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Potential Energy and Conservative Forces

➣ A force is conservative if work done on a particle by force is independent of path taken

DEFINITION
Alternative

DEFINITION

Work done by a conservative force on a particle                                
when it moves around a closed path
returning to its initial position is zero

Conclusion Since work done by a conservative force       is path-independent we can define: 

potential energy that depends only on position of particle

~F
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Potential Energy and Conservative Forces

Work ⇒ decrease in potential energy

Gravitational force is a conservative force
<latexit sha1_base64="pXlAX+fBPhYZXRk7OaaxljJuReA=">AAAB/XicdVDJSgNBEO2JW4zbuNy8NAbBU5gOmuUW1IPHCGaBJISeTiVp0rPY3ROIQ/BXvHhQxKv/4c2/sSeJoKIPCh7vVVFVzw0FV9pxPqzU0vLK6lp6PbOxubW9Y+/u1VUQSQY1FohANl2qQHAfapprAc1QAvVcAQ13dJH4jTFIxQP/Rk9C6Hh04PM+Z1QbqWsftOE24mPcvgShKW50Y5Kfdu2sk3MchxCCE0KKBceQcrmUJyVMEssgixaodu33di9gkQe+ZoIq1SJOqDsxlZozAdNMO1IQUjaiA2gZ6lMPVCeeXT/Fx0bp4X4gTfkaz9TvEzH1lJp4run0qB6q314i/uW1It0vdWLuh5EGn80X9SOBdYCTKHCPS2BaTAyhTHJzK2ZDKinTJrCMCeHrU/w/qedzpJA7uz7NVs4XcaTRITpCJ4igIqqgK1RFNcTQHXpAT+jZurcerRfrdd6ashYz++gHrLdPxhaU0A==</latexit>

⌘ �W12

➣ Work W done against conservative force gets stored as potential energy U

Convention

➣ For uniforme force               ☛ we define potential energy U such that
<latexit sha1_base64="K2+qsZYrGboszo/MHYKEHgPqEaE=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwVRLxtSwq4rKCfUATymR62w6dTMLMpFBCtm78FTcuFHHrH7jzb5y2WWjrgQuHc+7l3nuCmDOlHefbKiwtr6yuFddLG5tb2zv27l5DRYmkUKcRj2QrIAo4E1DXTHNoxRJIGHBoBsPrid8cgVQsEg96HIMfkr5gPUaJNlLHxt4IaHqbYS8mknAOHHs3wDWZGSrr2GWn4kyBF4mbkzLKUevYX143okkIQlNOlGq7Tqz9lEjNKIes5CUKYkKHpA9tQwUJQfnp9JMMHxmli3uRNCU0nqq/J1ISKjUOA9MZEj1Q895E/M9rJ7p36adMxIkGQWeLegnHOsKTWHCXSaCajw0hVDJzK6YDkwjVJrySCcGdf3mRNE4q7nnl7P60XL3K4yiiA3SIjpGLLlAV3aEaqiOKHtEzekVv1pP1Yr1bH7PWgpXP7KM/sD5/AFdZmiE=</latexit>

~F k �~s

�U = U2 � U1 = �Ws1!s2 = �~F ·�~s = �F (s2 � s1)

where  U1, U2 are potential energy at position 1, 2
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Near the surface of the Earth ☛ ~Fgravity = m~g

0. Review

The work done raising a basketball 
against gravity depends only on the 
potential energy, how high the ball 
goes. It does not depend on other 
motions. A point charge moving in a 
field exhibits similar behavior.

∫∫ ⋅⋅=⋅=→

b

a

b

a

ba dlFldFW ϕcos
!!

Work:

- If the force is conservative: 

Potential energy

Work-Energy:
bbaa UKUK +=+

UUUUUW abbaba ∆−=−−=−=→ )(
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Potential Energy and Conservative Forces

➣ A force is conservative if work done on a particle by force is independent of path taken

DEFINITION

4.1. POTENTIAL ENERGY AND CONSERVATIVE FORCES 37

DEFINITION: A force is conservative if the work done on a particle by
the force is independent of the path taken.

� For conservative forces,
ˆ 2

1

�F · d�s =

ˆ 2

1

�F · d�s

Path A Path B

Let’s consider a path starting at point
1 to 2 through Path A and from 2 to 1
through Path C

Work done =

ˆ 2

1

�F · d�s +

ˆ 1

2

�F · d�s

Path A Path C

=

ˆ 2

1

�F · d�s �
ˆ 2

1

�F · d�s

Path A Path B

DEFINITION: The work done by a conservative force on a particle when it
moves around a closed path returning to its initial position is zero.

MATHEMATICALLY, �⇤⇥ �F = 0 everywhere for conservative force �F

Conclusion: Since the work done by a conservative force �F is path-independent,
we can define a quantity, potential energy, that depends only on the
position of the particle.

Convention: We define potential energy U such that

dU = �W = �
ˆ

�F · d�s

� For particle moving from 1 to 2ˆ 2

1

dU = U2 � U1 = �
ˆ 2

1

�F · d�s

where U1, U2 are potential energy at position 1, 2.

19.1 Potential Energy

Gravitational force is a conservative force

Recall Conservative Forces

1. The work done on an object by a conservative force depends only 
on the object’s initial and final position, and not the path taken.

2. The net work done by a conservative force in moving an object 
around a closed path is zero.

W = 0
h

G

Work (WAB) = decrease of potential energy

= 'P

= PEA- PEB = mg'y = mghA

B

�WAB = UB � UA = mg �y = �mgh

Work ⇒ decrease in potential energy

Gravitational force is a conservative force
<latexit sha1_base64="qUKtz+PnOkx0Sm3ezTCG9dOZ/AI=">AAACAHicdVDJSgNBEO1xjXEb9eDBS2MQPIXpoFluMXrwGMEskITQ06kkTXoWu3sCYcjFX/HiQRGvfoY3/8aeJIKKPih4vFdFVT03FFxpx/mwlpZXVtfWUxvpza3tnV17b7+ugkgyqLFABLLpUgWC+1DTXAtohhKo5wpouKPLxG+MQSoe+Ld6EkLHowOf9zmj2khd+7ANdxEf4/YVCE1xoxtfVKY4ne7aGSfrOA4hBCeEFPKOIaVSMUeKmCSWQQYtUO3a7+1ewCIPfM0EVapFnFB3Yio1ZwKm6XakIKRsRAfQMtSnHqhOPHtgik+M0sP9QJryNZ6p3ydi6ik18VzT6VE9VL+9RPzLa0W6X+zE3A8jDT6bL+pHAusAJ2ngHpfAtJgYQpnk5lbMhlRSpk1mSQhfn+L/ST2XJfns+c1ZplxZxJFCR+gYnSKCCqiMrlEV1RBDU/SAntCzdW89Wi/W67x1yVrMHKAfsN4+AcsnlUI=</latexit>

⌘ �WAB

The work done by gravitational force 

is the same for any path from a to b
<latexit sha1_base64="szt8usWhzzyLALKHGzeNuodV4WU=">AAACDXicdVDJSgNBEO1xN25Rj14ao+DFYbJNchFEPXhUMImQhFDT6SRNeha6a5Qw5Ae8+CtePCji1bs3/8bOIqjog4LHe1VU1fMiKTQ6zoc1Mzs3v7C4tJxaWV1b30hvblV1GCvGKyyUobr2QHMpAl5BgZJfR4qD70le8/qnI792w5UWYXCFg4g3fegGoiMYoJFa6b1aKwHaUKLbQ1AqvKXekB7Rw8YZlwi0ckT9bq+Vzjh23nULJYc6tpsv552cIeV8seQWadZ2xsiQKS5a6fdGO2SxzwNkErSuZ50ImwkoFEzyYaoRax4B60OX1w0NwOe6mYy/GdJ9o7RpJ1SmAqRj9ftEAr7WA9/cue8D9vRvbyT+5dVj7JSbiQiiGHnAJos6saQY0lE0tC0UZygHhgBTwtxKWQ8UMDQBpkwIX5/S/0k1Z2ddu3hZyByfTONYIjtklxyQLCmRY3JOLkiFMHJHHsgTebburUfrxXqdtM5Y05lt8gPW2yfGM5rD</latexit>

Wa!b = ��U = mgh
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Electric Potential Energy 
in a Uniform Field:

- When a charged particle moves in an electric field, the field exerts a 
force that can do work on the particle. The work can be expressed in 
terms of electric potential energy. 

- Electric potential energy depends only on the position of the charged 
particle in the electric field.

1. Electric Potential Energy

EdqdFW ba 0=⋅=→

Electric field due to a static charge 
distribution generates a conservative 
force:

yEqUUW ba ⋅=→∆−=→ 0

Electric Potential Energy 
in a Uniform Field:

- When a charged particle moves in an electric field, the field exerts a 
force that can do work on the particle. The work can be expressed in 
terms of electric potential energy. 

- Electric potential energy depends only on the position of the charged 
particle in the electric field.

1. Electric Potential Energy

EdqdFW ba 0=⋅=→

Electric field due to a static charge 
distribution generates a conservative 
force:

yEqUUW ba ⋅=→∆−=→ 0

Electric Potential Energy 
in a Uniform Field:

- When a charged particle moves in an electric field, the field exerts a 
force that can do work on the particle. The work can be expressed in 
terms of electric potential energy. 

- Electric potential energy depends only on the position of the charged 
particle in the electric field.

1. Electric Potential Energy

EdqdFW ba 0=⋅=→

Electric field due to a static charge 
distribution generates a conservative 
force:

yEqUUW ba ⋅=→∆−=→ 0

	Electric Potential Energy

Point charge moving in 
a uniform electric field

➣ When a charge particle moves in electric field,  field exerts  force that can do work on particle

➣ The work can be expressed in terms of electric potential energy

➣ Electric potential energy depends only on  position of  charged particle in electric field

 ➣ Electric potential energy in  uniform field

 ➣ Electric field due to static charge 

distribution generales a conservative force 
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�W = ��U ) U = q0E · y



- Test charge moving from height ya to yb:

)()( 0 baabba yyEqUUUW −=−−=∆−=→

- Test charge moving from height ya to yb:

)()( 0 baabba yyEqUUUW −=−−=∆−=→

Test Charge Moving from Height ya to yb

Positive charge moves in the direction of Positive charge moves opposite
<latexit sha1_base64="xenXYruU7AQe+3D2vmthFdgoZBo=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQyK4DGCeUCyhNlJbzJkdnaZmQ2EJR/hxYMiXv0eb/6Nk2QPmljQUFR1090VJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4N/WbI1Sax/LJjBP0I9qXPOSMGis1OyNk2f2kWyq7FXcGsky8nJQhR61b+ur0YpZGKA0TVOu25ybGz6gynAmcFDupxoSyIe1j21JJI9R+Njt3Qk6t0iNhrGxJQ2bq74mMRlqPo8B2RtQM9KI3Ff/z2qkJb/yMyyQ1KNl8UZgKYmIy/Z30uEJmxNgSyhS3txI2oIoyYxMq2hC8xZeXSeO84l1VLh8vytXbPI4CHMMJnIEH11CFB6hBHRgM4Rle4c1JnBfn3fmYt644+cwR/IHz+QNnpI+h</latexit>

~E
<latexit sha1_base64="xenXYruU7AQe+3D2vmthFdgoZBo=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQyK4DGCeUCyhNlJbzJkdnaZmQ2EJR/hxYMiXv0eb/6Nk2QPmljQUFR1090VJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4N/WbI1Sax/LJjBP0I9qXPOSMGis1OyNk2f2kWyq7FXcGsky8nJQhR61b+ur0YpZGKA0TVOu25ybGz6gynAmcFDupxoSyIe1j21JJI9R+Njt3Qk6t0iNhrGxJQ2bq74mMRlqPo8B2RtQM9KI3Ff/z2qkJb/yMyyQ1KNl8UZgKYmIy/Z30uEJmxNgSyhS3txI2oIoyYxMq2hC8xZeXSeO84l1VLh8vytXbPI4CHMMJnIEH11CFB6hBHRgM4Rle4c1JnBfn3fmYt644+cwR/IHz+QNnpI+h</latexit>

~E

- Test charge moving from height ya to yb:

)()( 0 baabba yyEqUUUW −=−−=∆−=→

 Field does positive work on charge 

 U decreases

 Field does negative work on charge 

 U increases

 Field does negative work on charge 

 U increases
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Negative charge moves in the direction of

 Field does negative work on charge 

 U increases

Negative charge moves opposite
<latexit sha1_base64="xenXYruU7AQe+3D2vmthFdgoZBo=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQyK4DGCeUCyhNlJbzJkdnaZmQ2EJR/hxYMiXv0eb/6Nk2QPmljQUFR1090VJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4N/WbI1Sax/LJjBP0I9qXPOSMGis1OyNk2f2kWyq7FXcGsky8nJQhR61b+ur0YpZGKA0TVOu25ybGz6gynAmcFDupxoSyIe1j21JJI9R+Njt3Qk6t0iNhrGxJQ2bq74mMRlqPo8B2RtQM9KI3Ff/z2qkJb/yMyyQ1KNl8UZgKYmIy/Z30uEJmxNgSyhS3txI2oIoyYxMq2hC8xZeXSeO84l1VLh8vytXbPI4CHMMJnIEH11CFB6hBHRgM4Rle4c1JnBfn3fmYt644+cwR/IHz+QNnpI+h</latexit>

~E
<latexit sha1_base64="xenXYruU7AQe+3D2vmthFdgoZBo=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQyK4DGCeUCyhNlJbzJkdnaZmQ2EJR/hxYMiXv0eb/6Nk2QPmljQUFR1090VJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4N/WbI1Sax/LJjBP0I9qXPOSMGis1OyNk2f2kWyq7FXcGsky8nJQhR61b+ur0YpZGKA0TVOu25ybGz6gynAmcFDupxoSyIe1j21JJI9R+Njt3Qk6t0iNhrGxJQ2bq74mMRlqPo8B2RtQM9KI3Ff/z2qkJb/yMyyQ1KNl8UZgKYmIy/Z30uEJmxNgSyhS3txI2oIoyYxMq2hC8xZeXSeO84l1VLh8vytXbPI4CHMMJnIEH11CFB6hBHRgM4Rle4c1JnBfn3fmYt644+cwR/IHz+QNnpI+h</latexit>

~E
Independently of whether the test charge is (+) or (-):

- U increases if q0 moves in direction opposite to electric force.

- U decreases if q0 moves in same direction as F = q0 E.

Independently of whether the test charge is (+) or (-):

- U increases if q0 moves in direction opposite to electric force.

- U decreases if q0 moves in same direction as F = q0 E.

Independently of Whether Test Charge Is (+) or (-)

 U increases if q0 moves in direction opposite to electric force 

 U decreases if q0 moves in same direction as 
<latexit sha1_base64="vYbuGeb9MhFgAhFycMNANRPTRwc=">AAAB+3icbZDLSsNAFIZP6q3WW6xLN4NFcFUS8bYRiqK4rGAv0IYwmU7boZOLM5NiCXkVNy4UceuLuPNtnKZZaOsPAx//OYdz5vcizqSyrG+jsLS8srpWXC9tbG5t75i75aYMY0Fog4Q8FG0PS8pZQBuKKU7bkaDY9zhteaPrab01pkKyMHhQk4g6Ph4ErM8IVtpyzXJ3TElym14+ulaGN6lrVqyqlQktgp1DBXLVXfOr2wtJ7NNAEY6l7NhWpJwEC8UIp2mpG0saYTLCA9rRGGCfSifJbk/RoXZ6qB8K/QKFMvf3RIJ9KSe+pzt9rIZyvjY1/6t1YtW/cBIWRLGiAZkt6sccqRBNg0A9JihRfKIBE8H0rYgMscBE6bhKOgR7/suL0Dyu2mfV0/uTSu0qj6MI+3AAR2DDOdTgDurQAAJP8Ayv8GakxovxbnzMWgtGPrMHf2R8/gDZGpRV</latexit>

~F = q0 ~E

 Field does positive work on charge 

 U decreases
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Mathematical Interlude: Telescoping Sum

➣ A sum in which subsequent terms cancel each other leaving only initial and final terms

<latexit sha1_base64="aylD5ahoJd3RJ+DZ1q6mDu5Ul+w="></latexit>

S =
n�1X

i=1

(ai � ai+1)

=(a1 � a2) + (a2 � a3) + · · ·+ (an�2 � an�1) + (an�1 � an)

=(a1 � an)
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Electric Potential Energy of Two Point Charges:

A test charge (q0) will move directly away from 
a like charge q.









−=⋅=⋅= ∫∫→

ba

r

r

r

r

rba
rr

qq
dr

r

qq
drFW

b

a

b

a

11

44

1

0

0

2

0

0 πεπε

The work done on q0 by electric field 
does not depend on path taken, but 
only on distances ra and rb (initial and 
end points).

∫∫ ⋅⋅=⋅⋅=→

b

a

b

a

r

r

r

r

ba dl
r

qq
dlFW ϕ

πε
ϕ cos

4

1
cos

2

0

0

dr = dl cosφ
If q0 moves from a to b, and then returns to a by a 
different path, W (round trip) = 0

➣ Divide the chosen path into short segments,  

each segment being represented by a vector connecting its ends 

take scalar product of path-segment vector with field E at that place 

add these products up for the whole path 

�r =
b� a

N
ri = a+ i�r

�U = �Wa!b = �q0
X

E(r) �r = � 1

4⇡✏0
qq0

NX

i=1

�r

r2i

Electric Potential Energy of Two Point Charges
➢ A test charge (q0) will move directly away from a like charge q

Test charge q0 moves from a to b 

along a radial line from q 
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Note that ☛
1

ri
� 1

ri +�r
=

�r

ri(ri +�r)
 �r

r2i

and ☛
1

ri ��r
� 1

ri
=

�r

ri(ri ��r)
� �r

r2i

) 1

ri
� 1

ri +�r
 �r

r2i
 1

ri ��r
� 1

ri

NX

i=1

1

ri
� 1

ri +�r
| {z }

1
a+�r�

1
b+�r


NX

i=1

�r

r2i


NX

i=1

1

ri ��r
� 1

ri
| {z }

1
a� 1

b

For N ⌧ 1 ) �r ⌧ r ) �
NX

i=1

�r

r2i
=

1

b
� 1

a

Telescoping sums ☛ easy to calculate
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4.1. POTENTIAL ENERGY AND CONSERVATIVE FORCES 38

Example:

Suppose charge q2

moves from point 1
to 2.

From definition: U2 � U1 = �
ˆ 2

1

⇤F · d⇤r

= �
ˆ r2

r1

F dr ( � ⇤F ⇥ d⇤r )

= �
ˆ r2

r1

1

4⇥�0

q1q2

r2
dr

( �
ˆ

dr

r2
= �1

r
+ C ) =

1

4⇥�0

q1q2

r

�����

r2

r1

��W = �U =
1

4⇥�0
q1q2

⇥
1

r2
� 1

r1

⇤

Note:

(1) This result is generally true for 2-Dimension or 3-D motion.

(2) If q2 moves away from q1,
then r2 > r1, we have

• If q1, q2 are of same sign,
then �U < 0, �W > 0
(�W = Work done by electric repulsive force)

• If q1, q2 are of di�erent sign,
then �U > 0, �W < 0
(�W = Work done by electric attractive force)

(3) If q2 moves towards q1,
then r2 < r1, we have

• If q1, q2 are of same sign,
then �U 0, �W 0

• If q1, q2 are of di�erent sign,
then �U 0, �W 0

 If charge q2  moves from point 1 to 2

We have ☛ �U = ��W =
1

4⇡✏0
q1q2

✓
1

r2
� 1

r1

◆

Electric Potential Energy of Two Point Charges

Summary
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① This result is generally true for 2-D and/or 3-D motion

Note

② If q2 moves away from q1 then r2 > r1  we have

③ If q2 moves towards q1 then r2 < r1 we have

�U < 0, �W > 0➣ If q1, q2  are of same sign then

�U > 0, �W < 0

Work done by electric repulsive force)�W =(

Work done by electric attractive force)( �W =

�U > 0, �W < 0

�U < 0, �W > 0➣ If q1, q2 are of different sign then

➣ If q1, q2  are of different sign then

➣ If q1, q2  are of same sign then
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⑤ Conservation of Mechanical Energy 

➢ For a system of charges with no external force
E = K + U =

�E = �K + �U = 0or
Kinetic Energy Potential Energy

Constant

Note

 ④ It is difference inpotential Energy that is important

Reference point

➢ If q1,q2  same sign then 

➢ If q1,q2  opposite sign then for all rU(r) < 0

13

� Note: It is the difference in potential energy that is important

⑤ Conservation of Mechanical Energy

REFERENCE POINT U(r = 1) = 0

) U1 � U1 =
1

4⇡✏0
q1q2

⇣ 1

r2
� 1

r2

⌘

1
U(r) =

1

4⇡✏0
· q1q2

r

If        same sign then               for all 
If         opposite sign then              for all

U(r) > 0

U(r) < 0q1, q2

q1, q2 r

r

For a system of charges with no external force,
E = K + U = Constant

Kinetic Energy Potential Energy

or �E = �K + �U = 0

r1

7Tuesday, February 16, 21

U(r) > 0 for all r



Potential Energy of a System of Charges
P.E. of 3 charges q1, q2, q3Example

Start 

Step 1

r = 1, U = 0q1, q2, q3  all at

4.1. POTENTIAL ENERGY AND CONSERVATIVE FORCES 39

(4) Note: It is the di�erence in potential energy that is important.

REFERENCE POINT: U(r =⌃) = 0

� U� � U1 =
1

4⇥�0
q1q2

�
1

r2
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Summary of Electric Potential Energy  
- Potential energy when charge q0 is at distance r from q:
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Graphically, U between like 
charges increases sharply to 
positive (repulsive) values as the 
charges become close.

Unlike charges have U 
becoming sharply negative 
as they become close 
(attractive).
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q and q0 have opposite signsq and q0 have the same sign

Graphically, U between like charges increase sharply  

to positive (repulsive) values as the charges become close

Unlike charges have U  becoming sharply 

negative as they become close (attractive)
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Electric Potential Energy with Several Point Charges:

- Potential energy is always relative to a certain reference point where U=0.
The location of this point is arbitrary. U = 0 when q and q0 are infinitely apart    

(r!!). 

- U is a shared property of 2 charges, a consequence of the interaction 
between them.  If distance between 2 charges is changed from ra to rb, !U 
is same whether q is fixed and q0 moved, or vice versa.

The potential energy associated with q0 at “a” is 
the algebraic sum of U associated with each 
pair of charges.
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➣ Potential energy is always relative to certain reference point where U = 0
Location of this point is arbitrary
U = 0 when q and q0 are infinitely apart (r  → ∞)

➢ U is shared property of 2 charges, a consequence of interaction between them

If distance between 2 charges is changed from ra to rb,  ΔU is same whether q is fixed 

and q0 moved, or vice versa

Electric Potential Energy with Several Point Charges 
➣ Potential energy associated with q0 at “ a” is algebraic sum of U

associated with each par of charges
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	Electric Potential
Let q be charge at the center and  consider its effect on test charge q0

DEFINITION We define electric potential V so that

�V =
�U

q0
=

��W

q0

(           is P.E. per unit charge)) V

➣ Similarly ☛ we take V (r = 1) = 0

➢ Electric Potential is a scalar

➣ Unit ☛  Volt (V ) = Joules/Coulomb

➢ For a single point charge

➣ Energy Unit ☛

V (r) =
1

4⇡✏0
· q
r

�U = q�V elecrton� volt (eV) = 1.6⇥ 10�19 J| {z }
charge of electron/C
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	Relation Between Electric Field E 
and Electric Potential V

17–1 Electric Potential Energy and
Potential Difference

Electric Potential Energy
To apply conservation of energy, we need to define electric potential energy as we
did for other types of potential energy. As we saw in Chapter 6, potential energy
can be defined only for a conservative force. The work done by a conservative
force in moving an object between any two positions is independent of the path
taken. The electrostatic force between any two charges (Eq. 16–1, )
is conservative because the dependence on position is just like the gravitational
force (Eq. 5–4), which is conservative. Hence we can define potential energy PE

for the electrostatic force.
We saw in Chapter 6 that the change in potential energy between any two

points, a and b, equals the negative of the work done by the conservative force on
an object as it moves from point a to point b:

Thus we define the change in electric potential energy, when a
point charge q moves from some point a to another point b, as the negative of the
work done by the electric force on the charge as it moves from point a to point b.
For example, consider the electric field between two equally but oppositely charged
parallel plates; we assume their separation is small compared to their width and
height, so the field will be uniform over most of the region, Fig. 17–1. Now con-
sider a tiny positive point charge q placed at the point “a” very near the positive
plate as shown. This charge q is so small that it has no effect on If this charge q at
point a is released, the electric force will do work on the charge and accelerate it
toward the negative plate. The work W done by the electric field E to move the
charge a distance d is (using Eq. 16–5, )

.

The change in electric potential energy equals the negative of the work done by
the electric force:

(17;1)

for this case of uniform electric field In the case illustrated, the potential
energy decreases ( is negative); and as the charged particle accelerates from
point a to point b in Fig. 17–1, the particle’s kinetic energy KE increases—by an
equal amount. In accord with the conservation of energy, electric potential energy
is transformed into kinetic energy, and the total energy is conserved. Note that
the positive charge q has its greatest potential energy at point a, near the positive
plate.† The reverse is true for a negative charge: its potential energy is greatest
near the negative plate.

Electric Potential and Potential Difference
In Chapter 16, we found it useful to define the electric field as the force per unit
charge. Similarly, it is useful to define the electric potential (or simply the
potential when “electric” is understood) as the electric potential energy per unit
charge. Electric potential is given the symbol V. If a positive test charge q in an
electric field has electric potential energy at some point a (relative to some
zero potential energy), the electric potential at this point is

(17;2a)

As we discussed in Chapter 6, only differences in potential energy are physically
meaningful. Hence only the difference in potential, or the potential difference,
between two points a and b (such as those shown in Fig. 17–1) is measurable.

Va =
pea

q
.

Va

pea

¢pe
E
B

.

[uniform E
B

]peb - pea = –qEd

[uniform E
B

]W = Fd = qEd

F = qE

E
B

.

E
B

peb - pea ,
¢pe = –W.

F = kQ1 Q2!r2

474 CHAPTER 17 Electric Potential

†At point a, the positive charge q has its greatest ability to do work (on some other object or system).
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FIGURE 17–1 Work is done by the
electric field in moving the
positive charge from position a to
position b.

E
B

➢ Consider uniform electric field

➢ Work done by the electric field to move a positive charge q from point a to point b

W = �q(Vb � Va) = �qVab

➣ We can also write the work done as 

W = Fd = qEd

) Vab = �Ed , E = �Vab

d

➢ d ☛ distance (parallel to field lines) between points a and b

is equal to the negative of  change in potential energy

e.g. E between the parallel plates whose difference of potential is V ba 
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➢ In region where E is not uniform ☛ electric field in a given direction at any point in space 

is equal to rate at which the electric potential V decreases over  distance in that direction ☛

Ex = ��V

�x

E = ��V

�r
= � 1

4⇡✏0
q

✓
1

r +�r
� 1

r

◆
1

�r

✓
1

r +�r
� 1

r

◆
1

�r
=

�r

(r +�r)r

1

�r
=

1

r2 + r�r

) �r ⌧ r ) E =
1

4⇡✏0

q

r2

Example: Point Charge

Now
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On the other hand, if a particle with a charge equal to twice the magnitude of the
charge on the electron moves through a potential differ-
ence of 1000 V, its kinetic energy will increase by

Although the electron volt is handy for stating the energies of molecules and
elementary particles, it is not a proper SI unit. For calculations, electron volts should
be converted to joules using the conversion factor just given. In Example 17–2, for
example, the electron acquired a kinetic energy of We can quote
this energy as 5000 eV but when determining
the speed of a particle in SI units, we must use the KE in joules (J).

A= 8.0 * 10–16 J!1.6 * 10–19 J!eVB,8.0 * 10–16 J.

2000 eV = 2 keV.
A= 2e = 3.2 * 10–19 CB

SECTION 17–5 Electric Potential Due to Point Charges 479
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for a point chargeV r 1
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, E r 1
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V

r

r

V = k when Q > 0Q
r
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(b)

FIGURE 17–9 Potential V as a
function of distance r from a single
point charge Q when the charge is
(a) positive, (b) negative.

EXERCISE B What is the kinetic energy of a ion released from rest and accelerated
through a potential difference of 2.5 kV? (a) 2500 eV, (b) 500 eV, (c) 5000 eV,
(d) 10,000 eV, (e) 250 eV.

He2±

17–5 Electric Potential Due to 
Point Charges

The electric potential at a distance r from a single point charge Q can be derived
from the expression for its electric field (Eq. 16–4, ) using calculus.
The potential in this case is usually taken to be zero at infinity ( , which
means extremely, indefinitely, far away); this is also where the electric field

is zero. The result is

(17;5)

where We can think of V here
as representing the absolute potential at a distance r from the charge Q, where

at or we can think of V as the potential difference between r and
infinity. (The symbol means infinitely far away.) Notice that the potential V
decreases with the first power of the distance, whereas the electric field (Eq. 16–4)
decreases as the square of the distance. The potential near a positive charge is large
and positive, and it decreases toward zero at very large distances, Fig. 17–9a. The
potential near a negative charge is negative and increases toward zero at large
distances, Fig. 17–9b. Equation 17–5 is sometimes called the Coulomb potential
(it has its origin in Coulomb’s law).

q
r = q;V = 0

k = 8.99 * 109 N!m2!C2 L 9.0 * 109 N!m2!C2.

= 1
4p" 0

Q
r

,
c single point charge
V = 0 at r = q dV = k

Q
r

AE = kQ!r2B = q
E = kQ!r2

Potential due to a positive or a negative charge. Deter-
mine the potential at a point 0.50 m (a) from a point charge, (b) from a

point charge.
APPROACH The potential due to a point charge is given by Eq. 17–5,
SOLUTION (a) At a distance of 0.50 m from a positive charge, the potential
is

(b) For the negative charge,

NOTE Potential can be positive or negative, and we always include a charge’s
sign when we find electric potential.

V = A9.0 * 109 N!m2!C2B ¢ –20 * 10–6 C
0.50 m

≤ = –3.6 * 105 V.

= A9.0 * 109 N!m2!C2B ¢ 20 * 10–6 C
0.50 m

≤ = 3.6 * 105 V.

V = k
Q
r

20 mC
V = kQ!r.

–20 mC
±20 mC

EXAMPLE 17;4

P R O B L E M  S O L V I N G
Keep track of charge signs 
for electric potential
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decreases as the square of the distance. The potential near a positive charge is large
and positive, and it decreases toward zero at very large distances, Fig. 17–9a. The
potential near a negative charge is negative and increases toward zero at large
distances, Fig. 17–9b. Equation 17–5 is sometimes called the Coulomb potential
(it has its origin in Coulomb’s law).

q
r = q;V = 0

k = 8.99 * 109 N!m2!C2 L 9.0 * 109 N!m2!C2.

= 1
4p" 0

Q
r

,
c single point charge
V = 0 at r = q dV = k

Q
r

AE = kQ!r2B = q
E = kQ!r2

Potential due to a positive or a negative charge. Deter-
mine the potential at a point 0.50 m (a) from a point charge, (b) from a

point charge.
APPROACH The potential due to a point charge is given by Eq. 17–5,
SOLUTION (a) At a distance of 0.50 m from a positive charge, the potential
is

(b) For the negative charge,

NOTE Potential can be positive or negative, and we always include a charge’s
sign when we find electric potential.

V = A9.0 * 109 N!m2!C2B ¢ –20 * 10–6 C
0.50 m

≤ = –3.6 * 105 V.

= A9.0 * 109 N!m2!C2B ¢ 20 * 10–6 C
0.50 m

≤ = 3.6 * 105 V.

V = k
Q
r

20 mC
V = kQ!r.

–20 mC
±20 mC

EXAMPLE 17;4

P R O B L E M  S O L V I N G
Keep track of charge signs 
for electric potential

(a)

(b)

➣ Determine the potential at a point 0.50 m 

(a) from a 20 µC point charge

(b) from a -20 µC point charge
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Potential For A System of Charges

4.2. ELECTRIC POTENTIAL 40

4.2 Electric Potential

Consider a charge q at center, we consider its e⇥ect on test charge q0

DEFINITION: We define electric potential V so that

�V =
�U

q0
=
��W

q0

( � V is the P.E. per unit charge)

• Similarly, we take V (r =⇤) = 0.

• Electric Potential is a scalar.

• Unit: V olt(V ) = Joules/Coulomb

• For a single point charge:

V (r) =
1

4⇥�0
· q

r

• Energy Unit: �U = q�V

electron� V olt(eV ) = 1.6⇥ 10�19
⇧ ⌅⇤ ⌃

charge of electron

J

Potential For A System of Charges

For a total of N point charges, the po-
tential V at any point P can be derived
from the principle of superposition.

Recall that potential due to q1 at

point P: V1 =
1

4⇥�0
· q1

r1

� Total potential at point P due to N charges:

V = V1 + V2 + · · · + VN (principle of superposition)

=
1

4⇥�0

�
q1

r1
+

q2

r2
+ · · · + qN

rN

⇥

For a total of N point charges  potential V at any point P 
can be derived from principle of superposition

Recall that potential due to q1 at point P

V1 =
1

4⇡✏0
· q1
r1

Total potential at point P  due to  N  charges)

V = V1 + V2 + · · · + VN

principle of superposition

=
1

4⇡✏0

hq1
r1

+
q2
r2

+ · · · qN
rN

i

V =
1

4⇡✏0

NX

i=1

qi
ri
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➢ For identical charges q are located at the four corners of a square with side lengh a
What is the electric potential at the center of the square?

a

22
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V =
X

j

Vj = V1 + V2 + V3 + V4
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V1 = k
q

r1
= kq

p
2

a
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p
2k
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Equipotential Surfaces
➣ Equipotential surface is a surface on which potential is constant

4.4. EQUIPOTENTIAL SURFACES 48

4.4 Equipotential Surfaces

Equipotential surface is a surface on which the potential is constant.
⇤ (�V = 0)

V (r) =
1

4⇥�0
· +q

r
= const

⇤ r = const

⇤ Equipotential surfaces are
circles/spherical surfaces

Note: (1) A charge can move freely on an equipotential surface without any
work done.

(2) The electric field lines must be perpendicular to the equipotential
surfaces. (Why?)
On an equipotential surface, V = constant
⇤ �V = 0 ⇤ ⌅E ·d⌅l = 0, where d⌅l is tangent to equipotential surface
� ⌅E must be perpendicular to equipotential surfaces.

Example: Uniformly charged surface (infinite)

Recall V = V0 �
⇤

2�0
|z|

⇥
Potential at z = 0

Equipotential surface means

V = const ⇤ V0 �
⇤

2�0
|z| = C

⇤ |z| = constant

For point charge ) (�V = 0)

V (r) =
1

4⇡✏0
· +q

r
= const

) r = const

Equipotential surface are)
circles /spherical surfaceNote ☛

① A charge can move freely on an equipotential surface without any work done

② Electric field lines must be perpendicular to equipotential surfaces 
Why?

On an equipotential surface V = constant

) �V = 0 ) ~E ·�~d = 0 where   is tangent to equipotential surface�~d
must be perpendicular to equipotential surfaces) ~E
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Uniformly charged surface (infinite)

4.4. EQUIPOTENTIAL SURFACES 48

4.4 Equipotential Surfaces

Equipotential surface is a surface on which the potential is constant.
⇤ (�V = 0)

V (r) =
1

4⇥�0
· +q

r
= const

⇤ r = const

⇤ Equipotential surfaces are
circles/spherical surfaces

Note: (1) A charge can move freely on an equipotential surface without any
work done.

(2) The electric field lines must be perpendicular to the equipotential
surfaces. (Why?)
On an equipotential surface, V = constant
⇤ �V = 0 ⇤ ⌅E ·d⌅l = 0, where d⌅l is tangent to equipotential surface
� ⌅E must be perpendicular to equipotential surfaces.

Example: Uniformly charged surface (infinite)

Recall V = V0 �
⇤

2�0
|z|

⇥
Potential at z = 0

Equipotential surface means

V = const ⇤ V0 �
⇤

2�0
|z| = C

⇤ |z| = constant

Equipotential surface means

Recall

Potential at  z = 0

V = V0 � �

2✏0
|z|

V = const ) V0 � �

2✏0
|z| = C

) |z| = constant

Example
24



Important

➣ E does not need to be constant over an equipotential surface

➢ Only V is constant

(a) A single positive charge (b) An electric dipole

- Important: E does not need to be constant over an equipotential surface. 
Only V is constant. 

- Important: E does not need to be constant over an equipotential surface. 
Only V is constant. 

- E is not constant ! E=0 
in between the two 
charges (at equal 
distance from each one), 
but not elsewhere within 
the same equipotential
surface.

Electric field lines
Cross sections of equipotential surfaces

25



- E is not constant ! E=0 
in between the two 
charges (at equal 
distance from each one), 
but not elsewhere within 
the same equipotential
surface.

(c) Two equal positive charges 

Electric field lines
Cross sections of equipotential surfaces

- E is not constant ! E=0 
in between the two 
charges (at equal 
distance from each one), 
but not elsewhere within 
the same equipotential
surface.

➣ E is not a constant → E  = 0 in between two charges (at equal distance from each one), 
but not elsewhere within same  equipotential surface
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Equipotentials and Conductors:

-When all charges are at rest, the surface of a 
conductor is always an equipotential surface !
E outside a conductor ┴ to surface at each point

Demonstration:

E= 0 (inside conductor) ! E tangent to surface
inside and out of conductor = 0 ! otherwise 
charges would move following rectangular path.

E ┴ to conductor surface

Electric field lines

Cross sections of equipotential surfaces

- E is not constant ! E=0 
in between the two 
charges (at equal 
distance from each one), 
but not elsewhere within 
the same equipotential
surface.

Equipotentials and Conductors
➣When all charges are at rest, surface of a conductor is always an equipotential surface 
→ E outside a conductor ⟘ to surface at each point 

Demonstration

E = 0 (inside conductor) → E tangent to surface inside
and out of conductor = 0 → otherwise charges would move 

following rectangular path
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~E ?to conductor surface

Equipotentials and Conductors:

-When all charges are at rest, the surface of a 
conductor is always an equipotential surface !
E outside a conductor ┴ to surface at each point

Demonstration:

E= 0 (inside conductor) ! E tangent to surface
inside and out of conductor = 0 ! otherwise 
charges would move following rectangular path.

E ┴ to conductor surface

An imposible electric field
If electric field just outside a conductor had a tangential component E∥ 
a charge could move in a loop with net work done
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Isolated spherical charged conductors

4.4. EQUIPOTENTIAL SURFACES 49

Example: Isolated spherical charged conductors

Recall:

(1) E-field inside = 0

(2) charge distributed on the
outside of conductors.

(i) Inside conductor:

E = 0 � �V = 0 everywhere in conductor

� V = constant everywhere in conductor

� The entire conductor is at the same potential

(ii) Outside conductor:

V =
Q

4⇥�0r

� Spherically symmetric (Just like a point charge.)
BUT not true for conductors of arbitrary shape.

Example: Connected conducting spheres

Two conductors con-
nected can be seen as a
single conductor

Recall
① E-field inside = 0

② charge distributed on outside of conductors

(i) Inside conductor

Spherically symmetric (Just like a point charge)

BUT not true for conductors of arbitrary shape

4.4. EQUIPOTENTIAL SURFACES 49

Example: Isolated spherical charged conductors

Recall:

(1) E-field inside = 0

(2) charge distributed on the
outside of conductors.

(i) Inside conductor:

E = 0 � �V = 0 everywhere in conductor

� V = constant everywhere in conductor

� The entire conductor is at the same potential

(ii) Outside conductor:

V =
Q

4⇥�0r

� Spherically symmetric (Just like a point charge.)
BUT not true for conductors of arbitrary shape.

Example: Connected conducting spheres

Two conductors con-
nected can be seen as a
single conductor

(ii) Outside conductor

*
V =

Q

4⇡✏0r

)

everywhere in conductor

everywhere in conductor) V = constant

E = 0 ) �V = 0

 entire conductor is at same potential

Example
28



Connected conducting spheres

4.4. EQUIPOTENTIAL SURFACES 49

Example: Isolated spherical charged conductors

Recall:

(1) E-field inside = 0

(2) charge distributed on the
outside of conductors.

(i) Inside conductor:

E = 0 � �V = 0 everywhere in conductor

� V = constant everywhere in conductor

� The entire conductor is at the same potential

(ii) Outside conductor:

V =
Q

4⇥�0r

� Spherically symmetric (Just like a point charge.)
BUT not true for conductors of arbitrary shape.

Example: Connected conducting spheres

Two conductors con-
nected can be seen as a
single conductor

Two conductors connected can be seen as a single conductor

Potential everywhere is identical)

V1 = V2

V1 =
q1

4⇡✏0R1

V2 =
q2

4⇡✏0R2

) q1
R1

=
q2
R2

) q1
q2

=
R1

R2

Potential of radius  R1    sphere ☛

Potential of radius R2   sphere ☛

Example
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+ r

SA

SB

E Since SA is closer to the positive charge than 
SB, SA is at a higher potential than SB.

Thus, electric field lines point in the 
direction of decreasing potential, i.e. 
they point from high potential to low 
potential.

Work? The net electric force does no work as a charge moves on an 
equipotential surface.

Why? We defined .
q
WVV AB

AB
�

 � But, if we are on an equipotential 
surface, then VA = VB, and WAB = 0.

Or….

In order for the charge to feel a force along an equipotential surface, there must be a 
component of the field along the surface, but E is everywhere perpendicular to the 
equipotential surface.

Since SA is closer to positive charge than SB , SA is at a higher potential than SB 

Thus, electric field lines point in direction of decreasing potential, 
i.e. they point from high potential to low potential
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+ r

SA

SB

E Since SA is closer to the positive charge than 
SB, SA is at a higher potential than SB.

Thus, electric field lines point in the 
direction of decreasing potential, i.e. 
they point from high potential to low 
potential.

Work? The net electric force does no work as a charge moves on an 
equipotential surface.

Why? We defined .
q
WVV AB

AB
�

 � But, if we are on an equipotential 
surface, then VA = VB, and WAB = 0.

Or….

In order for the charge to feel a force along an equipotential surface, there must be a 
component of the field along the surface, but E is everywhere perpendicular to the 
equipotential surface.

Net electric force does no work as a charge moves on an equipotential surface

Work?

Why?

We defined But, if we are on an equipotential surface, 
then VA = VB  and W AB = 0

or

In order for charge to feel a force along an equipotential surface, there must be a component of field 

along surface, but E is everywhere perpendicular to equipotential surface 
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Fields , Potentials, and Motion of Charges 
-Summary-  

➢ Electric fields lines start on positive charges and end on negative ones 

➢ Positive charges accelerate from regions of high  potential toward low  potential

➢ Negative charges accelerate from regions of  low  potential toward high  potential

➢ Equipotential surfaces are surfaces of constant potential

➢ Electric field lines  are perpendicular to an equipotential surface

➢ Electric field lines  are perpendicular to the surface of a conductor, thus a conductor is an 
equipotential surface!

➢ Electric field lines point from regions of high potential toward low potential

➢ Electric force does no work as a charge moves on an equipotential surface

Therefore, positive charges move in the same direction as electric field points,  
and negative charges move in opposite direction of electric field
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