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Question ☛

➣ Steady electric current can give steady magnetic field           

➣ Because of symmetry between electricity and magnetism ☛ we can ask:

➣ Steady magnetic field can give steady electric current

➣ OR	Changing magnetic field can give steady electric currentS ECT I O N  31 . 1 •  Faraday’s Law of Induction 969

Finally, the galvanometer reads zero when there is either a steady current or no
current in the primary circuit. The key to understanding what happens in this experi-
ment is to note first that when the switch is closed, the current in the primary circuit
produces a magnetic field that penetrates the secondary circuit. Furthermore, when

Active Figure 31.1 (a) When a magnet is moved toward a loop of wire connected to a
sensitive ammeter, the ammeter deflects as shown, indicating that a current is induced
in the loop. (b) When the magnet is held stationary, there is no induced current in the
loop, even when the magnet is inside the loop. (c) When the magnet is moved away
from the loop, the ammeter deflects in the opposite direction, indicating that the
induced current is opposite that shown in part (a). Changing the direction of the
magnet’s motion changes the direction of the current induced by that motion.
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At the Active Figures link
at http://www.pse6.com, you
can move the magnet and
observe the current in the
ammeter.

At the Active Figures link
at http://www.pse6.com, you
can open and close the switch
and observe the current in the
ammeter.

Active Figure 31.2 Faraday’s experiment. When the switch in the primary circuit is
closed, the ammeter in the secondary circuit deflects momentarily. The emf induced in
the secondary circuit is caused by the changing magnetic field through the secondary coil.
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➣ When a magnet is moved toward a loop of wire ☛ sensitive ammeter deflects    

                                     indicating that current is induced in the loop

➣ When  magnet is held stationary ☛ there is no induced current in the loop 

even when the magnet is inside the loop

➣ When magnet is moved away from loop ☛ ammeter deflects in opposite direction        

indicating that induced current is in opposite direction
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ANSWER ☛

➣ Because of symmetry between electricity and magnetism ☛ we can ask:
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Magnetic Flux
① Magnetic flux through surface S
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9.1 Magnetic Flux

① Magnetic flux through surface S

Chapter 8

Faraday’s Law of Induction

8.1 Faraday’s Law

In the previous chapter, we have shown that steady electric current can give
steady magnetic field because of the symmetry between electricity & magnetism.
We can ask: Steady magnetic field can give steady electric current. �

OR Changing magnetic field can give steady electric current. �

Define :

(1) Magnetic flux through surface S:

�m =

ˆ
S

�B · d �A

Unit of �m : Weber (Wb)
1Wb = 1Tm2

(2) Graphical:

�m = Number of magnetic field lines passing through surface S

Faraday’s law of induction:

Induced emf |E| = N

�����
d�m

dt

�����

where N = Number of coils in the circuit.

Unit of Weber (Wb)
1Wb = 1Tm2

② Graphical

☛ number of magnetic field lines passing through surface

Flux through plane is maximum when magnetic field is perpendicular to plane

Flux through plane is zero when magnetic field is parallel to plane surface

30.5 Magnetic Flux

The flux associated with a magnetic field is defined in a manner similar to that used to
define electric flux (see Eq. 24.3). Consider an element of area dA on an arbitrarily
shaped surface, as shown in Figure 30.20. If the magnetic field at this element is B, the
magnetic flux through the element is B ! dA, where dA is a vector that is perpendicular
to the surface and has a magnitude equal to the area dA. Therefore, the total magnetic
flux "B through the surface is

(30.18)

Consider the special case of a plane of area A in a uniform field B that makes an
angle # with dA. The magnetic flux through the plane in this case is

(30.19)

If the magnetic field is parallel to the plane, as in Figure 30.21a, then # $ 90° and the
flux through the plane is zero. If the field is perpendicular to the plane, as in Figure
30.21b, then # $ 0 and the flux through the plane is BA (the maximum value).

The unit of magnetic flux is T ! m2, which is defined as a weber (Wb); 1 Wb $
1 T ! m2.

"B $ BA cos #

"B $  ! B !d A

940 CHAPTE R  3 0 •  Sources of the Magnetic Field

We also could obtain this result by reconsidering the magnetic field of a toroid
(see Example 30.5). If the radius r of the torus in Figure 30.14 containing N turns is
much greater than the toroid’s cross-sectional radius a, a short section of the toroid
approximates a solenoid for which n $ N/2%r. In this limit, Equation 30.16 agrees with
Equation 30.17.

Equation 30.17 is valid only for points near the center (that is, far from the ends)
of a very long solenoid. As you might expect, the field near each end is smaller than
the value given by Equation 30.17. At the very end of a long solenoid, the magnitude of
the field is half the magnitude at the center (see Problem 32).

Quick Quiz 30.6 Consider a solenoid that is very long compared to the
radius. Of the following choices, the most effective way to increase the magnetic field
in the interior of the solenoid is to (a) double its length, keeping the number of turns
per unit length constant, (b) reduce its radius by half, keeping the number of turns per
unit length constant, (c) overwrapping the entire solenoid with an additional layer of
current-carrying wire.
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Figure 30.20 The magnetic flux
through an area element dA is
B ! dA $ B dA cos #, where dA is a
vector perpendicular to the
surface.
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Active Figure 30.21 Magnetic flux through a plane lying in a magnetic field.
(a) The flux through the plane is zero when the magnetic field is parallel to the plane
surface. (b) The flux through the plane is a maximum when the magnetic field is
perpendicular to the plane.

At the Active Figures link
at http://www.pse6.com, you
can rotate the plane and
change the value of the field to
see the effect on the flux.

Definition of magnetic flux

30.5 Magnetic Flux

The flux associated with a magnetic field is defined in a manner similar to that used to
define electric flux (see Eq. 24.3). Consider an element of area dA on an arbitrarily
shaped surface, as shown in Figure 30.20. If the magnetic field at this element is B, the
magnetic flux through the element is B ! dA, where dA is a vector that is perpendicular
to the surface and has a magnitude equal to the area dA. Therefore, the total magnetic
flux "B through the surface is

(30.18)

Consider the special case of a plane of area A in a uniform field B that makes an
angle # with dA. The magnetic flux through the plane in this case is

(30.19)

If the magnetic field is parallel to the plane, as in Figure 30.21a, then # $ 90° and the
flux through the plane is zero. If the field is perpendicular to the plane, as in Figure
30.21b, then # $ 0 and the flux through the plane is BA (the maximum value).

The unit of magnetic flux is T ! m2, which is defined as a weber (Wb); 1 Wb $
1 T ! m2.

"B $ BA cos #

"B $  ! B !d A

940 CHAPTE R  3 0 •  Sources of the Magnetic Field

We also could obtain this result by reconsidering the magnetic field of a toroid
(see Example 30.5). If the radius r of the torus in Figure 30.14 containing N turns is
much greater than the toroid’s cross-sectional radius a, a short section of the toroid
approximates a solenoid for which n $ N/2%r. In this limit, Equation 30.16 agrees with
Equation 30.17.

Equation 30.17 is valid only for points near the center (that is, far from the ends)
of a very long solenoid. As you might expect, the field near each end is smaller than
the value given by Equation 30.17. At the very end of a long solenoid, the magnitude of
the field is half the magnitude at the center (see Problem 32).

Quick Quiz 30.6 Consider a solenoid that is very long compared to the
radius. Of the following choices, the most effective way to increase the magnetic field
in the interior of the solenoid is to (a) double its length, keeping the number of turns
per unit length constant, (b) reduce its radius by half, keeping the number of turns per
unit length constant, (c) overwrapping the entire solenoid with an additional layer of
current-carrying wire.

B

d A
θ

Figure 30.20 The magnetic flux
through an area element dA is
B ! dA $ B dA cos #, where dA is a
vector perpendicular to the
surface.

(a) (b)

B

dA

B

dA

Active Figure 30.21 Magnetic flux through a plane lying in a magnetic field.
(a) The flux through the plane is zero when the magnetic field is parallel to the plane
surface. (b) The flux through the plane is a maximum when the magnetic field is
perpendicular to the plane.

At the Active Figures link
at http://www.pse6.com, you
can rotate the plane and
change the value of the field to
see the effect on the flux.

Definition of magnetic flux

☛

�M

�M

� ~A

� ~A

� ~A
~B

~B

�M =
X

~B ·� ~A

9.1 Magnetic Flux

① Magnetic flux through surface S

Chapter 8

Faraday’s Law of Induction

8.1 Faraday’s Law

In the previous chapter, we have shown that steady electric current can give
steady magnetic field because of the symmetry between electricity & magnetism.
We can ask: Steady magnetic field can give steady electric current. �

OR Changing magnetic field can give steady electric current. �

Define :

(1) Magnetic flux through surface S:

�m =

ˆ
S

�B · d �A

Unit of �m : Weber (Wb)
1Wb = 1Tm2

(2) Graphical:

�m = Number of magnetic field lines passing through surface S

Faraday’s law of induction:

Induced emf |E| = N

�����
d�m

dt

�����

where N = Number of coils in the circuit.

Unit of Weber (Wb)
1Wb = 1Tm2

② Graphical

☛ number of magnetic field lines passing through surface

Flux through plane is maximum when magnetic field is perpendicular to plane

Flux through plane is zero when magnetic field is parallel to plane surface

30.5 Magnetic Flux

The flux associated with a magnetic field is defined in a manner similar to that used to
define electric flux (see Eq. 24.3). Consider an element of area dA on an arbitrarily
shaped surface, as shown in Figure 30.20. If the magnetic field at this element is B, the
magnetic flux through the element is B ! dA, where dA is a vector that is perpendicular
to the surface and has a magnitude equal to the area dA. Therefore, the total magnetic
flux "B through the surface is

(30.18)

Consider the special case of a plane of area A in a uniform field B that makes an
angle # with dA. The magnetic flux through the plane in this case is

(30.19)

If the magnetic field is parallel to the plane, as in Figure 30.21a, then # $ 90° and the
flux through the plane is zero. If the field is perpendicular to the plane, as in Figure
30.21b, then # $ 0 and the flux through the plane is BA (the maximum value).

The unit of magnetic flux is T ! m2, which is defined as a weber (Wb); 1 Wb $
1 T ! m2.

"B $ BA cos #

"B $  ! B !d A

940 CHAPTE R  3 0 •  Sources of the Magnetic Field

We also could obtain this result by reconsidering the magnetic field of a toroid
(see Example 30.5). If the radius r of the torus in Figure 30.14 containing N turns is
much greater than the toroid’s cross-sectional radius a, a short section of the toroid
approximates a solenoid for which n $ N/2%r. In this limit, Equation 30.16 agrees with
Equation 30.17.

Equation 30.17 is valid only for points near the center (that is, far from the ends)
of a very long solenoid. As you might expect, the field near each end is smaller than
the value given by Equation 30.17. At the very end of a long solenoid, the magnitude of
the field is half the magnitude at the center (see Problem 32).

Quick Quiz 30.6 Consider a solenoid that is very long compared to the
radius. Of the following choices, the most effective way to increase the magnetic field
in the interior of the solenoid is to (a) double its length, keeping the number of turns
per unit length constant, (b) reduce its radius by half, keeping the number of turns per
unit length constant, (c) overwrapping the entire solenoid with an additional layer of
current-carrying wire.

B

d A
θ

Figure 30.20 The magnetic flux
through an area element dA is
B ! dA $ B dA cos #, where dA is a
vector perpendicular to the
surface.

(a) (b)

B

dA

B

dA

Active Figure 30.21 Magnetic flux through a plane lying in a magnetic field.
(a) The flux through the plane is zero when the magnetic field is parallel to the plane
surface. (b) The flux through the plane is a maximum when the magnetic field is
perpendicular to the plane.

At the Active Figures link
at http://www.pse6.com, you
can rotate the plane and
change the value of the field to
see the effect on the flux.

Definition of magnetic flux

30.5 Magnetic Flux

The flux associated with a magnetic field is defined in a manner similar to that used to
define electric flux (see Eq. 24.3). Consider an element of area dA on an arbitrarily
shaped surface, as shown in Figure 30.20. If the magnetic field at this element is B, the
magnetic flux through the element is B ! dA, where dA is a vector that is perpendicular
to the surface and has a magnitude equal to the area dA. Therefore, the total magnetic
flux "B through the surface is

(30.18)

Consider the special case of a plane of area A in a uniform field B that makes an
angle # with dA. The magnetic flux through the plane in this case is

(30.19)

If the magnetic field is parallel to the plane, as in Figure 30.21a, then # $ 90° and the
flux through the plane is zero. If the field is perpendicular to the plane, as in Figure
30.21b, then # $ 0 and the flux through the plane is BA (the maximum value).

The unit of magnetic flux is T ! m2, which is defined as a weber (Wb); 1 Wb $
1 T ! m2.

"B $ BA cos #

"B $  ! B !d A

940 CHAPTE R  3 0 •  Sources of the Magnetic Field

We also could obtain this result by reconsidering the magnetic field of a toroid
(see Example 30.5). If the radius r of the torus in Figure 30.14 containing N turns is
much greater than the toroid’s cross-sectional radius a, a short section of the toroid
approximates a solenoid for which n $ N/2%r. In this limit, Equation 30.16 agrees with
Equation 30.17.

Equation 30.17 is valid only for points near the center (that is, far from the ends)
of a very long solenoid. As you might expect, the field near each end is smaller than
the value given by Equation 30.17. At the very end of a long solenoid, the magnitude of
the field is half the magnitude at the center (see Problem 32).

Quick Quiz 30.6 Consider a solenoid that is very long compared to the
radius. Of the following choices, the most effective way to increase the magnetic field
in the interior of the solenoid is to (a) double its length, keeping the number of turns
per unit length constant, (b) reduce its radius by half, keeping the number of turns per
unit length constant, (c) overwrapping the entire solenoid with an additional layer of
current-carrying wire.

B

d A
θ

Figure 30.20 The magnetic flux
through an area element dA is
B ! dA $ B dA cos #, where dA is a
vector perpendicular to the
surface.

(a) (b)

B

dA

B

dA

Active Figure 30.21 Magnetic flux through a plane lying in a magnetic field.
(a) The flux through the plane is zero when the magnetic field is parallel to the plane
surface. (b) The flux through the plane is a maximum when the magnetic field is
perpendicular to the plane.

At the Active Figures link
at http://www.pse6.com, you
can rotate the plane and
change the value of the field to
see the effect on the flux.

Definition of magnetic flux

☛

�M

�M

� ~A

� ~A

� ~A
~B

~B

�M =
X

~B ·� ~A

9.1 Magnetic Flux

① Magnetic flux through surface S

Chapter 8

Faraday’s Law of Induction

8.1 Faraday’s Law

In the previous chapter, we have shown that steady electric current can give
steady magnetic field because of the symmetry between electricity & magnetism.
We can ask: Steady magnetic field can give steady electric current. �

OR Changing magnetic field can give steady electric current. �

Define :

(1) Magnetic flux through surface S:

�m =

ˆ
S

�B · d �A

Unit of �m : Weber (Wb)
1Wb = 1Tm2

(2) Graphical:

�m = Number of magnetic field lines passing through surface S

Faraday’s law of induction:

Induced emf |E| = N

�����
d�m

dt

�����

where N = Number of coils in the circuit.

Unit of Weber (Wb)
1Wb = 1Tm2

② Graphical

☛ number of magnetic field lines passing through surface

Flux through plane is maximum when magnetic field is perpendicular to plane

Flux through plane is zero when magnetic field is parallel to plane surface

30.5 Magnetic Flux

The flux associated with a magnetic field is defined in a manner similar to that used to
define electric flux (see Eq. 24.3). Consider an element of area dA on an arbitrarily
shaped surface, as shown in Figure 30.20. If the magnetic field at this element is B, the
magnetic flux through the element is B ! dA, where dA is a vector that is perpendicular
to the surface and has a magnitude equal to the area dA. Therefore, the total magnetic
flux "B through the surface is

(30.18)

Consider the special case of a plane of area A in a uniform field B that makes an
angle # with dA. The magnetic flux through the plane in this case is

(30.19)

If the magnetic field is parallel to the plane, as in Figure 30.21a, then # $ 90° and the
flux through the plane is zero. If the field is perpendicular to the plane, as in Figure
30.21b, then # $ 0 and the flux through the plane is BA (the maximum value).

The unit of magnetic flux is T ! m2, which is defined as a weber (Wb); 1 Wb $
1 T ! m2.

"B $ BA cos #

"B $  ! B !d A

940 CHAPTE R  3 0 •  Sources of the Magnetic Field

We also could obtain this result by reconsidering the magnetic field of a toroid
(see Example 30.5). If the radius r of the torus in Figure 30.14 containing N turns is
much greater than the toroid’s cross-sectional radius a, a short section of the toroid
approximates a solenoid for which n $ N/2%r. In this limit, Equation 30.16 agrees with
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the field is half the magnitude at the center (see Problem 32).
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Gauss’s Law for Magnetic Field
➣ The net magnetic flux  𝚽B through any closed surface is equal to zero

X

closed
surface

~B ·� ~A = 0

➣ There are no magnetic charges

➣ Magnetic field lines always close in themselves

➣ No matter how the (closed) Gaussian surface is chosen, the net magnetic flux through it always vanishesMagnetic Field Lines for a Loop

Figure (a) shows the magnetic field lines surrounding a current loop.

Figure (b) compares the field lines to that of a bar magnet.

Notice the similarities in the patterns.

Section  30.1

X

closed
surface

~B ·� ~A = 0

Gauss’s Law for Magnetic Field
The net magnetic flux FB through any closed surface is equal to zero:

I
~B · d~A = 0.

There are no magnetic charges. Magnetic field lines always close in themselves. No matter how the (closed)
Gaussian surface is chosen, the net magnetic flux through it always vanishes.

The figures below illustrate Gauss’s laws for the electric and magnetic fields in the context of an electric
dipole (left) and a magnetic dipole (right).

tsl���

Gauss’s Law for Magnetic Field
The net magnetic flux FB through any closed surface is equal to zero:

I
~B · d~A = 0.

There are no magnetic charges. Magnetic field lines always close in themselves. No matter how the (closed)
Gaussian surface is chosen, the net magnetic flux through it always vanishes.

The figures below illustrate Gauss’s laws for the electric and magnetic fields in the context of an electric
dipole (left) and a magnetic dipole (right).
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emf induced in secondary circuit is caused by changing magnetic field through secondary coil

Faraday’s law of induction

9.2 Faraday’s Law

Faraday’s law of induction Induced emf ☛ 

S ECT I O N  31 . 1 •  Faraday’s Law of Induction 969

Finally, the galvanometer reads zero when there is either a steady current or no
current in the primary circuit. The key to understanding what happens in this experi-
ment is to note first that when the switch is closed, the current in the primary circuit
produces a magnetic field that penetrates the secondary circuit. Furthermore, when

Active Figure 31.1 (a) When a magnet is moved toward a loop of wire connected to a
sensitive ammeter, the ammeter deflects as shown, indicating that a current is induced
in the loop. (b) When the magnet is held stationary, there is no induced current in the
loop, even when the magnet is inside the loop. (c) When the magnet is moved away
from the loop, the ammeter deflects in the opposite direction, indicating that the
induced current is opposite that shown in part (a). Changing the direction of the
magnet’s motion changes the direction of the current induced by that motion.
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Ammeter

(b)

(a)

N S
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N S

N S
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I

At the Active Figures link
at http://www.pse6.com, you
can move the magnet and
observe the current in the
ammeter.

At the Active Figures link
at http://www.pse6.com, you
can open and close the switch
and observe the current in the
ammeter.

Active Figure 31.2 Faraday’s experiment. When the switch in the primary circuit is
closed, the ammeter in the secondary circuit deflects momentarily. The emf induced in
the secondary circuit is caused by the changing magnetic field through the secondary coil.
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   is caused by changing magnetic field through secondary coil

When switch in primary circuit is closedFaraday’s experiment
ammeter in secondary circuit deflects momentarily

emf induced in secondary circuit

number of coils in circuit

|E| = N
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��M
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Faraday’s experiment

Faraday’s law

When switch in primary circuit is closed ammeter in secondary circuit deflects momentarily

Induced emf ☛ |E| = N
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��M
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����

number of coils in circuit
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Note

➣ Induced emf drives a current throughout circuit similar to function of a battery

➣ Difference here is that induced emf is distributed throughout circuit consequence

we cannot define a potential difference between any two points in circuit

8.2. LENZ’ LAW 99

�B = Constant �B = Constant B̂ = Constant �B = Constant
�A = Constant Â = Constant dB/dt ⇤= 0 A = Constant

dA/dt ⇤= 0 �A = Constant dÂ/dt ⇤= 0
E = 0 � |E| > 0 � |E| > 0 � |E| > 0

Note : The induced emf drives a current throughout the circuit, similar to the
function of a battery. However, the di⇥erence here is that the induced emf
is distributed throughout the circuit. The consequence is that we cannot
define a potential di�erence between any two points in the circuit.

Suppose there is an induced current in the loop, can we
define �VAB?

Recall:

�VAB = VA � VB = iR > 0

⇥ VA > VB

Going anti-clockwise (same as i),

If we start from A, going to B, then we get VA > VB.
If we start from B, going to A, then we get VB > VA.

� We cannot define �VAB !!

This situation is like when we study the interior of a battery.

A battery

The loop

⇥
⌥⌃

⌥⌅
provides the energy needed to drive the
charge carriers around the circuit by

�
⌥⇧

⌥⇤

chemical reactions.

changing magnetic flux.

sources of emf non-electric means

8.2 Lenz’ Law

(1) The flux of the magnetic field due to induced current opposes the change
in flux that causes the induced current.

consequence 

Note

Induced emf drives a current throughout circuit similar

Difference here is that induced emf is distributed throughout circuit

to function of a battery

we cannot define a potential difference between any two points in circuit

!

�A/�t 6= 0

�B/�t 6= 0

�Â/�t 6= 0
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8.2. LENZ’ LAW 99

�B = Constant �B = Constant B̂ = Constant �B = Constant
�A = Constant Â = Constant dB/dt ⇤= 0 A = Constant

dA/dt ⇤= 0 �A = Constant dÂ/dt ⇤= 0
E = 0 � |E| > 0 � |E| > 0 � |E| > 0

Note : The induced emf drives a current throughout the circuit, similar to the
function of a battery. However, the di⇥erence here is that the induced emf
is distributed throughout the circuit. The consequence is that we cannot
define a potential di�erence between any two points in the circuit.

Suppose there is an induced current in the loop, can we
define �VAB?

Recall:

�VAB = VA � VB = iR > 0

⇥ VA > VB

Going anti-clockwise (same as i),

If we start from A, going to B, then we get VA > VB.
If we start from B, going to A, then we get VB > VA.

� We cannot define �VAB !!

This situation is like when we study the interior of a battery.

A battery

The loop

⇥
⌥⌃

⌥⌅
provides the energy needed to drive the
charge carriers around the circuit by

�
⌥⇧

⌥⇤

chemical reactions.

changing magnetic flux.

sources of emf non-electric means

8.2 Lenz’ Law

(1) The flux of the magnetic field due to induced current opposes the change
in flux that causes the induced current.

➣ Suppose there is an induced current in loop ☛ can we define 𝛥VAB ?

8.2. LENZ’ LAW 99

�B = Constant �B = Constant B̂ = Constant �B = Constant
�A = Constant Â = Constant dB/dt ⇤= 0 A = Constant

dA/dt ⇤= 0 �A = Constant dÂ/dt ⇤= 0
E = 0 � |E| > 0 � |E| > 0 � |E| > 0

Note : The induced emf drives a current throughout the circuit, similar to the
function of a battery. However, the di⇥erence here is that the induced emf
is distributed throughout the circuit. The consequence is that we cannot
define a potential di�erence between any two points in the circuit.

Suppose there is an induced current in the loop, can we
define �VAB?

Recall:

�VAB = VA � VB = iR > 0

⇥ VA > VB

Going anti-clockwise (same as i),

If we start from A, going to B, then we get VA > VB.
If we start from B, going to A, then we get VB > VA.

� We cannot define �VAB !!

This situation is like when we study the interior of a battery.

A battery

The loop

⇥
⌥⌃

⌥⌅
provides the energy needed to drive the
charge carriers around the circuit by

�
⌥⇧

⌥⇤

chemical reactions.

changing magnetic flux.

sources of emf non-electric means

8.2 Lenz’ Law

(1) The flux of the magnetic field due to induced current opposes the change
in flux that causes the induced current.

Recall

�VAB = VA � VB = iR > 0

) VA > VB

➢ Going anti-clockwise (same as i )

➣ If we start from A going to B then we get

➢ If we start from B going to A then we get

∴ We cannot define 𝛥VAB !!

This situation is like when we study interior of a battery

A battery provides energy needed to drive chemical reactions

sources of emf

A loop charge carriers around circuit by

non-electric means

changing magnetic flux

no

VA >VB

VB >VA
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Lenz’s law
① Flux of magnetic field due to induced current opposes change in flux that causes induced current

② Induced current is in such a direction as to oppose changes that produces it

③ Incorporating Lenz’s law into Faraday’s Law ☛ E = �N
��M

�t

��M

�t
> 0 ) �M "If appears ⇒ Induced current appearsE

⇒     -field due to induced current ⇒ cahnge in             ⇒ �M #~B �M

so that
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➣  Suppose bar is given slight push to right

➣ This motion sets up a counterclockwise current in the loop

         This motion sets up a counterclockwise current in the loop

 What happens if we assume that current is clockwise 
such that direction of magnetic force exerted on bar is to the right?

This (in turn) would cause area enclosed by loop to increase more rapidly 
this would result in increase in induced current 
which would cause increase in force 
which would produce increase in current ... and so on... 

④ Lenz’s Law is consequence from principle of conservation of energy
  Suppose bar is given slight push to right

That is, the induced current tends to keep the original magnetic flux through the
circuit from changing. We shall show that this law is a consequence of the law of
conservation of energy.

To understand Lenz’s law, let us return to the example of a bar moving to the
right on two parallel rails in the presence of a uniform magnetic field (the external
magnetic field, Fig. 31.13a.) As the bar moves to the right, the magnetic flux
through the area enclosed by the circuit increases with time because the area
increases. Lenz’s law states that the induced current must be directed so that the
magnetic field it produces opposes the change in the external magnetic flux.
Because the magnetic flux due to an external field directed into the page is increas-
ing, the induced current, if it is to oppose this change, must produce a field
directed out of the page. Hence, the induced current must be directed counter-
clockwise when the bar moves to the right. (Use the right-hand rule to verify this
direction.) If the bar is moving to the left, as in Figure 31.13b, the external mag-
netic flux through the area enclosed by the loop decreases with time. Because the
field is directed into the page, the direction of the induced current must be
clockwise if it is to produce a field that also is directed into the page. In either case,
the induced current tends to maintain the original flux through the area enclosed
by the current loop.

Let us examine this situation using energy considerations. Suppose that the bar is
given a slight push to the right. In the preceding analysis, we found that this motion
sets up a counterclockwise current in the loop. What happens if we assume that the
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Figure 31.13 (a) As the
conducting bar slides on the two
fixed conducting rails, the
magnetic flux due to the external
magnetic field into the page
through the area enclosed by the
loop increases in time. By Lenz’s
law, the induced current must be
counterclockwise so as to produce
a counteracting magnetic field
directed out of the page. (b) When
the bar moves to the left, the
induced current must be clockwise.
Why?
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Figure 31.14 (a) When the magnet is moved toward the stationary conducting 
loop, a current is induced in the direction shown. The magnetic field lines shown 
are those due to the bar magnet. (b) This induced current produces its own 
magnetic field directed to the left that counteracts the increasing external flux. The
magnetic field lines shown are those due to the induced current in the ring. 
(c) When the magnet is moved away from the stationary conducting loop, a current 
is induced in the direction shown. The magnetic field lines shown are those due to 
the bar magnet. (d) This induced current produces a magnetic field directed to the
right and so counteracts the decreasing external flux. The magnetic field lines 
shown are those due to the induced current in the ring.
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We are forced to conclude that current must be counterclockwise
This is clearly inconsistent with all experience and violates law of energy conservation 
 System would acquire energy with no input of energy 

This force would accelerate the rod and increase its velocity

BUT
➣ What happens if we assume that current is clockwise 

such that direction of magnetic force exerted on bar is to the right?

➣ This force would accelerate the rod and increase its velocity

➣ This (in turn) would cause area enclosed by loop to increase more rapidly 

➣ System would acquire energy with no input of energy 
➣ This is clearly inconsistent with all experience and violates law of energy conservation 
➣ We are forced to conclude that current must be counterclockwise

④ Lenz’s Law is consequence from principle of conservation of energy

this would result in increase in induced current which would cause increase in force  
which would produce increase in current ... and so on... 

BUT ☛
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Likewise ☛ if bar is push to the left  

That is, the induced current tends to keep the original magnetic flux through the
circuit from changing. We shall show that this law is a consequence of the law of
conservation of energy.

To understand Lenz’s law, let us return to the example of a bar moving to the
right on two parallel rails in the presence of a uniform magnetic field (the external
magnetic field, Fig. 31.13a.) As the bar moves to the right, the magnetic flux
through the area enclosed by the circuit increases with time because the area
increases. Lenz’s law states that the induced current must be directed so that the
magnetic field it produces opposes the change in the external magnetic flux.
Because the magnetic flux due to an external field directed into the page is increas-
ing, the induced current, if it is to oppose this change, must produce a field
directed out of the page. Hence, the induced current must be directed counter-
clockwise when the bar moves to the right. (Use the right-hand rule to verify this
direction.) If the bar is moving to the left, as in Figure 31.13b, the external mag-
netic flux through the area enclosed by the loop decreases with time. Because the
field is directed into the page, the direction of the induced current must be
clockwise if it is to produce a field that also is directed into the page. In either case,
the induced current tends to maintain the original flux through the area enclosed
by the current loop.

Let us examine this situation using energy considerations. Suppose that the bar is
given a slight push to the right. In the preceding analysis, we found that this motion
sets up a counterclockwise current in the loop. What happens if we assume that the
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Figure 31.13 (a) As the
conducting bar slides on the two
fixed conducting rails, the
magnetic flux due to the external
magnetic field into the page
through the area enclosed by the
loop increases in time. By Lenz’s
law, the induced current must be
counterclockwise so as to produce
a counteracting magnetic field
directed out of the page. (b) When
the bar moves to the left, the
induced current must be clockwise.
Why?
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Figure 31.14 (a) When the magnet is moved toward the stationary conducting 
loop, a current is induced in the direction shown. The magnetic field lines shown 
are those due to the bar magnet. (b) This induced current produces its own 
magnetic field directed to the left that counteracts the increasing external flux. The
magnetic field lines shown are those due to the induced current in the ring. 
(c) When the magnet is moved away from the stationary conducting loop, a current 
is induced in the direction shown. The magnetic field lines shown are those due to 
the bar magnet. (d) This induced current produces a magnetic field directed to the
right and so counteracts the decreasing external flux. The magnetic field lines 
shown are those due to the induced current in the ring.
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Likewise ☛ if bar is push to the left  
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➣ This induced current produces its own magnetic field directed to the left 

➣ When magnet is moved toward stationary conducting loop current is induced in the direction shown

➣ Magnetic field lines shown are those due to bar magnet

That is, the induced current tends to keep the original magnetic flux through the
circuit from changing. We shall show that this law is a consequence of the law of
conservation of energy.

To understand Lenz’s law, let us return to the example of a bar moving to the
right on two parallel rails in the presence of a uniform magnetic field (the external
magnetic field, Fig. 31.13a.) As the bar moves to the right, the magnetic flux
through the area enclosed by the circuit increases with time because the area
increases. Lenz’s law states that the induced current must be directed so that the
magnetic field it produces opposes the change in the external magnetic flux.
Because the magnetic flux due to an external field directed into the page is increas-
ing, the induced current, if it is to oppose this change, must produce a field
directed out of the page. Hence, the induced current must be directed counter-
clockwise when the bar moves to the right. (Use the right-hand rule to verify this
direction.) If the bar is moving to the left, as in Figure 31.13b, the external mag-
netic flux through the area enclosed by the loop decreases with time. Because the
field is directed into the page, the direction of the induced current must be
clockwise if it is to produce a field that also is directed into the page. In either case,
the induced current tends to maintain the original flux through the area enclosed
by the current loop.

Let us examine this situation using energy considerations. Suppose that the bar is
given a slight push to the right. In the preceding analysis, we found that this motion
sets up a counterclockwise current in the loop. What happens if we assume that the
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Figure 31.13 (a) As the
conducting bar slides on the two
fixed conducting rails, the
magnetic flux due to the external
magnetic field into the page
through the area enclosed by the
loop increases in time. By Lenz’s
law, the induced current must be
counterclockwise so as to produce
a counteracting magnetic field
directed out of the page. (b) When
the bar moves to the left, the
induced current must be clockwise.
Why?
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Figure 31.14 (a) When the magnet is moved toward the stationary conducting 
loop, a current is induced in the direction shown. The magnetic field lines shown 
are those due to the bar magnet. (b) This induced current produces its own 
magnetic field directed to the left that counteracts the increasing external flux. The
magnetic field lines shown are those due to the induced current in the ring. 
(c) When the magnet is moved away from the stationary conducting loop, a current 
is induced in the direction shown. The magnetic field lines shown are those due to 
the bar magnet. (d) This induced current produces a magnetic field directed to the
right and so counteracts the decreasing external flux. The magnetic field lines 
shown are those due to the induced current in the ring.
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➣ Magnetic field lines shown are those due to induced current in ring

that counteracts the increasing external flux 

That is, the induced current tends to keep the original magnetic flux through the
circuit from changing. We shall show that this law is a consequence of the law of
conservation of energy.

To understand Lenz’s law, let us return to the example of a bar moving to the
right on two parallel rails in the presence of a uniform magnetic field (the external
magnetic field, Fig. 31.13a.) As the bar moves to the right, the magnetic flux
through the area enclosed by the circuit increases with time because the area
increases. Lenz’s law states that the induced current must be directed so that the
magnetic field it produces opposes the change in the external magnetic flux.
Because the magnetic flux due to an external field directed into the page is increas-
ing, the induced current, if it is to oppose this change, must produce a field
directed out of the page. Hence, the induced current must be directed counter-
clockwise when the bar moves to the right. (Use the right-hand rule to verify this
direction.) If the bar is moving to the left, as in Figure 31.13b, the external mag-
netic flux through the area enclosed by the loop decreases with time. Because the
field is directed into the page, the direction of the induced current must be
clockwise if it is to produce a field that also is directed into the page. In either case,
the induced current tends to maintain the original flux through the area enclosed
by the current loop.

Let us examine this situation using energy considerations. Suppose that the bar is
given a slight push to the right. In the preceding analysis, we found that this motion
sets up a counterclockwise current in the loop. What happens if we assume that the
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Figure 31.13 (a) As the
conducting bar slides on the two
fixed conducting rails, the
magnetic flux due to the external
magnetic field into the page
through the area enclosed by the
loop increases in time. By Lenz’s
law, the induced current must be
counterclockwise so as to produce
a counteracting magnetic field
directed out of the page. (b) When
the bar moves to the left, the
induced current must be clockwise.
Why?
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Figure 31.14 (a) When the magnet is moved toward the stationary conducting 
loop, a current is induced in the direction shown. The magnetic field lines shown 
are those due to the bar magnet. (b) This induced current produces its own 
magnetic field directed to the left that counteracts the increasing external flux. The
magnetic field lines shown are those due to the induced current in the ring. 
(c) When the magnet is moved away from the stationary conducting loop, a current 
is induced in the direction shown. The magnetic field lines shown are those due to 
the bar magnet. (d) This induced current produces a magnetic field directed to the
right and so counteracts the decreasing external flux. The magnetic field lines 
shown are those due to the induced current in the ring.
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external flux 

Magnetic field lines shown are those due to bar magnet

When magnet is moved away from stationary conducting loop
current is induced in direction shown

That is, the induced current tends to keep the original magnetic flux through the
circuit from changing. We shall show that this law is a consequence of the law of
conservation of energy.

To understand Lenz’s law, let us return to the example of a bar moving to the
right on two parallel rails in the presence of a uniform magnetic field (the external
magnetic field, Fig. 31.13a.) As the bar moves to the right, the magnetic flux
through the area enclosed by the circuit increases with time because the area
increases. Lenz’s law states that the induced current must be directed so that the
magnetic field it produces opposes the change in the external magnetic flux.
Because the magnetic flux due to an external field directed into the page is increas-
ing, the induced current, if it is to oppose this change, must produce a field
directed out of the page. Hence, the induced current must be directed counter-
clockwise when the bar moves to the right. (Use the right-hand rule to verify this
direction.) If the bar is moving to the left, as in Figure 31.13b, the external mag-
netic flux through the area enclosed by the loop decreases with time. Because the
field is directed into the page, the direction of the induced current must be
clockwise if it is to produce a field that also is directed into the page. In either case,
the induced current tends to maintain the original flux through the area enclosed
by the current loop.

Let us examine this situation using energy considerations. Suppose that the bar is
given a slight push to the right. In the preceding analysis, we found that this motion
sets up a counterclockwise current in the loop. What happens if we assume that the
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Figure 31.13 (a) As the
conducting bar slides on the two
fixed conducting rails, the
magnetic flux due to the external
magnetic field into the page
through the area enclosed by the
loop increases in time. By Lenz’s
law, the induced current must be
counterclockwise so as to produce
a counteracting magnetic field
directed out of the page. (b) When
the bar moves to the left, the
induced current must be clockwise.
Why?
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Figure 31.14 (a) When the magnet is moved toward the stationary conducting 
loop, a current is induced in the direction shown. The magnetic field lines shown 
are those due to the bar magnet. (b) This induced current produces its own 
magnetic field directed to the left that counteracts the increasing external flux. The
magnetic field lines shown are those due to the induced current in the ring. 
(c) When the magnet is moved away from the stationary conducting loop, a current 
is induced in the direction shown. The magnetic field lines shown are those due to 
the bar magnet. (d) This induced current produces a magnetic field directed to the
right and so counteracts the decreasing external flux. The magnetic field lines 
shown are those due to the induced current in the ring.
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This induced current produces magnetic field directed to the right 

Field lines shown are those due to induced current in ring

and so counteracts decreasing external flux

That is, the induced current tends to keep the original magnetic flux through the
circuit from changing. We shall show that this law is a consequence of the law of
conservation of energy.

To understand Lenz’s law, let us return to the example of a bar moving to the
right on two parallel rails in the presence of a uniform magnetic field (the external
magnetic field, Fig. 31.13a.) As the bar moves to the right, the magnetic flux
through the area enclosed by the circuit increases with time because the area
increases. Lenz’s law states that the induced current must be directed so that the
magnetic field it produces opposes the change in the external magnetic flux.
Because the magnetic flux due to an external field directed into the page is increas-
ing, the induced current, if it is to oppose this change, must produce a field
directed out of the page. Hence, the induced current must be directed counter-
clockwise when the bar moves to the right. (Use the right-hand rule to verify this
direction.) If the bar is moving to the left, as in Figure 31.13b, the external mag-
netic flux through the area enclosed by the loop decreases with time. Because the
field is directed into the page, the direction of the induced current must be
clockwise if it is to produce a field that also is directed into the page. In either case,
the induced current tends to maintain the original flux through the area enclosed
by the current loop.

Let us examine this situation using energy considerations. Suppose that the bar is
given a slight push to the right. In the preceding analysis, we found that this motion
sets up a counterclockwise current in the loop. What happens if we assume that the
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Figure 31.13 (a) As the
conducting bar slides on the two
fixed conducting rails, the
magnetic flux due to the external
magnetic field into the page
through the area enclosed by the
loop increases in time. By Lenz’s
law, the induced current must be
counterclockwise so as to produce
a counteracting magnetic field
directed out of the page. (b) When
the bar moves to the left, the
induced current must be clockwise.
Why?
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Figure 31.14 (a) When the magnet is moved toward the stationary conducting 
loop, a current is induced in the direction shown. The magnetic field lines shown 
are those due to the bar magnet. (b) This induced current produces its own 
magnetic field directed to the left that counteracts the increasing external flux. The
magnetic field lines shown are those due to the induced current in the ring. 
(c) When the magnet is moved away from the stationary conducting loop, a current 
is induced in the direction shown. The magnetic field lines shown are those due to 
the bar magnet. (d) This induced current produces a magnetic field directed to the
right and so counteracts the decreasing external flux. The magnetic field lines 
shown are those due to the induced current in the ring.
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clockwise if it is to produce a field that also is directed into the page. In either case,
the induced current tends to maintain the original flux through the area enclosed
by the current loop.
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loop, a current is induced in the direction shown. The magnetic field lines shown 
are those due to the bar magnet. (b) This induced current produces its own 
magnetic field directed to the left that counteracts the increasing external flux. The
magnetic field lines shown are those due to the induced current in the ring. 
(c) When the magnet is moved away from the stationary conducting loop, a current 
is induced in the direction shown. The magnetic field lines shown are those due to 
the bar magnet. (d) This induced current produces a magnetic field directed to the
right and so counteracts the decreasing external flux. The magnetic field lines 
shown are those due to the induced current in the ring.
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➣ When magnet is moved away from stationary conducting loop current is induced in direction shown

➣ Magnetic field lines shown are those due to bar magnet

➣ This induced current produces magnetic field directed to the right and so counteracts decreasing
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8.3. MOTIONAL EMF 100

(2) The induced current is in such a direction as to oppose the changes that
produces it.

(3) Incorporating Lentz’ Law into Faraday’s Law:

E = �N
d�m

dt

If
d�m

dt
> 0, �m ⇥ ⌅ E appears ⌅ Induced current

appears.

⌅ �B-field due to
induced current

⌅ change in �m
so that
=⌅ �m ⇤

(4) Lenz’ Law is a consequence from the principle of conservation of energy.

8.3 Motional EMF

Let’s try to look at a special case when the changing magnetic flux is carried by
motion in the circuit wires.

Consider a conductor of length L moving
with a velocity v in a magnetic field �B.

Question

Question
14
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induced current
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(4) Lenz’ Law is a consequence from the principle of conservation of energy.
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Let’s try to look at a special case when the changing magnetic flux is carried by
motion in the circuit wires.

Consider a conductor of length L moving
with a velocity v in a magnetic field �B.

Answer

Answer
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9.4 Motional EMF

Because of this charge separation electric field     is produced inside conductor

Straight conductor of length

directed out of the page 

Assume conductor is moving with constant  
under influence of some external agent

  directed along the length   perpendicular to both    and  
Electrons in conductor experience force ~FB = q~v ⇥ ~B

Charges accumulate at both ends 

is moving through uniform   -field ~B

~v ? ~B

~v ~B

Under influence of this force
electrons move to upper end of conductor and accumulate there

leaving  net positive charge at lower end

is balanced by the upward electric force  
until downward magnetic force        on charges remaining in conductor qvB

qE

~E

21–3 EMF Induced in a Moving Conductor
Another way to induce an emf is shown in Fig. 21–11a, and this situation helps
illuminate the nature of the induced emf. Assume that a uniform magnetic field 
is perpendicular to the area bounded by the conductor and the movable
rod resting on it. If the rod is made to move at a speed to the right, it travels a
distance in a time Therefore, the area of the loop increases by 
an amount in a time By Faraday’s law there is an induced
emf whose magnitude is given by

(21;3)

The induced current is clockwise (to counter the increasing flux).
Equation 21–3 is valid as long as B, and are mutually perpendicular. (If they

are not, we use only the components of each that are mutually perpendicular.) An emf
induced on a conductor moving in a magnetic field is sometimes called motional emf.

We can also obtain Eq. 21–3 without using Faraday’s law. We saw in Chapter 20
that a charged particle moving with speed perpendicular to a magnetic field B
experiences a force (Eq. 20–4). When the rod of Fig. 21–11a moves to
the right with speed the electrons in the rod also move with this speed. Therefore,
since each electron feels a force which acts up the page as the red
arrow in Fig. 21–11b shows. If the rod is not in contact with the conductor,
electrons would collect at the upper end of the rod, leaving the lower end positive
(see signs in Fig. 21–11b). There must thus be an induced emf. If the rod is in
contact with the conductor (Fig. 21–11a), the electrons will flow into the 
There will then be a clockwise (conventional) current in the loop. To calculate the 
emf, we determine the work W needed to move a charge q from one end of the rod
to the other against this potential difference:
The emf equals the work done per unit charge, so
the same result as from Faraday’s law above, Eq. 21–3.

qvBl!q = Blv,e = W!q =
(qvB)(l).W = force * distance =

U.U-shaped

U-shaped
F = qvB,vB ⊥ B

B

,
v,
F = qvB

v

vl,

e =
¢£B
¢t

= B ¢A
¢t

= Blv ¢t
¢t

= Blv.

e
¢t.¢A = l ¢x = lv ¢t

¢t.¢x = v ¢t
v

U-shaped
B
B
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P H Y S I C S  A P P L I E D
Blood-flow measurement

EXERCISE C In what direction will the electrons flow in Fig. 21–11 if the rod moves to
the left, decreasing the area of the current loop?

Does a moving airplane develop a large emf?
An airplane travels in a region where the Earth’s magnetic field is
about and is nearly vertical (Fig. 21–12). What is the potential differ-
ence induced between the wing tips that are 70 m apart?
APPROACH We consider the wings to be a 70-m-long conductor moving through
the Earth’s magnetic field. We use Eq. 21–3 to get the emf.
SOLUTION Since and we have

NOTE Not much to worry about.
e = Blv = A5 * 10–5 TB(70 m)(280 m!s) L 1 V.

vB ⊥ B
B

,v = 1000 km!h = 280 m!s,

5 * 10–5 T
1000 km!h

EXAMPLE 21;5 ESTIMATE

Electromagnetic blood-flow measurement. The rate of
blood flow in our body’s vessels can be measured using the apparatus shown in
Fig. 21–13, since blood contains charged ions. Suppose that the blood vessel is
2.0 mm in diameter, the magnetic field is 0.080 T, and the measured emf is 0.10 mV.
What is the flow velocity of the blood?
APPROACH The magnetic field points horizontally from left to right (N pole
toward S pole). The induced emf acts over the width of the blood
vessel, perpendicular to and (Fig. 21–13), just as in Fig. 21–11. We can then
use Eq. 21–3 to get 
SOLUTION We solve for in Eq. 21–3:

NOTE In actual practice, an alternating current is used to produce an alternating
magnetic field. The induced emf is then alternating.

v = e

Bl
=

A1.0 * 10–4 VB
(0.080 T)A2.0 * 10–3 mB = 0.63 m!s.

v

v.
vBB

B
l = 2.0 mm

B
B

v

EXAMPLE 21;6

l

B
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vB
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(a)

(b)

(outward)

Force on
electron

t

∆A
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–

∆v

e

S VoltmeterN
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FIGURE 21–13 Measurement of
blood velocity from the induced emf.
Example 21–6.

FIGURE 21–12 Example 21–5.

FIGURE 21–11 (a) A conducting
rod is moved to the right on a

conductor in a uniform
magnetic field that points out of
the page. The induced current is
clockwise. (b) Upward force on an
electron in the metal rod (moving to
the right) due to pointing out of
the page; hence electrons can collect
at the top of the rod, leaving

at the bottom.±  charge

B
B

B
B

U-shaped

`

`

Motional EMF 
➣ Straight conductor of length     is moving through uniform     -field directed out of the page  ` ~B

➣ Assume conductor is moving with constant  ~v ? ~B

under influence of some external agent

➣ Electrons in conductor experience force ~FB = q~v ⇥ ~B

  directed along the length   perpendicular to both     and  ~v ~B

➣ Under influence of this force electrons move to upper end of conductor and accumulate there

leaving  net positive charge at lower end

➣ Because of this charge separation electric field      is produced inside conductor

➣ Charges accumulate at both ends until downward magnetic force         on charges remaining in conductor 

~E

qvB

is balanced by the upward electric force  qE
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➣ Voltage across ends of conductor ☛ 

~FE + ~FB = 0

) q ~E + q~v ⇥ ~B = 0

) ~E = �~v ⇥ ~B

∴ Voltage ☛

Potential difference is maintained between ends of conductor as long as  
the conductor continues to move  through the uniform magnetic field  

➣ At this point ☛ electrons move only with random thermal motion

➣ Equilibrium requires that

E = �V = vB`

�V = �E`
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➣ By Faraday’s law   ☛  there is induced emf     whose magnitude is 

➣ Assume that uniform magnetic field B is perpendicular to  area bounded by U-shaped conductor

➣ If rod is made to move at speed     to right ☛  it travels                           in time v �x = v�t �t

➣  Area of loop increases ☛                                       A = `�x = `v�t �t

E

E =
��M

�t
=

B�A

�t
=

B`v�t

�t
= B`v

➣ Induced current is clockwise ⇒(to counter the increasing flux)

EMF Induced in  Moving Conductor

)

☛

☛

☛

21–3 EMF Induced in a Moving Conductor
Another way to induce an emf is shown in Fig. 21–11a, and this situation helps
illuminate the nature of the induced emf. Assume that a uniform magnetic field 
is perpendicular to the area bounded by the conductor and the movable
rod resting on it. If the rod is made to move at a speed to the right, it travels a
distance in a time Therefore, the area of the loop increases by 
an amount in a time By Faraday’s law there is an induced
emf whose magnitude is given by

(21;3)

The induced current is clockwise (to counter the increasing flux).
Equation 21–3 is valid as long as B, and are mutually perpendicular. (If they

are not, we use only the components of each that are mutually perpendicular.) An emf
induced on a conductor moving in a magnetic field is sometimes called motional emf.
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the right with speed the electrons in the rod also move with this speed. Therefore,
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rod is moved to the right on a

conductor in a uniform
magnetic field that points out of
the page. The induced current is
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electron in the metal rod (moving to
the right) due to pointing out of
the page; hence electrons can collect
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By Faraday’s law          there is induced emf      whose magnitude is 

Assume that uniform magnetic field B is perpendicular to  area bounded by 
 U-shaped conductor and movable road resting on it. 

If rod is made to move at speed    to right      it travels                      in time v �x = v�t �t

Area of loop increases                                          in  timeA = `�x = `v�t �t

E

E =
��M

�t
=

B�A

�t
=

B`v�t

�t
= B`v

Induced current is clockwise         (to counter the increasing flux)

EMF Induced in  Moving Conductor

 in  time

and movable road resting on it 
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A rectangular loop of wire with sides of 0.20 and 0.35 m lies in a plane perpendicular to 
a constant magnetic field of 0.65 T.  In a time of 0.18 s, one-half of the loop is folded 
back on the other half as shown.  What is the average EMF induced in the loop?

  
E  N ')

't
 
NB'A
't

Initially A = (0.2 m) (0.35 m) = 0.07 m2

In the final state the area is very small, I.e.  A | 0

  
E  �

1� 0.65T� � 0 � 0.07m2� �
0.18s

 0.25V

Example

A rectangular loop of wire with sides of 0.20 and 0.35 m lies in a plane perpendicular to 
a constant magnetic field of 0.65 T.  In a time of 0.18 s, one-half of the loop is folded 
back on the other half as shown.  What is the average EMF induced in the loop?

  
E  N ')

't
 
NB'A
't

Initially A = (0.2 m) (0.35 m) = 0.07 m2

In the final state the area is very small, I.e.  A | 0

  
E  �

1� 0.65T� � 0 � 0.07m2� �
0.18s

 0.25V

ExampleA rectangular loop of wire with sides of 0.20 and 0.35 m lies in a plane perpendicular to 
a constant magnetic field of 0.65 T.  In a time of 0.18 s, one-half of the loop is folded 
back on the other half as shown.  What is the average EMF induced in the loop?

  
E  N ')

't
 
NB'A
't

Initially A = (0.2 m) (0.35 m) = 0.07 m2

In the final state the area is very small, I.e.  A | 0

  
E  �

1� 0.65T� � 0 � 0.07m2� �
0.18s

 0.25V

Example

A rectangular loop of wire with sides of 0.20 and 0.35 m lies in a plane perpendicular to 
a constant magnetic field of 0.65 T.  In a time of 0.18 s, one-half of the loop is folded 
back on the other half as shown.  What is the average EMF induced in the loop?

  
E  N ')

't
 
NB'A
't

Initially A = (0.2 m) (0.35 m) = 0.07 m2

In the final state the area is very small, I.e.  A | 0

  
E  �

1� 0.65T� � 0 � 0.07m2� �
0.18s

 0.25V

Example

➣ Initially A = (0.2 m) (0.35 m) = 0.07 m2

➣ In the final state the area is very small, I.e.

➣ A rectangular loop of wire with sides of 0.20 and 0.35 m lies in a plane perpendicular to a constant 
magnetic field of 0.65 T 

➣ In a time of 0.18 s, one-half of the loop is folded back on the other half as shown  

➣ What is the average EMF induced in the loop? 

Example 
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➣ A uniform magnetic field exists everywhere, is perpendicular to plane of circle and has a magnitude of 
3.8 x 10-3 T 

➣ The drawing shows a copper wire bent into a circular shape with a radius of 0.5 m
➣ Radial section BC is fixed in place, while copper bar AC sweeps around at an angular speed of 15 rad/s

  ➣ The bar makes electrical contact with the wire at all times 

➣ The wire and the bar have negligible resistance

Example 
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radial section BC is fixed in place, while the copper bar AC sweeps around at an angular 
speed of 15 rad/s.  The bar makes electrical contact with the wire at all times.  The wire 
and the bar have negligible resistance.  A uniform magnetic field exists everywhere, is 
perpendicular to the plane of the circle and has a magnitude of 3.8 x 10-3 T.  What is the 
magnitude of the current induced in the loop ABC?
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speed of 15 rad/s.  The bar makes electrical contact with the wire at all times.  The wire 
and the bar have negligible resistance.  A uniform magnetic field exists everywhere, is 
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The AC Generator

Is the flux changing?
) ABcosI

I Angle between B and normal to loopYes!
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Electric Generator
Faraday’s Law

➣ Rotate with an angular speed of ω

➣ A changing magnetic flux through a loop of wire generates a potential difference (EMF) and current

➣ Imagine a rotating loop in a costant magnetic field

Is the flux changing ?
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Deriving Generator Equation

Loop is being made to rotate clockwise in a uniform magnetic field B
Velocity of two lengths ab and cd at this instant are shown 
Although sections of wire bc and da are moving 
force on e in these sections is toward side of wire     not along wire’s length 
emf generated is thus due only to force on charges in sections ab and cd     
RHR    direction of the induced current in ab is from a toward b 
In the lower section     it is from c to d          flow is continuous in the loop 
Magnitude of the emf generated in ab is 

☛
☛

☛

)

Alternators
Automobiles used to use dc generators. Today they mainly use alternators, which
avoid the problems of wear and electrical arcing (sparks) across the split-ring
commutators of dc generators. Alternators differ from generators in that an electro-
magnet, called the rotor, is fed by current from the battery and is made to rotate
by a belt from the engine. The magnetic field of the turning rotor passes through
a surrounding set of stationary coils called the stator (Fig. 21–16), inducing an
alternating current in the stator coils, which is the output. This ac output is changed
to dc for charging the battery by the use of semiconductor diodes, which allow
current flow in one direction only.

Deriving the Generator Equation
Figure 21–17 shows the wire loop on a generator armature. The loop is being
made to rotate clockwise in a uniform magnetic field The velocity of the two
lengths ab and cd at this instant are shown. Although the sections of wire bc and da
are moving, the force on electrons in these sections is toward the side of the wire,
not along the wire’s length. The emf generated is thus due only to the force on
charges in the sections ab and cd. From right-hand-rule-3, we see that the direc-
tion of the induced current in ab is from a toward b. And in the lower section,
it is from c to d; so the flow is continuous in the loop. The magnitude of the emf
generated in ab is given by Eq. 21–3, except that we must take the component 
of the velocity perpendicular to B:

where is the length of ab. From Fig. 21–17 we see that where is
the angle the loop’s face makes with the vertical. The emf induced in cd has the same
magnitude and is in the same direction. Therefore their emfs add, and the total emf is

where we have multiplied by N, the number of loops in the coil.
If the coil is rotating with constant angular velocity then the angle 

From the angular equations (Eq.8–4), where r is the distance from
the rotation axis and h is the length of bc or ad. Thus or

(21;5)
where is the area of the loop. This equation holds for any shape coil, not justA = lh

e = NBvA sin vt,
e = 2NBvl(h!2) sin vt,

v = vr = v(h!2),
u = vt.v,

e = 2NBlv sin u,

uv⊥ = v sin u,l

e = Blv⊥ ,

B
B
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FIGURE 21–16 (a) Simplified schematic diagram of an alternator. The input current to the rotor from the battery is 
connected through continuous slip rings. Sometimes the rotor electromagnet is replaced by a permanent magnet (no input 
current). (b) Actual shape of an alternator. The rotor is made to turn by a belt from the engine. The current in the wire coil 
of the rotor produces a magnetic field inside it on its axis that points horizontally from left to right (not shown), thus making
north and south poles of the plates attached at either end. These end plates are made with triangular fingers that are bent 
over the coil—hence there are alternating N and S poles quite close to one another, with magnetic field lines between 
them as shown by the blue lines. As the rotor turns, these field lines pass through the fixed stator coils (shown on the 
right for clarity, but in operation the rotor rotates within the stator), inducing a current in them, which is the output.
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Deriving Generator Equation

➣ Loop is being made to rotate clockwise in a uniform magnetic field B

➣ Velocity of two lengths ab and cd at this instant are shown

➣ Although sections of wire bc and da are moving ☛ force on e’s in these sections is toward side of wire     
not along wire’s length ⇒ emf generated is due only to force on charges in sections ab and cd     

➣ RHR  ☛ direction of the induced current in ab is from a toward b 
➣ In the lower section   ☛  it is from c to d  ⇒ flow is continuous in the loop 

➣ Magnitude of the emf generated in ab is ☛
emf induced in cd has same magnitude and is in same direction  ☛ emfs add

E = B`v?
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Alternators
Automobiles used to use dc generators. Today they mainly use alternators, which
avoid the problems of wear and electrical arcing (sparks) across the split-ring
commutators of dc generators. Alternators differ from generators in that an electro-
magnet, called the rotor, is fed by current from the battery and is made to rotate
by a belt from the engine. The magnetic field of the turning rotor passes through
a surrounding set of stationary coils called the stator (Fig. 21–16), inducing an
alternating current in the stator coils, which is the output. This ac output is changed
to dc for charging the battery by the use of semiconductor diodes, which allow
current flow in one direction only.

Deriving the Generator Equation
Figure 21–17 shows the wire loop on a generator armature. The loop is being
made to rotate clockwise in a uniform magnetic field The velocity of the two
lengths ab and cd at this instant are shown. Although the sections of wire bc and da
are moving, the force on electrons in these sections is toward the side of the wire,
not along the wire’s length. The emf generated is thus due only to the force on
charges in the sections ab and cd. From right-hand-rule-3, we see that the direc-
tion of the induced current in ab is from a toward b. And in the lower section,
it is from c to d; so the flow is continuous in the loop. The magnitude of the emf
generated in ab is given by Eq. 21–3, except that we must take the component 
of the velocity perpendicular to B:

where is the length of ab. From Fig. 21–17 we see that where is
the angle the loop’s face makes with the vertical. The emf induced in cd has the same
magnitude and is in the same direction. Therefore their emfs add, and the total emf is

where we have multiplied by N, the number of loops in the coil.
If the coil is rotating with constant angular velocity then the angle 

From the angular equations (Eq.8–4), where r is the distance from
the rotation axis and h is the length of bc or ad. Thus or

(21;5)
where is the area of the loop. This equation holds for any shape coil, not justA = lh

e = NBvA sin vt,
e = 2NBvl(h!2) sin vt,

v = vr = v(h!2),
u = vt.v,

e = 2NBlv sin u,

uv⊥ = v sin u,l

e = Blv⊥ ,

B
B

.

*
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FIGURE 21–16 (a) Simplified schematic diagram of an alternator. The input current to the rotor from the battery is 
connected through continuous slip rings. Sometimes the rotor electromagnet is replaced by a permanent magnet (no input 
current). (b) Actual shape of an alternator. The rotor is made to turn by a belt from the engine. The current in the wire coil 
of the rotor produces a magnetic field inside it on its axis that points horizontally from left to right (not shown), thus making
north and south poles of the plates attached at either end. These end plates are made with triangular fingers that are bent 
over the coil—hence there are alternating N and S poles quite close to one another, with magnetic field lines between 
them as shown by the blue lines. As the rotor turns, these field lines pass through the fixed stator coils (shown on the 
right for clarity, but in operation the rotor rotates within the stator), inducing a current in them, which is the output.
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☛ distance from the rotation axis  
☛ length of bc or ad

If coil is rotating with constant angular velocity ! ) ✓ = !t

r
h

v = !r = !(h/2)

E = 2NB!`(h/2) sin(!t) ) E = NB!A sin(!t)

☛ area of loop

Vrms =
NB!Ap
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for a rectangle as derived. Thus, the output emf of the generator is sinusoidally alter-
nating (see Fig. 21–18 and Section 18–7). Since is expressed in radians per second,
we can write where f is the frequency (in ). The rms output (see
Section 18–7, Eq. 18–8b) is 

Vrms = NBvA22
.

Hz = s–1v = 2pf,
v

An ac generator. The armature of a 60-Hz ac generator
rotates in a 0.15-T magnetic field. If the area of the coil is how
many loops must the coil contain if the peak output is to be 
APPROACH From Eq. 21–5 we see that the maximum emf is
SOLUTION We solve Eq. 21–5 for N with

N =
e0

BAv
= 170 V

(0.15 T)A2.0 * 10–2 m2B A377 s–1B = 150 turns.

v = 2pf = (6.28)A60 s–1B = 377 s–1:
e0 = NBAv.
e0 = 170 V?
2.0 * 10–2 m2,

EXAMPLE 21;7

21–6 Back EMF and Counter Torque;
Eddy Currents

Back EMF, in a Motor
A motor turns and produces mechanical energy when a current is made to flow in
it. From our description in Section 20–10 of a simple dc motor, you might expect
that the armature would accelerate indefinitely due to the torque on it. However,
as the armature of the motor turns, the magnetic flux through the coil changes
and an emf is generated. This induced emf acts to oppose the motion (Lenz’s law)
and is called the back emf or counter emf. The greater the speed of the motor,
the greater the back emf. A motor normally turns and does work on something,
but if there were no load to push (or rotate), the motor’s speed would increase until
the back emf equaled the input voltage. When there is a mechanical load, the speed
of the motor may be limited also by the load. The back emf will then be less than
the external applied voltage. The greater the mechanical load, the slower the motor
rotates and the lower is the back emf ( Eq. 21–5).e r v,

Back emf in a motor. The armature windings of a dc motor
have a resistance of The motor is connected to a 120-V line, and when the
motor reaches full speed against its normal load, the back emf is 108 V. Calculate
(a) the current into the motor when it is just starting up, and (b) the current when
the motor reaches full speed.
APPROACH As the motor is just starting up, it is turning very slowly, so there
is negligible back emf. The only voltage is the 120-V line. The current is given by
Ohm’s law with At full speed, we must include as emfs both the 120-V
applied emf and the opposing back emf.
SOLUTION (a) At start up, the current is controlled by the 120 V applied to the
coil’s resistance. By Ohm’s law,

(b) When the motor is at full speed, the back emf must be included in the equivalent
circuit shown in Fig. 21–19. In this case, Ohm’s law (or Kirchhoff’s rule) gives

Therefore

NOTE This result shows that the current can be very high when a motor first
starts up. This is why the lights in your house may dim when the motor of the
refrigerator (or other large motor) starts up. The large initial refrigerator current
causes the voltage to the lights to drop because the house wiring has resistance
and there is some voltage drop across it when large currents are drawn.

I = 12 V
5.0 !

= 2.4 A.

120 V - 108 V = I(5.0 !).

I = V
R

= 120 V
5.0 !

= 24 A.

5.0-!

R = 5.0 !.

5.0 !.
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(Eq. 21–5).e0 = NAvB
e = e0 sin vt,
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FIGURE 21–19 Circuit of a motor
showing induced back emf.
Example 21–8.

E0 = NB!A

E = E0 sin(!t)
A = `h
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Mutual Inductance

This is called Mutual Inductance

➣ Let’s place two coils side by side

➣ Let’s connect one to an AC generator (primary coil) and the other to voltmeter (secondary coil)
22.8 Mutual and Self Induction

Let’s place two coils side by side.  Let’s connect one to an AC generator 
(primary coil) and the other to a voltmeter (secondary coil):

The primary coil creates a 
magnetic field, and some of 
those field lines pass thru the 
secondary coil.  

This produces a change in 
magnetic flux in the 
secondary coil, leading to 
an induced emf!  

This is called Mutual Inductance.

From Faraday’s Law: ,
sMs ')vH

where Hs is the induced emf in the secondary coil, and ')Ms is the 
change in mag. flux thru the secondary coil.

Esec = �M
�Iprim
�t

21–10 Inductance
Mutual Inductance
If two coils of wire are near one another, as in Fig. 21–35, a changing current in
one will induce an emf in the other. We apply Faraday’s law to coil 2: the emf 
induced in coil 2 is proportional to the rate of change of magnetic flux passing
through it. A changing flux in coil 2 is produced by a changing current in coil 1.
So is proportional to the rate of change of the current in coil 1:

(21;8a)

where we assume the time interval is very small, and the constant of propor-
tionality, M, is called the mutual inductance. (The minus sign is because of 
Lenz’s law, the induced emf opposes the changing flux.) Mutual inductance 
has units of which is called the henry (H), after Joseph Henry:

The mutual inductance M is a “constant” in that it does not depend on 
M depends on “geometric” factors such as the size, shape, number of turns, and
relative positions of the two coils, and also on whether iron (or other ferromagnetic
material) is present. For example, the farther apart the two coils are in Fig. 21–35,
the fewer lines of flux can pass through coil 2, so M will be less. If we consider the
inverse situation—a changing current in coil 2 inducing an emf in coil 1—the
proportionality constant, M, turns out to have the same value,

(21;8b)

A transformer is an example of mutual inductance in which the coupling is
maximized so that nearly all flux lines pass through both coils. Mutual inductance
has other uses as well, including inductive charging of cell phones, electric cars,
and other devices with rechargeable batteries, as we discussed in Section 21–7.
Some types of pacemakers used to maintain blood flow in heart patients 
(Section 19–6) receive their power from an external coil which is transmitted via
mutual inductance to a second coil in the pacemaker near the heart. This type has
the advantage over battery-powered pacemakers in that surgery is not needed to
replace a battery when it wears out.

Self-Inductance
The concept of inductance applies also to an isolated single coil. When a changing
current passes through a coil or solenoid, a changing magnetic flux is produced
inside the coil, and this in turn induces an emf. This induced emf opposes the
change in flux (Lenz’s law); it is much like the back emf generated in a motor.
(For example, if the current through the coil is increasing, the increasing mag-
netic flux induces an emf that opposes the original current and tends to retard 
its increase.) The induced emf is proportional to the rate of change in current
(and is in the direction opposed to the change, hence the minus sign):

(21;9)

The constant of proportionality L is called the self-inductance, or simply the
inductance of the coil. It, too, is measured in henrys. The magnitude of L depends
on the size and shape of the coil and on the presence of an iron core.

An ac circuit (Section 18–7) always contains some inductance, but often it is
quite small unless the circuit contains a coil of many loops or turns. A coil that
has significant self-inductance L is called an inductor. It is shown on circuit
diagrams by the symbol

. [inductor symbol]

e = –L
¢I
¢t

.

e

*

e1 = –M
¢I2

¢t
.

I1 ;
1 H = 1 !"s.

V"s!A = !"s,

¢t

e2 = –M
¢I1

¢t
,

e2

I1
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*
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FIGURE 21–35 A changing current
in one coil will induce a current in
the second coil.
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Pacemaker

➣ Primary coil creates a magnetic field, and some of those 

field lines pass thru secondary coil

➣ This produces a change in magnetic flux in secondary coil, 

leading to an induced emf!
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22.8 Mutual and Self Induction

Let’s place two coils side by side.  Let’s connect one to an AC generator 
(primary coil) and the other to a voltmeter (secondary coil):

The primary coil creates a 
magnetic field, and some of 
those field lines pass thru the 
secondary coil.  

This produces a change in 
magnetic flux in the 
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From Faraday’s Law: ,
sMs ')vH
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21–10 Inductance
Mutual Inductance
If two coils of wire are near one another, as in Fig. 21–35, a changing current in
one will induce an emf in the other. We apply Faraday’s law to coil 2: the emf 
induced in coil 2 is proportional to the rate of change of magnetic flux passing
through it. A changing flux in coil 2 is produced by a changing current in coil 1.
So is proportional to the rate of change of the current in coil 1:

(21;8a)

where we assume the time interval is very small, and the constant of propor-
tionality, M, is called the mutual inductance. (The minus sign is because of 
Lenz’s law, the induced emf opposes the changing flux.) Mutual inductance 
has units of which is called the henry (H), after Joseph Henry:

The mutual inductance M is a “constant” in that it does not depend on 
M depends on “geometric” factors such as the size, shape, number of turns, and
relative positions of the two coils, and also on whether iron (or other ferromagnetic
material) is present. For example, the farther apart the two coils are in Fig. 21–35,
the fewer lines of flux can pass through coil 2, so M will be less. If we consider the
inverse situation—a changing current in coil 2 inducing an emf in coil 1—the
proportionality constant, M, turns out to have the same value,

(21;8b)

A transformer is an example of mutual inductance in which the coupling is
maximized so that nearly all flux lines pass through both coils. Mutual inductance
has other uses as well, including inductive charging of cell phones, electric cars,
and other devices with rechargeable batteries, as we discussed in Section 21–7.
Some types of pacemakers used to maintain blood flow in heart patients 
(Section 19–6) receive their power from an external coil which is transmitted via
mutual inductance to a second coil in the pacemaker near the heart. This type has
the advantage over battery-powered pacemakers in that surgery is not needed to
replace a battery when it wears out.

Self-Inductance
The concept of inductance applies also to an isolated single coil. When a changing
current passes through a coil or solenoid, a changing magnetic flux is produced
inside the coil, and this in turn induces an emf. This induced emf opposes the
change in flux (Lenz’s law); it is much like the back emf generated in a motor.
(For example, if the current through the coil is increasing, the increasing mag-
netic flux induces an emf that opposes the original current and tends to retard 
its increase.) The induced emf is proportional to the rate of change in current
(and is in the direction opposed to the change, hence the minus sign):

(21;9)

The constant of proportionality L is called the self-inductance, or simply the
inductance of the coil. It, too, is measured in henrys. The magnitude of L depends
on the size and shape of the coil and on the presence of an iron core.

An ac circuit (Section 18–7) always contains some inductance, but often it is
quite small unless the circuit contains a coil of many loops or turns. A coil that
has significant self-inductance L is called an inductor. It is shown on circuit
diagrams by the symbol
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Self Inductance

Consider just one coil connected to an AC generator:

The AC current produces a 
changing magnetic field which 
produces a change in mag. flux 
within the coil.

This leads to an induced emf in the 
coil!

This process is called Self Induction.

Let ) be the flux thru one loop of the coil, so N) is the net flux.

IB vv) So, .IN v) Make this an equality: LIN  )

E = �L
�I

�t

21–10 Inductance
Mutual Inductance
If two coils of wire are near one another, as in Fig. 21–35, a changing current in
one will induce an emf in the other. We apply Faraday’s law to coil 2: the emf 
induced in coil 2 is proportional to the rate of change of magnetic flux passing
through it. A changing flux in coil 2 is produced by a changing current in coil 1.
So is proportional to the rate of change of the current in coil 1:

(21;8a)

where we assume the time interval is very small, and the constant of propor-
tionality, M, is called the mutual inductance. (The minus sign is because of 
Lenz’s law, the induced emf opposes the changing flux.) Mutual inductance 
has units of which is called the henry (H), after Joseph Henry:

The mutual inductance M is a “constant” in that it does not depend on 
M depends on “geometric” factors such as the size, shape, number of turns, and
relative positions of the two coils, and also on whether iron (or other ferromagnetic
material) is present. For example, the farther apart the two coils are in Fig. 21–35,
the fewer lines of flux can pass through coil 2, so M will be less. If we consider the
inverse situation—a changing current in coil 2 inducing an emf in coil 1—the
proportionality constant, M, turns out to have the same value,

(21;8b)

A transformer is an example of mutual inductance in which the coupling is
maximized so that nearly all flux lines pass through both coils. Mutual inductance
has other uses as well, including inductive charging of cell phones, electric cars,
and other devices with rechargeable batteries, as we discussed in Section 21–7.
Some types of pacemakers used to maintain blood flow in heart patients 
(Section 19–6) receive their power from an external coil which is transmitted via
mutual inductance to a second coil in the pacemaker near the heart. This type has
the advantage over battery-powered pacemakers in that surgery is not needed to
replace a battery when it wears out.

Self-Inductance
The concept of inductance applies also to an isolated single coil. When a changing
current passes through a coil or solenoid, a changing magnetic flux is produced
inside the coil, and this in turn induces an emf. This induced emf opposes the
change in flux (Lenz’s law); it is much like the back emf generated in a motor.
(For example, if the current through the coil is increasing, the increasing mag-
netic flux induces an emf that opposes the original current and tends to retard 
its increase.) The induced emf is proportional to the rate of change in current
(and is in the direction opposed to the change, hence the minus sign):

(21;9)

The constant of proportionality L is called the self-inductance, or simply the
inductance of the coil. It, too, is measured in henrys. The magnitude of L depends
on the size and shape of the coil and on the presence of an iron core.

An ac circuit (Section 18–7) always contains some inductance, but often it is
quite small unless the circuit contains a coil of many loops or turns. A coil that
has significant self-inductance L is called an inductor. It is shown on circuit
diagrams by the symbol
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Solenoid Inductance

*SECTION 21–10 Inductance 609
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FIGURE 21–36 Example 21–12.

Direction of emf in inductor. Current
passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose
the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
inductor might be thought of as a battery with a positive terminal at point A
(tending to block the current entering at A), and negative at point B.
(b) If the current is decreasing, then by Lenz’s law the induced emf acts to
bolster the flux—like a source of emf reinforcing the external emf. The induced
emf acts to increase I in Fig. 21–36b, so in this situation you can think of the
induced emf as a battery with its negative terminal at point A to attract more
current (conventional, ) to move to the right.±

CONCEPTUAL EXAMPLE 21;12

Solenoid inductance. (a) Determine a formula for the
self-inductance L of a long tightly wrapped solenoid coil of length and cross-
sectional area A, that contains N turns (or loops) of wire. (b) Calculate the value
of L if and the solenoid is air filled.
APPROACH The induced emf in a coil can be determined either from Faraday’s
law or the self-inductance If we equate
these two expressions, we can solve for the inductance L since we know how to
calculate the flux for a solenoid using Eq. 20–8 ( ).
SOLUTION (a) We equate Faraday’s law (Eq. 21–2b) and Eq. 21–9 for the
inductance:

and solve for L:

We know (Eq. 21–1), and Eq. 20–8 gives us the magnetic field B for
a solenoid, so the magnetic flux inside the solenoid is

Any change in current, causes a change in flux

We put this into our equation above for L:

(b) Using and putting in values given,

L =
A4p * 10–7 T !m!AB(100)2A3.0 * 10–5 m2BA5.0 * 10–2 mB = 7.5 mH.

m0 = 4p * 10–7 T !m!A,

L = N
¢£B
¢I    

=
m0 N2A
l

.

¢£B =
m0 N ¢I A

l
.

¢I,

£B =
m0 NIA
l

.

B = m0 NI!l,
£B = BA

L = N
¢£B
¢I    

.

e = –N
¢£B
¢t

= –L
¢I
¢t

,

B = m0 IN!l£B

Ae = –L ¢I!¢tB.Ae = –N ¢£B!¢tBN = 100,  l = 5.0 cm,  A = 0.30 cm2,

l
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Solenoid Inductance
We equate Faraday’s law to inductance
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Direction of emf in inductor. Current
passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose
the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
inductor might be thought of as a battery with a positive terminal at point A
(tending to block the current entering at A), and negative at point B.
(b) If the current is decreasing, then by Lenz’s law the induced emf acts to
bolster the flux—like a source of emf reinforcing the external emf. The induced
emf acts to increase I in Fig. 21–36b, so in this situation you can think of the
induced emf as a battery with its negative terminal at point A to attract more
current (conventional, ) to move to the right.±
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Direction of emf in inductor. Current
passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose
the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
inductor might be thought of as a battery with a positive terminal at point A
(tending to block the current entering at A), and negative at point B.
(b) If the current is decreasing, then by Lenz’s law the induced emf acts to
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induced emf as a battery with its negative terminal at point A to attract more
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Direction of emf in inductor. Current
passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose
the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
inductor might be thought of as a battery with a positive terminal at point A
(tending to block the current entering at A), and negative at point B.
(b) If the current is decreasing, then by Lenz’s law the induced emf acts to
bolster the flux—like a source of emf reinforcing the external emf. The induced
emf acts to increase I in Fig. 21–36b, so in this situation you can think of the
induced emf as a battery with its negative terminal at point A to attract more
current (conventional, ) to move to the right.±
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passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose
the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
inductor might be thought of as a battery with a positive terminal at point A
(tending to block the current entering at A), and negative at point B.
(b) If the current is decreasing, then by Lenz’s law the induced emf acts to
bolster the flux—like a source of emf reinforcing the external emf. The induced
emf acts to increase I in Fig. 21–36b, so in this situation you can think of the
induced emf as a battery with its negative terminal at point A to attract more
current (conventional, ) to move to the right.±
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passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose
the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
inductor might be thought of as a battery with a positive terminal at point A
(tending to block the current entering at A), and negative at point B.
(b) If the current is decreasing, then by Lenz’s law the induced emf acts to
bolster the flux—like a source of emf reinforcing the external emf. The induced
emf acts to increase I in Fig. 21–36b, so in this situation you can think of the
induced emf as a battery with its negative terminal at point A to attract more
current (conventional, ) to move to the right.±
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Direction of emf in inductor. Current
passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose
the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
inductor might be thought of as a battery with a positive terminal at point A
(tending to block the current entering at A), and negative at point B.
(b) If the current is decreasing, then by Lenz’s law the induced emf acts to
bolster the flux—like a source of emf reinforcing the external emf. The induced
emf acts to increase I in Fig. 21–36b, so in this situation you can think of the
induced emf as a battery with its negative terminal at point A to attract more
current (conventional, ) to move to the right.±
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Direction of emf in inductor. Current
passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose
the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
inductor might be thought of as a battery with a positive terminal at point A
(tending to block the current entering at A), and negative at point B.
(b) If the current is decreasing, then by Lenz’s law the induced emf acts to
bolster the flux—like a source of emf reinforcing the external emf. The induced
emf acts to increase I in Fig. 21–36b, so in this situation you can think of the
induced emf as a battery with its negative terminal at point A to attract more
current (conventional, ) to move to the right.±
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Direction of emf in inductor. Current
passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose
the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
inductor might be thought of as a battery with a positive terminal at point A
(tending to block the current entering at A), and negative at point B.
(b) If the current is decreasing, then by Lenz’s law the induced emf acts to
bolster the flux—like a source of emf reinforcing the external emf. The induced
emf acts to increase I in Fig. 21–36b, so in this situation you can think of the
induced emf as a battery with its negative terminal at point A to attract more
current (conventional, ) to move to the right.±
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Direction of emf in inductor. Current
passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose
the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
inductor might be thought of as a battery with a positive terminal at point A
(tending to block the current entering at A), and negative at point B.
(b) If the current is decreasing, then by Lenz’s law the induced emf acts to
bolster the flux—like a source of emf reinforcing the external emf. The induced
emf acts to increase I in Fig. 21–36b, so in this situation you can think of the
induced emf as a battery with its negative terminal at point A to attract more
current (conventional, ) to move to the right.±
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passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
RESPONSE (a) From Lenz’s law we know that the induced emf must oppose
the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
inductor might be thought of as a battery with a positive terminal at point A
(tending to block the current entering at A), and negative at point B.
(b) If the current is decreasing, then by Lenz’s law the induced emf acts to
bolster the flux—like a source of emf reinforcing the external emf. The induced
emf acts to increase I in Fig. 21–36b, so in this situation you can think of the
induced emf as a battery with its negative terminal at point A to attract more
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Direction of emf in inductor. Current
passes through the coil in Fig. 21–36 from left to right as shown. (a) If the current is
increasing with time, in which direction is the induced emf? (b) If the current 
is decreasing in time, what then is the direction of the induced emf?
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the change in magnetic flux. If the current is increasing, so is the magnetic flux.
The induced emf acts to oppose the increasing flux, which means it acts like a
source of emf that opposes the outside source of emf driving the current. So 
the induced emf in the coil acts to oppose I in Fig. 21–36a. In other words, the
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(tending to block the current entering at A), and negative at point B.
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emf acts to increase I in Fig. 21–36b, so in this situation you can think of the
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➣ We know 𝚽B = BA and magnetic field for solenoid ☛ so magnetic flux inside solenoid  is

➣ Any change in current, 𝛥I, causes a change in flux 

➣ We put this into our equation above for L

➣ We equate Faraday’s law to inductance
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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We saw that energy stored in  capacitor DEDO
By using similar argument it can be shown that energy stored in inductance is

21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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For solenoid

21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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Energy Stored in a Magnetic Field

21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.

L!R.
0.37Imaxt

[LR circuit without emf]I = Imax e–t!t.

0.63Imax .
tA1 - e–1B = 0.63,t = t,

t = L
R

e = 2.718 p

[LR circuit with emf]I = aV0

R
b A1 - e–t!tB,

Imax = V0!R

(V = IR).

V0

*

1
2 ! 0 E2,

m.m0

u = energy density = 1
2

B2

m0
.

Al.

U = energy = 1
2 LI2 = 1

2 ¢ m0 N2A
l

≤ ¢ Bl
m0 N

≤ 2

= 1
2

B2

m0
Al.

I = Bl!m0 N,
B = m0 NI!l.

L = m0 N2A!l.

U = energy = 1
2 LI2.

1
2 CV2.

*

610 CHAPTER 21 Electromagnetic Induction and Faraday’s Law

A B C

R L

V0
Switch

I

(a)

Imax = V0 / R

0.63Imax

I

Time

0.37Imax

I

= L
Rτ Time

(b)

Imax

Imax

= L
Rτ

FIGURE 21–38 (a) Growth of
current in an LR circuit when
connected to a battery. (b) Decay of
current when the LR circuit is shorted
out (battery is out of the circuit).

FIGURE 21–37 LR circuit.

21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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We saw that energy stored in  capacitor DEDO
By using similar argument it can be shown that energy stored in inductance is

21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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For solenoid

21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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FIGURE 21–37 LR circuit.

21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.

L!R.
0.37Imaxt

[LR circuit without emf]I = Imax e–t!t.

0.63Imax .
tA1 - e–1B = 0.63,t = t,

t = L
R

e = 2.718 p

[LR circuit with emf]I = aV0

R
b A1 - e–t!tB,

Imax = V0!R

(V = IR).

V0

*

1
2 ! 0 E2,

m.m0

u = energy density = 1
2

B2

m0
.

Al.

U = energy = 1
2 LI2 = 1

2 ¢ m0 N2A
l

≤ ¢ Bl
m0 N

≤ 2

= 1
2

B2

m0
Al.

I = Bl!m0 N,
B = m0 NI!l.

L = m0 N2A!l.

U = energy = 1
2 LI2.

1
2 CV2.

*

610 CHAPTER 21 Electromagnetic Induction and Faraday’s Law

A B C

R L

V0
Switch

I

(a)

Imax = V0 / R

0.63Imax

I

Time

0.37Imax

I

= L
Rτ Time

(b)

Imax

Imax

= L
Rτ

FIGURE 21–38 (a) Growth of
current in an LR circuit when
connected to a battery. (b) Decay of
current when the LR circuit is shorted
out (battery is out of the circuit).
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.

L!R.
0.37Imaxt

[LR circuit without emf]I = Imax e–t!t.

0.63Imax .
tA1 - e–1B = 0.63,t = t,

t = L
R

e = 2.718 p

[LR circuit with emf]I = aV0

R
b A1 - e–t!tB,

Imax = V0!R

(V = IR).

V0

*

1
2 ! 0 E2,

m.m0

u = energy density = 1
2

B2

m0
.

Al.

U = energy = 1
2 LI2 = 1

2 ¢ m0 N2A
l

≤ ¢ Bl
m0 N

≤ 2

= 1
2

B2

m0
Al.

I = Bl!m0 N,
B = m0 NI!l.

L = m0 N2A!l.

U = energy = 1
2 LI2.

1
2 CV2.

*

610 CHAPTER 21 Electromagnetic Induction and Faraday’s Law

A B C

R L

V0
Switch

I

(a)

Imax = V0 / R

0.63Imax

I

Time

0.37Imax

I

= L
Rτ Time

(b)

Imax

Imax

= L
Rτ

FIGURE 21–38 (a) Growth of
current in an LR circuit when
connected to a battery. (b) Decay of
current when the LR circuit is shorted
out (battery is out of the circuit).

FIGURE 21–37 LR circuit.

We saw that energy stored in  capacitor DEDO
By using similar argument it can be shown that energy stored in inductance is

21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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For solenoid

21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.

L!R.
0.37Imaxt

[LR circuit without emf]I = Imax e–t!t.

0.63Imax .
tA1 - e–1B = 0.63,t = t,

t = L
R

e = 2.718 p

[LR circuit with emf]I = aV0

R
b A1 - e–t!tB,

Imax = V0!R

(V = IR).

V0

*

1
2 ! 0 E2,

m.m0

u = energy density = 1
2

B2

m0
.

Al.

U = energy = 1
2 LI2 = 1

2 ¢ m0 N2A
l

≤ ¢ Bl
m0 N

≤ 2

= 1
2

B2

m0
Al.

I = Bl!m0 N,
B = m0 NI!l.

L = m0 N2A!l.

U = energy = 1
2 LI2.

1
2 CV2.

*

610 CHAPTER 21 Electromagnetic Induction and Faraday’s Law

A B C

R L

V0
Switch

I

(a)

Imax = V0 / R

0.63Imax

I

Time

0.37Imax

I

= L
Rτ Time

(b)

Imax

Imax

= L
Rτ

FIGURE 21–38 (a) Growth of
current in an LR circuit when
connected to a battery. (b) Decay of
current when the LR circuit is shorted
out (battery is out of the circuit).

FIGURE 21–37 LR circuit.

21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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Just as the energy stored in a capacitor can be considered to reside in the electric
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To write the energy in terms of the magnetic field, we quote the result of
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original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
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Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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21–11 Energy Stored in a Magnetic Field
In Section 17–9 we saw that the energy stored in a capacitor is equal to 
By using a similar argument, it can be shown that the energy U stored in an
inductance L, carrying a current I, is

Just as the energy stored in a capacitor can be considered to reside in the electric
field between its plates, so the energy in an inductor can be considered to be
stored in its magnetic field.

To write the energy in terms of the magnetic field, we quote the result of
Example 21–13 that the inductance of a solenoid is The magnetic
field B in a solenoid is related to the current I (see Eq. 20–8) by 
Thus, and

We can think of this energy as residing in the volume enclosed by the windings,
which is Then the energy per unit volume, or energy density, is

(21;10)

This formula, which was derived for the special case of a solenoid, can be shown to
be valid for any region of space where a magnetic field exists. If a ferromagnetic
material is present, is replaced by This equation is analogous to that for an
electric field, Section 17–9.

21–12 LR Circuit
Any inductor will have some resistance. We represent an inductor by drawing the
inductance L and its resistance R separately, as in Fig. 21–37. The resistance R
could also include any other resistance in the circuit. Now we ask, what happens
when a battery of voltage is connected in series to such an LR circuit? At the
instant the switch connecting the battery is closed, the current starts to flow. It is
opposed by the induced emf in the inductor because of the changing current.
However, as soon as current starts to flow, there is a voltage drop across the
resistance Hence, the voltage drop across the inductance is reduced
and the current increases less rapidly. The current thus rises gradually, as shown
in Fig. 21–38a, and approaches the steady value when there is no
more emf in the inductor (I is no longer changing) so all the voltage drop is across
the resistance. The shape of the curve for I as a function of time is 

where e is the number (see Section 19–6) and

is the time constant of the circuit. When then so is the
time required for the current to reach 

Next, if the battery is suddenly switched out of the circuit (dashed line in
Fig. 21–37), it takes time for the current to drop to zero, as shown in Fig. 21–38b.
This is an exponential decay curve given by

The time constant is the time for the current to decrease to (37% of the
original value), and again equals 

These graphs show that there is always some “lag time” or “reaction time”
when an electromagnet, for example, is turned on or off. We also see that an 
LR circuit has properties similar to an RC circuit (Section 19–6). Unlike the
capacitor case, however, the time constant here is inversely proportional to R.
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Total energy density in an electromagnetic field

22.9 Transformers

We can use one coil to induce an emf (voltage) in another coil by mutual induction.
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Total energy density = (electric + magnetic) field energy density28



	 Induced Electric Field
9.5 Induced Electric Field

8.4. INDUCED ELECTRIC FIELD 104

The net e�ect of the torque is to oppose the rotation of the coil.

An electric motor is simply a generator
operating in reverse.
⌅ Replace the load resistance R with
a battery of emf E .

With the battery, there is a current in the coil, and it experiences a
torque in the B-field.
⌅ Rotation of the coil leads to an induced emf, Eind, in
the direction opposite of that of the battery. (Lenz’ Law)

� i =
E � Eind

R

⌅ As motor speeds up, Eind ⇥, � i ⇤
� mechanical power delivered = torque delivered = NiAB sin � ⇤
In conclusion, we can show that

Pelectric = i2R + Pmechanical

Electric power input Mechanical power delivered

8.4 Induced Electric Field

So far we have discussed that a change in mag-
netic flux will lead in an induced emf distributed
in the loop, resulting from an induced E-field.

However, even in the absence of the loop (so that there is no induced current),
the induced E-field will still accompany a change in magnetic flux.

8.4. INDUCED ELECTRIC FIELD 105

� Consider a circular path in a region
with changing magnetic field.

The induced E-field only has tangential components. (i.e. radial E-field = 0)
Why?
Imagine a point charge q0 travelling around the circular path.
Work done by induced E-field = q0Eind⇤ ⇥� ⌅

force

· 2�r⇤⇥�⌅
distance

Recall work done also equals to q0E , where E is induced emf

� E = Eind2�r

Generally,

E =

˛
⇥Eind · d⇥s

where
¸

is line integral around a closed loop, ⇥Eind is induced E-field, ⇥s is
tangential vector of path.
� Faraday’s Law becomes

˛
C

⇥Eind · d⇥s = � d

dt

ˆ
S

⇥B · d ⇥A

L.H.S. = Integral around a closed loop C
R.H.S. = Integral over a surface bounded by C

Direction of d ⇥A determined by direction of line integration C (Right-Hand Rule)

We have seen that a changing magnetic flux 
induces an emf and a current in a conducting loop

 by claiming that electric field is created in conductor 

In the same way
 we can relate induced current in conducting loop to an electric field

as a result of the changing magnetic flux

➣ We have seen that a changing magnetic flux
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☛ Non-conservative force field➣
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The classification of electric and magnetic e�ects depend on the frame of reference
of the observer. e.g. For motional emf, observer in the reference frame of the
moving loop, will NOT see an induced E-field, just a ”regular” E-field.
(Read: Halliday Chap.33-6, 34-7)
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depend on frame of reference of observer !!!
e.g. For motional emf ☛ observer in reference frame of moving loop

SUMMARY

To be continued in Lesson 11 
same bat-time, same bat-channel

will NOT see an induced       -field but just a regular       -field
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