

Potential Energy and Conservative Forces

Alternative

DEFINITION

when it moves around a closed path

returning to its initial position is zero

- > A force is conservative if work done on a particle by force is independent of path taken
 - Work done by a conservative force on a particle
- **Conclusion** Since work done by a conservative force F is **path-independent** we can define:
 - potential energy that depends only on **position** of particle

Potential Energy and Conservative Forces

 \succ Work W done against conservative force gets stored as potential energy U

> For uniforme force $\vec{F} \parallel \Delta \vec{s}$ rewe define potential energy U such that

$\Delta U = U_2 - U_1 = -W_s$

where U_1, U_2 are potential energy at position 1, 2

$$a_1 \rightarrow s_2 = -\vec{F} \cdot \Delta \vec{s} = -F(s_2 - s_1)$$

Gravitational force is a conservative force

Work $\equiv \Delta W_{12} \implies$ decrease in potential energy

: The work done by a **conservative force** on a particle when it

Gravitational force is a conservative force

The work done by gravitational force is the same for any path from a to b $W_{a \to b} = -\Delta U = mgh$

- > When a charge particle moves in electric field, field exerts force that can do work on particle
- \succ The work can be expressed in terms of electric potential energy
- > Electric potential energy depends only on position of charged particle in electric field
- > Electric potential energy in uniform field

$$W_{a \to b} = F \cdot d = q_0 E d$$

> Electric field due to static charge distribution generales a conservative force

$$= -\Delta \longrightarrow = \cdot$$

$$\Delta W = -\Delta U \Rightarrow U = q_0 E \cdot y$$

^a**Test Charge Moving from Height** y_a **to** y_b

Positive charge moves in the direction of \underline{E}_{Δ} Positive charge moves opposite \dot{E} **Field does negative** work on charge $\star U$ increases

Field does **positive** work on charge

 $\star U$ decreases

 $W_{a \to b} = -\Delta U = -(U_b - U_a) = q_0 E(y_a - y_b)$

Independently of Whether Test Charge Is (+) or (-)

 \mathbf{I} U increases if q_0 moves in direction opposite to electric force

***** U decreases if q_0 moves in same direction as $\vec{F} = q_0 \vec{E}$

Negative charge moves in the direction of \vec{E} Negative charge moves opposite \vec{E}

Field does **negative** work on charge

Uincreases

Field does positive work on charge

Mathematical Interlude: Telescoping Sum

> A sum in which subsequent terms cancel each other leaving only initial and final terms

$$S = \sum_{i=1}^{n-1} (a_i - a_{i+1})$$

= $(a_1 - a_2) + (a_2 - a_3) + \cdot$
= $(a_1 - a_n)$

 $\cdots + (a_{n-2} - a_{n-1}) + (a_{n-1} - a_n)$

Electric Potential Energy of Two Point Charges

> A test charge (q_0) will move directly away from a like charge q

> Divide the chosen path into short segments, each segment being represented by a vector connecting its ends take scalar product of path-segment vector with field E at that place add these products up for the whole path

$$\Delta U = -W_{a \to b} = -q_0 \sum E(r) \ \Delta r = -\frac{1}{4\pi\epsilon_0} qq_0 \sum_{i=1}^N \frac{\Delta r}{r_i^2}$$
$$\Delta r = \frac{b-a}{N} \qquad \qquad r_i = a + i\Delta r$$

Test charge q_0 moves from a to b

along a radial line from q

Telescoping sums reasy to calculate

Electric Potential Energy of Two Point Charges

If charge q_2 moves from point 1 to 2

 $\begin{array}{c|c} & & & & & \\ \hline & & & & \\ \hline q_1 \end{array} \end{array} \xrightarrow{} & & & \\ \hline q_2 \end{array} \xrightarrow{} & & & \\ \hline q_2 \end{array} \xrightarrow{} & & & \\ \hline r \end{array}$

(1) This result is generally true for 2-D and/or 3-D motion (2) If q_2 moves away from q_1 then $r_2 > r_1$ we have > If q_1, q_2 are of same sign then $\Delta U < 0$, $\Delta W > 0$ $(\Delta W = Work done by electric repulsive force)$ > If q_1, q_2 are of different sign then $\Delta U > 0$, $\Delta W < 0$ ($\Delta W = Work$ done by electric **attractive** force) ③ If q_2 moves towards q_1 then $r_2 < r_1$ we have > If q_1, q_2 are of same sign then $\Delta U > 0$, $\Delta W < 0$

> If q_1, q_2 are of different sign then $\Delta U < 0, \quad \Delta W > 0$

(4) It is difference inpotential Energy that is important U(r =Reference point $\therefore U_{\infty} - U_1 =$

- U(r) =
- > If q_1, q_2 same sign then U(r) > 0 for a
- > If q_1, q_2 opposite signation U(r) < 0
- (5) Conservation of Mechanical Energy
- > For a system of charges with no external force

$$E = \frac{F_{K}}{K} = K$$

Kinetic Energy
or $\Delta E \wedge = \Delta K$

$$\begin{split} & \infty) = 0 \\ & \frac{1}{4\pi\epsilon_0} q_1 q_2 \Big(\frac{1}{r_2} - \frac{1}{r_1} \\ & \downarrow \\ & 1 \\ \hline \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{r} \\ & \eta r \\ & \eta r \\ & \eta r > 0 \\ & for(\eta) & r \\ & for(\eta) & r \end{split}$$

+ = U ConstantY **Potential Energy** $\mathbb{A} \mathbb{H} \mathbb{A} \mathbb{A} \mathbb{A} \mathbb{A} \mathbb{A} \mathbb{A} \mathbb{A}$

¹⁴ Potential Energy of a System of Charges

- Move q_1 from ∞ to its position $\Rightarrow U = 0$

Move q_2 from ∞ to new position $\Rightarrow U = \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r_{12}}$

Move q_3 from ∞ to new position \Rightarrow **Total P.E** U = $1 \quad \begin{bmatrix} q_1 q_2 & q_1 q_3 & q_2 q_3 \end{bmatrix}$ $4\pi\epsilon_0 \mid r_{12}$ r_{13} r_{23}

Summary of Electric Potential Energy

> Potential energy when charge q_0 is at distance r from q

q and q_0 have the same sign

Graphically, U between like charges increase sharply to positive (repulsive) values as the charges become close

$$= -\Delta U \qquad \rightarrow \qquad U = \frac{qq_0}{4\pi\varepsilon_0 r}$$

q and q_0 have opposite signs $\begin{array}{cccc}
q & q_0 & q & q_0 \\
\hline
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$

Unlike charges have U becoming sharply negative as they become close (attractive)

Summary of Electric Potential Energy

- > Potential energy is always relative to certain reference point where U = 0Location of this point is arbitrary U = 0 when q and q_0 are infinitely apart $(r \rightarrow \infty)$
- > U is shared property of 2 charges, a consequence of interaction between them If distance between 2 charges is changed from $r_{\rm a}$ to $r_{\rm b}$, ΔU is same whether q is fixed and q_0 moved, or vice versa

Electric Potential Energy with Several Point Charges

> Potential energy associated with q_0 at " a" is algebraic sum of U associated with each par of charges

$$U = \frac{q_0}{4\pi\varepsilon_0} \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} + \frac{q_3}{r_3} + \frac{q_3}{4\pi\varepsilon_0} \right) = \frac{q_0}{4\pi\varepsilon_0}$$

$$U = \frac{1}{4\pi\varepsilon} \sum_{0} \frac{q_i q_j}{r_{ij}}$$

Electric Potential

- Let q be charge at the center and consider its effect on test charge q_0
 - We define electric potential V so that
 - $\Delta V = \frac{\Delta U}{q_0} = \frac{-\Delta W}{q_0}$
 - (: V is P.E. per unit charge)
- > Similarly rewe take $V(r = \infty) = 0$
- > Electric Potential is a scalar

3 TO THE TAR OIN

- > Unit \blacktriangleright Volt (V) = Joules/Coulomb
- > For a single point charge $V(r) = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{r}$ elecrton – volt (eV) = $1.6 \times 10^{-19} \text{ J}$ > Energy Unit $rac{\Delta U} = q \Delta V$

charge of electron/C

Relation Between Electric Field E and Electric Potential V

- > Consider uniform electric field e.g. E between the parallel plates whose difference of potential is $V_{\rm ba}$
- \succ Work done by the electric field to move a positive charge q from point a to point b is equal to the negative of change in potential energy W = -q(V
- > We can also write the work done as

 $> d \models$ distance (parallel to field lines) between points a and b

$$\therefore V_{ab} = -Ed \Leftrightarrow E = -\frac{V_{ab}}{d}$$

$$V_b - V_a) = -qV_{ab}$$

- W = Fd = qEd

> In region where E is not uniform $rac{r}$ electric field in a given direction at any point in space is equal to rate at which the electric potential V decreases over distance in that direction $rac{r}$

Now

 $E_x = -\frac{\Delta V}{\Lambda r}$

Example: Point Charge

$$\frac{1}{\pi\epsilon_0} q \left(\frac{1}{r + \Delta r} - \frac{1}{r} \right) \frac{1}{\Delta r}$$

$$\frac{\Delta r}{(+\Delta r)r} \frac{1}{\Delta r} = \frac{1}{r^2 + r\Delta r}$$

 $\therefore \Delta r \ll r \Rightarrow E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$

> Determine the potential at a point 0.50 m (a) from a 20 μ C point charge (b) from a -20 μ C point charge (a) $V = k \frac{Q}{r}$

(b)

$$V = (9.0 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2) \left(\frac{-20 \times 10^{-6} \,\mathrm{C}}{0.50 \,\mathrm{m}}\right)$$

Potential For A System of Charges

For a total of N point charges potential V at any point P can be derived from **principle of superposition**

Recall that potential due to q_1 at point P

$$V_1 = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1}{r_1}$$

Total potential at point P due to N charges

principle of superposition $V = V_1 + V_2 + \dots + V_N = \frac{1}{4\pi\epsilon_0} \left[\frac{q_1}{r_1} + \frac{q_2}{r_2} + \dots + \frac{q_N}{r_N} \right]$

> For identical charges q are located at the four corners of a square with side lengh aWhat is the electric potential at the center of the square?

$$V = \sum_{j} V_{j} = V_{1} + V_{2} + V_{3} + V_{4}$$
$$V_{1} = k \frac{q}{r_{1}} = kq \frac{\sqrt{2}}{a}$$
$$V = 4\sqrt{2}k \frac{q}{a}$$

Equipotential Surfaces

> Equipotential surface is a surface on which **potential** is constant

For point charge =

Note 🖛

 $V_1 > V_2 > V_3$

A charge can move freely on an equipotential surface without any work done

Electric field lines must be perpendicular to **equipotential surfaces**

E - field lines

On an equipotential surface V = constant $\Rightarrow \Delta V = 0 \Rightarrow \vec{E} \cdot \Delta \vec{d} = 0$ where $\Delta \vec{d}$ is **tangent** to equipotential surface $\therefore \vec{E}$ must be **perpendicular** to equipotential surfaces

$$\Rightarrow \quad (\Delta V = 0)$$

= $\frac{1}{4\pi\epsilon_0} \cdot \frac{+q}{r} = const$

$$\Rightarrow$$
 $r = const$

Equipotential surface are \Rightarrow circles / spherical surface

Uniformly charged surface (infinite)

 $V_{1} > V_{2}$

all
$$V = V_0 - \frac{\sigma}{2\epsilon_0}|z|$$

 \uparrow
Potential at $z = 0$

Equipotential surface means

$$= const \Rightarrow V_0 - \frac{\sigma}{2\epsilon_0}|z| = C$$

 $\Rightarrow |z| = constant$

Important

- > E does not need to be constant over an equipotential surface
- > Only V is constant
 - (a) A single positive charge

(b) An electric dipole

(c) Two equal positive charges

> E is not a constant $\rightarrow E = 0$ in between two charges (at equal distance from each one), but not elsewhere within same equipotential surface

Electric field lines Cross sections of equipotential surfaces

Equipotentials and Conductors

>When all charges are at rest, surface of a conductor is always an equipotential surface \rightarrow *E* outside a conductor \perp to surface at each point

Demonstration

E = 0 (inside conductor) $\rightarrow E$ tangent to surface inside and out of conductor = $0 \rightarrow$ otherwise charges would move following rectangular path

An imposible electric field

If electric field just outside a conductor had a tangential component E_{\parallel} a charge could move in a loop with net work done

 $\vec{E} \perp$ to conductor surface

(ii) Outside conductor \frown

$$V = \frac{Q}{4\pi\epsilon_0 r}$$

 \Rightarrow

Spherically symmetric (Just like a point charge) **BUT** not true for conductors of arbitrary shape

- (1) E-field inside = 0
- (2) charge distributed on **outside** of conductors
- $E = 0 \Rightarrow \Delta V = 0$ everywhere in conductor
 - $\Rightarrow V = constant$ everywhere in conductor
 - entire conductor is at same potential

Connected conducting spheres

Two conductors connected can be seen as a single conductor

Potential of radius R_1 sphere 🖛

Potential of radius R_2 sphere \blacksquare

 $\Rightarrow \frac{q_1}{R_1} = \frac{q_2}{R_2}$

Potential everywhere is identical

$$V_1 = \frac{q_1}{4\pi\epsilon_0 R_1}$$

$$V_2 = \frac{q_2}{4\pi\epsilon_0 R_2}$$
$$V_1 = V_2$$
$$\frac{q_2}{R_2} \Rightarrow \frac{q_1}{q_2} = \frac{R_1}{R_2}$$

Since SA is closer to positive charge than $S_{
m B}$, $S_{
m A}$ is at a higher potential than $S_{
m B}$

Thus, electric field lines point in direction of decreasing potential, i.e. they point from high potential to low potential

We defined

 $V_R - V_A = --$

In order for charge to feel a force along an equipotential surface, there must be a component of field along surface, but E is everywhere perpendicular to equipotential surface

Net electric force does no work as a charge moves on an equipotential surface

$$rac{W_{AB}}{q}$$
 But, if we are on an equipotential surface,
then $V_{\rm A} = V_{\rm B}$ and $W_{\rm AB} = 0$

or

32 Fields, Potentials, and Motion of Charges -Summary-

- > Electric fields lines start on positive charges and end on negative ones
- > Positive charges accelerate from regions of high potential toward low potential
- > Negative charges accelerate from regions of low potential toward high potential
- > Equipotential surfaces are surfaces of constant potential
- > Electric field lines are perpendicular to an equipotential surface
- > Electric field lines are perpendicular to the surface of a conductor, thus a conductor is an equipotential surface!
- > Electric field lines point from regions of high potential toward low potential

Therefore, positive charges move in the same direction as electric field points, and negative charges move in opposite direction of electric field

> Electric force does no work as a charge moves on an equipotential surface

