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Spacetime Foundations of Special Relativity

Historical Overview
In 19th century + it was known that:

water waves must have medium to move across (water)
audible sound waves require medium to move through (e.g. air)

It was thought that just as in previous examples + light waves
require medium called “luminiferous” (light-bearing) “æther”

If this were the case + as Earth moves in its orbit around Sun
flow of æther across Earth could produce detectable “æther wind”

Unless æther were always stationary with respect to Earth
speed of beam of light emitted from source on Earth
would depend on magnitude of æther wind and on beam direction

1881 Michelson-Morley experiment
to measure speed of light in different directions

became most famous failed experiment to date
and first strong evidence against luminiferous æther
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Spacetime Foundations of Special Relativity

Historical Overview (cont’d)
(1892 -1909)

To explain nature’s apparent conspiracy to hide æther drift
Lorentz developed theory based on two ad hoc hypotheses:

Longitudinal contraction of rigid bodies
slowing down of clocks (time dilation)

when moving through æther at speed v + both by (1 � v2/c2)1/2

This would so affect every aparatus designed to measure
æther drift as to neutralize all expected effects

(1898)
Poincare arugued that æther might be unobservable

and suggested concept would be thrown aside as useless
BUT he continued to use concept in later papers of 1908

(1905)
Einstein advanced principle of relativity
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Spacetime Foundations of Special Relativity⌥⌃ ⌅⇧Einstein Postulates

1 All laws of nature are the same
in all uniformly moving reference frames

2 Speed of light in free space has the same value for all observers
regardless of the motion of source or motion of observer

+ speed of light (in free space) is a constant

L. A. Anchordoqui (CUNY) Conceptual Physics 11-28-2017 5 / 31

Einstein Postulates4



Spacetime Relativity of Simultaneity⌥⌃ ⌅⇧Galileo and the Science of Motion

Galilean transformation relates coordinates of 2 reference frames
which differ only by constant relative motion

within constructs of Newtonian physics
Two balls are launched simultaneously at same speed

and opposite direction from center of wagon
Balls are observed to hit simultaneously the ends of wagon

in two reference frames
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Spacetime Relativity of Simultaneity⌥⌃ ⌅⇧Relativity of simultaneity

690 Part Eight Relativity

Simultaneity

FIGURE 35.4
Interactive Figure It
From the point of view of
the observer who travels
with the compartment, light
from the source travels equal
distances to both ends of
the compartment and there-
fore strikes both ends
simultaneously.
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The events of liglit striking
the front and back of the
compartment are not
simultaneous from the point
of view of an observer in a
different frame of reference.
Because ofthe ship's
motion, light that strikes the
back ofthe compartment
doesn't have as far to go
and strikes sooner than light
that stri kes the front ofthe
compartment.

=

An interesting consequence of Einstein's second postulate occurs with the con-
cept of simultaneity. We say that two events are simultaneous if they occur at
the same time. Consider, for example, a light source in the exact center of the
compartment of a rocket ship (Figure 35.4). When the light source is switched
on, light spreads out in all directions at speed c. Because the light source is
equidistant from the front and back ends of the compartment, an observer
inside the compartment finds that light reaches the front end at the same instant
it reaches the back end. This occurs whether the ship is at rest or moving at
constant velocity. The events of hitting the back end and hitting the front end
occur simultaneously for this observer within the rocket ship.

But what about an outside observer who views the same two events in
another frame of reference-say, from a planet not moving with the ship? For
that observer, these same two events are not simultaneous. As light travels out
from the source, this observer sees the ship move forward, so the back of the
compartment moves toward the beam while the front moves away from it. The
beam going to the back of the compartment, therefore, has a shorter distance
to travel than the beam going forward (Figure 35.5). Since the speed of light is
the same in both directions, this outside observer sees the event of light hitting
the back of the compartment before seeing the event of light hitting the front
of the compartment. (Of course, we are making the assumption that the
observer can discern these slight differences.) A little thought will show that an
observer in another rocket ship that passes the ship in the opposite direction
would report that the light reaches the front of the compartment first.

Two events that are simultaneous in one frame of reference need not
be simultaneous in a frame moving relative to the first frame.

This nonsimultaneity of events in one frame that are simultaneous in another
is a purely relativistic result-a consequence of light always having the same
speed for all observers.

CHECK YOURSELF

1. How is the nonsimultaneity of hearing thunder after seeing lightning similar to
relativistic nonsimultaneity?

2. Suppose that the observer standing on a planet in Figure 35.5 sees a pair of
lightning bolts simultaneously strike the front and rear ends of the compartment
in the high-speed rocket ship. Will the lightning strikes be simultaneous to an
observer in the middle of the compartment in the rocket ship? (We assume here
that an observer can detect any slight differences in time for light to travel from
the ends to the middle of the compartment.)

Spacetime
When we look up at the stars, we realize that we are actually looking back-
ward in time. The stars we see farthest away are the stars we are seeing longest
ago. The more we think about this, the more apparent it becomes that space
and time must be intimately tied together.
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Spacetime
When we look up at the stars, we realize that we are actually looking back-
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From Harry’s viewpoint light from travels equals distances
to both ends of rocket + striking both ends simultaneously

Events of striking front and the end of spacecraft
are not simultaneous in Sally’s reference frame

Because of rocket’s motion
light strikes back end sooner than front end
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Spacetime Relativity of Simultaneity

How does observer in uniformly moving frame describe event?
Event + an occurrence characterized by: three space coordinates

and one time coordinate
Events are described by observers
who do belong to particular uniformly moving frames of reference

Different observers in different uniformly moving (u.m.) frames
would describe same event with different spacetime coordinates

Observer’s rest frame is also known as proper frame
Up until now it was enough for us

to have a measuring stick for each reference frame
a rigid body that defined units of a coordinate system

But we could all depend on just one clock
a master timepiece that was used by all observers

Now what we need is a measuring stick with clocks all along it
so that when something happens

we can record both time and place
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How Does Observer in Uniformly Moving Frame Descibe Event?
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Spacetime Relativity of Simultaneity⌥⌃ ⌅⇧Confederate scheme for coordinatizing any event14 Chapter 1 Relativity I

When an event occurs, its location and time are recorded instantly by the nearest
clock. Suppose that an atom located at x ! 2 m, y ! 3 m, z ! 4 m in Figure 1-13 emits
a tiny flash of light at t ! 21 s on the clock at that location. That event is recorded in
space and in time or, as we will henceforth refer to it, in the spacetime coordinate sys-
tem with the numbers (2,3,4,21). The observer may read out and analyze these data at
his leisure, within the limits set by the information transmission time (i.e., the light travel
time) from distant clocks. For example, the path of a particle moving through the lattice
is revealed by analysis of the records showing the particle’s time of passage at each
clock’s location. Distances between successive locations and the corresponding time dif-
ferences make possible the determination of the particle’s velocity. Similar records of the
spacetime coordinates of the particle’s path can, of course, also be made in any inertial
frame moving relative to ours, but to compare the distances and time intervals measured
in the two frames requires that we consider carefully the relativity of simultaneity.

Relativity of Simultaneity
Einstein’s postulates lead to a number of predictions about measurements made by ob-
servers in inertial frames moving relative to one another that initially seem very
strange, including some that appear paradoxical. Even so, these predictions have been
experimentally verified; and nearly without exception, every paradox is resolved by
an understanding of the relativity of simultaneity, which states that

Two spatially separated events simultaneous in one reference frame are
not, in general, simultaneous in another inertial frame moving relative to
the first.

Figure 1-13 Inertial reference frame formed
from a lattice of measuring rods with a clock at
each intersection. The clocks are all
synchronized using a reference clock. In this
diagram the measuring rods are shown to be 1 m
long, but they could all be 1 cm, 1 or 1 km
as required by the scale and precision of the
measurements being considered. The three space
dimensions are the clock positions. The fourth
spacetime dimension, time, is shown by
indicator readings on the clocks.

"m,

x

z

y

Reference clock

Observer establishes lattice of confederates
with identical synchronized clocks

Label of any event in spacetime
is reading of clock and location of nearest confederate to event
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Confederate Scheme for Coordinatizing Any Event
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Spacetime Time dilation

Einstein’s thought experiment
Idealized clock

light wave is bouncing back and forth between two mirrors
Clock “ticks” when light wave makes a round trip

from mirror A to mirror B and back
Assume mirrors A and B are separated a distance d0 in rest frame
Llight wave will take Dt0 = 2d0/c for round trip A ! B ! A

A A AA

B B B B

d
S�

S�

S
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Spacetime Time dilation

At this point, you might wonder which observer is right concerning the two
events. The answer is that both are correct, because the principle of relativity
states that there is no preferred inertial frame of reference. Although the two ob-
servers reach different conclusions, both are correct in their own reference
frame because the concept of simultaneity is not absolute. This, in fact, is the
central point of relativity—any uniformly moving frame of reference can be
used to describe events and do physics. However, observers in different inertial
frames will always measure different time intervals with their clocks and differ-
ent distances with their meter sticks. Nevertheless, they will both agree on the
forms of the laws of physics in their respective frames, because these laws must
be the same for all observers in uniform motion. It is the alteration of time
and space that allows the laws of physics (including Maxwell’s equations) to be
the same for all observers in uniform motion.

Time Dilation

The fact that observers in different inertial frames always measure different time
intervals between a pair of events can be illustrated in another way by consider-
ing a vehicle moving to the right with a speed v, as in Figure 1.10a. A mirror is
fixed to the ceiling of the vehicle, and observer O!, at rest in this system, holds a
laser a distance d below the mirror. At some instant the laser emits a pulse of light
directed toward the mirror (event 1), and at some later time, after reflecting
from the mirror, the pulse arrives back at the laser (event 2). Observer O! carries
a clock, C!, which she uses to measure the time interval "t! between these two
events. Because the light pulse has the speed c, the time it takes to travel from O!
to the mirror and back can be found from the definition of speed:

(1.6)

This time interval "t!—measured by O!, who, remember, is at rest in the mov-
ing vehicle— requires only a single clock, C!, in this reference frame.

"t! #
distance traveled

speed of light
#

2d

c

1.5 CONSEQUENCES OF SPECIAL RELATIVITY 15
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Figure 1.10 (a) A mirror is fixed to a moving vehicle, and a light pulse leaves O! at
rest in the vehicle. (b) Relative to a stationary observer on Earth, the mirror and O!
move with a speed v. Note that the distance the pulse travels measured by the station-
ary observer on Earth is greater than 2d. (c) The right triangle for calculating the rela-
tionship between "t and "t!.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 

Time dilation
Since light has velocity c in all directions
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Ticking of clock in Hary’s frame
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Spacetime Time dilation

Twin Paradox
Consider two synchronized standard clocks A and B

at rest at point P of uniformly moving frame S

Let A remain @ P while B is briefly accelerated to some velocity v
with which it travels to distant point Q

There it is decelerated and made to return with velocity v to P

If one of two twins travels with B while other remains with A
+ B twin will be younger than A twin when meet again

Can’t B claim with equal right it was her who remained where she was
while A went on round-trip + A should be younger when meet again?
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Twin Paradox
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Spacetime Time dilation

Answer is NO + this solves paradox
A remained at rest in single u.m. frame
while B accelerated out of his rest frame:
@P, @Q, and once again @P

Accelerations recorded on B’s accelerometer
she can be under no illusion that it was her
who remain at rest

Two accelerations at P are not essential
(age comparison could be made in passing)
but acceleration in Q is vital

Twin Paradox

A has remained at rest in a single inertial frame 
while B was accelerated out of his rest frame at P, 
at Q, and once again at P

The answer is NO and this solves the paradox

Of course the two accelerations at P are not essential 
(the age comparison could be made in passing)

 but the acceleration in Q is vital

These accelerations are recorded on B’s 
accelerometer and he can therefore be under no 
illusion that it was he who remain at rest

Monday, August 2, 2010
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Spacetime Time dilation

Answer is NO + this solves paradox
Eperimet involves 3 u.m. frames:

1 earth-bound frame S
2 S0 of outbound rocket
3 S00 of returning rocket

Experiment not symmetrical between twins:
A stays at rest in single uniformly moving
frame S
but B occupies at least two different frames

This allows result to be unsymmetrical
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Spacetime Length contraction

34 Chapter 2 | The Special Theory of Relativity
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FIGURE 2.10 Here the clock carried by O′ emits its light flash in the direction of
motion.

c !t1, equal to the length L of the clock plus the additional distance u !t1 that the
mirror moves forward in this interval. That is,

c !t1 = L + u !t1 (2.9)

The flash of light travels from the mirror to the detector in a time !t2 and covers
a distance of c !t2, equal to the length L of the clock less the distance u !t2 that
the clock moves forward in this interval:

c !t2 = L − u !t2 (2.10)

Solving Eqs. 2.9 and 2.10 for !t1 and !t2, and adding to find the total time
interval, we obtain

!t = !t1 + !t2 = L
c − u

+ L
c + u

= 2L
c

1
1 − u2/c2

(2.11)
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FIGURE 2.11 Some length-contracted objects. Notice that the shortening occurs only in the direction of motion.
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1-1 The Experimental Basis of Relativity 7

Figure 1-5 Light source, mirror, and observer are moving with speed v relative to the ether.
According to classical theory, the speed of light c, relative to the ether, would be c ! v relative
to the observer for light moving from the source toward the mirror and c " v for light
reflecting from the mirror back toward the source.

Observer

Light source Mirror

BA
L

v

c + v

c – v

Albert A. Michelson, here
playing pool in his later
years, made the first
accurate measurement of
the speed of light while an
instructor at the U.S. Naval
Academy, where he had
earlier been a cadet. [AIP
Emilio Segrè Visual Archives.]

techniques available at the time had an experimental accuracy of only about 1 part in
104, woefully insufficient to detect the predicted small effect. That single exception was
the experiment of Michelson and Morley.5

Questions

1. What would the relative velocity of the inertial systems in Figure 1-4 need to be
in order for the S# observer to measure no net electromagnetic force on the
charge q?

2. Discuss why the very large value for the speed of the electromagnetic waves
would imply that the ether be rigid, i.e., have a large bulk modulus.

The Michelson-Morley Experiment
All waves that were known to nineteenth-century scientists required a medium in
order to propagate. Surface waves moving across the ocean obviously require the
water. Similarly, waves move along a plucked guitar string, across the surface of a
struck drumhead, through Earth after an earthquake, and, indeed, in all materials acted
upon by suitable forces. The speed of the waves depends on the properties of the
medium and is derived relative to the medium. For example, the speed of sound waves
in air, i.e., their absolute motion relative to still air, can be measured. The Doppler ef-
fect for sound in air depends not only on the relative motion of the source and listener,
but also on the motion of each relative to still air. Thus, it was natural for scientists of
that time to expect the existence of some material like the ether to support the propa-
gation of light and other electromagnetic waves and to expect that the absolute mo-
tion of Earth through the ether should be detectable, despite the fact that the ether had
not been observed previously.

Michelson realized that although the effect of Earth’s motion on the results of any
“out-and–back” speed of light measurement, such as shown generically in Figure 1-5,
would be too small to measure directly, it should be possible to measure v2 c2 by a dif-
ference measurement, using the interference property of the light waves as a sensitive
“clock.” The apparatus that he designed to make the measurement is called the
Michelson interferometer. The purpose of the Michelson-Morley experiment was to
measure the speed of light relative to the interferometer (i.e., relative to Earth), thereby
detecting Earth’s motion through the ether and thus verifying the latter’s existence. To
illustrate how the interferometer works and the reasoning behind the experiment, let us
first describe an analogous situation set in more familiar surroundings.

>
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The Michelson-Morley Experiment
All waves that were known to nineteenth-century scientists required a medium in
order to propagate. Surface waves moving across the ocean obviously require the
water. Similarly, waves move along a plucked guitar string, across the surface of a
struck drumhead, through Earth after an earthquake, and, indeed, in all materials acted
upon by suitable forces. The speed of the waves depends on the properties of the
medium and is derived relative to the medium. For example, the speed of sound waves
in air, i.e., their absolute motion relative to still air, can be measured. The Doppler ef-
fect for sound in air depends not only on the relative motion of the source and listener,
but also on the motion of each relative to still air. Thus, it was natural for scientists of
that time to expect the existence of some material like the ether to support the propa-
gation of light and other electromagnetic waves and to expect that the absolute mo-
tion of Earth through the ether should be detectable, despite the fact that the ether had
not been observed previously.

Michelson realized that although the effect of Earth’s motion on the results of any
“out-and–back” speed of light measurement, such as shown generically in Figure 1-5,
would be too small to measure directly, it should be possible to measure v2 c2 by a dif-
ference measurement, using the interference property of the light waves as a sensitive
“clock.” The apparatus that he designed to make the measurement is called the
Michelson interferometer. The purpose of the Michelson-Morley experiment was to
measure the speed of light relative to the interferometer (i.e., relative to Earth), thereby
detecting Earth’s motion through the ether and thus verifying the latter’s existence. To
illustrate how the interferometer works and the reasoning behind the experiment, let us
first describe an analogous situation set in more familiar surroundings.
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Spacetime Length contraction

Length contraction
1 Interval between two consecutive ticks in the moving frame is

Dt = Dt1 + Dt2 =
2d

c(1 � v2/c2)

=

✓
d
d0

◆
Dt0

1 � v2/c2

2 Because of time dilation

Dt0 = Dt
p

1 � v2/c2

we get

d =

✓
1 � v2

c2

◆1/2

d0
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Spacetime Length contraction

A Trip to Alpha Centauri

One thing all observers agree upon is relative speed
Even though clocks measure different elapsed times for same
process + they still agree that relative speed is the same
Distance too depends on observer’s relative motion!
If two observers see different times + they must also see different
distances for relative speed to be same to each of them
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Spacetime Length contraction

Life of a Muon

Earth-bound observer sees muon travels at 0.95c for 7.05 µs
from time it is produced until it decays

It travels distance + L0 = v Dt = 2.1 km relative to Earth

In muon’s rest frame + its lifetime is only 2.20 µs ) it has enough
time to travel only L = vDt0 = 0.627 km

Distance between same two events (muon production and decay)
depends on who measures it + how they are moving relative to it
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Einstein time dilation factor agrees with experiment
with fractional error of 2⇥10�3 at 95% confidence!
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Spacetime Length contraction

Example

34 Chapter 2 | The Special Theory of Relativity

L

A
O

O

O

u ∆t1

u ∆t2

L + u ∆t1

L − u ∆t2

O′

B
O′

C

O′ u!

FIGURE 2.10 Here the clock carried by O′ emits its light flash in the direction of
motion.

c !t1, equal to the length L of the clock plus the additional distance u !t1 that the
mirror moves forward in this interval. That is,

c !t1 = L + u !t1 (2.9)

The flash of light travels from the mirror to the detector in a time !t2 and covers
a distance of c !t2, equal to the length L of the clock less the distance u !t2 that
the clock moves forward in this interval:

c !t2 = L − u !t2 (2.10)

Solving Eqs. 2.9 and 2.10 for !t1 and !t2, and adding to find the total time
interval, we obtain

!t = !t1 + !t2 = L
c − u

+ L
c + u

= 2L
c

1
1 − u2/c2

(2.11)

L

L0
L0

L0

L0

L0

MODERN
PHYSICS
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PHYSICS

FIGURE 2.11 Some length-contracted objects. Notice that the shortening occurs only in the direction of motion.
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Spacetime Length contraction
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Spacetime Relativity of Electric and Magnetic Fields

Giving a quick rundown of the ~E ↵ ~B dilemma
When we said that magnetic force on charge was proportional to
its velocity + you may have wondered:

1 What velocity?
2 With respect to which reference frame?

From definition of ~B + what this vector is depends on our choice
of reference frame for specification of velocity of charges
But we have said nothing about which is the proper frame for
specifying the magnetic field
It turns out that any inertial frame will do
Although static Maxwell’s equations separate into ~E and ~B with no
apparent connection between the two fields + in nature there is
intimate relation between them that arises from relativity principle
Let’s see what our knowledge of relativity would tell us about
magnetic forces if we assume that relativity principle is applicable
– as it is – to electromagnetism
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Spacetime Relativity of Electric and Magnetic Fields

Feynman’s example
Think about what happens when negative charge moves with
velocity v0 parallel to current-carrying wire
Try to understand what goes on in two reference frames:
one fixed wrt wire (S) and one fixed wrt particle (S0)
In S-frame + there is magnetic force on particle
Force is directed toward wire + if charge were moving freely we
would see it curve in toward wire
But in S0-frame there can be no magnetic force on particle +
because its velocity is zero
Does it then stay where it is?
Would we see different things happening in the two systems?
Principle of relativity would say that in S0 we should also see
particle move closer to wire
We must try to understand why that would happen
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Spacetime Relativity of Electric and Magnetic Fields

Atomic description of current-carrying wire in S-frame
In conductor electric currents come from motion of negative
conduction electrons while positive nuclear charges and
remainder of electrons stay fixed in body of material

r� + charge density of conduction electrons of velocity v

r+ + density of charges at rest = r� + wire is uncharged

There is no ~E field outside wire

Force on moving particle + ~F = q~v0 ⇥ ~B
3/22/2023 The Feynman Lectures on Physics Vol. II Ch. 13: Magnetostatics

https://www.feynmanlectures.caltech.edu/II_13.html 9/13

Fig. 13–10.The interaction of a current-carrying wire and a particle with the charge   as seen in two frames. In frame   (part a), the wire is at rest; in frame 
 (part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it
curve in toward the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is?
Would we see different things happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to
the wire. We must try to understand why that would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the
negative electrons³called the conduction electrons³while the positive nuclear charges and the remainder of the electrons stay Àxed in the body of the
material. We let the charge density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be
equal to the negative of  , since we are considering an uncharged wire. There is thus no electric Àeld outside the wire, and the force on the moving particle is
just

Using the result we found in Eq. (13.18) for the magnetic Àeld at the distance   from the axis of a wire, we conclude that the force on the particle is directed
toward the wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of
the particle is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the Àgure) with the speed  .
The positive charges moving with the wire will make some magnetic Àeld   at the particle. But the particle is now at , so there is no  force on it!
If there is any force on the particle, it must come from an electric Àeld. It must be that the moving wire has produced an electric Àeld. But it can do that only if
it appears ³it must be that a neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at Àrst, think they are the
same; but we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge  depend on the
volume occupied by charges, the densities will change, too.

Before we can decide about the charge  in  , we must know what happens to the electric  of a bunch of electrons when the charges are
moving. We know that the apparent mass of a particle changes by  . Does its charge do something similar? No!  are always the ,
moving or not. Otherwise we would not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than
the protons, the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle
carrying it, in the heated block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have
seen earlier, a very small fractional change in the charge of all the electrons in a block would give rise to enormous electric Àelds. No such effect has ever
been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed,
the net charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence
of charge on speed would give enormous Àelds from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a
single particle is independent of its state of motion.
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Fig. 13–7.The magnetic Àeld outside of a long wire carrying the current  .

We can illustrate the use of Ampère’s law by Ànding the magnetic Àeld near a wire. We ask: What is the Àeld outside a long straight wire with a cylindrical
cross section? We will assume something which may not be at all evident, but which is nevertheless true: that the Àeld lines of   go around the wire in closed
circles. If we make this assumption, then Ampère’s law, Eq. (13.16), tells us how strong the Àeld is. From the symmetry of the problem,  has the same
magnitude at all points on a circle concentric with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of 

 times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic Àeld drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form.
Remembering that   is at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation
like (13.17) is used to  the unit of current, the ampere. At one meter from a current of one ampere the magnetic Àeld is  webers per square
meter.

Since a current produces a magnetic Àeld, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple
demonstration of the forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  Àeld of the other; the wires should
then be pushed either toward or away from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite
directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the Àeld. Suppose we have a long coil of wire wound in a
tight spiral, as shown by the cross sections in Fig. 13–8. Such a coil is called a . We observe experimentally that when a solenoid is very long
compared with its diameter, the Àeld outside is very small compared with the Àeld inside. Using just that fact, together with Ampère’s law, we can Ànd the
size of the Àeld inside.

Fig. 13–8.The magnetic Àeld of a long solenoid.

Since the Àeld  inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use
Ampère’s law with the rectangular “curve”   shown in the Àgure. This loop goes the distance   inside the solenoid, where the Àeld is, say, , then goes at
right angles to the Àeld, and returns along the outside, where the Àeld is negligible. The line integral of   for this curve is just  , and it must be 
times the total current through  , which is   if there are   turns of the solenoid in the length  . We have
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Fig. 13–10.The interaction of a current-carrying wire and a particle with the charge   as seen in two frames. In frame   (part a), the wire is at rest; in frame 
 (part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it
curve in toward the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is?
Would we see different things happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to
the wire. We must try to understand why that would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the
negative electrons³called the conduction electrons³while the positive nuclear charges and the remainder of the electrons stay Àxed in the body of the
material. We let the charge density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be
equal to the negative of  , since we are considering an uncharged wire. There is thus no electric Àeld outside the wire, and the force on the moving particle is
just

Using the result we found in Eq. (13.18) for the magnetic Àeld at the distance   from the axis of a wire, we conclude that the force on the particle is directed
toward the wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of
the particle is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the Àgure) with the speed  .
The positive charges moving with the wire will make some magnetic Àeld   at the particle. But the particle is now at , so there is no  force on it!
If there is any force on the particle, it must come from an electric Àeld. It must be that the moving wire has produced an electric Àeld. But it can do that only if
it appears ³it must be that a neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at Àrst, think they are the
same; but we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge  depend on the
volume occupied by charges, the densities will change, too.

Before we can decide about the charge  in  , we must know what happens to the electric  of a bunch of electrons when the charges are
moving. We know that the apparent mass of a particle changes by  . Does its charge do something similar? No!  are always the ,
moving or not. Otherwise we would not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than
the protons, the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle
carrying it, in the heated block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have
seen earlier, a very small fractional change in the charge of all the electrons in a block would give rise to enormous electric Àelds. No such effect has ever
been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed,
the net charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence
of charge on speed would give enormous Àelds from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a
single particle is independent of its state of motion.
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Fig. 13–7.The magnetic Àeld outside of a long wire carrying the current  .

We can illustrate the use of Ampère’s law by Ànding the magnetic Àeld near a wire. We ask: What is the Àeld outside a long straight wire with a cylindrical
cross section? We will assume something which may not be at all evident, but which is nevertheless true: that the Àeld lines of   go around the wire in closed
circles. If we make this assumption, then Ampère’s law, Eq. (13.16), tells us how strong the Àeld is. From the symmetry of the problem,  has the same
magnitude at all points on a circle concentric with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of 

 times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic Àeld drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form.
Remembering that   is at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation
like (13.17) is used to  the unit of current, the ampere. At one meter from a current of one ampere the magnetic Àeld is  webers per square
meter.

Since a current produces a magnetic Àeld, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple
demonstration of the forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  Àeld of the other; the wires should
then be pushed either toward or away from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite
directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the Àeld. Suppose we have a long coil of wire wound in a
tight spiral, as shown by the cross sections in Fig. 13–8. Such a coil is called a . We observe experimentally that when a solenoid is very long
compared with its diameter, the Àeld outside is very small compared with the Àeld inside. Using just that fact, together with Ampère’s law, we can Ànd the
size of the Àeld inside.

Fig. 13–8.The magnetic Àeld of a long solenoid.

Since the Àeld  inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use
Ampère’s law with the rectangular “curve”   shown in the Àgure. This loop goes the distance   inside the solenoid, where the Àeld is, say, , then goes at
right angles to the Àeld, and returns along the outside, where the Àeld is negligible. The line integral of   for this curve is just  , and it must be 
times the total current through  , which is   if there are   turns of the solenoid in the length  . We have
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Fig. 13–10.The interaction of a current-carrying wire and a particle with the charge   as seen in two frames. In frame   (part a), the wire is at rest; in frame 
 (part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it
curve in toward the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is?
Would we see different things happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to
the wire. We must try to understand why that would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the
negative electrons³called the conduction electrons³while the positive nuclear charges and the remainder of the electrons stay Àxed in the body of the
material. We let the charge density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be
equal to the negative of  , since we are considering an uncharged wire. There is thus no electric Àeld outside the wire, and the force on the moving particle is
just

Using the result we found in Eq. (13.18) for the magnetic Àeld at the distance   from the axis of a wire, we conclude that the force on the particle is directed
toward the wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of
the particle is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the Àgure) with the speed  .
The positive charges moving with the wire will make some magnetic Àeld   at the particle. But the particle is now at , so there is no  force on it!
If there is any force on the particle, it must come from an electric Àeld. It must be that the moving wire has produced an electric Àeld. But it can do that only if
it appears ³it must be that a neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at Àrst, think they are the
same; but we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge  depend on the
volume occupied by charges, the densities will change, too.

Before we can decide about the charge  in  , we must know what happens to the electric  of a bunch of electrons when the charges are
moving. We know that the apparent mass of a particle changes by  . Does its charge do something similar? No!  are always the ,
moving or not. Otherwise we would not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than
the protons, the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle
carrying it, in the heated block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have
seen earlier, a very small fractional change in the charge of all the electrons in a block would give rise to enormous electric Àelds. No such effect has ever
been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed,
the net charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence
of charge on speed would give enormous Àelds from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a
single particle is independent of its state of motion.
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Fig. 13–7.The magnetic Àeld outside of a long wire carrying the current  .

We can illustrate the use of Ampère’s law by Ànding the magnetic Àeld near a wire. We ask: What is the Àeld outside a long straight wire with a cylindrical
cross section? We will assume something which may not be at all evident, but which is nevertheless true: that the Àeld lines of   go around the wire in closed
circles. If we make this assumption, then Ampère’s law, Eq. (13.16), tells us how strong the Àeld is. From the symmetry of the problem,  has the same
magnitude at all points on a circle concentric with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of 

 times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic Àeld drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form.
Remembering that   is at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation
like (13.17) is used to  the unit of current, the ampere. At one meter from a current of one ampere the magnetic Àeld is  webers per square
meter.

Since a current produces a magnetic Àeld, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple
demonstration of the forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  Àeld of the other; the wires should
then be pushed either toward or away from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite
directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the Àeld. Suppose we have a long coil of wire wound in a
tight spiral, as shown by the cross sections in Fig. 13–8. Such a coil is called a . We observe experimentally that when a solenoid is very long
compared with its diameter, the Àeld outside is very small compared with the Àeld inside. Using just that fact, together with Ampère’s law, we can Ànd the
size of the Àeld inside.

Fig. 13–8.The magnetic Àeld of a long solenoid.

Since the Àeld  inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use
Ampère’s law with the rectangular “curve”   shown in the Àgure. This loop goes the distance   inside the solenoid, where the Àeld is, say, , then goes at
right angles to the Àeld, and returns along the outside, where the Àeld is negligible. The line integral of   for this curve is just  , and it must be 
times the total current through  , which is   if there are   turns of the solenoid in the length  . We have
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Fig. 13–10.The interaction of a current-carrying wire and a particle with the charge   as seen in two frames. In frame   (part a), the wire is at rest; in frame 
 (part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it
curve in toward the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is?
Would we see different things happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to
the wire. We must try to understand why that would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the
negative electrons³called the conduction electrons³while the positive nuclear charges and the remainder of the electrons stay Àxed in the body of the
material. We let the charge density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be
equal to the negative of  , since we are considering an uncharged wire. There is thus no electric Àeld outside the wire, and the force on the moving particle is
just

Using the result we found in Eq. (13.18) for the magnetic Àeld at the distance   from the axis of a wire, we conclude that the force on the particle is directed
toward the wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of
the particle is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the Àgure) with the speed  .
The positive charges moving with the wire will make some magnetic Àeld   at the particle. But the particle is now at , so there is no  force on it!
If there is any force on the particle, it must come from an electric Àeld. It must be that the moving wire has produced an electric Àeld. But it can do that only if
it appears ³it must be that a neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at Àrst, think they are the
same; but we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge  depend on the
volume occupied by charges, the densities will change, too.

Before we can decide about the charge  in  , we must know what happens to the electric  of a bunch of electrons when the charges are
moving. We know that the apparent mass of a particle changes by  . Does its charge do something similar? No!  are always the ,
moving or not. Otherwise we would not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than
the protons, the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle
carrying it, in the heated block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have
seen earlier, a very small fractional change in the charge of all the electrons in a block would give rise to enormous electric Àelds. No such effect has ever
been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed,
the net charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence
of charge on speed would give enormous Àelds from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a
single particle is independent of its state of motion.
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Fig. 13–7.The magnetic Àeld outside of a long wire carrying the current  .

We can illustrate the use of Ampère’s law by Ànding the magnetic Àeld near a wire. We ask: What is the Àeld outside a long straight wire with a cylindrical
cross section? We will assume something which may not be at all evident, but which is nevertheless true: that the Àeld lines of   go around the wire in closed
circles. If we make this assumption, then Ampère’s law, Eq. (13.16), tells us how strong the Àeld is. From the symmetry of the problem,  has the same
magnitude at all points on a circle concentric with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of 

 times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic Àeld drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form.
Remembering that   is at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation
like (13.17) is used to  the unit of current, the ampere. At one meter from a current of one ampere the magnetic Àeld is  webers per square
meter.

Since a current produces a magnetic Àeld, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple
demonstration of the forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  Àeld of the other; the wires should
then be pushed either toward or away from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite
directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the Àeld. Suppose we have a long coil of wire wound in a
tight spiral, as shown by the cross sections in Fig. 13–8. Such a coil is called a . We observe experimentally that when a solenoid is very long
compared with its diameter, the Àeld outside is very small compared with the Àeld inside. Using just that fact, together with Ampère’s law, we can Ànd the
size of the Àeld inside.

Fig. 13–8.The magnetic Àeld of a long solenoid.

Since the Àeld  inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use
Ampère’s law with the rectangular “curve”   shown in the Àgure. This loop goes the distance   inside the solenoid, where the Àeld is, say, , then goes at
right angles to the Àeld, and returns along the outside, where the Àeld is negligible. The line integral of   for this curve is just  , and it must be 
times the total current through  , which is   if there are   turns of the solenoid in the length  . We have
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Fig. 13–10.The interaction of a current-carrying wire and a particle with the charge   as seen in two frames. In frame   (part a), the wire is at rest; in frame 
 (part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it
curve in toward the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is?
Would we see different things happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to
the wire. We must try to understand why that would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the
negative electrons³called the conduction electrons³while the positive nuclear charges and the remainder of the electrons stay Àxed in the body of the
material. We let the charge density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be
equal to the negative of  , since we are considering an uncharged wire. There is thus no electric Àeld outside the wire, and the force on the moving particle is
just

Using the result we found in Eq. (13.18) for the magnetic Àeld at the distance   from the axis of a wire, we conclude that the force on the particle is directed
toward the wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of
the particle is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the Àgure) with the speed  .
The positive charges moving with the wire will make some magnetic Àeld   at the particle. But the particle is now at , so there is no  force on it!
If there is any force on the particle, it must come from an electric Àeld. It must be that the moving wire has produced an electric Àeld. But it can do that only if
it appears ³it must be that a neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at Àrst, think they are the
same; but we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge  depend on the
volume occupied by charges, the densities will change, too.

Before we can decide about the charge  in  , we must know what happens to the electric  of a bunch of electrons when the charges are
moving. We know that the apparent mass of a particle changes by  . Does its charge do something similar? No!  are always the ,
moving or not. Otherwise we would not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than
the protons, the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle
carrying it, in the heated block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have
seen earlier, a very small fractional change in the charge of all the electrons in a block would give rise to enormous electric Àelds. No such effect has ever
been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed,
the net charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence
of charge on speed would give enormous Àelds from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a
single particle is independent of its state of motion.
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Fig. 13–7.The magnetic Àeld outside of a long wire carrying the current  .

We can illustrate the use of Ampère’s law by Ànding the magnetic Àeld near a wire. We ask: What is the Àeld outside a long straight wire with a cylindrical
cross section? We will assume something which may not be at all evident, but which is nevertheless true: that the Àeld lines of   go around the wire in closed
circles. If we make this assumption, then Ampère’s law, Eq. (13.16), tells us how strong the Àeld is. From the symmetry of the problem,  has the same
magnitude at all points on a circle concentric with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of 

 times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic Àeld drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form.
Remembering that   is at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation
like (13.17) is used to  the unit of current, the ampere. At one meter from a current of one ampere the magnetic Àeld is  webers per square
meter.

Since a current produces a magnetic Àeld, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple
demonstration of the forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  Àeld of the other; the wires should
then be pushed either toward or away from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite
directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the Àeld. Suppose we have a long coil of wire wound in a
tight spiral, as shown by the cross sections in Fig. 13–8. Such a coil is called a . We observe experimentally that when a solenoid is very long
compared with its diameter, the Àeld outside is very small compared with the Àeld inside. Using just that fact, together with Ampère’s law, we can Ànd the
size of the Àeld inside.

Fig. 13–8.The magnetic Àeld of a long solenoid.

Since the Àeld  inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use
Ampère’s law with the rectangular “curve”   shown in the Àgure. This loop goes the distance   inside the solenoid, where the Àeld is, say, , then goes at
right angles to the Àeld, and returns along the outside, where the Àeld is negligible. The line integral of   for this curve is just  , and it must be 
times the total current through  , which is   if there are   turns of the solenoid in the length  . We have
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Fig. 13–10.The interaction of a current-carrying wire and a particle with the charge   as seen in two frames. In frame   (part a), the wire is at rest; in frame 
 (part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it
curve in toward the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is?
Would we see different things happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to
the wire. We must try to understand why that would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the
negative electrons³called the conduction electrons³while the positive nuclear charges and the remainder of the electrons stay Àxed in the body of the
material. We let the charge density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be
equal to the negative of  , since we are considering an uncharged wire. There is thus no electric Àeld outside the wire, and the force on the moving particle is
just

Using the result we found in Eq. (13.18) for the magnetic Àeld at the distance   from the axis of a wire, we conclude that the force on the particle is directed
toward the wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of
the particle is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the Àgure) with the speed  .
The positive charges moving with the wire will make some magnetic Àeld   at the particle. But the particle is now at , so there is no  force on it!
If there is any force on the particle, it must come from an electric Àeld. It must be that the moving wire has produced an electric Àeld. But it can do that only if
it appears ³it must be that a neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at Àrst, think they are the
same; but we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge  depend on the
volume occupied by charges, the densities will change, too.

Before we can decide about the charge  in  , we must know what happens to the electric  of a bunch of electrons when the charges are
moving. We know that the apparent mass of a particle changes by  . Does its charge do something similar? No!  are always the ,
moving or not. Otherwise we would not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than
the protons, the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle
carrying it, in the heated block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have
seen earlier, a very small fractional change in the charge of all the electrons in a block would give rise to enormous electric Àelds. No such effect has ever
been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed,
the net charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence
of charge on speed would give enormous Àelds from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a
single particle is independent of its state of motion.
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Fig. 13–7.The magnetic Àeld outside of a long wire carrying the current  .

We can illustrate the use of Ampère’s law by Ànding the magnetic Àeld near a wire. We ask: What is the Àeld outside a long straight wire with a cylindrical
cross section? We will assume something which may not be at all evident, but which is nevertheless true: that the Àeld lines of   go around the wire in closed
circles. If we make this assumption, then Ampère’s law, Eq. (13.16), tells us how strong the Àeld is. From the symmetry of the problem,  has the same
magnitude at all points on a circle concentric with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of 

 times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic Àeld drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form.
Remembering that   is at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation
like (13.17) is used to  the unit of current, the ampere. At one meter from a current of one ampere the magnetic Àeld is  webers per square
meter.

Since a current produces a magnetic Àeld, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple
demonstration of the forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  Àeld of the other; the wires should
then be pushed either toward or away from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite
directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the Àeld. Suppose we have a long coil of wire wound in a
tight spiral, as shown by the cross sections in Fig. 13–8. Such a coil is called a . We observe experimentally that when a solenoid is very long
compared with its diameter, the Àeld outside is very small compared with the Àeld inside. Using just that fact, together with Ampère’s law, we can Ànd the
size of the Àeld inside.

Fig. 13–8.The magnetic Àeld of a long solenoid.

Since the Àeld  inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use
Ampère’s law with the rectangular “curve”   shown in the Àgure. This loop goes the distance   inside the solenoid, where the Àeld is, say, , then goes at
right angles to the Àeld, and returns along the outside, where the Àeld is negligible. The line integral of   for this curve is just  , and it must be 
times the total current through  , which is   if there are   turns of the solenoid in the length  . We have
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Spacetime Relativity of Electric and Magnetic Fields

Charge density in S and S0

Compute r of wire in S0 from what’s known about it in S

Aren’t r and r0 the same?

Charge q on particle is invariant scalar quantity
+ independent of reference frame

In any frame + charge density of distribution of electrons
is proportional to number of electrons per unit volume

BUT we know that lengths are changed between S and S0

+ so volumes will change also

Since charge densities depend on volume occupied by charges
+ densities will change too

Must calculate:
volume changes because of relativistic contraction of distances
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Spacetime Relativity of Electric and Magnetic Fields

Length contraction of current-carrying wire
Take length L0 of wire with charge density r0 of stationary charges
Total charge Q = r0L0 A0

If same charges are observed in different frame moving v + they
will all be found in piece of material with shorter length

L = L0
p

1 � v2/c2

but same area

13

Magnetostatics

Review: Chapter 15, Vol. I, The Special Theory of Relativity

13–1 The magnetic field

The force on an electric charge depends not only on where it is, but also on how fast it is moving. Every point in space is characterized by two vector quantities which
determine the force on any charge. First, there is the electric force, which gives a force component independent of the motion of the charge. We describe it by the electric
field, . Second, there is an additional force component, called the magnetic force, which depends on the velocity of the charge. This magnetic force has a strange directional
character: At any particular point in space, both the direction of the force and its magnitude depend on the direction of motion of the particle: at every instant the force is
always at right angles to the velocity vector; also, at any particular point, the force is always at right angles to a fixed direction in space (see Fig. 13–1); and finally, the
magnitude of the force is proportional to the component of the velocity at right angles to this unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector  , which specifies both the unique direction in space and the constant of proportionality with the velocity, and to write the magnetic force as  .
The total electromagnetic force on a charge can, then, be written as

This is called the Lorentz force.

Fig. 13–1. The velocity-dependent component of the force on a moving charge
is at right angles to  and to the direction of . It is also proportional to the
component of  at right angles to , that is, to .

The magnetic force is easily demonstrated by bringing a bar magnet close to a cathode-ray tube. The deflection of the electron beam shows that the presence of the
magnet results in forces on the electrons transverse to their direction of motion, as we described in Chapter 12 of Vol. I.

The unit of magnetic field   is evidently one newton second per coulomb-meter. The same unit is also one volt second per meter . It is also called one weber per square
meter.

13–2 Electric current; the conservation of charge

We consider first how we can understand the magnetic forces on wires carrying electric currents. In order to do this, we define what is meant by the current density.
Electric currents are electrons or other charges in motion with a net drift or flow. We can represent the charge flow by a vector which gives the amount of charge passing per
unit area and per unit time through a surface element at right angles to the flow (just as we did for the case of heat flow). We call this the current density and represent it by
the vector  . It is directed along the motion of the charges. If we take a small area   at a given place in the material, the amount of charge flowing across that area in a unit
time is

where   is the unit vector normal to  .

Fig. 13–2. If a charge distribution of density  moves with the velocity , the
charge per unit time through  is .

The current density is related to the average flow velocity of the charges. Suppose that we have a distribution of charges whose average motion is a drift with the
velocity  . As this distribution passes over a surface element  , the charge   passing through the surface element in a time   is equal to the charge contained in a
parallelepiped whose base is   and whose height is  , as shown in Fig. 13–2. The volume of the parallelepiped is the projection of   at right angles to  times  ,
which when multiplied by the charge density   will give  . Thus

The charge per unit time is then  , from which we get

If the charge distribution consists of individual charges, say electrons, each with the charge   and moving with the mean velocity  , then the current density is

where   is the number of charges per unit volume.

Fig. 13–3. The current  through the surface  is .

The total charge passing per unit time through any surface   is called the electric current, . It is equal to the integral of the normal component of the flow through all of
the elements of the surface:

(see Fig. 13–3).

Fig. 13–4. The integral of  over a closed surface is negative the rate of
change of the total charge  inside.

The current   out of a closed surface   represents the rate at which charge leaves the volume   enclosed by  . One of the basic laws of physics is that electric charge is
indestructible; it is never lost or created. Electric charges can move from place to place but never appear from nowhere. We say that charge is conserved. If there is a net
current out of a closed surface, the amount of charge inside must decrease by the corresponding amount (Fig. 13–4). We can, therefore, write the law of the conservation of
charge as

The charge inside can be written as a volume integral of the charge density:

If we apply (13.6) to a small volume  , we know that the left-hand integral is  . The charge inside is  , so the conservation of charge can also be written as

(Gauss’ mathematics once again!).

13–3 The magnetic force on a current

Fig. 13–5. The magnetic force on a current-carrying wire is the sum of the
forces on the individual moving charges.

Now we are ready to find the force on a current-carrying wire in a magnetic field. The current consists of charged particles moving with the velocity   along the wire.
Each charge feels a transverse force

(Fig. 13–5a). If there are   such charges per unit volume, the number in a small volume   of the wire is  . The total magnetic force   on the volume   is the sum
of the forces on the individual charges, that is,

But  is just , so

(Fig. 13–5b). The force per unit volume is  .

If the current is uniform across a wire whose cross-sectional area is  , we may take as the volume element a cylinder with the base area   and the length  . Then

Now we can call   the vector current   in the wire. (Its magnitude is the electric current in the wire, and its direction is along the wire.) Then

The force per unit length on a wire is  .

This equation gives the important result that the magnetic force on a wire, due to the movement of charges in it, depends only on the total current, and not on the
amount of charge carried by each particle—or even its sign! The magnetic force on a wire near a magnet is easily shown by observing its deflection when a current is turned
on, as was described in Chapter 1 (see Fig. 1–6).

13–4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field, produced, say, by a magnet. From the principle that action equals reaction we might
expect that there should be a force on the source of the magnetic field, i.e., on the magnet, when there is a current through the wire.1 There are indeed such forces, as is seen
by the deflection of a compass needle near a current-carrying wire. Now we know that magnets feel forces from other magnets, so that means that when there is a current in a
wire, the wire itself generates a magnetic field. Moving charges, then, produce a magnetic field. We would like now to try to discover the laws that determine how such
magnetic fields are created. The question is: Given a current, what magnetic field does it make? The answer to this question was determined experimentally by three critical
experiments and a brilliant theoretical argument given by Ampère. We will pass over this interesting historical development and simply say that a large number of
experiments have demonstrated the validity of Maxwell’s equations. We take them as our starting point. If we drop the terms involving time derivatives in these equations we
get the equations of magnetostatics:

and

These equations are valid only if all electric charge densities are constant and all currents are steady, so that the electric and magnetic fields are not changing with time—all
of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a thing as a static magnetic situation, because there must be currents in order to get a magnetic
field at all—and currents can come only from moving charges. “Magnetostatics” is, therefore, an approximation. It refers to a special kind of dynamic situation with large
numbers of charges in motion, which we can approximate by a steady flow of charge. Only then can we speak of a current density   which does not change with time. The
subject should more accurately be called the study of steady currents. Assuming that all fields are steady, we drop all terms in  and   from the complete Maxwell
equations, Eqs. (2.41), and obtain the two equations (13.12) and (13.13) above. Also notice that since the divergence of the curl of any vector is necessarily zero, Eq. (13.13)
requires that  . This is true, by Eq. (13.8), only if   is zero. But that must be so if   is not changing with time, so our assumptions are consistent.

The requirement that   means that we may only have charges which flow in paths that close back on themselves. They may, for instance, flow in wires that form
complete loops—called circuits. The circuits may, of course, contain generators or batteries that keep the charges flowing. But they may not include condensers which are
charging or discharging. (We will, of course, extend the theory later to include dynamic fields, but we want first to take the simpler case of steady currents.)

Now let us look at Eqs. (13.12) and  (13.13) to see what they mean. The first one says that the divergence of   is zero. Comparing it to the analogous equation in
electrostatics, which says that  , we can conclude that there is no magnetic analog of an electric charge. There are no magnetic charges from which lines of 
can emerge. If we think in terms of “lines” of the vector field  , they can never start and they never stop. Then where do they come from? Magnetic fields “appear” in the
presence of currents; they have a curl proportional to the current density. Wherever there are currents, there are lines of magnetic field making loops around the currents.
Since lines of   do not begin or end, they will often close back on themselves, making closed loops. But there can also be complicated situations in which the lines are not
simple closed loops. But whatever they do, they never diverge from points. No magnetic charges have ever been discovered, so  . This much is true not only for
magnetostatics, it is always true—even for dynamic fields.

Fig. 13–6. The line integral of the tangential component of  is equal to the
surface integral of the normal component of .

The connection between the  field and currents is contained in Eq. (13.13). Here we have a new kind of situation which is quite different from electrostatics, where we
had  . That equation meant that the line integral of   around any closed path is zero:

We got that result from Stokes’ theorem, which says that the integral around any closed path of any vector field is equal to the surface integral of the normal component of
the curl of the vector (taken over any surface which has the closed loop as its periphery). Applying the same theorem to the magnetic field vector and using the symbols
shown in Fig. 13–6, we get

Taking the curl of   from Eq. (13.13), we have

The integral over  , according to (13.5), is the total current   through the surface  . Since for steady currents the current through   is independent of the shape of  , so long
as it is bounded by the curve  , one usually speaks of “the current through the loop  .” We have, then, a general law: the circulation of   around any closed curve is equal to
the current   through the loop, divided by  :

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’ law played in electrostatics. Ampère’s law alone does not determine   from currents; we
must, in general, also use  . But, as we will see in the next section, it can be used to find the field in special circumstances which have certain simple symmetries.

13–5 The magnetic field of a straight wire and of a solenoid; atomic currents

Fig. 13–7. The magnetic field outside of a long wire carrying the current .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical cross section?
We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed circles. If we make this
assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same magnitude at all points on a circle concentric
with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of   times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form. Remembering that   is
at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation like (13.17) is used
to define the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple demonstration of the
forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should then be pushed either toward or away
from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a tight spiral,
as shown by the cross sections in Fig. 13–8. Such a coil is called a solenoid. We observe experimentally that when a solenoid is very long compared with its diameter, the field
outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the size of the field inside.

Fig. 13–8. The magnetic field of a long solenoid.

Since the field stays inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use Ampère’s law
with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at right angles to the field, and
returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be   times the total current through  , which is 
if there are   turns of the solenoid in the length  . We have

Or, letting   be the number of turns per unit length of the solenoid (that is, ), we get

What happens to the lines of   when they get to the end of the solenoid? Presumably, they spread out in some way and return to enter the solenoid at the other end, as
sketched in Fig. 13–9. Such a field is just what is observed outside of a bar magnet. But what is a magnet anyway? Our equations say that   comes from the presence of
currents. Yet we know that ordinary bars of iron (no batteries or generators) also produce magnetic fields. You might expect that there should be some other terms on the
right-hand side of (13.12) or (13.13) to represent “the density of magnetic iron” or some such quantity. But there is no such term. Our theory says that the magnetic effects of
iron come from some internal currents which are already taken care of by the  term.

Fig. 13–9. The magnetic field outside of a solenoid.

Matter is very complex when looked at from a fundamental point of view—as we saw when we tried to understand dielectrics. In order not to interrupt our present
discussion, we will wait until later to deal in detail with the interior mechanisms of magnetic materials like iron: You will have to accept, for the moment, that all magnetism
is produced from currents, and that in a permanent magnet there are permanent internal currents. In the case of iron, these currents come from electrons spinning around
their own axes. Every electron has such a spin, which corresponds to a tiny circulating current. Of course, one electron doesn’t produce much magnetic field, but in an
ordinary piece of matter there are billions and billions of electrons. Normally these spin and point every which way, so that there is no net effect. The miracle is that in a very
few substances, like iron, a large fraction of the electrons spin with their axes in the same direction—for iron, two electrons of each atom take part in this cooperative motion.
In a bar magnet there are large numbers of electrons all spinning in the same direction and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that a uniformly polarized dielectric is equivalent to a distribution of charges on its surface.) It is,
therefore, no accident that a bar magnet is equivalent to a solenoid.

13–6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its velocity, you may have wondered: “What velocity? With respect to which reference frame?” It
is, in fact, clear from the definition of   given at the beginning of this chapter that what this vector is will depend on what we choose as a reference frame for our
specification of the velocity of charges. But we have said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism and electricity are not independent things—that they should always be taken together as one
complete electromagnetic field. Although in the static case Maxwell’s equations separate into two distinct pairs, one pair for electricity and one pair for magnetism, with no
apparent connection between the two fields, nevertheless, in nature itself there is a very intimate relationship between them that arises from the principle of relativity.
Historically, the principle of relativity was discovered after Maxwell’s equations. It was, in fact, the study of electricity and magnetism which led ultimately to Einstein’s
discovery of his principle of relativity. But let’s see what our knowledge of relativity would tell us about magnetic forces if we assume that the relativity principle is applicable
—as it is—to electromagnetism.

Suppose we think about what happens when a negative charge moves with velocity   parallel to a current-carrying wire, as in Fig. 13–10. We will try to understand what
goes on in two reference frames: one fixed with respect to the wire, as in part (a) of the figure, and one fixed with respect to the particle, as in part (b). We will call the first
frame   and the second  .

Fig. 13–10. The interaction of a current-carrying wire and a particle with the
charge  as seen in two frames. In frame  (part a), the wire is at rest; in frame 
(part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it curve in toward
the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is? Would we see different things
happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to the wire. We must try to understand why that
would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the negative
electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the material. We let the charge
density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be equal to the negative of  , since we are
considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed toward the
wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of the particle
is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  . The positive
charges moving with the wire will make some magnetic field   at the particle. But the particle is now at rest, so there is no magnetic force on it! If there is any force on the
particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if it appears charged—it must be that a
neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the same; but
we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge densities depend on the volume occupied by
charges, the densities will change, too.

Before we can decide about the charge densities in  , we must know what happens to the electric charge of a bunch of electrons when the charges are moving. We know
that the apparent mass of a particle changes by  . Does its charge do something similar? No! Charges are always the same, moving or not. Otherwise we would
not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than the protons,
the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle carrying it, in the heated
block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have seen earlier, a very small fractional change in
the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed, the net
charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence of charge on speed
would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a single particle is independent of its
state of motion.

So the charge   on a particle is an invariant scalar quantity, independent of the frame of reference. That means that in any frame the charge density of a distribution of
electrons is just proportional to the number of electrons per unit volume. We need only worry about the fact that the volume can change because of the relativistic
contraction of distances.

We now apply these ideas to our moving wire. If we take a length   of the wire, in which there is a charge density   of stationary charges, it will contain the total
charge  . If the same charges are observed in a different frame to be moving with velocity  , they will all be found in a piece of the material with the shorter
length

but with the same area   (since dimensions transverse to the motion are unchanged). See Fig. 13–11.

Fig. 13–11. If a distribution of charged particles at rest has the charge
density , the same charges will have the density  when
seen from a frame with the relative velocity .

If we call   the density of charges in the frame in which they are moving, the total charge   will be  . This must also be equal to  , because charge is the same
in any system, so that   or, from (13.22),

The charge density of a moving distribution of charges varies in the same way as the relativistic mass of a particle.

We now use this general result for the positive charge density   of our wire. These charges are at rest in frame  . In  , however, where the wire moves with the
speed  , the positive charge density becomes

The negative charges are at rest in  . So they have their “rest density”   in this frame. In Eq. (13.23) , because they have the density   when the wire is at
rest, i.e., in frame  , where the speed of the negative charges is  . For the conduction electrons, we then have that

or

Now we can see why there are electric fields in  —because in this frame the wire has the net charge density   given by

Using (13.24) and (13.26), we have

Since the stationary wire is neutral, , and we have

Our moving wire is positively charged and will produce an electric field   at the external stationary particle. We have already solved the electrostatic problem of a uniformly
charged cylinder. The electric field at the distance   from the axis of the cylinder is

The force on the negatively charged particle is toward the wire. We have, at least, a force in the same direction from the two points of view; the electric force in   has the
same direction as the magnetic force in  .

The magnitude of the force in   is

Comparing this result for   with our result for   in Eq. (13.21), we see that the magnitudes of the forces are almost identical from the two points of view. In fact,

so for the small velocities we have been considering, the two forces are equal. We can say that for low velocities, at least, we understand that magnetism and electricity are
just “two ways of looking at the same thing.”

But things are even better than that. If we take into account the fact that forces also transform when we go from one system to the other, we find that the two ways of
looking at what happens do indeed give the same physical result for any velocity.

One way of seeing this is to ask a question like: What transverse momentum will the particle have after the force has acted for a little while? We know from Chapter 16 of
Vol. I that the transverse momentum of a particle should be the same in both the  - and -frames. Calling the transverse coordinate  , we want to compare  and  .
Using the relativistically correct equation of motion, , we expect that after the time   our particle will have a transverse momentum   in the -system given
by

In the -system, the transverse momentum will be

We must, of course, compare  and   for corresponding time intervals  and  . We have seen in Chapter 15 of Vol. I that the time intervals referred to a moving
particle appear to be longer than those in the rest system of the particle. Since our particle is initially at rest in  , we expect, for small  , that

and everything comes out O.K. From (13.31) and (13.32),

which is just   if we combine (13.30) and (13.33).

We have found that we get the same physical result whether we analyze the motion of a particle moving along a wire in a coordinate system at rest with respect to the
wire, or in a system at rest with respect to the particle. In the first instance, the force was purely “magnetic,” in the second, it was purely “electric.” The two points of view are
illustrated in Fig. 13–12 (although there is still a magnetic field   in the second frame, it produces no forces on the stationary particle).

Fig. 13–12. In frame  the charge density is zero and the current density is .
There is only a magnetic field. In , there is a charge density  and a different
current density . The magnetic field  is different and there is an electric
field .

If we had chosen still another coordinate system, we would have found a different mixture of  and   fields. Electric and magnetic forces are part of one physical
phenomenon—the electromagnetic interactions of particles. The separation of this interaction into electric and magnetic parts depends very much on the reference frame
chosen for the description. But a complete electromagnetic description is invariant; electricity and magnetism taken together are consistent with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change our frame of reference, we must be careful about how we look at the fields  and  . For
instance, if we think of “lines” of  or  , we must not attach too much reality to them. The lines may disappear if we try to observe them from a different coordinate system.
For example, in system   there are electric field lines, which we do not find “moving past us with velocity   in system  .” In system   there are no electric field lines at all!
Therefore it makes no sense to say something like: When I move a magnet, it takes its field with it, so the lines of   are also moved. There is no way to make sense, in
general, out of the idea of “the speed of a moving field line.” The fields are our way of describing what goes on at a point in space. In particular,  and   tell us about the
forces that will act on a moving particle. The question “What is the force on a charge from a moving magnetic field?” doesn’t mean anything precise. The force is given by the
values of  and   at the charge, and the formula (13.1) is not to be altered if the source of  or   is moving (it is the values of  and   that will be altered by the motion).
Our mathematical description deals only with the fields as a function of ,  , , and   with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling through space,” as, for instance, a light wave. But that is like speaking of a wave travelling
on a string. We don’t then mean that some part of the string is moving in the direction of the wave, we mean that the displacement of the string appears first at one place and
later at another. Similarly, in an electromagnetic wave, the wave travels; but the magnitude of the fields change. So in the future when we—or someone else—speaks of a
“moving” field, you should think of it as just a handy, short way of describing a changing field in some circumstances.

13–7 The transformation of currents and charges

You may have worried about the simplification we made above when we took the same velocity   for the particle and for the conduction electrons in the wire. We could
go back and carry through the analysis again for two different velocities, but it is easier to simply notice that charge and current density are the components of a four-vector
(see Chapter 17, Vol. I).

We have seen that if   is the density of the charges in their rest frame, then in a frame in which they have the velocity  , the density is

In that frame their current density is

Now we know that the energy   and momentum   of a particle moving with velocity   are given by

where   is its rest mass. We also know that  and   form a relativistic four-vector. Since  and   depend on the velocity 
exactly as do  and  , we can conclude that  and   are also the components of a relativistic four-vector. This property is the key to a general analysis of the field of a wire
moving with any velocity, which we would need if we want to do the problem again with the velocity   of the particle different from the velocity of the conduction electrons.

If we wish to transform  and   to a coordinate system moving with a velocity   in the -direction, we know that they transform just like  and  , so that we have
(see Chapter 15, Vol. I)
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Magnetostatics

Review: Chapter 15, Vol. I, The Special Theory of Relativity

13–1 The magnetic field

The force on an electric charge depends not only on where it is, but also on how fast it is moving. Every point in space is characterized by two vector quantities which
determine the force on any charge. First, there is the electric force, which gives a force component independent of the motion of the charge. We describe it by the electric
field, . Second, there is an additional force component, called the magnetic force, which depends on the velocity of the charge. This magnetic force has a strange directional
character: At any particular point in space, both the direction of the force and its magnitude depend on the direction of motion of the particle: at every instant the force is
always at right angles to the velocity vector; also, at any particular point, the force is always at right angles to a fixed direction in space (see Fig. 13–1); and finally, the
magnitude of the force is proportional to the component of the velocity at right angles to this unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector  , which specifies both the unique direction in space and the constant of proportionality with the velocity, and to write the magnetic force as  .
The total electromagnetic force on a charge can, then, be written as

This is called the Lorentz force.

Fig. 13–1. The velocity-dependent component of the force on a moving charge
is at right angles to  and to the direction of . It is also proportional to the
component of  at right angles to , that is, to .

The magnetic force is easily demonstrated by bringing a bar magnet close to a cathode-ray tube. The deflection of the electron beam shows that the presence of the
magnet results in forces on the electrons transverse to their direction of motion, as we described in Chapter 12 of Vol. I.

The unit of magnetic field   is evidently one newton second per coulomb-meter. The same unit is also one volt second per meter . It is also called one weber per square
meter.

13–2 Electric current; the conservation of charge

We consider first how we can understand the magnetic forces on wires carrying electric currents. In order to do this, we define what is meant by the current density.
Electric currents are electrons or other charges in motion with a net drift or flow. We can represent the charge flow by a vector which gives the amount of charge passing per
unit area and per unit time through a surface element at right angles to the flow (just as we did for the case of heat flow). We call this the current density and represent it by
the vector  . It is directed along the motion of the charges. If we take a small area   at a given place in the material, the amount of charge flowing across that area in a unit
time is

where   is the unit vector normal to  .

Fig. 13–2. If a charge distribution of density  moves with the velocity , the
charge per unit time through  is .

The current density is related to the average flow velocity of the charges. Suppose that we have a distribution of charges whose average motion is a drift with the
velocity  . As this distribution passes over a surface element  , the charge   passing through the surface element in a time   is equal to the charge contained in a
parallelepiped whose base is   and whose height is  , as shown in Fig. 13–2. The volume of the parallelepiped is the projection of   at right angles to  times  ,
which when multiplied by the charge density   will give  . Thus

The charge per unit time is then  , from which we get

If the charge distribution consists of individual charges, say electrons, each with the charge   and moving with the mean velocity  , then the current density is

where   is the number of charges per unit volume.

Fig. 13–3. The current  through the surface  is .

The total charge passing per unit time through any surface   is called the electric current, . It is equal to the integral of the normal component of the flow through all of
the elements of the surface:

(see Fig. 13–3).

Fig. 13–4. The integral of  over a closed surface is negative the rate of
change of the total charge  inside.

The current   out of a closed surface   represents the rate at which charge leaves the volume   enclosed by  . One of the basic laws of physics is that electric charge is
indestructible; it is never lost or created. Electric charges can move from place to place but never appear from nowhere. We say that charge is conserved. If there is a net
current out of a closed surface, the amount of charge inside must decrease by the corresponding amount (Fig. 13–4). We can, therefore, write the law of the conservation of
charge as

The charge inside can be written as a volume integral of the charge density:

If we apply (13.6) to a small volume  , we know that the left-hand integral is  . The charge inside is  , so the conservation of charge can also be written as

(Gauss’ mathematics once again!).

13–3 The magnetic force on a current

Fig. 13–5. The magnetic force on a current-carrying wire is the sum of the
forces on the individual moving charges.

Now we are ready to find the force on a current-carrying wire in a magnetic field. The current consists of charged particles moving with the velocity   along the wire.
Each charge feels a transverse force

(Fig. 13–5a). If there are   such charges per unit volume, the number in a small volume   of the wire is  . The total magnetic force   on the volume   is the sum
of the forces on the individual charges, that is,

But  is just , so

(Fig. 13–5b). The force per unit volume is  .

If the current is uniform across a wire whose cross-sectional area is  , we may take as the volume element a cylinder with the base area   and the length  . Then

Now we can call   the vector current   in the wire. (Its magnitude is the electric current in the wire, and its direction is along the wire.) Then

The force per unit length on a wire is  .

This equation gives the important result that the magnetic force on a wire, due to the movement of charges in it, depends only on the total current, and not on the
amount of charge carried by each particle—or even its sign! The magnetic force on a wire near a magnet is easily shown by observing its deflection when a current is turned
on, as was described in Chapter 1 (see Fig. 1–6).

13–4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field, produced, say, by a magnet. From the principle that action equals reaction we might
expect that there should be a force on the source of the magnetic field, i.e., on the magnet, when there is a current through the wire.1 There are indeed such forces, as is seen
by the deflection of a compass needle near a current-carrying wire. Now we know that magnets feel forces from other magnets, so that means that when there is a current in a
wire, the wire itself generates a magnetic field. Moving charges, then, produce a magnetic field. We would like now to try to discover the laws that determine how such
magnetic fields are created. The question is: Given a current, what magnetic field does it make? The answer to this question was determined experimentally by three critical
experiments and a brilliant theoretical argument given by Ampère. We will pass over this interesting historical development and simply say that a large number of
experiments have demonstrated the validity of Maxwell’s equations. We take them as our starting point. If we drop the terms involving time derivatives in these equations we
get the equations of magnetostatics:

and

These equations are valid only if all electric charge densities are constant and all currents are steady, so that the electric and magnetic fields are not changing with time—all
of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a thing as a static magnetic situation, because there must be currents in order to get a magnetic
field at all—and currents can come only from moving charges. “Magnetostatics” is, therefore, an approximation. It refers to a special kind of dynamic situation with large
numbers of charges in motion, which we can approximate by a steady flow of charge. Only then can we speak of a current density   which does not change with time. The
subject should more accurately be called the study of steady currents. Assuming that all fields are steady, we drop all terms in  and   from the complete Maxwell
equations, Eqs. (2.41), and obtain the two equations (13.12) and (13.13) above. Also notice that since the divergence of the curl of any vector is necessarily zero, Eq. (13.13)
requires that  . This is true, by Eq. (13.8), only if   is zero. But that must be so if   is not changing with time, so our assumptions are consistent.

The requirement that   means that we may only have charges which flow in paths that close back on themselves. They may, for instance, flow in wires that form
complete loops—called circuits. The circuits may, of course, contain generators or batteries that keep the charges flowing. But they may not include condensers which are
charging or discharging. (We will, of course, extend the theory later to include dynamic fields, but we want first to take the simpler case of steady currents.)

Now let us look at Eqs. (13.12) and  (13.13) to see what they mean. The first one says that the divergence of   is zero. Comparing it to the analogous equation in
electrostatics, which says that  , we can conclude that there is no magnetic analog of an electric charge. There are no magnetic charges from which lines of 
can emerge. If we think in terms of “lines” of the vector field  , they can never start and they never stop. Then where do they come from? Magnetic fields “appear” in the
presence of currents; they have a curl proportional to the current density. Wherever there are currents, there are lines of magnetic field making loops around the currents.
Since lines of   do not begin or end, they will often close back on themselves, making closed loops. But there can also be complicated situations in which the lines are not
simple closed loops. But whatever they do, they never diverge from points. No magnetic charges have ever been discovered, so  . This much is true not only for
magnetostatics, it is always true—even for dynamic fields.

Fig. 13–6. The line integral of the tangential component of  is equal to the
surface integral of the normal component of .

The connection between the  field and currents is contained in Eq. (13.13). Here we have a new kind of situation which is quite different from electrostatics, where we
had  . That equation meant that the line integral of   around any closed path is zero:

We got that result from Stokes’ theorem, which says that the integral around any closed path of any vector field is equal to the surface integral of the normal component of
the curl of the vector (taken over any surface which has the closed loop as its periphery). Applying the same theorem to the magnetic field vector and using the symbols
shown in Fig. 13–6, we get

Taking the curl of   from Eq. (13.13), we have

The integral over  , according to (13.5), is the total current   through the surface  . Since for steady currents the current through   is independent of the shape of  , so long
as it is bounded by the curve  , one usually speaks of “the current through the loop  .” We have, then, a general law: the circulation of   around any closed curve is equal to
the current   through the loop, divided by  :

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’ law played in electrostatics. Ampère’s law alone does not determine   from currents; we
must, in general, also use  . But, as we will see in the next section, it can be used to find the field in special circumstances which have certain simple symmetries.

13–5 The magnetic field of a straight wire and of a solenoid; atomic currents

Fig. 13–7. The magnetic field outside of a long wire carrying the current .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical cross section?
We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed circles. If we make this
assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same magnitude at all points on a circle concentric
with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of   times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form. Remembering that   is
at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation like (13.17) is used
to define the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple demonstration of the
forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should then be pushed either toward or away
from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a tight spiral,
as shown by the cross sections in Fig. 13–8. Such a coil is called a solenoid. We observe experimentally that when a solenoid is very long compared with its diameter, the field
outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the size of the field inside.

Fig. 13–8. The magnetic field of a long solenoid.

Since the field stays inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use Ampère’s law
with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at right angles to the field, and
returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be   times the total current through  , which is 
if there are   turns of the solenoid in the length  . We have

Or, letting   be the number of turns per unit length of the solenoid (that is, ), we get

What happens to the lines of   when they get to the end of the solenoid? Presumably, they spread out in some way and return to enter the solenoid at the other end, as
sketched in Fig. 13–9. Such a field is just what is observed outside of a bar magnet. But what is a magnet anyway? Our equations say that   comes from the presence of
currents. Yet we know that ordinary bars of iron (no batteries or generators) also produce magnetic fields. You might expect that there should be some other terms on the
right-hand side of (13.12) or (13.13) to represent “the density of magnetic iron” or some such quantity. But there is no such term. Our theory says that the magnetic effects of
iron come from some internal currents which are already taken care of by the  term.

Fig. 13–9. The magnetic field outside of a solenoid.

Matter is very complex when looked at from a fundamental point of view—as we saw when we tried to understand dielectrics. In order not to interrupt our present
discussion, we will wait until later to deal in detail with the interior mechanisms of magnetic materials like iron: You will have to accept, for the moment, that all magnetism
is produced from currents, and that in a permanent magnet there are permanent internal currents. In the case of iron, these currents come from electrons spinning around
their own axes. Every electron has such a spin, which corresponds to a tiny circulating current. Of course, one electron doesn’t produce much magnetic field, but in an
ordinary piece of matter there are billions and billions of electrons. Normally these spin and point every which way, so that there is no net effect. The miracle is that in a very
few substances, like iron, a large fraction of the electrons spin with their axes in the same direction—for iron, two electrons of each atom take part in this cooperative motion.
In a bar magnet there are large numbers of electrons all spinning in the same direction and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that a uniformly polarized dielectric is equivalent to a distribution of charges on its surface.) It is,
therefore, no accident that a bar magnet is equivalent to a solenoid.

13–6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its velocity, you may have wondered: “What velocity? With respect to which reference frame?” It
is, in fact, clear from the definition of   given at the beginning of this chapter that what this vector is will depend on what we choose as a reference frame for our
specification of the velocity of charges. But we have said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism and electricity are not independent things—that they should always be taken together as one
complete electromagnetic field. Although in the static case Maxwell’s equations separate into two distinct pairs, one pair for electricity and one pair for magnetism, with no
apparent connection between the two fields, nevertheless, in nature itself there is a very intimate relationship between them that arises from the principle of relativity.
Historically, the principle of relativity was discovered after Maxwell’s equations. It was, in fact, the study of electricity and magnetism which led ultimately to Einstein’s
discovery of his principle of relativity. But let’s see what our knowledge of relativity would tell us about magnetic forces if we assume that the relativity principle is applicable
—as it is—to electromagnetism.

Suppose we think about what happens when a negative charge moves with velocity   parallel to a current-carrying wire, as in Fig. 13–10. We will try to understand what
goes on in two reference frames: one fixed with respect to the wire, as in part (a) of the figure, and one fixed with respect to the particle, as in part (b). We will call the first
frame   and the second  .

Fig. 13–10. The interaction of a current-carrying wire and a particle with the
charge  as seen in two frames. In frame  (part a), the wire is at rest; in frame 
(part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it curve in toward
the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is? Would we see different things
happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to the wire. We must try to understand why that
would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the negative
electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the material. We let the charge
density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be equal to the negative of  , since we are
considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed toward the
wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of the particle
is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  . The positive
charges moving with the wire will make some magnetic field   at the particle. But the particle is now at rest, so there is no magnetic force on it! If there is any force on the
particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if it appears charged—it must be that a
neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the same; but
we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge densities depend on the volume occupied by
charges, the densities will change, too.

Before we can decide about the charge densities in  , we must know what happens to the electric charge of a bunch of electrons when the charges are moving. We know
that the apparent mass of a particle changes by  . Does its charge do something similar? No! Charges are always the same, moving or not. Otherwise we would
not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than the protons,
the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle carrying it, in the heated
block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have seen earlier, a very small fractional change in
the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed, the net
charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence of charge on speed
would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a single particle is independent of its
state of motion.

So the charge   on a particle is an invariant scalar quantity, independent of the frame of reference. That means that in any frame the charge density of a distribution of
electrons is just proportional to the number of electrons per unit volume. We need only worry about the fact that the volume can change because of the relativistic
contraction of distances.

We now apply these ideas to our moving wire. If we take a length   of the wire, in which there is a charge density   of stationary charges, it will contain the total
charge  . If the same charges are observed in a different frame to be moving with velocity  , they will all be found in a piece of the material with the shorter
length

but with the same area   (since dimensions transverse to the motion are unchanged). See Fig. 13–11.

Fig. 13–11. If a distribution of charged particles at rest has the charge
density , the same charges will have the density  when
seen from a frame with the relative velocity .

If we call   the density of charges in the frame in which they are moving, the total charge   will be  . This must also be equal to  , because charge is the same
in any system, so that   or, from (13.22),

The charge density of a moving distribution of charges varies in the same way as the relativistic mass of a particle.

We now use this general result for the positive charge density   of our wire. These charges are at rest in frame  . In  , however, where the wire moves with the
speed  , the positive charge density becomes

The negative charges are at rest in  . So they have their “rest density”   in this frame. In Eq. (13.23) , because they have the density   when the wire is at
rest, i.e., in frame  , where the speed of the negative charges is  . For the conduction electrons, we then have that

or

Now we can see why there are electric fields in  —because in this frame the wire has the net charge density   given by

Using (13.24) and (13.26), we have

Since the stationary wire is neutral, , and we have

Our moving wire is positively charged and will produce an electric field   at the external stationary particle. We have already solved the electrostatic problem of a uniformly
charged cylinder. The electric field at the distance   from the axis of the cylinder is

The force on the negatively charged particle is toward the wire. We have, at least, a force in the same direction from the two points of view; the electric force in   has the
same direction as the magnetic force in  .

The magnitude of the force in   is

Comparing this result for   with our result for   in Eq. (13.21), we see that the magnitudes of the forces are almost identical from the two points of view. In fact,

so for the small velocities we have been considering, the two forces are equal. We can say that for low velocities, at least, we understand that magnetism and electricity are
just “two ways of looking at the same thing.”

But things are even better than that. If we take into account the fact that forces also transform when we go from one system to the other, we find that the two ways of
looking at what happens do indeed give the same physical result for any velocity.

One way of seeing this is to ask a question like: What transverse momentum will the particle have after the force has acted for a little while? We know from Chapter 16 of
Vol. I that the transverse momentum of a particle should be the same in both the  - and -frames. Calling the transverse coordinate  , we want to compare  and  .
Using the relativistically correct equation of motion, , we expect that after the time   our particle will have a transverse momentum   in the -system given
by

In the -system, the transverse momentum will be

We must, of course, compare  and   for corresponding time intervals  and  . We have seen in Chapter 15 of Vol. I that the time intervals referred to a moving
particle appear to be longer than those in the rest system of the particle. Since our particle is initially at rest in  , we expect, for small  , that

and everything comes out O.K. From (13.31) and (13.32),

which is just   if we combine (13.30) and (13.33).

We have found that we get the same physical result whether we analyze the motion of a particle moving along a wire in a coordinate system at rest with respect to the
wire, or in a system at rest with respect to the particle. In the first instance, the force was purely “magnetic,” in the second, it was purely “electric.” The two points of view are
illustrated in Fig. 13–12 (although there is still a magnetic field   in the second frame, it produces no forces on the stationary particle).

Fig. 13–12. In frame  the charge density is zero and the current density is .
There is only a magnetic field. In , there is a charge density  and a different
current density . The magnetic field  is different and there is an electric
field .

If we had chosen still another coordinate system, we would have found a different mixture of  and   fields. Electric and magnetic forces are part of one physical
phenomenon—the electromagnetic interactions of particles. The separation of this interaction into electric and magnetic parts depends very much on the reference frame
chosen for the description. But a complete electromagnetic description is invariant; electricity and magnetism taken together are consistent with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change our frame of reference, we must be careful about how we look at the fields  and  . For
instance, if we think of “lines” of  or  , we must not attach too much reality to them. The lines may disappear if we try to observe them from a different coordinate system.
For example, in system   there are electric field lines, which we do not find “moving past us with velocity   in system  .” In system   there are no electric field lines at all!
Therefore it makes no sense to say something like: When I move a magnet, it takes its field with it, so the lines of   are also moved. There is no way to make sense, in
general, out of the idea of “the speed of a moving field line.” The fields are our way of describing what goes on at a point in space. In particular,  and   tell us about the
forces that will act on a moving particle. The question “What is the force on a charge from a moving magnetic field?” doesn’t mean anything precise. The force is given by the
values of  and   at the charge, and the formula (13.1) is not to be altered if the source of  or   is moving (it is the values of  and   that will be altered by the motion).
Our mathematical description deals only with the fields as a function of ,  , , and   with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling through space,” as, for instance, a light wave. But that is like speaking of a wave travelling
on a string. We don’t then mean that some part of the string is moving in the direction of the wave, we mean that the displacement of the string appears first at one place and
later at another. Similarly, in an electromagnetic wave, the wave travels; but the magnitude of the fields change. So in the future when we—or someone else—speaks of a
“moving” field, you should think of it as just a handy, short way of describing a changing field in some circumstances.

13–7 The transformation of currents and charges

You may have worried about the simplification we made above when we took the same velocity   for the particle and for the conduction electrons in the wire. We could
go back and carry through the analysis again for two different velocities, but it is easier to simply notice that charge and current density are the components of a four-vector
(see Chapter 17, Vol. I).

We have seen that if   is the density of the charges in their rest frame, then in a frame in which they have the velocity  , the density is

In that frame their current density is

Now we know that the energy   and momentum   of a particle moving with velocity   are given by

where   is its rest mass. We also know that  and   form a relativistic four-vector. Since  and   depend on the velocity 
exactly as do  and  , we can conclude that  and   are also the components of a relativistic four-vector. This property is the key to a general analysis of the field of a wire
moving with any velocity, which we would need if we want to do the problem again with the velocity   of the particle different from the velocity of the conduction electrons.

If we wish to transform  and   to a coordinate system moving with a velocity   in the -direction, we know that they transform just like  and  , so that we have
(see Chapter 15, Vol. I)
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Spacetime Relativity of Electric and Magnetic Fields

Length contraction of current-carrying wire
Take length L0 of wire with charge density r0 of stationary charges
Total charge Q = r0L0 A0

If same charges are observed in different frame moving v + they
will all be found in piece of material with shorter length

L = L0
p

1 � v2/c2

but same area

13

Magnetostatics

Review: Chapter 15, Vol. I, The Special Theory of Relativity

13–1 The magnetic field

The force on an electric charge depends not only on where it is, but also on how fast it is moving. Every point in space is characterized by two vector quantities which
determine the force on any charge. First, there is the electric force, which gives a force component independent of the motion of the charge. We describe it by the electric
field, . Second, there is an additional force component, called the magnetic force, which depends on the velocity of the charge. This magnetic force has a strange directional
character: At any particular point in space, both the direction of the force and its magnitude depend on the direction of motion of the particle: at every instant the force is
always at right angles to the velocity vector; also, at any particular point, the force is always at right angles to a fixed direction in space (see Fig. 13–1); and finally, the
magnitude of the force is proportional to the component of the velocity at right angles to this unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector  , which specifies both the unique direction in space and the constant of proportionality with the velocity, and to write the magnetic force as  .
The total electromagnetic force on a charge can, then, be written as

This is called the Lorentz force.

Fig. 13–1. The velocity-dependent component of the force on a moving charge
is at right angles to  and to the direction of . It is also proportional to the
component of  at right angles to , that is, to .

The magnetic force is easily demonstrated by bringing a bar magnet close to a cathode-ray tube. The deflection of the electron beam shows that the presence of the
magnet results in forces on the electrons transverse to their direction of motion, as we described in Chapter 12 of Vol. I.

The unit of magnetic field   is evidently one newton second per coulomb-meter. The same unit is also one volt second per meter . It is also called one weber per square
meter.

13–2 Electric current; the conservation of charge

We consider first how we can understand the magnetic forces on wires carrying electric currents. In order to do this, we define what is meant by the current density.
Electric currents are electrons or other charges in motion with a net drift or flow. We can represent the charge flow by a vector which gives the amount of charge passing per
unit area and per unit time through a surface element at right angles to the flow (just as we did for the case of heat flow). We call this the current density and represent it by
the vector  . It is directed along the motion of the charges. If we take a small area   at a given place in the material, the amount of charge flowing across that area in a unit
time is

where   is the unit vector normal to  .

Fig. 13–2. If a charge distribution of density  moves with the velocity , the
charge per unit time through  is .

The current density is related to the average flow velocity of the charges. Suppose that we have a distribution of charges whose average motion is a drift with the
velocity  . As this distribution passes over a surface element  , the charge   passing through the surface element in a time   is equal to the charge contained in a
parallelepiped whose base is   and whose height is  , as shown in Fig. 13–2. The volume of the parallelepiped is the projection of   at right angles to  times  ,
which when multiplied by the charge density   will give  . Thus

The charge per unit time is then  , from which we get

If the charge distribution consists of individual charges, say electrons, each with the charge   and moving with the mean velocity  , then the current density is

where   is the number of charges per unit volume.

Fig. 13–3. The current  through the surface  is .

The total charge passing per unit time through any surface   is called the electric current, . It is equal to the integral of the normal component of the flow through all of
the elements of the surface:

(see Fig. 13–3).

Fig. 13–4. The integral of  over a closed surface is negative the rate of
change of the total charge  inside.

The current   out of a closed surface   represents the rate at which charge leaves the volume   enclosed by  . One of the basic laws of physics is that electric charge is
indestructible; it is never lost or created. Electric charges can move from place to place but never appear from nowhere. We say that charge is conserved. If there is a net
current out of a closed surface, the amount of charge inside must decrease by the corresponding amount (Fig. 13–4). We can, therefore, write the law of the conservation of
charge as

The charge inside can be written as a volume integral of the charge density:

If we apply (13.6) to a small volume  , we know that the left-hand integral is  . The charge inside is  , so the conservation of charge can also be written as

(Gauss’ mathematics once again!).

13–3 The magnetic force on a current

Fig. 13–5. The magnetic force on a current-carrying wire is the sum of the
forces on the individual moving charges.

Now we are ready to find the force on a current-carrying wire in a magnetic field. The current consists of charged particles moving with the velocity   along the wire.
Each charge feels a transverse force

(Fig. 13–5a). If there are   such charges per unit volume, the number in a small volume   of the wire is  . The total magnetic force   on the volume   is the sum
of the forces on the individual charges, that is,

But  is just , so

(Fig. 13–5b). The force per unit volume is  .

If the current is uniform across a wire whose cross-sectional area is  , we may take as the volume element a cylinder with the base area   and the length  . Then

Now we can call   the vector current   in the wire. (Its magnitude is the electric current in the wire, and its direction is along the wire.) Then

The force per unit length on a wire is  .

This equation gives the important result that the magnetic force on a wire, due to the movement of charges in it, depends only on the total current, and not on the
amount of charge carried by each particle—or even its sign! The magnetic force on a wire near a magnet is easily shown by observing its deflection when a current is turned
on, as was described in Chapter 1 (see Fig. 1–6).

13–4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field, produced, say, by a magnet. From the principle that action equals reaction we might
expect that there should be a force on the source of the magnetic field, i.e., on the magnet, when there is a current through the wire.1 There are indeed such forces, as is seen
by the deflection of a compass needle near a current-carrying wire. Now we know that magnets feel forces from other magnets, so that means that when there is a current in a
wire, the wire itself generates a magnetic field. Moving charges, then, produce a magnetic field. We would like now to try to discover the laws that determine how such
magnetic fields are created. The question is: Given a current, what magnetic field does it make? The answer to this question was determined experimentally by three critical
experiments and a brilliant theoretical argument given by Ampère. We will pass over this interesting historical development and simply say that a large number of
experiments have demonstrated the validity of Maxwell’s equations. We take them as our starting point. If we drop the terms involving time derivatives in these equations we
get the equations of magnetostatics:

and

These equations are valid only if all electric charge densities are constant and all currents are steady, so that the electric and magnetic fields are not changing with time—all
of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a thing as a static magnetic situation, because there must be currents in order to get a magnetic
field at all—and currents can come only from moving charges. “Magnetostatics” is, therefore, an approximation. It refers to a special kind of dynamic situation with large
numbers of charges in motion, which we can approximate by a steady flow of charge. Only then can we speak of a current density   which does not change with time. The
subject should more accurately be called the study of steady currents. Assuming that all fields are steady, we drop all terms in  and   from the complete Maxwell
equations, Eqs. (2.41), and obtain the two equations (13.12) and (13.13) above. Also notice that since the divergence of the curl of any vector is necessarily zero, Eq. (13.13)
requires that  . This is true, by Eq. (13.8), only if   is zero. But that must be so if   is not changing with time, so our assumptions are consistent.

The requirement that   means that we may only have charges which flow in paths that close back on themselves. They may, for instance, flow in wires that form
complete loops—called circuits. The circuits may, of course, contain generators or batteries that keep the charges flowing. But they may not include condensers which are
charging or discharging. (We will, of course, extend the theory later to include dynamic fields, but we want first to take the simpler case of steady currents.)

Now let us look at Eqs. (13.12) and  (13.13) to see what they mean. The first one says that the divergence of   is zero. Comparing it to the analogous equation in
electrostatics, which says that  , we can conclude that there is no magnetic analog of an electric charge. There are no magnetic charges from which lines of 
can emerge. If we think in terms of “lines” of the vector field  , they can never start and they never stop. Then where do they come from? Magnetic fields “appear” in the
presence of currents; they have a curl proportional to the current density. Wherever there are currents, there are lines of magnetic field making loops around the currents.
Since lines of   do not begin or end, they will often close back on themselves, making closed loops. But there can also be complicated situations in which the lines are not
simple closed loops. But whatever they do, they never diverge from points. No magnetic charges have ever been discovered, so  . This much is true not only for
magnetostatics, it is always true—even for dynamic fields.

Fig. 13–6. The line integral of the tangential component of  is equal to the
surface integral of the normal component of .

The connection between the  field and currents is contained in Eq. (13.13). Here we have a new kind of situation which is quite different from electrostatics, where we
had  . That equation meant that the line integral of   around any closed path is zero:

We got that result from Stokes’ theorem, which says that the integral around any closed path of any vector field is equal to the surface integral of the normal component of
the curl of the vector (taken over any surface which has the closed loop as its periphery). Applying the same theorem to the magnetic field vector and using the symbols
shown in Fig. 13–6, we get

Taking the curl of   from Eq. (13.13), we have

The integral over  , according to (13.5), is the total current   through the surface  . Since for steady currents the current through   is independent of the shape of  , so long
as it is bounded by the curve  , one usually speaks of “the current through the loop  .” We have, then, a general law: the circulation of   around any closed curve is equal to
the current   through the loop, divided by  :

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’ law played in electrostatics. Ampère’s law alone does not determine   from currents; we
must, in general, also use  . But, as we will see in the next section, it can be used to find the field in special circumstances which have certain simple symmetries.

13–5 The magnetic field of a straight wire and of a solenoid; atomic currents

Fig. 13–7. The magnetic field outside of a long wire carrying the current .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical cross section?
We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed circles. If we make this
assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same magnitude at all points on a circle concentric
with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of   times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form. Remembering that   is
at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation like (13.17) is used
to define the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple demonstration of the
forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should then be pushed either toward or away
from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a tight spiral,
as shown by the cross sections in Fig. 13–8. Such a coil is called a solenoid. We observe experimentally that when a solenoid is very long compared with its diameter, the field
outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the size of the field inside.

Fig. 13–8. The magnetic field of a long solenoid.

Since the field stays inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use Ampère’s law
with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at right angles to the field, and
returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be   times the total current through  , which is 
if there are   turns of the solenoid in the length  . We have

Or, letting   be the number of turns per unit length of the solenoid (that is, ), we get

What happens to the lines of   when they get to the end of the solenoid? Presumably, they spread out in some way and return to enter the solenoid at the other end, as
sketched in Fig. 13–9. Such a field is just what is observed outside of a bar magnet. But what is a magnet anyway? Our equations say that   comes from the presence of
currents. Yet we know that ordinary bars of iron (no batteries or generators) also produce magnetic fields. You might expect that there should be some other terms on the
right-hand side of (13.12) or (13.13) to represent “the density of magnetic iron” or some such quantity. But there is no such term. Our theory says that the magnetic effects of
iron come from some internal currents which are already taken care of by the  term.

Fig. 13–9. The magnetic field outside of a solenoid.

Matter is very complex when looked at from a fundamental point of view—as we saw when we tried to understand dielectrics. In order not to interrupt our present
discussion, we will wait until later to deal in detail with the interior mechanisms of magnetic materials like iron: You will have to accept, for the moment, that all magnetism
is produced from currents, and that in a permanent magnet there are permanent internal currents. In the case of iron, these currents come from electrons spinning around
their own axes. Every electron has such a spin, which corresponds to a tiny circulating current. Of course, one electron doesn’t produce much magnetic field, but in an
ordinary piece of matter there are billions and billions of electrons. Normally these spin and point every which way, so that there is no net effect. The miracle is that in a very
few substances, like iron, a large fraction of the electrons spin with their axes in the same direction—for iron, two electrons of each atom take part in this cooperative motion.
In a bar magnet there are large numbers of electrons all spinning in the same direction and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that a uniformly polarized dielectric is equivalent to a distribution of charges on its surface.) It is,
therefore, no accident that a bar magnet is equivalent to a solenoid.

13–6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its velocity, you may have wondered: “What velocity? With respect to which reference frame?” It
is, in fact, clear from the definition of   given at the beginning of this chapter that what this vector is will depend on what we choose as a reference frame for our
specification of the velocity of charges. But we have said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism and electricity are not independent things—that they should always be taken together as one
complete electromagnetic field. Although in the static case Maxwell’s equations separate into two distinct pairs, one pair for electricity and one pair for magnetism, with no
apparent connection between the two fields, nevertheless, in nature itself there is a very intimate relationship between them that arises from the principle of relativity.
Historically, the principle of relativity was discovered after Maxwell’s equations. It was, in fact, the study of electricity and magnetism which led ultimately to Einstein’s
discovery of his principle of relativity. But let’s see what our knowledge of relativity would tell us about magnetic forces if we assume that the relativity principle is applicable
—as it is—to electromagnetism.

Suppose we think about what happens when a negative charge moves with velocity   parallel to a current-carrying wire, as in Fig. 13–10. We will try to understand what
goes on in two reference frames: one fixed with respect to the wire, as in part (a) of the figure, and one fixed with respect to the particle, as in part (b). We will call the first
frame   and the second  .

Fig. 13–10. The interaction of a current-carrying wire and a particle with the
charge  as seen in two frames. In frame  (part a), the wire is at rest; in frame 
(part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it curve in toward
the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is? Would we see different things
happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to the wire. We must try to understand why that
would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the negative
electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the material. We let the charge
density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be equal to the negative of  , since we are
considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed toward the
wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of the particle
is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  . The positive
charges moving with the wire will make some magnetic field   at the particle. But the particle is now at rest, so there is no magnetic force on it! If there is any force on the
particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if it appears charged—it must be that a
neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the same; but
we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge densities depend on the volume occupied by
charges, the densities will change, too.

Before we can decide about the charge densities in  , we must know what happens to the electric charge of a bunch of electrons when the charges are moving. We know
that the apparent mass of a particle changes by  . Does its charge do something similar? No! Charges are always the same, moving or not. Otherwise we would
not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than the protons,
the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle carrying it, in the heated
block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have seen earlier, a very small fractional change in
the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed, the net
charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence of charge on speed
would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a single particle is independent of its
state of motion.

So the charge   on a particle is an invariant scalar quantity, independent of the frame of reference. That means that in any frame the charge density of a distribution of
electrons is just proportional to the number of electrons per unit volume. We need only worry about the fact that the volume can change because of the relativistic
contraction of distances.

We now apply these ideas to our moving wire. If we take a length   of the wire, in which there is a charge density   of stationary charges, it will contain the total
charge  . If the same charges are observed in a different frame to be moving with velocity  , they will all be found in a piece of the material with the shorter
length

but with the same area   (since dimensions transverse to the motion are unchanged). See Fig. 13–11.

Fig. 13–11. If a distribution of charged particles at rest has the charge
density , the same charges will have the density  when
seen from a frame with the relative velocity .

If we call   the density of charges in the frame in which they are moving, the total charge   will be  . This must also be equal to  , because charge is the same
in any system, so that   or, from (13.22),

The charge density of a moving distribution of charges varies in the same way as the relativistic mass of a particle.

We now use this general result for the positive charge density   of our wire. These charges are at rest in frame  . In  , however, where the wire moves with the
speed  , the positive charge density becomes

The negative charges are at rest in  . So they have their “rest density”   in this frame. In Eq. (13.23) , because they have the density   when the wire is at
rest, i.e., in frame  , where the speed of the negative charges is  . For the conduction electrons, we then have that

or

Now we can see why there are electric fields in  —because in this frame the wire has the net charge density   given by

Using (13.24) and (13.26), we have

Since the stationary wire is neutral, , and we have

Our moving wire is positively charged and will produce an electric field   at the external stationary particle. We have already solved the electrostatic problem of a uniformly
charged cylinder. The electric field at the distance   from the axis of the cylinder is

The force on the negatively charged particle is toward the wire. We have, at least, a force in the same direction from the two points of view; the electric force in   has the
same direction as the magnetic force in  .

The magnitude of the force in   is

Comparing this result for   with our result for   in Eq. (13.21), we see that the magnitudes of the forces are almost identical from the two points of view. In fact,

so for the small velocities we have been considering, the two forces are equal. We can say that for low velocities, at least, we understand that magnetism and electricity are
just “two ways of looking at the same thing.”

But things are even better than that. If we take into account the fact that forces also transform when we go from one system to the other, we find that the two ways of
looking at what happens do indeed give the same physical result for any velocity.

One way of seeing this is to ask a question like: What transverse momentum will the particle have after the force has acted for a little while? We know from Chapter 16 of
Vol. I that the transverse momentum of a particle should be the same in both the  - and -frames. Calling the transverse coordinate  , we want to compare  and  .
Using the relativistically correct equation of motion, , we expect that after the time   our particle will have a transverse momentum   in the -system given
by

In the -system, the transverse momentum will be

We must, of course, compare  and   for corresponding time intervals  and  . We have seen in Chapter 15 of Vol. I that the time intervals referred to a moving
particle appear to be longer than those in the rest system of the particle. Since our particle is initially at rest in  , we expect, for small  , that

and everything comes out O.K. From (13.31) and (13.32),

which is just   if we combine (13.30) and (13.33).

We have found that we get the same physical result whether we analyze the motion of a particle moving along a wire in a coordinate system at rest with respect to the
wire, or in a system at rest with respect to the particle. In the first instance, the force was purely “magnetic,” in the second, it was purely “electric.” The two points of view are
illustrated in Fig. 13–12 (although there is still a magnetic field   in the second frame, it produces no forces on the stationary particle).

Fig. 13–12. In frame  the charge density is zero and the current density is .
There is only a magnetic field. In , there is a charge density  and a different
current density . The magnetic field  is different and there is an electric
field .

If we had chosen still another coordinate system, we would have found a different mixture of  and   fields. Electric and magnetic forces are part of one physical
phenomenon—the electromagnetic interactions of particles. The separation of this interaction into electric and magnetic parts depends very much on the reference frame
chosen for the description. But a complete electromagnetic description is invariant; electricity and magnetism taken together are consistent with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change our frame of reference, we must be careful about how we look at the fields  and  . For
instance, if we think of “lines” of  or  , we must not attach too much reality to them. The lines may disappear if we try to observe them from a different coordinate system.
For example, in system   there are electric field lines, which we do not find “moving past us with velocity   in system  .” In system   there are no electric field lines at all!
Therefore it makes no sense to say something like: When I move a magnet, it takes its field with it, so the lines of   are also moved. There is no way to make sense, in
general, out of the idea of “the speed of a moving field line.” The fields are our way of describing what goes on at a point in space. In particular,  and   tell us about the
forces that will act on a moving particle. The question “What is the force on a charge from a moving magnetic field?” doesn’t mean anything precise. The force is given by the
values of  and   at the charge, and the formula (13.1) is not to be altered if the source of  or   is moving (it is the values of  and   that will be altered by the motion).
Our mathematical description deals only with the fields as a function of ,  , , and   with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling through space,” as, for instance, a light wave. But that is like speaking of a wave travelling
on a string. We don’t then mean that some part of the string is moving in the direction of the wave, we mean that the displacement of the string appears first at one place and
later at another. Similarly, in an electromagnetic wave, the wave travels; but the magnitude of the fields change. So in the future when we—or someone else—speaks of a
“moving” field, you should think of it as just a handy, short way of describing a changing field in some circumstances.

13–7 The transformation of currents and charges

You may have worried about the simplification we made above when we took the same velocity   for the particle and for the conduction electrons in the wire. We could
go back and carry through the analysis again for two different velocities, but it is easier to simply notice that charge and current density are the components of a four-vector
(see Chapter 17, Vol. I).

We have seen that if   is the density of the charges in their rest frame, then in a frame in which they have the velocity  , the density is

In that frame their current density is

Now we know that the energy   and momentum   of a particle moving with velocity   are given by

where   is its rest mass. We also know that  and   form a relativistic four-vector. Since  and   depend on the velocity 
exactly as do  and  , we can conclude that  and   are also the components of a relativistic four-vector. This property is the key to a general analysis of the field of a wire
moving with any velocity, which we would need if we want to do the problem again with the velocity   of the particle different from the velocity of the conduction electrons.

If we wish to transform  and   to a coordinate system moving with a velocity   in the -direction, we know that they transform just like  and  , so that we have
(see Chapter 15, Vol. I)
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Magnetostatics

Review: Chapter 15, Vol. I, The Special Theory of Relativity

13–1 The magnetic field

The force on an electric charge depends not only on where it is, but also on how fast it is moving. Every point in space is characterized by two vector quantities which
determine the force on any charge. First, there is the electric force, which gives a force component independent of the motion of the charge. We describe it by the electric
field, . Second, there is an additional force component, called the magnetic force, which depends on the velocity of the charge. This magnetic force has a strange directional
character: At any particular point in space, both the direction of the force and its magnitude depend on the direction of motion of the particle: at every instant the force is
always at right angles to the velocity vector; also, at any particular point, the force is always at right angles to a fixed direction in space (see Fig. 13–1); and finally, the
magnitude of the force is proportional to the component of the velocity at right angles to this unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector  , which specifies both the unique direction in space and the constant of proportionality with the velocity, and to write the magnetic force as  .
The total electromagnetic force on a charge can, then, be written as

This is called the Lorentz force.

Fig. 13–1. The velocity-dependent component of the force on a moving charge
is at right angles to  and to the direction of . It is also proportional to the
component of  at right angles to , that is, to .

The magnetic force is easily demonstrated by bringing a bar magnet close to a cathode-ray tube. The deflection of the electron beam shows that the presence of the
magnet results in forces on the electrons transverse to their direction of motion, as we described in Chapter 12 of Vol. I.

The unit of magnetic field   is evidently one newton second per coulomb-meter. The same unit is also one volt second per meter . It is also called one weber per square
meter.

13–2 Electric current; the conservation of charge

We consider first how we can understand the magnetic forces on wires carrying electric currents. In order to do this, we define what is meant by the current density.
Electric currents are electrons or other charges in motion with a net drift or flow. We can represent the charge flow by a vector which gives the amount of charge passing per
unit area and per unit time through a surface element at right angles to the flow (just as we did for the case of heat flow). We call this the current density and represent it by
the vector  . It is directed along the motion of the charges. If we take a small area   at a given place in the material, the amount of charge flowing across that area in a unit
time is

where   is the unit vector normal to  .

Fig. 13–2. If a charge distribution of density  moves with the velocity , the
charge per unit time through  is .

The current density is related to the average flow velocity of the charges. Suppose that we have a distribution of charges whose average motion is a drift with the
velocity  . As this distribution passes over a surface element  , the charge   passing through the surface element in a time   is equal to the charge contained in a
parallelepiped whose base is   and whose height is  , as shown in Fig. 13–2. The volume of the parallelepiped is the projection of   at right angles to  times  ,
which when multiplied by the charge density   will give  . Thus

The charge per unit time is then  , from which we get

If the charge distribution consists of individual charges, say electrons, each with the charge   and moving with the mean velocity  , then the current density is

where   is the number of charges per unit volume.

Fig. 13–3. The current  through the surface  is .

The total charge passing per unit time through any surface   is called the electric current, . It is equal to the integral of the normal component of the flow through all of
the elements of the surface:

(see Fig. 13–3).

Fig. 13–4. The integral of  over a closed surface is negative the rate of
change of the total charge  inside.

The current   out of a closed surface   represents the rate at which charge leaves the volume   enclosed by  . One of the basic laws of physics is that electric charge is
indestructible; it is never lost or created. Electric charges can move from place to place but never appear from nowhere. We say that charge is conserved. If there is a net
current out of a closed surface, the amount of charge inside must decrease by the corresponding amount (Fig. 13–4). We can, therefore, write the law of the conservation of
charge as

The charge inside can be written as a volume integral of the charge density:

If we apply (13.6) to a small volume  , we know that the left-hand integral is  . The charge inside is  , so the conservation of charge can also be written as

(Gauss’ mathematics once again!).

13–3 The magnetic force on a current

Fig. 13–5. The magnetic force on a current-carrying wire is the sum of the
forces on the individual moving charges.

Now we are ready to find the force on a current-carrying wire in a magnetic field. The current consists of charged particles moving with the velocity   along the wire.
Each charge feels a transverse force

(Fig. 13–5a). If there are   such charges per unit volume, the number in a small volume   of the wire is  . The total magnetic force   on the volume   is the sum
of the forces on the individual charges, that is,

But  is just , so

(Fig. 13–5b). The force per unit volume is  .

If the current is uniform across a wire whose cross-sectional area is  , we may take as the volume element a cylinder with the base area   and the length  . Then

Now we can call   the vector current   in the wire. (Its magnitude is the electric current in the wire, and its direction is along the wire.) Then

The force per unit length on a wire is  .

This equation gives the important result that the magnetic force on a wire, due to the movement of charges in it, depends only on the total current, and not on the
amount of charge carried by each particle—or even its sign! The magnetic force on a wire near a magnet is easily shown by observing its deflection when a current is turned
on, as was described in Chapter 1 (see Fig. 1–6).

13–4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field, produced, say, by a magnet. From the principle that action equals reaction we might
expect that there should be a force on the source of the magnetic field, i.e., on the magnet, when there is a current through the wire.1 There are indeed such forces, as is seen
by the deflection of a compass needle near a current-carrying wire. Now we know that magnets feel forces from other magnets, so that means that when there is a current in a
wire, the wire itself generates a magnetic field. Moving charges, then, produce a magnetic field. We would like now to try to discover the laws that determine how such
magnetic fields are created. The question is: Given a current, what magnetic field does it make? The answer to this question was determined experimentally by three critical
experiments and a brilliant theoretical argument given by Ampère. We will pass over this interesting historical development and simply say that a large number of
experiments have demonstrated the validity of Maxwell’s equations. We take them as our starting point. If we drop the terms involving time derivatives in these equations we
get the equations of magnetostatics:

and

These equations are valid only if all electric charge densities are constant and all currents are steady, so that the electric and magnetic fields are not changing with time—all
of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a thing as a static magnetic situation, because there must be currents in order to get a magnetic
field at all—and currents can come only from moving charges. “Magnetostatics” is, therefore, an approximation. It refers to a special kind of dynamic situation with large
numbers of charges in motion, which we can approximate by a steady flow of charge. Only then can we speak of a current density   which does not change with time. The
subject should more accurately be called the study of steady currents. Assuming that all fields are steady, we drop all terms in  and   from the complete Maxwell
equations, Eqs. (2.41), and obtain the two equations (13.12) and (13.13) above. Also notice that since the divergence of the curl of any vector is necessarily zero, Eq. (13.13)
requires that  . This is true, by Eq. (13.8), only if   is zero. But that must be so if   is not changing with time, so our assumptions are consistent.

The requirement that   means that we may only have charges which flow in paths that close back on themselves. They may, for instance, flow in wires that form
complete loops—called circuits. The circuits may, of course, contain generators or batteries that keep the charges flowing. But they may not include condensers which are
charging or discharging. (We will, of course, extend the theory later to include dynamic fields, but we want first to take the simpler case of steady currents.)

Now let us look at Eqs. (13.12) and  (13.13) to see what they mean. The first one says that the divergence of   is zero. Comparing it to the analogous equation in
electrostatics, which says that  , we can conclude that there is no magnetic analog of an electric charge. There are no magnetic charges from which lines of 
can emerge. If we think in terms of “lines” of the vector field  , they can never start and they never stop. Then where do they come from? Magnetic fields “appear” in the
presence of currents; they have a curl proportional to the current density. Wherever there are currents, there are lines of magnetic field making loops around the currents.
Since lines of   do not begin or end, they will often close back on themselves, making closed loops. But there can also be complicated situations in which the lines are not
simple closed loops. But whatever they do, they never diverge from points. No magnetic charges have ever been discovered, so  . This much is true not only for
magnetostatics, it is always true—even for dynamic fields.

Fig. 13–6. The line integral of the tangential component of  is equal to the
surface integral of the normal component of .

The connection between the  field and currents is contained in Eq. (13.13). Here we have a new kind of situation which is quite different from electrostatics, where we
had  . That equation meant that the line integral of   around any closed path is zero:

We got that result from Stokes’ theorem, which says that the integral around any closed path of any vector field is equal to the surface integral of the normal component of
the curl of the vector (taken over any surface which has the closed loop as its periphery). Applying the same theorem to the magnetic field vector and using the symbols
shown in Fig. 13–6, we get

Taking the curl of   from Eq. (13.13), we have

The integral over  , according to (13.5), is the total current   through the surface  . Since for steady currents the current through   is independent of the shape of  , so long
as it is bounded by the curve  , one usually speaks of “the current through the loop  .” We have, then, a general law: the circulation of   around any closed curve is equal to
the current   through the loop, divided by  :

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’ law played in electrostatics. Ampère’s law alone does not determine   from currents; we
must, in general, also use  . But, as we will see in the next section, it can be used to find the field in special circumstances which have certain simple symmetries.

13–5 The magnetic field of a straight wire and of a solenoid; atomic currents

Fig. 13–7. The magnetic field outside of a long wire carrying the current .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical cross section?
We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed circles. If we make this
assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same magnitude at all points on a circle concentric
with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of   times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form. Remembering that   is
at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation like (13.17) is used
to define the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple demonstration of the
forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should then be pushed either toward or away
from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a tight spiral,
as shown by the cross sections in Fig. 13–8. Such a coil is called a solenoid. We observe experimentally that when a solenoid is very long compared with its diameter, the field
outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the size of the field inside.

Fig. 13–8. The magnetic field of a long solenoid.

Since the field stays inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use Ampère’s law
with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at right angles to the field, and
returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be   times the total current through  , which is 
if there are   turns of the solenoid in the length  . We have

Or, letting   be the number of turns per unit length of the solenoid (that is, ), we get

What happens to the lines of   when they get to the end of the solenoid? Presumably, they spread out in some way and return to enter the solenoid at the other end, as
sketched in Fig. 13–9. Such a field is just what is observed outside of a bar magnet. But what is a magnet anyway? Our equations say that   comes from the presence of
currents. Yet we know that ordinary bars of iron (no batteries or generators) also produce magnetic fields. You might expect that there should be some other terms on the
right-hand side of (13.12) or (13.13) to represent “the density of magnetic iron” or some such quantity. But there is no such term. Our theory says that the magnetic effects of
iron come from some internal currents which are already taken care of by the  term.

Fig. 13–9. The magnetic field outside of a solenoid.

Matter is very complex when looked at from a fundamental point of view—as we saw when we tried to understand dielectrics. In order not to interrupt our present
discussion, we will wait until later to deal in detail with the interior mechanisms of magnetic materials like iron: You will have to accept, for the moment, that all magnetism
is produced from currents, and that in a permanent magnet there are permanent internal currents. In the case of iron, these currents come from electrons spinning around
their own axes. Every electron has such a spin, which corresponds to a tiny circulating current. Of course, one electron doesn’t produce much magnetic field, but in an
ordinary piece of matter there are billions and billions of electrons. Normally these spin and point every which way, so that there is no net effect. The miracle is that in a very
few substances, like iron, a large fraction of the electrons spin with their axes in the same direction—for iron, two electrons of each atom take part in this cooperative motion.
In a bar magnet there are large numbers of electrons all spinning in the same direction and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that a uniformly polarized dielectric is equivalent to a distribution of charges on its surface.) It is,
therefore, no accident that a bar magnet is equivalent to a solenoid.

13–6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its velocity, you may have wondered: “What velocity? With respect to which reference frame?” It
is, in fact, clear from the definition of   given at the beginning of this chapter that what this vector is will depend on what we choose as a reference frame for our
specification of the velocity of charges. But we have said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism and electricity are not independent things—that they should always be taken together as one
complete electromagnetic field. Although in the static case Maxwell’s equations separate into two distinct pairs, one pair for electricity and one pair for magnetism, with no
apparent connection between the two fields, nevertheless, in nature itself there is a very intimate relationship between them that arises from the principle of relativity.
Historically, the principle of relativity was discovered after Maxwell’s equations. It was, in fact, the study of electricity and magnetism which led ultimately to Einstein’s
discovery of his principle of relativity. But let’s see what our knowledge of relativity would tell us about magnetic forces if we assume that the relativity principle is applicable
—as it is—to electromagnetism.

Suppose we think about what happens when a negative charge moves with velocity   parallel to a current-carrying wire, as in Fig. 13–10. We will try to understand what
goes on in two reference frames: one fixed with respect to the wire, as in part (a) of the figure, and one fixed with respect to the particle, as in part (b). We will call the first
frame   and the second  .

Fig. 13–10. The interaction of a current-carrying wire and a particle with the
charge  as seen in two frames. In frame  (part a), the wire is at rest; in frame 
(part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it curve in toward
the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is? Would we see different things
happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to the wire. We must try to understand why that
would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the negative
electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the material. We let the charge
density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be equal to the negative of  , since we are
considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed toward the
wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of the particle
is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  . The positive
charges moving with the wire will make some magnetic field   at the particle. But the particle is now at rest, so there is no magnetic force on it! If there is any force on the
particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if it appears charged—it must be that a
neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the same; but
we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge densities depend on the volume occupied by
charges, the densities will change, too.

Before we can decide about the charge densities in  , we must know what happens to the electric charge of a bunch of electrons when the charges are moving. We know
that the apparent mass of a particle changes by  . Does its charge do something similar? No! Charges are always the same, moving or not. Otherwise we would
not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than the protons,
the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle carrying it, in the heated
block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have seen earlier, a very small fractional change in
the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed, the net
charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence of charge on speed
would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a single particle is independent of its
state of motion.

So the charge   on a particle is an invariant scalar quantity, independent of the frame of reference. That means that in any frame the charge density of a distribution of
electrons is just proportional to the number of electrons per unit volume. We need only worry about the fact that the volume can change because of the relativistic
contraction of distances.

We now apply these ideas to our moving wire. If we take a length   of the wire, in which there is a charge density   of stationary charges, it will contain the total
charge  . If the same charges are observed in a different frame to be moving with velocity  , they will all be found in a piece of the material with the shorter
length

but with the same area   (since dimensions transverse to the motion are unchanged). See Fig. 13–11.

Fig. 13–11. If a distribution of charged particles at rest has the charge
density , the same charges will have the density  when
seen from a frame with the relative velocity .

If we call   the density of charges in the frame in which they are moving, the total charge   will be  . This must also be equal to  , because charge is the same
in any system, so that   or, from (13.22),

The charge density of a moving distribution of charges varies in the same way as the relativistic mass of a particle.

We now use this general result for the positive charge density   of our wire. These charges are at rest in frame  . In  , however, where the wire moves with the
speed  , the positive charge density becomes

The negative charges are at rest in  . So they have their “rest density”   in this frame. In Eq. (13.23) , because they have the density   when the wire is at
rest, i.e., in frame  , where the speed of the negative charges is  . For the conduction electrons, we then have that

or

Now we can see why there are electric fields in  —because in this frame the wire has the net charge density   given by

Using (13.24) and (13.26), we have

Since the stationary wire is neutral, , and we have

Our moving wire is positively charged and will produce an electric field   at the external stationary particle. We have already solved the electrostatic problem of a uniformly
charged cylinder. The electric field at the distance   from the axis of the cylinder is

The force on the negatively charged particle is toward the wire. We have, at least, a force in the same direction from the two points of view; the electric force in   has the
same direction as the magnetic force in  .

The magnitude of the force in   is

Comparing this result for   with our result for   in Eq. (13.21), we see that the magnitudes of the forces are almost identical from the two points of view. In fact,

so for the small velocities we have been considering, the two forces are equal. We can say that for low velocities, at least, we understand that magnetism and electricity are
just “two ways of looking at the same thing.”

But things are even better than that. If we take into account the fact that forces also transform when we go from one system to the other, we find that the two ways of
looking at what happens do indeed give the same physical result for any velocity.

One way of seeing this is to ask a question like: What transverse momentum will the particle have after the force has acted for a little while? We know from Chapter 16 of
Vol. I that the transverse momentum of a particle should be the same in both the  - and -frames. Calling the transverse coordinate  , we want to compare  and  .
Using the relativistically correct equation of motion, , we expect that after the time   our particle will have a transverse momentum   in the -system given
by

In the -system, the transverse momentum will be

We must, of course, compare  and   for corresponding time intervals  and  . We have seen in Chapter 15 of Vol. I that the time intervals referred to a moving
particle appear to be longer than those in the rest system of the particle. Since our particle is initially at rest in  , we expect, for small  , that

and everything comes out O.K. From (13.31) and (13.32),

which is just   if we combine (13.30) and (13.33).

We have found that we get the same physical result whether we analyze the motion of a particle moving along a wire in a coordinate system at rest with respect to the
wire, or in a system at rest with respect to the particle. In the first instance, the force was purely “magnetic,” in the second, it was purely “electric.” The two points of view are
illustrated in Fig. 13–12 (although there is still a magnetic field   in the second frame, it produces no forces on the stationary particle).

Fig. 13–12. In frame  the charge density is zero and the current density is .
There is only a magnetic field. In , there is a charge density  and a different
current density . The magnetic field  is different and there is an electric
field .

If we had chosen still another coordinate system, we would have found a different mixture of  and   fields. Electric and magnetic forces are part of one physical
phenomenon—the electromagnetic interactions of particles. The separation of this interaction into electric and magnetic parts depends very much on the reference frame
chosen for the description. But a complete electromagnetic description is invariant; electricity and magnetism taken together are consistent with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change our frame of reference, we must be careful about how we look at the fields  and  . For
instance, if we think of “lines” of  or  , we must not attach too much reality to them. The lines may disappear if we try to observe them from a different coordinate system.
For example, in system   there are electric field lines, which we do not find “moving past us with velocity   in system  .” In system   there are no electric field lines at all!
Therefore it makes no sense to say something like: When I move a magnet, it takes its field with it, so the lines of   are also moved. There is no way to make sense, in
general, out of the idea of “the speed of a moving field line.” The fields are our way of describing what goes on at a point in space. In particular,  and   tell us about the
forces that will act on a moving particle. The question “What is the force on a charge from a moving magnetic field?” doesn’t mean anything precise. The force is given by the
values of  and   at the charge, and the formula (13.1) is not to be altered if the source of  or   is moving (it is the values of  and   that will be altered by the motion).
Our mathematical description deals only with the fields as a function of ,  , , and   with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling through space,” as, for instance, a light wave. But that is like speaking of a wave travelling
on a string. We don’t then mean that some part of the string is moving in the direction of the wave, we mean that the displacement of the string appears first at one place and
later at another. Similarly, in an electromagnetic wave, the wave travels; but the magnitude of the fields change. So in the future when we—or someone else—speaks of a
“moving” field, you should think of it as just a handy, short way of describing a changing field in some circumstances.

13–7 The transformation of currents and charges

You may have worried about the simplification we made above when we took the same velocity   for the particle and for the conduction electrons in the wire. We could
go back and carry through the analysis again for two different velocities, but it is easier to simply notice that charge and current density are the components of a four-vector
(see Chapter 17, Vol. I).

We have seen that if   is the density of the charges in their rest frame, then in a frame in which they have the velocity  , the density is

In that frame their current density is

Now we know that the energy   and momentum   of a particle moving with velocity   are given by

where   is its rest mass. We also know that  and   form a relativistic four-vector. Since  and   depend on the velocity 
exactly as do  and  , we can conclude that  and   are also the components of a relativistic four-vector. This property is the key to a general analysis of the field of a wire
moving with any velocity, which we would need if we want to do the problem again with the velocity   of the particle different from the velocity of the conduction electrons.

If we wish to transform  and   to a coordinate system moving with a velocity   in the -direction, we know that they transform just like  and  , so that we have
(see Chapter 15, Vol. I)
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Current and Charge Distribution within Wire
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Recall Gauss’ law + Âclosed
surface

E? DA = Q/e0

Take Q = rAL and A = 2prL
~E field at distance r from axix of wire + E0 = r0 A

2pe0r = r+ Av2/c2
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Force in S0-frame
Force on negatively charged particle in is also towards wire

Magnitude of force in S0 + F0 = q
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Comparing F with F0 + F0 = Fp
1�v2/c2

For small velocities we’ve been considering + F = F0!

Conclude that + for low velocities electricity and magnetism
are just “two ways of looking at the same stuff”

But wait + things are even better than that!!!
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No Contraction in Orthogonal Directions

What transverse momentum will particle have
after force has acted for little while?

Transverse momentum of particle should be the same
in both S- and S0-frames

Calling transverse coordinate y + Dpy = FDt and Dp0
y = F0Dt0

We must compare Dpy and Dp0
y for time intervals Dt and Dt0

Since particle is initially at rest in S0 + for small time interval
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F Dt
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Relativity of Electric and Magnetic Fields

13

Magnetostatics

Review: Chapter 15, Vol. I, The Special Theory of Relativity

13–1 The magnetic field

The force on an electric charge depends not only on where it is, but also on how fast it is moving. Every point in space is characterized by two vector quantities which
determine the force on any charge. First, there is the electric force, which gives a force component independent of the motion of the charge. We describe it by the electric
field, . Second, there is an additional force component, called the magnetic force, which depends on the velocity of the charge. This magnetic force has a strange directional
character: At any particular point in space, both the direction of the force and its magnitude depend on the direction of motion of the particle: at every instant the force is
always at right angles to the velocity vector; also, at any particular point, the force is always at right angles to a fixed direction in space (see Fig. 13–1); and finally, the
magnitude of the force is proportional to the component of the velocity at right angles to this unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector  , which specifies both the unique direction in space and the constant of proportionality with the velocity, and to write the magnetic force as  .
The total electromagnetic force on a charge can, then, be written as

This is called the Lorentz force.

Fig. 13–1. The velocity-dependent component of the force on a moving charge
is at right angles to  and to the direction of . It is also proportional to the
component of  at right angles to , that is, to .

The magnetic force is easily demonstrated by bringing a bar magnet close to a cathode-ray tube. The deflection of the electron beam shows that the presence of the
magnet results in forces on the electrons transverse to their direction of motion, as we described in Chapter 12 of Vol. I.

The unit of magnetic field   is evidently one newton second per coulomb-meter. The same unit is also one volt second per meter . It is also called one weber per square
meter.

13–2 Electric current; the conservation of charge

We consider first how we can understand the magnetic forces on wires carrying electric currents. In order to do this, we define what is meant by the current density.
Electric currents are electrons or other charges in motion with a net drift or flow. We can represent the charge flow by a vector which gives the amount of charge passing per
unit area and per unit time through a surface element at right angles to the flow (just as we did for the case of heat flow). We call this the current density and represent it by
the vector  . It is directed along the motion of the charges. If we take a small area   at a given place in the material, the amount of charge flowing across that area in a unit
time is

where   is the unit vector normal to  .

Fig. 13–2. If a charge distribution of density  moves with the velocity , the
charge per unit time through  is .

The current density is related to the average flow velocity of the charges. Suppose that we have a distribution of charges whose average motion is a drift with the
velocity  . As this distribution passes over a surface element  , the charge   passing through the surface element in a time   is equal to the charge contained in a
parallelepiped whose base is   and whose height is  , as shown in Fig. 13–2. The volume of the parallelepiped is the projection of   at right angles to  times  ,
which when multiplied by the charge density   will give  . Thus

The charge per unit time is then  , from which we get

If the charge distribution consists of individual charges, say electrons, each with the charge   and moving with the mean velocity  , then the current density is

where   is the number of charges per unit volume.

Fig. 13–3. The current  through the surface  is .

The total charge passing per unit time through any surface   is called the electric current, . It is equal to the integral of the normal component of the flow through all of
the elements of the surface:

(see Fig. 13–3).

Fig. 13–4. The integral of  over a closed surface is negative the rate of
change of the total charge  inside.

The current   out of a closed surface   represents the rate at which charge leaves the volume   enclosed by  . One of the basic laws of physics is that electric charge is
indestructible; it is never lost or created. Electric charges can move from place to place but never appear from nowhere. We say that charge is conserved. If there is a net
current out of a closed surface, the amount of charge inside must decrease by the corresponding amount (Fig. 13–4). We can, therefore, write the law of the conservation of
charge as

The charge inside can be written as a volume integral of the charge density:

If we apply (13.6) to a small volume  , we know that the left-hand integral is  . The charge inside is  , so the conservation of charge can also be written as

(Gauss’ mathematics once again!).

13–3 The magnetic force on a current

Fig. 13–5. The magnetic force on a current-carrying wire is the sum of the
forces on the individual moving charges.

Now we are ready to find the force on a current-carrying wire in a magnetic field. The current consists of charged particles moving with the velocity   along the wire.
Each charge feels a transverse force

(Fig. 13–5a). If there are   such charges per unit volume, the number in a small volume   of the wire is  . The total magnetic force   on the volume   is the sum
of the forces on the individual charges, that is,

But  is just , so

(Fig. 13–5b). The force per unit volume is  .

If the current is uniform across a wire whose cross-sectional area is  , we may take as the volume element a cylinder with the base area   and the length  . Then

Now we can call   the vector current   in the wire. (Its magnitude is the electric current in the wire, and its direction is along the wire.) Then

The force per unit length on a wire is  .

This equation gives the important result that the magnetic force on a wire, due to the movement of charges in it, depends only on the total current, and not on the
amount of charge carried by each particle—or even its sign! The magnetic force on a wire near a magnet is easily shown by observing its deflection when a current is turned
on, as was described in Chapter 1 (see Fig. 1–6).

13–4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field, produced, say, by a magnet. From the principle that action equals reaction we might
expect that there should be a force on the source of the magnetic field, i.e., on the magnet, when there is a current through the wire.1 There are indeed such forces, as is seen
by the deflection of a compass needle near a current-carrying wire. Now we know that magnets feel forces from other magnets, so that means that when there is a current in a
wire, the wire itself generates a magnetic field. Moving charges, then, produce a magnetic field. We would like now to try to discover the laws that determine how such
magnetic fields are created. The question is: Given a current, what magnetic field does it make? The answer to this question was determined experimentally by three critical
experiments and a brilliant theoretical argument given by Ampère. We will pass over this interesting historical development and simply say that a large number of
experiments have demonstrated the validity of Maxwell’s equations. We take them as our starting point. If we drop the terms involving time derivatives in these equations we
get the equations of magnetostatics:

and

These equations are valid only if all electric charge densities are constant and all currents are steady, so that the electric and magnetic fields are not changing with time—all
of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a thing as a static magnetic situation, because there must be currents in order to get a magnetic
field at all—and currents can come only from moving charges. “Magnetostatics” is, therefore, an approximation. It refers to a special kind of dynamic situation with large
numbers of charges in motion, which we can approximate by a steady flow of charge. Only then can we speak of a current density   which does not change with time. The
subject should more accurately be called the study of steady currents. Assuming that all fields are steady, we drop all terms in  and   from the complete Maxwell
equations, Eqs. (2.41), and obtain the two equations (13.12) and (13.13) above. Also notice that since the divergence of the curl of any vector is necessarily zero, Eq. (13.13)
requires that  . This is true, by Eq. (13.8), only if   is zero. But that must be so if   is not changing with time, so our assumptions are consistent.

The requirement that   means that we may only have charges which flow in paths that close back on themselves. They may, for instance, flow in wires that form
complete loops—called circuits. The circuits may, of course, contain generators or batteries that keep the charges flowing. But they may not include condensers which are
charging or discharging. (We will, of course, extend the theory later to include dynamic fields, but we want first to take the simpler case of steady currents.)

Now let us look at Eqs. (13.12) and  (13.13) to see what they mean. The first one says that the divergence of   is zero. Comparing it to the analogous equation in
electrostatics, which says that  , we can conclude that there is no magnetic analog of an electric charge. There are no magnetic charges from which lines of 
can emerge. If we think in terms of “lines” of the vector field  , they can never start and they never stop. Then where do they come from? Magnetic fields “appear” in the
presence of currents; they have a curl proportional to the current density. Wherever there are currents, there are lines of magnetic field making loops around the currents.
Since lines of   do not begin or end, they will often close back on themselves, making closed loops. But there can also be complicated situations in which the lines are not
simple closed loops. But whatever they do, they never diverge from points. No magnetic charges have ever been discovered, so  . This much is true not only for
magnetostatics, it is always true—even for dynamic fields.

Fig. 13–6. The line integral of the tangential component of  is equal to the
surface integral of the normal component of .

The connection between the  field and currents is contained in Eq. (13.13). Here we have a new kind of situation which is quite different from electrostatics, where we
had  . That equation meant that the line integral of   around any closed path is zero:

We got that result from Stokes’ theorem, which says that the integral around any closed path of any vector field is equal to the surface integral of the normal component of
the curl of the vector (taken over any surface which has the closed loop as its periphery). Applying the same theorem to the magnetic field vector and using the symbols
shown in Fig. 13–6, we get

Taking the curl of   from Eq. (13.13), we have

The integral over  , according to (13.5), is the total current   through the surface  . Since for steady currents the current through   is independent of the shape of  , so long
as it is bounded by the curve  , one usually speaks of “the current through the loop  .” We have, then, a general law: the circulation of   around any closed curve is equal to
the current   through the loop, divided by  :

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’ law played in electrostatics. Ampère’s law alone does not determine   from currents; we
must, in general, also use  . But, as we will see in the next section, it can be used to find the field in special circumstances which have certain simple symmetries.

13–5 The magnetic field of a straight wire and of a solenoid; atomic currents

Fig. 13–7. The magnetic field outside of a long wire carrying the current .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical cross section?
We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed circles. If we make this
assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same magnitude at all points on a circle concentric
with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of   times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form. Remembering that   is
at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation like (13.17) is used
to define the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple demonstration of the
forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should then be pushed either toward or away
from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a tight spiral,
as shown by the cross sections in Fig. 13–8. Such a coil is called a solenoid. We observe experimentally that when a solenoid is very long compared with its diameter, the field
outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the size of the field inside.

Fig. 13–8. The magnetic field of a long solenoid.

Since the field stays inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use Ampère’s law
with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at right angles to the field, and
returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be   times the total current through  , which is 
if there are   turns of the solenoid in the length  . We have

Or, letting   be the number of turns per unit length of the solenoid (that is, ), we get

What happens to the lines of   when they get to the end of the solenoid? Presumably, they spread out in some way and return to enter the solenoid at the other end, as
sketched in Fig. 13–9. Such a field is just what is observed outside of a bar magnet. But what is a magnet anyway? Our equations say that   comes from the presence of
currents. Yet we know that ordinary bars of iron (no batteries or generators) also produce magnetic fields. You might expect that there should be some other terms on the
right-hand side of (13.12) or (13.13) to represent “the density of magnetic iron” or some such quantity. But there is no such term. Our theory says that the magnetic effects of
iron come from some internal currents which are already taken care of by the  term.

Fig. 13–9. The magnetic field outside of a solenoid.

Matter is very complex when looked at from a fundamental point of view—as we saw when we tried to understand dielectrics. In order not to interrupt our present
discussion, we will wait until later to deal in detail with the interior mechanisms of magnetic materials like iron: You will have to accept, for the moment, that all magnetism
is produced from currents, and that in a permanent magnet there are permanent internal currents. In the case of iron, these currents come from electrons spinning around
their own axes. Every electron has such a spin, which corresponds to a tiny circulating current. Of course, one electron doesn’t produce much magnetic field, but in an
ordinary piece of matter there are billions and billions of electrons. Normally these spin and point every which way, so that there is no net effect. The miracle is that in a very
few substances, like iron, a large fraction of the electrons spin with their axes in the same direction—for iron, two electrons of each atom take part in this cooperative motion.
In a bar magnet there are large numbers of electrons all spinning in the same direction and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that a uniformly polarized dielectric is equivalent to a distribution of charges on its surface.) It is,
therefore, no accident that a bar magnet is equivalent to a solenoid.

13–6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its velocity, you may have wondered: “What velocity? With respect to which reference frame?” It
is, in fact, clear from the definition of   given at the beginning of this chapter that what this vector is will depend on what we choose as a reference frame for our
specification of the velocity of charges. But we have said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism and electricity are not independent things—that they should always be taken together as one
complete electromagnetic field. Although in the static case Maxwell’s equations separate into two distinct pairs, one pair for electricity and one pair for magnetism, with no
apparent connection between the two fields, nevertheless, in nature itself there is a very intimate relationship between them that arises from the principle of relativity.
Historically, the principle of relativity was discovered after Maxwell’s equations. It was, in fact, the study of electricity and magnetism which led ultimately to Einstein’s
discovery of his principle of relativity. But let’s see what our knowledge of relativity would tell us about magnetic forces if we assume that the relativity principle is applicable
—as it is—to electromagnetism.

Suppose we think about what happens when a negative charge moves with velocity   parallel to a current-carrying wire, as in Fig. 13–10. We will try to understand what
goes on in two reference frames: one fixed with respect to the wire, as in part (a) of the figure, and one fixed with respect to the particle, as in part (b). We will call the first
frame   and the second  .

Fig. 13–10. The interaction of a current-carrying wire and a particle with the
charge  as seen in two frames. In frame  (part a), the wire is at rest; in frame 
(part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it curve in toward
the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is? Would we see different things
happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to the wire. We must try to understand why that
would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the negative
electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the material. We let the charge
density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be equal to the negative of  , since we are
considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed toward the
wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of the particle
is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  . The positive
charges moving with the wire will make some magnetic field   at the particle. But the particle is now at rest, so there is no magnetic force on it! If there is any force on the
particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if it appears charged—it must be that a
neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the same; but
we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge densities depend on the volume occupied by
charges, the densities will change, too.

Before we can decide about the charge densities in  , we must know what happens to the electric charge of a bunch of electrons when the charges are moving. We know
that the apparent mass of a particle changes by  . Does its charge do something similar? No! Charges are always the same, moving or not. Otherwise we would
not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than the protons,
the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle carrying it, in the heated
block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have seen earlier, a very small fractional change in
the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed, the net
charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence of charge on speed
would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a single particle is independent of its
state of motion.

So the charge   on a particle is an invariant scalar quantity, independent of the frame of reference. That means that in any frame the charge density of a distribution of
electrons is just proportional to the number of electrons per unit volume. We need only worry about the fact that the volume can change because of the relativistic
contraction of distances.

We now apply these ideas to our moving wire. If we take a length   of the wire, in which there is a charge density   of stationary charges, it will contain the total
charge  . If the same charges are observed in a different frame to be moving with velocity  , they will all be found in a piece of the material with the shorter
length

but with the same area   (since dimensions transverse to the motion are unchanged). See Fig. 13–11.

Fig. 13–11. If a distribution of charged particles at rest has the charge
density , the same charges will have the density  when
seen from a frame with the relative velocity .

If we call   the density of charges in the frame in which they are moving, the total charge   will be  . This must also be equal to  , because charge is the same
in any system, so that   or, from (13.22),

The charge density of a moving distribution of charges varies in the same way as the relativistic mass of a particle.

We now use this general result for the positive charge density   of our wire. These charges are at rest in frame  . In  , however, where the wire moves with the
speed  , the positive charge density becomes

The negative charges are at rest in  . So they have their “rest density”   in this frame. In Eq. (13.23) , because they have the density   when the wire is at
rest, i.e., in frame  , where the speed of the negative charges is  . For the conduction electrons, we then have that

or

Now we can see why there are electric fields in  —because in this frame the wire has the net charge density   given by

Using (13.24) and (13.26), we have

Since the stationary wire is neutral, , and we have

Our moving wire is positively charged and will produce an electric field   at the external stationary particle. We have already solved the electrostatic problem of a uniformly
charged cylinder. The electric field at the distance   from the axis of the cylinder is

The force on the negatively charged particle is toward the wire. We have, at least, a force in the same direction from the two points of view; the electric force in   has the
same direction as the magnetic force in  .

The magnitude of the force in   is

Comparing this result for   with our result for   in Eq. (13.21), we see that the magnitudes of the forces are almost identical from the two points of view. In fact,

so for the small velocities we have been considering, the two forces are equal. We can say that for low velocities, at least, we understand that magnetism and electricity are
just “two ways of looking at the same thing.”

But things are even better than that. If we take into account the fact that forces also transform when we go from one system to the other, we find that the two ways of
looking at what happens do indeed give the same physical result for any velocity.

One way of seeing this is to ask a question like: What transverse momentum will the particle have after the force has acted for a little while? We know from Chapter 16 of
Vol. I that the transverse momentum of a particle should be the same in both the  - and -frames. Calling the transverse coordinate  , we want to compare  and  .
Using the relativistically correct equation of motion, , we expect that after the time   our particle will have a transverse momentum   in the -system given
by

In the -system, the transverse momentum will be

We must, of course, compare  and   for corresponding time intervals  and  . We have seen in Chapter 15 of Vol. I that the time intervals referred to a moving
particle appear to be longer than those in the rest system of the particle. Since our particle is initially at rest in  , we expect, for small  , that

and everything comes out O.K. From (13.31) and (13.32),

which is just   if we combine (13.30) and (13.33).

We have found that we get the same physical result whether we analyze the motion of a particle moving along a wire in a coordinate system at rest with respect to the
wire, or in a system at rest with respect to the particle. In the first instance, the force was purely “magnetic,” in the second, it was purely “electric.” The two points of view are
illustrated in Fig. 13–12 (although there is still a magnetic field   in the second frame, it produces no forces on the stationary particle).

Fig. 13–12. In frame  the charge density is zero and the current density is .
There is only a magnetic field. In , there is a charge density  and a different
current density . The magnetic field  is different and there is an electric
field .

If we had chosen still another coordinate system, we would have found a different mixture of  and   fields. Electric and magnetic forces are part of one physical
phenomenon—the electromagnetic interactions of particles. The separation of this interaction into electric and magnetic parts depends very much on the reference frame
chosen for the description. But a complete electromagnetic description is invariant; electricity and magnetism taken together are consistent with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change our frame of reference, we must be careful about how we look at the fields  and  . For
instance, if we think of “lines” of  or  , we must not attach too much reality to them. The lines may disappear if we try to observe them from a different coordinate system.
For example, in system   there are electric field lines, which we do not find “moving past us with velocity   in system  .” In system   there are no electric field lines at all!
Therefore it makes no sense to say something like: When I move a magnet, it takes its field with it, so the lines of   are also moved. There is no way to make sense, in
general, out of the idea of “the speed of a moving field line.” The fields are our way of describing what goes on at a point in space. In particular,  and   tell us about the
forces that will act on a moving particle. The question “What is the force on a charge from a moving magnetic field?” doesn’t mean anything precise. The force is given by the
values of  and   at the charge, and the formula (13.1) is not to be altered if the source of  or   is moving (it is the values of  and   that will be altered by the motion).
Our mathematical description deals only with the fields as a function of ,  , , and   with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling through space,” as, for instance, a light wave. But that is like speaking of a wave travelling
on a string. We don’t then mean that some part of the string is moving in the direction of the wave, we mean that the displacement of the string appears first at one place and
later at another. Similarly, in an electromagnetic wave, the wave travels; but the magnitude of the fields change. So in the future when we—or someone else—speaks of a
“moving” field, you should think of it as just a handy, short way of describing a changing field in some circumstances.

13–7 The transformation of currents and charges

You may have worried about the simplification we made above when we took the same velocity   for the particle and for the conduction electrons in the wire. We could
go back and carry through the analysis again for two different velocities, but it is easier to simply notice that charge and current density are the components of a four-vector
(see Chapter 17, Vol. I).

We have seen that if   is the density of the charges in their rest frame, then in a frame in which they have the velocity  , the density is

In that frame their current density is

Now we know that the energy   and momentum   of a particle moving with velocity   are given by

where   is its rest mass. We also know that  and   form a relativistic four-vector. Since  and   depend on the velocity 
exactly as do  and  , we can conclude that  and   are also the components of a relativistic four-vector. This property is the key to a general analysis of the field of a wire
moving with any velocity, which we would need if we want to do the problem again with the velocity   of the particle different from the velocity of the conduction electrons.

If we wish to transform  and   to a coordinate system moving with a velocity   in the -direction, we know that they transform just like  and  , so that we have
(see Chapter 15, Vol. I)
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Magnetostatics

Review: Chapter 15, Vol. I, The Special Theory of Relativity

13–1 The magnetic field

The force on an electric charge depends not only on where it is, but also on how fast it is moving. Every point in space is characterized by two vector quantities which
determine the force on any charge. First, there is the electric force, which gives a force component independent of the motion of the charge. We describe it by the electric
field, . Second, there is an additional force component, called the magnetic force, which depends on the velocity of the charge. This magnetic force has a strange directional
character: At any particular point in space, both the direction of the force and its magnitude depend on the direction of motion of the particle: at every instant the force is
always at right angles to the velocity vector; also, at any particular point, the force is always at right angles to a fixed direction in space (see Fig. 13–1); and finally, the
magnitude of the force is proportional to the component of the velocity at right angles to this unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector  , which specifies both the unique direction in space and the constant of proportionality with the velocity, and to write the magnetic force as  .
The total electromagnetic force on a charge can, then, be written as

This is called the Lorentz force.

Fig. 13–1. The velocity-dependent component of the force on a moving charge
is at right angles to  and to the direction of . It is also proportional to the
component of  at right angles to , that is, to .

The magnetic force is easily demonstrated by bringing a bar magnet close to a cathode-ray tube. The deflection of the electron beam shows that the presence of the
magnet results in forces on the electrons transverse to their direction of motion, as we described in Chapter 12 of Vol. I.

The unit of magnetic field   is evidently one newton second per coulomb-meter. The same unit is also one volt second per meter . It is also called one weber per square
meter.

13–2 Electric current; the conservation of charge

We consider first how we can understand the magnetic forces on wires carrying electric currents. In order to do this, we define what is meant by the current density.
Electric currents are electrons or other charges in motion with a net drift or flow. We can represent the charge flow by a vector which gives the amount of charge passing per
unit area and per unit time through a surface element at right angles to the flow (just as we did for the case of heat flow). We call this the current density and represent it by
the vector  . It is directed along the motion of the charges. If we take a small area   at a given place in the material, the amount of charge flowing across that area in a unit
time is

where   is the unit vector normal to  .

Fig. 13–2. If a charge distribution of density  moves with the velocity , the
charge per unit time through  is .

The current density is related to the average flow velocity of the charges. Suppose that we have a distribution of charges whose average motion is a drift with the
velocity  . As this distribution passes over a surface element  , the charge   passing through the surface element in a time   is equal to the charge contained in a
parallelepiped whose base is   and whose height is  , as shown in Fig. 13–2. The volume of the parallelepiped is the projection of   at right angles to  times  ,
which when multiplied by the charge density   will give  . Thus

The charge per unit time is then  , from which we get

If the charge distribution consists of individual charges, say electrons, each with the charge   and moving with the mean velocity  , then the current density is

where   is the number of charges per unit volume.

Fig. 13–3. The current  through the surface  is .

The total charge passing per unit time through any surface   is called the electric current, . It is equal to the integral of the normal component of the flow through all of
the elements of the surface:

(see Fig. 13–3).

Fig. 13–4. The integral of  over a closed surface is negative the rate of
change of the total charge  inside.

The current   out of a closed surface   represents the rate at which charge leaves the volume   enclosed by  . One of the basic laws of physics is that electric charge is
indestructible; it is never lost or created. Electric charges can move from place to place but never appear from nowhere. We say that charge is conserved. If there is a net
current out of a closed surface, the amount of charge inside must decrease by the corresponding amount (Fig. 13–4). We can, therefore, write the law of the conservation of
charge as

The charge inside can be written as a volume integral of the charge density:

If we apply (13.6) to a small volume  , we know that the left-hand integral is  . The charge inside is  , so the conservation of charge can also be written as

(Gauss’ mathematics once again!).

13–3 The magnetic force on a current

Fig. 13–5. The magnetic force on a current-carrying wire is the sum of the
forces on the individual moving charges.

Now we are ready to find the force on a current-carrying wire in a magnetic field. The current consists of charged particles moving with the velocity   along the wire.
Each charge feels a transverse force

(Fig. 13–5a). If there are   such charges per unit volume, the number in a small volume   of the wire is  . The total magnetic force   on the volume   is the sum
of the forces on the individual charges, that is,

But  is just , so

(Fig. 13–5b). The force per unit volume is  .

If the current is uniform across a wire whose cross-sectional area is  , we may take as the volume element a cylinder with the base area   and the length  . Then

Now we can call   the vector current   in the wire. (Its magnitude is the electric current in the wire, and its direction is along the wire.) Then

The force per unit length on a wire is  .

This equation gives the important result that the magnetic force on a wire, due to the movement of charges in it, depends only on the total current, and not on the
amount of charge carried by each particle—or even its sign! The magnetic force on a wire near a magnet is easily shown by observing its deflection when a current is turned
on, as was described in Chapter 1 (see Fig. 1–6).

13–4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field, produced, say, by a magnet. From the principle that action equals reaction we might
expect that there should be a force on the source of the magnetic field, i.e., on the magnet, when there is a current through the wire.1 There are indeed such forces, as is seen
by the deflection of a compass needle near a current-carrying wire. Now we know that magnets feel forces from other magnets, so that means that when there is a current in a
wire, the wire itself generates a magnetic field. Moving charges, then, produce a magnetic field. We would like now to try to discover the laws that determine how such
magnetic fields are created. The question is: Given a current, what magnetic field does it make? The answer to this question was determined experimentally by three critical
experiments and a brilliant theoretical argument given by Ampère. We will pass over this interesting historical development and simply say that a large number of
experiments have demonstrated the validity of Maxwell’s equations. We take them as our starting point. If we drop the terms involving time derivatives in these equations we
get the equations of magnetostatics:

and

These equations are valid only if all electric charge densities are constant and all currents are steady, so that the electric and magnetic fields are not changing with time—all
of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a thing as a static magnetic situation, because there must be currents in order to get a magnetic
field at all—and currents can come only from moving charges. “Magnetostatics” is, therefore, an approximation. It refers to a special kind of dynamic situation with large
numbers of charges in motion, which we can approximate by a steady flow of charge. Only then can we speak of a current density   which does not change with time. The
subject should more accurately be called the study of steady currents. Assuming that all fields are steady, we drop all terms in  and   from the complete Maxwell
equations, Eqs. (2.41), and obtain the two equations (13.12) and (13.13) above. Also notice that since the divergence of the curl of any vector is necessarily zero, Eq. (13.13)
requires that  . This is true, by Eq. (13.8), only if   is zero. But that must be so if   is not changing with time, so our assumptions are consistent.

The requirement that   means that we may only have charges which flow in paths that close back on themselves. They may, for instance, flow in wires that form
complete loops—called circuits. The circuits may, of course, contain generators or batteries that keep the charges flowing. But they may not include condensers which are
charging or discharging. (We will, of course, extend the theory later to include dynamic fields, but we want first to take the simpler case of steady currents.)

Now let us look at Eqs. (13.12) and  (13.13) to see what they mean. The first one says that the divergence of   is zero. Comparing it to the analogous equation in
electrostatics, which says that  , we can conclude that there is no magnetic analog of an electric charge. There are no magnetic charges from which lines of 
can emerge. If we think in terms of “lines” of the vector field  , they can never start and they never stop. Then where do they come from? Magnetic fields “appear” in the
presence of currents; they have a curl proportional to the current density. Wherever there are currents, there are lines of magnetic field making loops around the currents.
Since lines of   do not begin or end, they will often close back on themselves, making closed loops. But there can also be complicated situations in which the lines are not
simple closed loops. But whatever they do, they never diverge from points. No magnetic charges have ever been discovered, so  . This much is true not only for
magnetostatics, it is always true—even for dynamic fields.

Fig. 13–6. The line integral of the tangential component of  is equal to the
surface integral of the normal component of .

The connection between the  field and currents is contained in Eq. (13.13). Here we have a new kind of situation which is quite different from electrostatics, where we
had  . That equation meant that the line integral of   around any closed path is zero:

We got that result from Stokes’ theorem, which says that the integral around any closed path of any vector field is equal to the surface integral of the normal component of
the curl of the vector (taken over any surface which has the closed loop as its periphery). Applying the same theorem to the magnetic field vector and using the symbols
shown in Fig. 13–6, we get

Taking the curl of   from Eq. (13.13), we have

The integral over  , according to (13.5), is the total current   through the surface  . Since for steady currents the current through   is independent of the shape of  , so long
as it is bounded by the curve  , one usually speaks of “the current through the loop  .” We have, then, a general law: the circulation of   around any closed curve is equal to
the current   through the loop, divided by  :

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’ law played in electrostatics. Ampère’s law alone does not determine   from currents; we
must, in general, also use  . But, as we will see in the next section, it can be used to find the field in special circumstances which have certain simple symmetries.

13–5 The magnetic field of a straight wire and of a solenoid; atomic currents

Fig. 13–7. The magnetic field outside of a long wire carrying the current .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical cross section?
We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed circles. If we make this
assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same magnitude at all points on a circle concentric
with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of   times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form. Remembering that   is
at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation like (13.17) is used
to define the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple demonstration of the
forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should then be pushed either toward or away
from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a tight spiral,
as shown by the cross sections in Fig. 13–8. Such a coil is called a solenoid. We observe experimentally that when a solenoid is very long compared with its diameter, the field
outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the size of the field inside.

Fig. 13–8. The magnetic field of a long solenoid.

Since the field stays inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use Ampère’s law
with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at right angles to the field, and
returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be   times the total current through  , which is 
if there are   turns of the solenoid in the length  . We have

Or, letting   be the number of turns per unit length of the solenoid (that is, ), we get

What happens to the lines of   when they get to the end of the solenoid? Presumably, they spread out in some way and return to enter the solenoid at the other end, as
sketched in Fig. 13–9. Such a field is just what is observed outside of a bar magnet. But what is a magnet anyway? Our equations say that   comes from the presence of
currents. Yet we know that ordinary bars of iron (no batteries or generators) also produce magnetic fields. You might expect that there should be some other terms on the
right-hand side of (13.12) or (13.13) to represent “the density of magnetic iron” or some such quantity. But there is no such term. Our theory says that the magnetic effects of
iron come from some internal currents which are already taken care of by the  term.

Fig. 13–9. The magnetic field outside of a solenoid.

Matter is very complex when looked at from a fundamental point of view—as we saw when we tried to understand dielectrics. In order not to interrupt our present
discussion, we will wait until later to deal in detail with the interior mechanisms of magnetic materials like iron: You will have to accept, for the moment, that all magnetism
is produced from currents, and that in a permanent magnet there are permanent internal currents. In the case of iron, these currents come from electrons spinning around
their own axes. Every electron has such a spin, which corresponds to a tiny circulating current. Of course, one electron doesn’t produce much magnetic field, but in an
ordinary piece of matter there are billions and billions of electrons. Normally these spin and point every which way, so that there is no net effect. The miracle is that in a very
few substances, like iron, a large fraction of the electrons spin with their axes in the same direction—for iron, two electrons of each atom take part in this cooperative motion.
In a bar magnet there are large numbers of electrons all spinning in the same direction and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that a uniformly polarized dielectric is equivalent to a distribution of charges on its surface.) It is,
therefore, no accident that a bar magnet is equivalent to a solenoid.

13–6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its velocity, you may have wondered: “What velocity? With respect to which reference frame?” It
is, in fact, clear from the definition of   given at the beginning of this chapter that what this vector is will depend on what we choose as a reference frame for our
specification of the velocity of charges. But we have said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism and electricity are not independent things—that they should always be taken together as one
complete electromagnetic field. Although in the static case Maxwell’s equations separate into two distinct pairs, one pair for electricity and one pair for magnetism, with no
apparent connection between the two fields, nevertheless, in nature itself there is a very intimate relationship between them that arises from the principle of relativity.
Historically, the principle of relativity was discovered after Maxwell’s equations. It was, in fact, the study of electricity and magnetism which led ultimately to Einstein’s
discovery of his principle of relativity. But let’s see what our knowledge of relativity would tell us about magnetic forces if we assume that the relativity principle is applicable
—as it is—to electromagnetism.

Suppose we think about what happens when a negative charge moves with velocity   parallel to a current-carrying wire, as in Fig. 13–10. We will try to understand what
goes on in two reference frames: one fixed with respect to the wire, as in part (a) of the figure, and one fixed with respect to the particle, as in part (b). We will call the first
frame   and the second  .

Fig. 13–10. The interaction of a current-carrying wire and a particle with the
charge  as seen in two frames. In frame  (part a), the wire is at rest; in frame 
(part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it curve in toward
the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is? Would we see different things
happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to the wire. We must try to understand why that
would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the negative
electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the material. We let the charge
density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be equal to the negative of  , since we are
considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed toward the
wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of the particle
is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  . The positive
charges moving with the wire will make some magnetic field   at the particle. But the particle is now at rest, so there is no magnetic force on it! If there is any force on the
particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if it appears charged—it must be that a
neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the same; but
we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge densities depend on the volume occupied by
charges, the densities will change, too.

Before we can decide about the charge densities in  , we must know what happens to the electric charge of a bunch of electrons when the charges are moving. We know
that the apparent mass of a particle changes by  . Does its charge do something similar? No! Charges are always the same, moving or not. Otherwise we would
not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than the protons,
the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle carrying it, in the heated
block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have seen earlier, a very small fractional change in
the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed, the net
charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence of charge on speed
would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a single particle is independent of its
state of motion.

So the charge   on a particle is an invariant scalar quantity, independent of the frame of reference. That means that in any frame the charge density of a distribution of
electrons is just proportional to the number of electrons per unit volume. We need only worry about the fact that the volume can change because of the relativistic
contraction of distances.

We now apply these ideas to our moving wire. If we take a length   of the wire, in which there is a charge density   of stationary charges, it will contain the total
charge  . If the same charges are observed in a different frame to be moving with velocity  , they will all be found in a piece of the material with the shorter
length

but with the same area   (since dimensions transverse to the motion are unchanged). See Fig. 13–11.

Fig. 13–11. If a distribution of charged particles at rest has the charge
density , the same charges will have the density  when
seen from a frame with the relative velocity .

If we call   the density of charges in the frame in which they are moving, the total charge   will be  . This must also be equal to  , because charge is the same
in any system, so that   or, from (13.22),

The charge density of a moving distribution of charges varies in the same way as the relativistic mass of a particle.

We now use this general result for the positive charge density   of our wire. These charges are at rest in frame  . In  , however, where the wire moves with the
speed  , the positive charge density becomes

The negative charges are at rest in  . So they have their “rest density”   in this frame. In Eq. (13.23) , because they have the density   when the wire is at
rest, i.e., in frame  , where the speed of the negative charges is  . For the conduction electrons, we then have that

or

Now we can see why there are electric fields in  —because in this frame the wire has the net charge density   given by

Using (13.24) and (13.26), we have

Since the stationary wire is neutral, , and we have

Our moving wire is positively charged and will produce an electric field   at the external stationary particle. We have already solved the electrostatic problem of a uniformly
charged cylinder. The electric field at the distance   from the axis of the cylinder is

The force on the negatively charged particle is toward the wire. We have, at least, a force in the same direction from the two points of view; the electric force in   has the
same direction as the magnetic force in  .

The magnitude of the force in   is

Comparing this result for   with our result for   in Eq. (13.21), we see that the magnitudes of the forces are almost identical from the two points of view. In fact,

so for the small velocities we have been considering, the two forces are equal. We can say that for low velocities, at least, we understand that magnetism and electricity are
just “two ways of looking at the same thing.”

But things are even better than that. If we take into account the fact that forces also transform when we go from one system to the other, we find that the two ways of
looking at what happens do indeed give the same physical result for any velocity.

One way of seeing this is to ask a question like: What transverse momentum will the particle have after the force has acted for a little while? We know from Chapter 16 of
Vol. I that the transverse momentum of a particle should be the same in both the  - and -frames. Calling the transverse coordinate  , we want to compare  and  .
Using the relativistically correct equation of motion, , we expect that after the time   our particle will have a transverse momentum   in the -system given
by

In the -system, the transverse momentum will be

We must, of course, compare  and   for corresponding time intervals  and  . We have seen in Chapter 15 of Vol. I that the time intervals referred to a moving
particle appear to be longer than those in the rest system of the particle. Since our particle is initially at rest in  , we expect, for small  , that

and everything comes out O.K. From (13.31) and (13.32),

which is just   if we combine (13.30) and (13.33).

We have found that we get the same physical result whether we analyze the motion of a particle moving along a wire in a coordinate system at rest with respect to the
wire, or in a system at rest with respect to the particle. In the first instance, the force was purely “magnetic,” in the second, it was purely “electric.” The two points of view are
illustrated in Fig. 13–12 (although there is still a magnetic field   in the second frame, it produces no forces on the stationary particle).

Fig. 13–12. In frame  the charge density is zero and the current density is .
There is only a magnetic field. In , there is a charge density  and a different
current density . The magnetic field  is different and there is an electric
field .

If we had chosen still another coordinate system, we would have found a different mixture of  and   fields. Electric and magnetic forces are part of one physical
phenomenon—the electromagnetic interactions of particles. The separation of this interaction into electric and magnetic parts depends very much on the reference frame
chosen for the description. But a complete electromagnetic description is invariant; electricity and magnetism taken together are consistent with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change our frame of reference, we must be careful about how we look at the fields  and  . For
instance, if we think of “lines” of  or  , we must not attach too much reality to them. The lines may disappear if we try to observe them from a different coordinate system.
For example, in system   there are electric field lines, which we do not find “moving past us with velocity   in system  .” In system   there are no electric field lines at all!
Therefore it makes no sense to say something like: When I move a magnet, it takes its field with it, so the lines of   are also moved. There is no way to make sense, in
general, out of the idea of “the speed of a moving field line.” The fields are our way of describing what goes on at a point in space. In particular,  and   tell us about the
forces that will act on a moving particle. The question “What is the force on a charge from a moving magnetic field?” doesn’t mean anything precise. The force is given by the
values of  and   at the charge, and the formula (13.1) is not to be altered if the source of  or   is moving (it is the values of  and   that will be altered by the motion).
Our mathematical description deals only with the fields as a function of ,  , , and   with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling through space,” as, for instance, a light wave. But that is like speaking of a wave travelling
on a string. We don’t then mean that some part of the string is moving in the direction of the wave, we mean that the displacement of the string appears first at one place and
later at another. Similarly, in an electromagnetic wave, the wave travels; but the magnitude of the fields change. So in the future when we—or someone else—speaks of a
“moving” field, you should think of it as just a handy, short way of describing a changing field in some circumstances.

13–7 The transformation of currents and charges

You may have worried about the simplification we made above when we took the same velocity   for the particle and for the conduction electrons in the wire. We could
go back and carry through the analysis again for two different velocities, but it is easier to simply notice that charge and current density are the components of a four-vector
(see Chapter 17, Vol. I).

We have seen that if   is the density of the charges in their rest frame, then in a frame in which they have the velocity  , the density is

In that frame their current density is

Now we know that the energy   and momentum   of a particle moving with velocity   are given by

where   is its rest mass. We also know that  and   form a relativistic four-vector. Since  and   depend on the velocity 
exactly as do  and  , we can conclude that  and   are also the components of a relativistic four-vector. This property is the key to a general analysis of the field of a wire
moving with any velocity, which we would need if we want to do the problem again with the velocity   of the particle different from the velocity of the conduction electrons.

If we wish to transform  and   to a coordinate system moving with a velocity   in the -direction, we know that they transform just like  and  , so that we have
(see Chapter 15, Vol. I)
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In S frame
1 Charge density is zero and current density is J
2 There is only ~B field

In S0 frame
1 There is charge density r0 6= 0 and different current density J0
2 ~B0 field is different and there is ~E0 field

We must not attach too much reality to ~E and ~B “lines” + they may
disappear if weobserve them from different coordinate system
Conclude that + electricity and magnetism

are just “two ways of looking at the same stuff”
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