in Example 5.

Use mp = 1.67 × 10−27 kg and get:

ax =
(1.60 × 10−19 C)(640 N

C)

(1.67 × 10−27 kg)
= 6.13 × 1010 m

s2

(b) We have the (constant) acceleration of the proton and its initial and final speeds so
using one of our equations from kinematics we can find the distance it traveled:

v2
x = v2

0x + 2axx =⇒ x =
(v2

x − v2
0x)

2ax

Plug in the numbers:

x =
(1.20 × 106 m

s )2 − 0

2(6.13 × 1010 m
s2 )

= 11.7m

(c) Use the definition of kinetic energy, KE = 1
2mv2 and get:

KE = 1
2(1.67 × 10−27 kg)(1.20 × 106)2 = 1.20 × 10−15 J

2.2.2 Finding the Electric Field

6. Three point charges are aligned along the x-axis as shown in Fig. 2.12. Find
the electric field at the position x = +2.0m, y = 0. [SF7 15-49]

The point at which we want to calculate the E field, (2.0m, 0), lies to the right of all
the charges. At that point, the field due to the −4.0nC charge must point to the left since
it is a negative charge. That charge lies at a distance of 2.50m from So x-component of its
contribution is

E1,x = k
|q1|
r2
1

= (8.99 × 109 N·m2

C2 )
(4.0 × 10−9 C)

(2.50m)2
= −5.75 N

C
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Figure 2.12: Configuration of charges for Example 6.
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Figure 2.13: Configuration of charges for Example 7.

The field due to the charge at the origin must point to the right since it is a positive
charge. The x-component of its contribution is

E2,x = k
|q2|
r2
2

= (8.99 × 109 N·m2

C2 )
(5.0 × 10−9 C)

(2.00m)2
= +11.2 N

C

Finally, the field due to the 3.0nC charge must also point to the right since it is a positive
charge. This charge’s distance from our “observation” point is 1.20m, so the x-component
of its contribution is

E3,x = k
|q3|
r2
3

= (8.99 × 109 N·m2

C2 )
(3.0 × 10−9 C)

(1.20m)2
= +18.7 N

C

Add these up, and the total E field at the given point is

Ex = −5.75 N
C + 11.2 N

C + 18.7 N
C = +24.1 N

C

7. In Fig. 2.13, determine the point (other than infinity) at which the total
electric field is zero. [SF7 15-27]

For all points that we consider there will be a (vector) electric field due to the −2.5µC
charge and one due to the +6.0µC charge; we want to find the point at which these vectors
add to zero.

It would seem that this point should lie on the line joining the two charges, but do we
need to consider points off this line? No, because at points off this axis the two field vectors



22 CHAPTER 2. THE ELECTRIC FIELD

will point toward or away from the individual charges and at points off the axis those vectors
can’t be parallel and so can’t cancel. So we only need to think about points on the axis.

Could this point lie between the two charges? In that region, the field due to the −2.5µC
charge will point toward that charge (i.e. to the left) and that due to the +6.0µC charge
will point away from that charge (i.e. also to the left). Those vectors can’t cancel regardless
of their magnitudes, so the point can’t lie between the two charges.

How about someplace to the right of both charges? In that region, the +6.0µC charge
is always closer than the −2.5µC charge. That being the case, the field from the +6.0µC
charge must always have the larger magnitude (charge is bigger and distance is smaller) so
again the vectors can’t cancel.

The point we want must lie to the left of both charges. In that region, the field due to
the −2.5µC charge points to the right and that due to the +6.0µC charge points to the
left. (Note that the −2.5µC charge is always closer and since it also has a smaller charge,
there could be some place where the fields cancel.) If we consider a point which lies at a
distance d to the left of the −2.5µC charge, then its distance from the +6.0µC charge will
be d + 1.0m, and using Eq. 2.3 the x component of the total field will be

Ex,total = k
(+2.5µC)

d2
− k

(6.0µC)

(d + 1.0m)2
= 0 (2.6)

It is now just a math problem to solve for d. We’re done with the physics.
First off, we can cancel the constant k in Eq. 2.6 as well as the “µC” units. One trick

that will work (unless you’ve got any better ideas!) is to multiply both sides of Eq. 2.6 by
d2(d + 1.0m)2. That gives us:

d2(d + 1.0m)2 (+2.5)

d2
− d2(d + 1.0m)2 (6.0)

(d + 1.0m)2
= 0

Cancel things and get:
(d + 1.0m)2(2.5) − d2(6.0) = 0

which you might recognize as a quadratic equation, so that we can get an answer. Expand
the square:

(2.5)(d2 + (2.0m)d + 1.0m2) − (6.0)d2 = 0

and ignoring the “m” units symbol for now, multiply and get:

2.5d2 + 5.0d + 2.5 − 6.0d2 = −3.5d2 + 5.0d + 2.5 = 0

or, without the leading minus sign,

3.5d2 − 5.0d − 2.5 = 0
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Almost there! Use the quadratic formula to find:

+5.0 ±
√

25.0 + 35

7.0
= 1.8m

Here we’ve considered only the “+” root since the other would give a negative value for d
which we assumed was positive.

So the point we want is 1.8m to the left of the −2.5µC charge.


