

Inconsistency in Ampere's Law

> Ampere's Law can be written

$$
\sum_{\substack{\text { closed } \\ \text { path }}} B_{\|} \Delta s=\mu_{0} I_{\text {encl }}=\mu_{0} \sum_{\text {surface }} j \Delta A
$$

where we made explicit relation between current and current density

$$
I=\sum_{\text {surface }} j \Delta A
$$

$>$ Note that surface over which sum is evaluated can be any open surface bounded by closed Amperian loop
$>$ Figure shows a schematic of a parallel plate capacitor being charged 4 possible surfaces are shown bounded by a single Amperian loop
$>$ For each of these surfaces the flux of J must give the same current
$>$ As indicated, surfaces 1, 2 and 4 are "pierced" by the current I
$>$ However, as can be seen, no current passes through surface 3

Fixing Ampere's Law

$>$ Maxwell realized existence of a Displacement Current "flowing" between plates of capacitor, passing through surface 3
\geqslant Displacement current through surface 3 must be equal to "normal" (conduction) current passing through surface 1
$>$ The conduction current through surface 1 can be written as

$$
I_{d}=\sum_{\text {surface }} j \Delta A=\frac{\Delta q}{\Delta t}=\epsilon_{0} \frac{\Delta \Phi_{E}}{\Delta t}
$$

\Rightarrow Including the displacement current inconsistency is removed and Ampere's Law becomes

$$
\sum_{\substack{\text { closed } \\ \text { path }}} B_{\|} \Delta s=\mu_{0} I_{\mathrm{encl}}+\mu_{0} \epsilon_{0} \frac{\Delta \Phi_{E}}{\Delta t}
$$

Maxwell's Equations

$$
\sum_{\substack{\text { cowos } \\ \text { unfrace }}} E_{\perp} \Delta A=\frac{Q_{\text {encl }}}{\epsilon_{0}}
$$

$$
\sum_{\substack{\text { closed } \\ \text { surface }}} B_{\perp} \Delta A=0
$$

$$
\sum_{\substack{\text { closed } \\ \text { path }}} B_{\|} \Delta s=\mu_{0} I_{\mathrm{encl}}+\mu_{0} \epsilon_{0} \frac{\Delta \Phi_{E}}{\Delta t}
$$

$$
\sum E_{\|} \Delta s=\mathcal{E}=-\frac{\Delta \Phi_{M}}{\Delta t}
$$

Gauss Law

No magnetic monopoles

Ampere-Maxwell Law

Faraday-Lenz Law

Lorentz Force

$$
\vec{F}=q_{0} \vec{E}+q_{0}(\vec{v} \times \vec{B})
$$

$>$ Variation of magnetic flux creates electric field and variation of electric flux creates magnetic field

Flectromagnetics Waves

> Take a single positive charge and wiggle it up and down
$>$ Charge changes position as a función of time

$>$ Thus, electric field it creates changes in time
$>$ But since charge is moving, it constitutes a current
> Current points up when charge moves up, and current points down when charge moves down

- This current, like all currents, creates a magnetic field
$>$ Direction of field is given by RHR-2

$>$ By RHR-2, we see that when current points up, magnetic field points into screen,
and when current points down, magnetic field points out of screen
$>$ Thus, we have a changing magnetic field and a changing electric field which are
oriented at right angles to each other!
$>$ Here, electric field is in xz-plane, and magnetic field is in xy-plane
> Fields move out away from source (our accelerating charge)

Propagation of Electromagnetic (EM) Waves
$>$ An EM wave is a transverse wave
Wave motion is at right angles to direction of propagation

1. Stationary charges create electric fields

2. Moving charges (constant velocity) create magnetic fields
3. Accelerating charges create electromagnetic waves
$>$ EMM waves don't need a medium to travel through
$>$ They can propagate through a vacuum
$>$ How fast do EM waves travel?
$>$ Maxwell's equations predict that E - and B-fields propagate through space at speed of light

$$
v \equiv c=\frac{E}{B}=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=\frac{1}{\sqrt{\left(8.85 \times 10^{-12} \mathrm{C}^{2} \cdot \mathrm{~m}^{2} / \mathrm{N}\right)\left(4 \pi \times 10^{-7} \mathrm{~N} \cdot \mathrm{~s}^{2} / \mathrm{C}^{2}\right)}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

$>E$ and B are magnitudes of electric and magnetic fields at same point in space

Speed of Light

Very Past!.... but finite

$$
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

```
N/oon to 1Harth }\longrightarrow1.3\mathrm{ seconds
    Sun to Narth }->8\mathrm{ minutes
```

Distant stars and other astronomical objects are so far away that astronomers use a unit of distance called light year (ly)

$$
1 \mathrm{ly}=\text { distance light travels in } 1 \text { year }=9.5 \times 10^{15} \mathrm{~m}
$$

$>$ Like any wave, EM waves have a frequency, a period and an amplitude

Electromagnetic Waves

$$
f=\frac{c}{\lambda}
$$

Higher frequencies mean shorter wavelengths!

Electromagnetic Spectrum

Energy Carried by FIM Waves

An EM wave consists of both an electric and magnetic field, and energy is contained in both fields
energy density

$$
u=u_{E}+u_{B}=\frac{1}{2} \epsilon_{0} E^{2}+\frac{1}{2} \frac{B^{2}}{\mu_{0}}
$$

$$
\begin{aligned}
& \text { Using } E=c B \\
& u=\frac{1}{2} \epsilon_{0} E^{2}+\frac{1}{2} \frac{\epsilon_{0} \mu_{0} E^{2}}{\mu_{0}}=\epsilon_{0} E^{2} \\
& u=\frac{1}{2} \epsilon_{0} E^{2}+\frac{1}{2} \epsilon_{0} c^{2} B^{2}=\frac{B^{2}}{\mu_{0}} \\
& u=\epsilon_{0} E^{2}=\epsilon_{0} E c B=\frac{\epsilon_{0} E B}{\sqrt{\epsilon_{0} \mu_{0}}}=\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} E B
\end{aligned}
$$

Poynting Vector

$>$ Energy a wave transports is

$$
\Delta U=u \Delta V=(u)(A \Delta x)=\left(\epsilon_{0} E^{2}\right)(A c \Delta t)
$$

$>$ Rate of energy flow per unit area is P

$$
\begin{aligned}
& S=\frac{\Delta U}{A \Delta t}=\frac{\left(\epsilon_{0} E^{2}\right)(A c \Delta t)}{A \Delta t}=\epsilon_{0} c E^{2} \\
& S=\epsilon_{0} c E^{2}=\frac{c}{\mu_{0}} B^{2}=\frac{E B}{\mu_{0}}
\end{aligned}
$$

$>$ Poynting vector $\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}$
\Rightarrow Plane transverse electromagnetic waves fields \vec{E} and \vec{B} are perpendicular

$$
|\vec{S}|=\frac{1}{\mu_{0}} E B
$$

$>$ I intensity of wave defined as time-average of S

$$
I=\bar{S}=\frac{1}{2} \epsilon_{0} c E_{0}^{2}=\frac{1}{2} \frac{c}{\mu_{0}} B_{0}^{2}=\frac{E_{0} B_{0}}{2 \mu_{0}}
$$

$>E$ and B are sinusoidal $-\overline{E^{2}}=E_{0}^{2} / 2$ and $\overline{B^{2}}=B_{0} / 2$ just as for electric currents and voltages

$$
I=\bar{S}=\frac{E_{\mathrm{rms}} B_{\mathrm{rms}}}{\mu_{0}}
$$

$$
E_{\mathrm{rms}}=\sqrt{\overline{E^{2}}}=E_{0} / \sqrt{2}
$$

$$
B_{\mathrm{rms}}=\sqrt{\overline{B^{2}}}=B_{0} / \sqrt{2}
$$

$>$ Time-averaged energy density of wave is then

$$
\bar{u}=\overline{u_{E}+u_{B}}=\epsilon_{0} \overline{E^{2}}=\frac{\epsilon_{0}}{2} E_{0}^{2}=\frac{1}{\mu_{0}} \overline{B^{2}}=\frac{B_{0}^{2}}{2 \mu_{0}}
$$

> Intensity is related to average energy density by

$$
I=\bar{S}=c \bar{u}
$$

> Material objects consist of charged particles
$>$ An electromagnetic wave incident on the object exerts forces on the charged particles
$>$ To understand direction of force for a very specific case, consider a plane electromagnetic wave incident on a metal
$>$ When electric field is in direction of positive \mathbf{y}-axis, electrons move in negative \mathbf{y}-direction, with magnetic field in direction of positive \mathbf{z}-axis
$>$ By applying right-hand rule, and accounting for negative charge of electron, we can see that force on electron from magnetic field is in direction of positive \mathbf{x}-axis, which is direction of wave propagation
> When \vec{E} field reverses \vec{B} field does too and force is again in same direction
$>$ Force does work on the particles of the object increasing its energy

$$
\Delta U=F \Delta x \Rightarrow F=\frac{\Delta U}{\Delta x}
$$

$>$ This force occurs because electromagnetic waves contain and transport momentum p
$>$ Change in momentum Δp is estimated to be

$$
F=\frac{\Delta p}{\Delta t} \Rightarrow \Delta p=F \Delta t=\frac{\Delta U}{\Delta x} \Delta t=\frac{\Delta U}{\Delta x / \Delta t}=\Delta U / c
$$

Radiation Pressure

$>\Delta U$ is energy absorbed in a time Δt
\Rightarrow If the EM wave is completely reflected the momentum transferred is $\Delta p=2 \frac{\Delta U}{c}$
$>$ Radiation pressure is given by
Solar Sail

$$
\begin{aligned}
& P_{\mathrm{rad}}=\frac{F}{A}=\frac{\Delta p}{\Delta t} \frac{1}{A}=\frac{\Delta U}{\Delta t} \cdot \frac{1}{A c}=S A \cdot \frac{1}{A c}=\frac{S}{c} \\
& P_{\mathrm{rad}}=\frac{F}{A}=\frac{\Delta p}{\Delta t} \frac{1}{A}=2 \frac{\Delta U}{\Delta t} \cdot \frac{1}{A c}=2 S A \cdot \frac{1}{A c}=2 \frac{S}{c}
\end{aligned}
$$

16

円xample

$>$ A point light source is emitting light uniformly in all directions
$>$ At a distance of 2.5 m from source, $r m s$ electric field strengh of light is $19.0 \mathrm{~N} / \mathrm{C}$
$>$ Assuming that light does not reflect from anything in environment, determine average power of light emitted by source
$>$ What do we know $-E_{r m s ; ~}$
$>$ Average light intensity at imaginary spherical surface

$$
\bar{S}=c \bar{u}=c \varepsilon_{0} E_{r m s}^{2}
$$

$>$ Power of source

$$
\begin{aligned}
& \bar{P}=\bar{S} \cdot A=\bar{S} \cdot\left(4 \pi r^{2}\right) \quad \bar{S}=\frac{\bar{P}}{4 \pi r^{2}} \\
& \bar{P}=\bar{S} \cdot A=\bar{S} \cdot\left(4 \pi r^{2}\right) \\
& =c \varepsilon_{0} E_{r m s}^{2} \cdot\left(4 \pi r^{2}\right) \\
& =75.3 \mathrm{~W}
\end{aligned}
$$

Doppler Effect (Sound Waves)

$u \equiv$ velocity of sound waves,
$v \equiv$ recession velocity of the source,
$\Delta t_{S} \equiv$ the period of the wave at the source,
$\Delta t_{O} \equiv$ the period of the wave as observed.

$>$ Now consider the following sequence, as illustrated below
(1) Source emits a wave crest
(2) At a time Δt_{S} later, source emits a second wave crest during this time interval source has moved a distance $\Delta \ell=v \Delta t_{S}$ further away from observer
(3) Stationary observer receives first wave crest
(4) At some time Δt_{O} after (3), observer receives second wave crest Our gol is to find Δt_{O}

$>$ We are interested, however, only in time difference Δt_{O} between reception of first and second crests
$>$ This time difference does not depend on distance between source and observer, since both crests have to travel this distance
$>$ Second crest, however, has to travel an extra distance

$$
\Delta \ell=v \Delta t_{S}
$$

since source moves this distance between emission of two crests
$>$ Extra time that it takes second crest to travel this distance is $\Delta \ell / u$, so time between reception of two crests is

$$
\begin{align*}
\Delta t_{O} & =\Delta t_{S}+\frac{\Delta \ell}{u} \\
& =\Delta t_{S}+\frac{v \Delta t_{S}}{u} \tag{}\\
& =\left(1+\frac{v}{u}\right) \Delta t_{S}
\end{align*}
$$

$>$ Result is usually described in terms of redshift z, which is defined by statement that wavelength is increased by a factor of $(1+z)$
$>$ Since wavelength λ is related to period Δt by $\lambda=u \Delta t$, , we can write definition of redshift as

$$
\frac{\lambda_{O}}{\lambda_{S}}=\frac{\Delta t_{O}}{\Delta t_{S}} \equiv 1+z
$$

where λ_{S} and λ_{O} are wavelength as measured at source and at observer respectively $>$ Combining this definition with Eq. (\uparrow), we find that redshift for this case is given by

$$
z=v / u \quad \text { (Nonrelativistic, source moving) }
$$

$>$ Suppose now that source stands still, but observer is receding at a speed v
$>$ In this case secuence becomes
(l') Source emits a wave crest

Observer
(2') At a time Δt_{S} later, source emits a second wave crest Source is standing still

(3') Moving observer receives first wave crest

(4') At a time Δt_{O} after (3'), observer receives second wave crest During time interval between (3') and (4'), observer has moved a distance $\Delta \ell=v \Delta t_{O}$ further from source
(4')

$>$ Using same strategy as in first case, we note that in this case, second wave crest must travel an extra distance $\Delta \ell=v \Delta t_{O}$

Thus $\quad \Delta t_{O}=\Delta t_{S}+\frac{\Delta \ell}{u}=\Delta t_{S}+\frac{v \Delta t_{O}}{u}$
$>$ In this case Δt_{O} appears on both sides of equation, but we can easily solve Δt_{O} to find

$$
\Delta t_{O}=\left(1-\frac{v}{u}\right)^{-1} \Delta t_{S}
$$

$>$ Recalling definition of z

$$
z=\frac{\Delta t_{O}}{\Delta t_{S}}-1=\frac{1}{1-(v / u)}-1
$$

$$
=\frac{v / u}{1-(v / u)} \quad \text { (Nonrelativistic, observer moving) }
$$

Summary

$>$ Frequency $\quad f=1 / \Delta t$
\Rightarrow Motion of Observer $f_{o}=f_{s}\left(1 \pm v_{o} / u\right) \quad+$ towards source and - away from the source
$>$ Motion of Source $f_{o}=f_{s}\left(1 \mp v_{s} / u\right)^{-1}-$ towards source and + away from source

$$
f_{o}=f_{s} \frac{1 \pm v_{o} / u}{1 \mp v_{s} / u}
$$

$>$ Since $v_{o} / u<1$ and $v_{s} / u<1$ for $x<1$

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots \quad \frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots
$$

Take $x^{2} \ll 1$ negligible

$$
f_{o} \approx f_{s}\left(1 \pm v_{\mathrm{rel}} / u\right) \Rightarrow v_{\mathrm{rel}}=v_{o}+v_{s}
$$

When observer of a wave, or source of wave (or both) is moving, observed wave frequency is different than that emitted by source
> EM waves also exhibit a Doppler effect

Butio

l- They do not require a medium through which to propagate, and
2- Only relative motion of source to observer is important, since speed at which all EM waves move is same speed of light
\rangle So how do we calculate shift in frequency?
>If EM wave, sources and observer all travel along same line, then
$f_{o}=f_{s}\left(1 \pm \frac{v_{r e l}}{c}\right) \left\lvert\, \begin{array}{ll}f_{o} & \text { is observed frequency } \\ f_{s} & \text { is frequency emitted by source } \\ v_{r e l} & \text { is relative velocity between observer and source }\end{array}\right.$

+ sign is used when object and source move toward each other
- sign is used when object and source move away from each other

This is valid for speeds $v_{r e l} \ll c$

25

Txample

$>$ A distant galaxy emits light that has a wavelength of 500.7 nm
$>$ On earth, wavelength of this light is measured to be 503.7 nm
(a) Decide if galaxy is moving away from or toward earth
(b) Find speed of galaxy relative to earth

Solution

$>$ We start with Doppler equation $f_{o}=f_{s}\left(1 \pm \frac{v_{r e l}}{c}\right)$
$>$ Light is shifted to longer wavelengths, which means smaller frequencies $\quad f=c / \lambda$
$>$ Thus $-f_{o}<f_{s}$
\Rightarrow Which means that parentheses $\left(1 \pm \frac{v_{r e l}}{c}\right)$ must be <1
$>$ Therefore, correct sign in parentheses is -sign galaxy is moving away from earth
(b) from Doppler equation

$$
v_{r e l}=c\left(1-\frac{f_{o}}{f_{s}}\right) \quad \text { Butb } \mapsto \quad f=c / \lambda
$$

$>$ Thus $v_{\text {rel }}=c\left(1-\frac{\lambda_{s}}{\lambda_{o}}\right)=3 \times 10^{8}\left(1-\frac{500.7 \mathrm{~nm}}{503.7 \mathrm{~nm}}\right)=1.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$

