

Potential 巴nergy and Conservative Forces

DFFINTIION

\geqslant A force is conservative if work done on a particle by force is independent of path taken Alternative DEFINITION

Work done by a conservative force on a particle when it moves around a closed path returning to its initial position is zero

Gonclustion since work done by a conservative force \vec{F} is path-independent we can define: potential energy that depends only on position of particle

Potential Energy and Conservative Forces

> Work W done against conservative force gets stored as potential energy U

Gonvention

$>$ For uniforme force $\vec{F} \| \Delta \vec{s}$ we define potential energy U such that

$$
\Delta U=U_{2}-U_{1}=-W_{s_{1} \rightarrow s_{2}}=-\vec{F} \cdot \Delta \vec{s}=-F\left(s_{2}-s_{1}\right)
$$

where U_{1}, U_{2} are potential energy at position 1,2

Gravitational force is a conservative force

$$
\text { Work } \equiv \Delta W_{12} \Rightarrow \text { decrease in potential energy }
$$

Near the surface ofthe Earth. $\vec{F}_{\text {gravity }}=m \vec{g}$

The work done by gravitational force is the same for any path from a to b

$$
W_{a \rightarrow b}=-\Delta U=m g h
$$

Electric Potential Energy

> When a charge particle moves in electric field, field exerts force that can do work on particle

* The work can be expressed in terms of electric potential energy
$>$ Electric potential energy depends only on position of charged particle in electric field
$>$ Electric potential energy in uniform field

$$
W_{a \rightarrow b}=F \cdot d=q_{0} E d
$$

$>$ Electric field due to static charge

 distribution generales a conservative force$$
\Delta W=-\Delta U \Rightarrow U=q_{0} E \cdot y
$$

Point charge moving in a uniform electric field

Test Charge Moving from Height y_{a} to y_{b}

$$
W_{a \rightarrow b}=-\Delta U=-\left(U_{b}-U_{a}\right)=q_{0} E\left(y_{a}-y_{b}\right)
$$

Positive charge moves in the direction of \vec{E}

* Field does positive work on charge
* U decreases

Positive charge moves opposite \vec{E}

* Field does negative work on charge
* Uincreases

Independently of Whether Test Charge Is (+) or (-)

* U increases if q_{0} moves in direction opposite to electric force
* U decreases if q_{0} moves in same direction as $\vec{F}=q_{0} \vec{E}$

Negative charge moves in the direction of \vec{E}

* Field does negative work on charge
* U increases

Negative charge moves opposite \vec{E}

* Field does positive work on charge
* U decreases

Mathematical Interlude: Telescoping Sum

- A sum in which subsequent terms cancel each other leaving only initial and final terms

$$
\begin{aligned}
S & =\sum_{i=1}^{n-1}\left(a_{i}-a_{i+1}\right) \\
& =\left(a_{1}-a_{2}\right)+\left(a_{2}-a_{3}\right)+\cdots+\left(a_{n-2}-a_{n-1}\right)+\left(a_{n-1}-a_{n}\right) \\
& =\left(a_{1}-a_{n}\right)
\end{aligned}
$$

Electric Potential Energy of Two Point Charges

$>$ A test charge (q_{0}) will move directly away from a like charge q

Test charge q_{0} moves from a to b along a radial line from q
\rangle Divide the chosen path into short segments, each segment being represented by a vector connecting its ends take scalar product of path-segment vector with field E at that place add these products up for the whole path

$$
\begin{gathered}
\Delta U=-W_{a \rightarrow b}=-q_{0} \sum E(r) \Delta r=-\frac{1}{4 \pi \epsilon_{0}} q q_{0} \sum_{i=1}^{N} \frac{\Delta r}{r_{i}^{2}} \\
\Delta r=\frac{b-a}{N}
\end{gathered} r_{i}=a+i \Delta r \text { ar }
$$

$$
\begin{aligned}
& \text { Note that } \frac{1}{r_{i}}-\frac{1}{r_{i}+\Delta r}=\frac{\Delta r}{r_{i}\left(r_{i}+\Delta r\right)} \leq \frac{\Delta r}{r_{i}^{2}} \\
& \text { and } \quad \frac{1}{r_{i}-\Delta r}-\frac{1}{r_{i}}=\frac{\Delta r}{r_{i}\left(r_{i}-\Delta r\right)} \geq \frac{\Delta r}{r_{i}^{2}} \\
& \therefore \frac{1}{r_{i}}-\frac{1}{r_{i}+\Delta r} \leq \frac{\Delta r}{r_{i}^{2}} \leq \frac{1}{r_{i}-\Delta r}-\frac{1}{r_{i}}
\end{aligned}
$$

Telescoping sums easy to calculate

$$
\begin{aligned}
& \underbrace{\sum_{i=1}^{N} \frac{1}{r_{i}}-\frac{1}{r_{i}+\Delta r}}_{\frac{1}{a+\Delta r}-\frac{1}{b+\Delta r}} \leq \sum_{i=1}^{N} \frac{\Delta r}{r_{i}^{2}} \leq \underbrace{\sum_{i=1}^{N} \frac{1}{r_{i}-\Delta r}-\frac{1}{r_{i}}}_{\frac{1}{a}-\frac{1}{b}} \\
& \text { For } N \ll 1 \Rightarrow \Delta r \ll r \Rightarrow-\sum_{i=1}^{N} \frac{\Delta r}{r_{i}^{2}}=\frac{1}{b}-\frac{1}{a}
\end{aligned}
$$

Electric Potential Energy of Two Point Charges

Summary

If charge q_{2} moves from point 1 to 2

We have $\Delta U=-\Delta W=\frac{1}{4 \pi \epsilon_{0}} q_{1} q_{2}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)$
(1) This result is generally true for 2-D and/or 3-D motion
(2) If q_{2} moves away from q_{1} then $r_{2}>r_{1}$ we have
$>$ If q_{1}, q_{2} are of same sign then $\Delta U<0, \quad \Delta W>0$
($\Delta W=$ Work done by electric repulsive force)
$>$ If q_{1}, q_{2} are of different sign then $\Delta U>0, \quad \Delta W<0$
($\Delta W=$ Work done by electric attractive force)
(3) If q_{2} moves towards q_{1} then $r_{2}<r_{1}$ we have
$>$ If q_{1}, q_{2} are of same sign then $\Delta U>0, \quad \Delta W<0$
$>$ If q_{1}, q_{2} are of different sign then $\Delta U<0, \quad \Delta W>0$
(4) It is difference inpotential Energy that is important

Reference point

$$
U(r=\infty)=0
$$

$$
\begin{aligned}
& \therefore U_{\infty}-U_{1}=\frac{1}{4 \pi \epsilon_{0}} q_{1} q_{2}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right) \\
& \downarrow \\
& U(r)=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r}
\end{aligned}
$$

$>$ If q_{1}, q_{2} same sign then $U(r)>0$ for all r
$>$ If q_{1}, q_{2} opposite sign then $U(r)<0$ for all r
(5) Conservation of Mechanical Energy
$>$ For a system of charges with no external force

$$
\begin{gathered}
E=K+\underset{y}{U}=\text { Constant } \\
\text { Kotential Energy } \\
\text { Kinetic Energy } \\
\text { or } \Delta E=\Delta K+\Delta U=0
\end{gathered}
$$

"Potential Energy of a System of Charges

Example
P.E. of 3 charges q_{1}, q_{2}, q_{3}

Start $\quad q_{1}, q_{2}, q_{3}$ all at $r=\infty, U=0$
Step 1
$q_{1} \quad$ Move q_{1} from ∞ to its position $\Rightarrow U=0$
q_{1}
Step 8
Move q_{2} from ∞ to new position $\Rightarrow U=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r_{12}}$
q_{2}

Step 3

Step 4 What if there are 4 charges?

Summary of تlectric Potential झnergy

$>$ Potential energy when charge q_{0} is at distance r from q

$$
W_{a \rightarrow b}=\frac{q q_{0}}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{a}}-\frac{1}{r_{b}}\right)=-\Delta U \quad \rightarrow \quad U=\frac{q q_{0}}{4 \pi \varepsilon_{0} r}
$$

q and q_{0} have the same sign

Graphically, U between like charges increase sharply to positive (repulsive) values as the charges become close
q and q_{0} have opposite signs

Unlike charges have U becoming sharply negative as they become close (attractive)

Summary of Electric Potential Energy

> Potential energy is always relative to certain reference point where $U=0$
Location of this point is arbitrary
$U=0$ when q and q_{0} are infinitely apart ($r \rightarrow \infty$)
$>U$ is shared property of 2 charges, a consequence of interaction between them If distance between 2 charges is changed from r_{a} to $r_{\mathrm{b}}, \Delta U$ is same whether q is fixed and q_{0} moved, or vice versa

Flectric Potential Energy with Several Point Charges

> Potential energy associated with q_{0} at " a " is algebraic sum of U associated with each par of charges

$$
U=\frac{q_{0}}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}+\frac{q_{3}}{r_{3}}+\right)=\frac{q_{0}}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}}
$$

$$
U=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i<j} \frac{q_{i} q_{j}}{r_{i j}}
$$

Flectric Potential

Let q be charge at the center and consider its effect on test charge q_{0}
DFFINITION We define electric potential V so that

$$
\Delta V=\frac{\Delta U}{q_{0}}=\frac{-\Delta W}{q_{0}}
$$

($\therefore V$ is P.E. per unit charge)
\geqslant Similarly we take $V(r=\infty)=0$

- Electric Potential is a scalar
$>$ Unit Volt (V) = Joules/Coulomb
> For a single point charge $V(r)=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q}{r}$
$>$ Energy Unit $\Delta U=q \Delta V \quad$ elecrton $-\operatorname{volt}(\mathrm{eV})=\underbrace{1.6 \times 10^{-19} \mathrm{~J}}_{\text {charge of electron } / \mathrm{C}}$

Relation Between Flectric Field E and Electric Potential V

$>$ Consider uniform electric field
e.g. E between the parallel plates whose difference of potential is $V_{\text {ba }}$
$>$ Work done by the electric field to move a positive charge q from point a to point b is equal to the negative of change in potential energy

$$
W=-q\left(V_{b}-V_{a}\right)=-q V_{a b}
$$

$>$ We can also write the work done as

$$
W=F d=q E d
$$

$>d$ distance (parallel to field lines) between points a and b

$$
\therefore V_{a b}=-E d \Leftrightarrow E=-\frac{V_{a b}}{d}
$$

$>$ In region where E is not uniform electric field in a given direction at any point in space is equal to rate at which the electric potential V decreases over distance in that direction

$$
E_{x}=-\frac{\Delta V}{\Delta x}
$$

Example: Point Charge

$$
E=-\frac{\Delta V}{\Delta r}=-\frac{1}{4 \pi \epsilon_{0}} q\left(\frac{1}{r+\Delta r}-\frac{1}{r}\right) \frac{1}{\Delta r}
$$

Now

$$
\left(\frac{1}{r+\Delta r}-\frac{1}{r}\right) \frac{1}{\Delta r}=\frac{\Delta r}{(r+\Delta r) r} \frac{1}{\Delta r}=\frac{1}{r^{2}+r \Delta r}
$$

$$
\therefore \Delta r \ll r \Rightarrow E=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}}
$$

\geqslant Determine the potential at a point 0.50 m
(a) from a $20 \mu \mathrm{C}$ point charge
(b) from a -20 $\mu \mathrm{C}$ point charge
(a)

$$
\begin{aligned}
V & =k \frac{Q}{r} \\
& =\left(9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(\frac{20 \times 10^{-6} \mathrm{C}}{0.50 \mathrm{~m}}\right)=3.6 \times 10^{5} \mathrm{~V}
\end{aligned}
$$

(b)

$$
V=\left(9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(\frac{-20 \times 10^{-6} \mathrm{C}}{0.50 \mathrm{~m}}\right)=-3.6 \times 10^{5} \mathrm{~V}
$$

Potential For A System of Charges

For a total of N point charges potential V at any point P can be derived from principle of superposition

Recall that potential due to q_{1} at point P

$$
V_{1}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1}}{r_{1}}
$$

Total potential at point P due to N charges

principle of superposition

$$
\begin{aligned}
V & =V_{1}+V_{2}+\cdots+V_{N}=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}+\cdots \frac{q_{N}}{r_{N}}\right] \\
V & =\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{N} \frac{q_{i}}{r_{i}}
\end{aligned}
$$

$>$ For identical charges q are located at the four corners of a square with side lengh a What is the electric potential at the center of the square?

$$
\begin{aligned}
V & =\sum_{j} V_{j}=V_{1}+V_{2}+V_{3}+V_{4} \\
V_{1} & =k \frac{q}{r_{1}}=k q \frac{\sqrt{2}}{a} \\
V & =4 \sqrt{2} k \frac{q}{a}
\end{aligned}
$$

Equipotential Surfaces

$>$ Equipotential surface is a surface on which potential is constant

$$
\begin{aligned}
& \text { For point charge } \\
& \qquad \begin{aligned}
& \Rightarrow(\Delta V=0) \\
& \Rightarrow \frac{1}{4 \pi \epsilon_{0}} \cdot \frac{+q}{r}=\text { const } \\
& \Rightarrow r=\text { const }
\end{aligned}
\end{aligned}
$$

\Rightarrow Equipotential surface are
Note
(1) A charge can move freely on an equipotential surface without any work done
(2) Electric field lines must be perpendicular to equipotential surfaces

On an equipotential surface $V=$ constant
$\Rightarrow \Delta V=0 \Rightarrow \vec{E} \cdot \Delta \vec{d}=0 \quad$ where $\Delta \vec{d}$ is tangent to equipotential surface
$\therefore \vec{E}$ must be perpendicular to equipotential surfaces

```
0xample
```

Uniformly charged surface (infinite)

$$
V_{1}>V_{2}
$$

Recall

$$
\begin{aligned}
V= & V_{0}-\frac{\sigma}{2 \epsilon_{0}}|z| \\
& \uparrow \\
& \text { Potential at } z=0
\end{aligned}
$$

Equipotential surface means

$$
\begin{aligned}
V & =\text { const } \Rightarrow V_{0}-\frac{\sigma}{2 \epsilon_{0}}|z|=C \\
& \Rightarrow|z|=\text { constant }
\end{aligned}
$$

Important

$\geqslant E$ does not need to be constant over an equipotential surface
$>$ Only V is constant
(a) A single positive charge

(b) An electric dipole

$\rightarrow \quad$ Electric field lines

- Cross sections of equipotential surfaces
(c) Two equal positive charges
$\rangle E$ is not a constant $\rightarrow E=0$ in between two charges (at equal distance from each one), but not elsewhere within same equipotential surface

$\rightarrow \quad$ Electric field lines
- Cross sections of equipotential surfaces

Equipotentials and Conductors

$>$ When all charges are at rest, surface of a conductor is always an equipotential surface
$\rightarrow E$ outside a conductor \perp to surface at each point

Demonstrpation

$E=0$ (inside conductor) $\rightarrow E$ tangent to surface inside and out of conductor $=0 \rightarrow$ otherwise charges would move following rectangular path

An imposible electric field

If electric field just outside a conductor had a tangential component $E_{\|}$ a charge could move in a loop with net work done

Vacuum
$\vec{E} \perp$ to conductor surface

Dxample Isolated spherical charged conductors
Recall
(1) E-field inside $=0$
(2) charge distributed on outside of conductors

(i) Inside conductor

$$
\begin{aligned}
E=0 & \Rightarrow \Delta V=0 \text { everywhere in conductor } \\
& \Rightarrow V=\text { constant everywhere in conductor }
\end{aligned}
$$

\Rightarrow entire conductor is at same potential
(ii) Outside conductor

$$
V=\frac{Q}{4 \pi \epsilon_{0} r}
$$

\because Spherically symmetric (Just like a point charge) BUT not true for conductors of arbitrary shape

10:xample Connected conducting spheres

Two conductors connected can be seen as a single conductor

\therefore Potential everywhere is identical

Potential of radius $R_{1} \quad$ sphere $\quad V_{1}=\frac{q_{1}}{4 \pi \epsilon_{0} R_{1}}$

Potential of radius R_{2} sphere $\quad V_{2}=\frac{q_{2}}{4 \pi \epsilon_{0} R_{2}}$

$$
\begin{aligned}
V_{1} & =V_{2} \\
\Rightarrow \frac{q_{1}}{R_{1}}=\frac{q_{2}}{R_{2}} & \Rightarrow \quad \frac{q_{1}}{q_{2}}=\frac{R_{1}}{R_{2}}
\end{aligned}
$$

Since SA is closer to positive charge than $S_{\mathrm{B}}, S_{\mathrm{A}}$ is at a higher potential than S_{B}

Worle?

Net electric force does no work as a charge moves on an equipotential surface

Why?

We defined $\quad V_{B}-V_{A}=\frac{-W_{A B}}{q} \quad \begin{gathered}\text { But, if we are on an equipotential surface, } \\ \text { then } V_{\mathrm{A}}=V_{\mathrm{B}} \text { and } W_{\mathrm{AB}}=0\end{gathered}$
In order for charge to feel a force along an equipotential surface, there must be a component of field along surface, but E is everywhere perpendicular to equipotential surface

18

Fields , Potentials, and IMotion of Charges -Summary-

> Electric fields lines start on positive charges and end on negative ones
$>$ Positive charges accelerate from regions of high potential toward low potential
$>$ Negative charges accelerate from regions of low potential toward high potential
$>$ Equipotential surfaces are surfaces of constant potential
\Rightarrow Electric field lines are perpendicular to an equipotential surface
$>$ Electric field lines are perpendicular to the surface of a conductor, thus a conductor is an equipotential surface!
$>$ Electric field lines point from regions of high potential toward low potential

therefiore, posibive charges move in the same direction as electric field points, and negative charges move in opposite direction of electric field

- Electric force does no work as a charge moves on an equipotential surface

