

Interference and Wave Nature Of Light

$>$ We have been studying geometrical optics, where wavelength of light is much smaller than size of our mirrors and lenses and distances between them
$>$ Propagation of light is well described by linear rays except when reflected or refracted at surface of materials
$>$ Now we will study wave optics, where wavelength of light is comparable to size of an obsatcle or aperture in its path
$>$ This leads to wave phenomena of light called interference and diffraction

Principle of Linear Superposition

$>$ Take two waves of equal amplitude and wavelength and have them meet at a common point

$>$ In this case, resulting wave would have an amplitude that doubled
$>$ This is called Constructive Interference (CI)

- Define Optical Path Difference (OPD)
OPD = Difference in distance thet two weves treavel
\rangle For CI to occur, we need waves to meet crest-to-crest, thus waves must differ by an integer multiple of wavelength λ
$\mathrm{OPD}=\mathrm{m} \lambda, \mathrm{m}=0,1,2, \ldots$ Constructive Interference

$>$ Plane wave is diffracted by each of slits so that light passing through each slit covers a much larger area on screen than geometric shadow of slit
$>$ This causes light from two slits to overlap on the screen producing interference

* Each slit acts like a coherent light source

$$
\begin{aligned}
& \text { stwo waves meet at point } \mathrm{P} \text { on a screen } \\
& \Delta l=m \lambda \quad \text { Constructive interference, and we see a bright spot } \\
& \Delta l=\left(m+\frac{1}{2}\right) \lambda \quad \text { Destructive interference and we see a dark spot } \\
& >\text { This optical path difference of two light waves coming from } \mathrm{S}_{1} \text { and } \mathrm{S}_{2} \\
& >\text { Thus, we should see alternating bright and dark regions (called fringes) } \\
& \text { as we move along screen and above two conditions are satisfied }
\end{aligned}
$$

$>$ Can we find a relationship between fringes and wavelength of light?

$$
\Rightarrow \text { Answer is } \mathrm{Y} \text { 로 }
$$

$>$ Assume screen is far away from slits which are small
> This is called Fraunhofer approximation
\geqslant Since slits are very close together θ is same for each ray
$>$ From figure we see that

$$
\begin{aligned}
& \qquad \sin \theta=\frac{\Delta l}{d} \Rightarrow \Delta l=d \sin \theta \\
& > \\
& \text { We know that for constructive interference } \Delta l=m \lambda \\
& > \\
& d \sin \theta=m \lambda \text { for constructive interference }
\end{aligned}
$$

and ...
$d \sin \theta=\left(m+\frac{1}{2}\right) \lambda$ for destructive interference

Whese are interference conditions for double sitit
$>$ This is what a typical double slit interference pattern would look like

$>$ Order of dark fringes starts right above and below central bright fringe
$>$ Second dark fringe on either side of central bright fringe is $1^{\text {st }}$ order dark fringe, or $m=1$
Remember order means m

* Young's experiment provided strong evidence for wave nature of light
* If it was completely particle like we could only get two fringes on screen not an interference pattern!

1atrample

$>$ In a Young's double-slit experiment, angle that locates $3^{\text {rd }}$ dark fringe oneither side of central bright maximum is 2.5°
$>$ Slits have a separation distance $d=3.8 \times 10{ }^{-5} \mathrm{~m}$
$>$ What is wavelength of light?
$>$ What is the order?
$>$ It is $2^{\text {nd }}$ order dark fringe, or m = 2
$>$ Since it's a dark fringe we know it must be destructive interference

$$
d \sin \theta=\left(m+\frac{1}{2}\right) \lambda
$$

$$
\lambda=\frac{d \sin \theta}{m+\frac{1}{2}} \Rightarrow \lambda=\frac{\left(3.8 \times 10^{-5}\right)\left(\sin 2.5^{\circ}\right)}{2+\frac{1}{2}} \Rightarrow \lambda=6.63 \times 10^{-7} \mathrm{~m}=663 \mathrm{~nm}
$$

Diffraction Grating

$>$ What if we shined light on many close-spaced slits?
$>$ What would we expect to see?
$>$ Such an instrument is called a Diffracting Grating
$>$ Some of them can have tens of thousands of slits per cm
$>$ Again we see alternating bright and dark fringes
$>$ Each slit acts as a source of wavelets

Fringe Formation of Multiple Diffraction

Origins of Quantum Mechanics

- Quantum mechanics was born in early 20th century due to collapse of deterministic classical mechanics
$>$ Collapse resulted from Discovery of various phenomena which are inexplicable with classical physics
$>$ Pathway to quantum mechanics invariably begins with Planck and his analysis of blackbody spectral data

Stefan-Boltzman Law

$>$ Rate at which objects radiate energy $\omega L \propto A T^{4}$
\Rightarrow At normal temperatures $\sim \approx 300 K$ not aware of this radiation because of its low intensity
$>$ At higher temperatures sufficient IR radiation to feel heat
$>$ At still higher temperatures $-\mathcal{O}(1000 \mathrm{~K})$ objects actually glow such as a red-hoy electric stove burner
$>$ At temperatures above 2000 K objects glow with a yellow or whitish color filament of lightbulb

Blackbody Radiation

\geqslant A body that absorbs and emits all of radiation incident on it is called an ideal blackbody $>$ A blackbody is a piece of matter, and like all matter, it is componed of atoms
$>$ We can treat atoms in solid as being connected by invisible springs

$>$ Each atom will vibrate, or oscilase, in 3-dimensions
$>$ This is called simple harmonic approximation
\geqslant It is strictly classical physics
> Vibrating atoms absorb and emit radiation, and classical physics tells us that intensity of radiation emitted by oscillatlrs is

$$
I(\lambda)=\frac{4 k T}{\lambda^{2}}
$$

> This is called Rayleigh-Jeans Law
$>$ It is a classical result
$>k$ in above equation is Boltzmann cosntant $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$

Ultraviolet Catastrophe

$>$ If we make a plot of radiation intensity emitted by atomic oscillators versus wavelength, we would get

$$
I(\lambda)=\frac{4 k T}{\lambda^{2}}
$$

$>$ Classical theory only gets it right at large wavelengths, but fails at low wavelengths
$>$ This is known as Ultraviolet Catastrophe

Planck's Hypothesis of Energy Quanta

$>$ Planck showed that he could get good agreement between theory and data if he assumed that energy of atomic oscillators was a discreet variable
$>$ In other words energy could only have certain discreet values

$$
E=0, \varepsilon, 2 \varepsilon, 3 \varepsilon, \ldots n \varepsilon
$$

\Rightarrow Energy has to be proportional to frequency $-\varepsilon \propto f$
$>$ Make this an equality $-\varepsilon=h f$
$>$ Proportionality constant is Planck's constant h

$$
h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

${ }^{5}$ Energy is allowed to only have certain values

- it is quantized

Energy is quantized Or restricted to specific levels This is like how climbing a ladder must be done using rungs You cannot step between rungs to climb

Energy is not continuous
Climbing this ramp, you can stop at any point
A ramp does not have discreet or specific values, like energy

$$
E=n h f, n=0,1,2,3, \ldots
$$

$>$ Energy comes in discreet packets of (hf) called quanta or quantum of energy

Wien's displacement law

$>$ Wavelenghth $\lambda_{\max }$ at which spectral emittance reaches maximum decreases as T is increased in inverse proportion to T

$$
\lambda_{\max } T=2.90 \times 10^{-3} \mathrm{mK}
$$

$>$ Qualitatively consistent with observation that heated objects first begin to glow with red color and at higher temperatures color becomes more yellow

Photoelectric Effect

> In 1887 Heinrich Hertz produced and detected electromagnetic waves, thus proving Maxwell's theory
$>$ He also discovered something called Photoelectric Effect

$>$ This results in a current flow in circuit as shown
\geqslant Important Characteristics of photoelectric effect

> 1- Only light with a frequency above some minimum value, f_{0} will result in electrons being ejected -regardless of light intensity
$>$ Let's look at a plot of KE of ejected electrons vs. frequency of light shining on metal:

$>$ Now choose some constant value for frequency $f \geq f_{0}$, so that electrons are being ejected from metal
2. Maximum \mathbb{K} : of ejected electrons remains constant, even if intensity of light is increased
> Classically, we would expect higher intensity light to eject electrons with greate KE
$>$ It doesn't happen
$>$ We would also expect that if we used very low intensity light, that it would take a long time for electrons to build up enough energy to be ejected from metal's surface
> That doesn't happen either!
$>$ Even if light intensity is very low, electrons are still ejected from metal's surface, almost instantaneously, as long as $f \geq f_{0}$
> Einstein assumed that light was composed of discrete packets (particles)
of energy called photons
$>$ Photon energy is given by $\quad E=h f=\frac{h c}{\lambda}$
> More intense light is more photons it carries but each photon still has a energy $\mathrm{E}=\mathrm{hf}$
$>$ Now let's examine photoelectric effect in a little more detail
$>$ Free electrons occupy entire volume of metal
$>$ However, electrons close to metal's surface (surface electrons) are more weakly bound to metal than deep electrons
\geqslant But even though surface electrons are more weakly bound, there is still a minimum binding energy

I must overcome to get them out of metal
$>$ This is called Work Function (W_{0}) of metal
$>$ It is an energy, and it is typically on order of a few eV
$>$ During effect, a photon of light $\left(f>f_{0}\right)$ with energy $h f$ strikes metal and electrons are ejected with energy KE
$>$ By conservation of energy following relationship must be true
Photon energy - Binding energy = KE of ejected electrons

$$
h f-W_{o}=K E_{e-}
$$

Einstein Theory

Simple picture view

Bnergy conservation

$$
h f-W_{0}=K E_{e-}
$$

$>$ Light consits of photons (hf)
$>$ One electron can discretely absorb one photon
$>$ Electron use photon energy to overcome potential barrier

de Broglie Wavelength

$>$ In view of particle properties for light waves photons de Broglie ventured to consider reverse phenomenon
$>$ Assign wave properties to matter to every particle with mass mand momentum \vec{p} associate

$$
\lambda=h /|\vec{p}|
$$

$>$ Assignment of energy and momentum to matter in (reversed) analogy to photons

$$
E=h f \quad \text { and } \quad|\vec{p}|=h / \lambda
$$

All objects have a de Broglie wavelength - baseballs, cars, even you and me!!
\geqslant But remember, in order for wave effects to be seen, such as interference and diffraction, wavelength must be comparable to size of opening or obstacle
$>$ For fun let's calculate human body de Broglie wavelength

$$
\lambda_{\text {Human }}=\frac{h}{p}=\frac{h}{m v}=\frac{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{(90.7 \mathrm{~kg})(6.7 \mathrm{~m} / \mathrm{s})}=1 \times 10^{-36} \mathrm{~m}
$$

So what does this number mean??

$>$ Size of an atom is roughly $1 \times 10^{-10} \mathrm{~m}$
> So my de Broglie wavelength is some 26 orders of magnitude smaller than size of an atom!!!
> Which meanswe don't observe wave-like properties with everyday objects, baseballs, humans, etc
> We need sub-atomic particles to observe wave-like properties!!
$>$ Now let's repeat Young's double-slip experiment, but this time let's shoot electrons (particles) at slits instead of light

What would we expect to see??

$>$ We might expect screen to appear with two bright fringes, one directly behind each slit

$>$ What we actually see is shown in figure at botton
alternating dark and bright fringes
$>$ In other words electrons have acted like waves and interfered with each other to produce classic interference pattern!
\geqslant Our notion of electron as being a tiny discrete particle of matter does not account for fact that electron can behave as a wave in some circunstances

$>$ It exhibits a dual nature -bahaving sometimes like a particle, and sometimes like a wave
> Things are even weirder than this!!....

Neutron Double-Slit Experiment

* Parallel beam of neutrons falls on double-slit
* Neutron detector capable of detecting individual neutrons
* Detector register discrete particles localized in space and time
* This can be achieved if neutron source is weak enough

* Neutron kinetic energy $2.4 \times 10^{-4} \mathrm{eV}$
* de Broglie wavelength 1.85 nm
* Center- to-center distance between two slits $d=126 \mu \mathrm{~m}$

Estimating spacing $\left(y_{n+1}-y_{n}\right) \approx 75 \mu \mathrm{~m}$

$$
\lambda=\frac{d\left(y_{n+1}-y_{n}\right)}{D}=1.89 \mathrm{~nm}
$$

$$
\frac{\text { counts }}{\min } \longrightarrow
$$

* θ_{1} angle between central maximum and first minimum
* For $m=1 \sim \sin \theta_{1}=\lambda / d$
* Neutron striking screen at outer edge of central maximum must have component of momentum p_{y} as well as a component p_{x}
* From geometry components are related by $p_{y} / p_{x}=\tan \theta_{1}$
* Use approximation $\tan \theta_{1}=\theta_{1}$ and $p_{y}=p_{x} \theta_{1}$

Heisenberg's Uncertainty Principle

$>$ All in all $p_{y}=p_{x} \lambda / d$
$>$ Neutrons striking detector within central maximum i.e. angles between $(-\lambda / d+\lambda / d)$
have y-momentum - component spread over

$$
\left(-p_{x} \lambda / d,+p_{x} \lambda / d\right)
$$

\rangle Symmetry of interference pattern shows $\left\langle p_{y}\right\rangle=0$
$>$ There will be an uncertainty Δp_{y} at least as great as $p_{x} \lambda / d$

$$
\Delta p_{y} \geq p_{x} \lambda / d
$$

$>$ Narrower separation between slits d broader is interference pattern and greater is uncertainty in p_{y}
\rangle Using de Broglie relation $\lambda=h / p_{x}$ and simplifying

$$
\Delta p_{y} \geq p_{x} \frac{h}{p_{x} d}=\frac{h}{d}
$$

29

Heisenberg's Uncertainty Principle (cont')

What does this all mean??

$\rangle \mathrm{d} \equiv \Delta y$ represents uncertainty in y-component of neutron position as it passes through double-slit gap
$>$ Both y-position and y-momentum-component have uncertainties related by $\omega \quad \Delta p_{y} \Delta y \geq h$
$>$ We reduce $\Delta \mathrm{p}_{\mathrm{y}}$ only by reducing with of interference pattern
$>$ To do this increase d which increases position uncertainty Δy
$>$ Conversely we decrease position uncertainty by narrowing doubl-slit gap interference pattern broadens and corresponding momentum uncertainty increases

