Prof. Anchordoqui

1. Find the current $I$ in the circuit shown Fig. 1.


Figure 1: Problem 1.
2. In the circuit shown in Fig. 2, the power produced by bulb ${ }_{1}$ and bulb $_{2}$ is 1 kW and 50 W , respectively. Which light has the higher resistance? (Assume the resitance of the light bulb remains constant with time.)


Figure 2: Problem 2.
3. A regular tetrahedron is a pyramid with a triangular base. Six $R=10.0 \Omega$ resistors are placed along its six edges, with junctions at its four vertices, as shown in Fig. 3. A 12.0-V battery is connected to any two of the vertices. Find (i) the equivalent resistance of the tetrahedron between these vertices and (ii) the current in the battery.


Figure 3: Problem 3.


Figure 4: Problem 4.
4. Determine the magnitude and directions of the currents through $R_{1}=22 \Omega$ and $R_{2}=15 \Omega$ in the circuit of Fig. 4. The batteries have an internal resistance of $r=1.2 \Omega$.
5. Determine the magnitude and directions of the currents in each resistor shown in Fig. 5. The batteries has emfs of $\varepsilon_{1}=9 \mathrm{~V}$ and $\varepsilon_{2}=12 \mathrm{~V}$ and the resistors have values of $R_{1}=25 \Omega$, $R_{2}=18 \Omega$, and $R_{3}=35 \Omega$.


Figure 5: Problem 5.

