Prof. Anchordoqui

1. Figure 1 shows the electric field lines for two point charges separated by a small distance. (i) Determine the ratio q_{1} / q_{2}. (ii) What are the signs of q_{1} and q_{2} ?
2. An ion milling machine uses a beam of gallium ions ($m=70 u$) to carve microstructures from a target. A region of uniform electric field between parallel sheets of charge is used for precise control of the beam direction. Single ionized gallium atoms with initially horizontal velocity of $1.8 \times 10^{4} \mathrm{~m} / \mathrm{s}$ enter a 2.0 cm -long region of uniform electric field which points vertically upward, as shown in Fig. 2. The ions are redirected by the field, and exit the region at the angle θ shown. If the field is set to a value of $E=90 \mathrm{~N} / \mathrm{C}$, what is the exit angle θ ?
3. Two $2.0-\mathrm{g}$ spheres are suspended by $10.0-\mathrm{cm}-\mathrm{long}$ light strings, see Fig. 3. A uniform electric field is applied in the x direction. If the spheres have charges of $-5.0 \times 10^{-8} \mathrm{C}$ and $5.0 \times 10^{-8} \mathrm{C}$, determine the electric field intensity that enables the spheres to be in equilibrium at $\theta=10^{\circ}$.
4. Three charges of equal magnitude q are fixed in position at the vertices of an equilateral triangle (Fig. 4). A fourth charge Q is free to move along the positive x axis under the influence of the forces exerted by the three fixed charges. Find a value for s for which Q is in equilibrium. You will need to solve a transcendental equation.
5. Eight solid plastic cubes, each 3.00 cm on each edge, are glued together to form each one of the objects ($i, i i, i i i, i v$) shown in Fig. 5. (a) Assuming each object carries charge with uniform density $400 \mathrm{nC} / \mathrm{m}^{3}$ throughout its volume, find the charge of each object. (b) Assuming each object carries charge with uniform density $15.0 \mathrm{nC} / \mathrm{m}^{2}$ everywhere on its exposed surface, find the charge on each object. (c) Assuming charge is placed only on the edges where perpendicular surfaces meet, with uniform density $80.0 \mathrm{pC} / \mathrm{m}$, find the charge of each object.

Figure 1: Problem 1.

Figure 2: Problem 2.

Figure 3: Problem 3.

Figure 4: Problem 4.

Figure 5: Problem 5.

