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Problems set # 2 Physics 167 Solutions

1. Figure 1 shows the electric field lines for two point charges separated by a small distance.

(i) Determine the ratio q1/q2. (ii) What are the signs of q1 and q2?

Solution (i) The magnitude of q2 is three times the magnitude of q1 because 3 times as many

lines emerge from q2 as enter q1. Then |q2| = 3|q1|, yielding q1/q2 = −1/3. (ii) q2 > 0 because lines

emerge from it and q1 < 0 because lines terminate on it.

2. An ion milling machine uses a beam of gallium ions (m = 70u) to carve microstructures from

a target. A region of uniform electric field between parallel sheets of charge is used for precise

control of the beam direction. Single ionized gallium atoms with initially horizontal velocity of

1.8 × 104 m/s enter a 2.0 cm-long region of uniform electric field which points vertically upward,

as shown in Fig. 2. The ions are redirected by the field, and exit the region at the angle θ shown.

If the field is set to a value of E = 90 N/C, what is the exit angle θ?

Solution A singly-ionized gallium atom has a charge of q = +e, and the mass of m = 70u,

means 70 atomic mass units, where one atomic mass unit is 1u = 1.66× 10−27 kg. What we really

have here is a particle under the influence of a constant force, just as if we were to throw a ball

horizontally and watch its trajectory under the influence of gravity (the only difference is that since

we have negative charges, things can “fall up”). To start with, we will place the origin at the ion’s

initial position, let the positive x axis run to the right, and let the positive y axis run straight up.

Thus, the particle starts with a velocity purely in the x direction: ~v = vxı̂. While the particle is

in the electric-field-containing region, it will experience a force pointing along the +y direction,

with a constant magnitude of qE. Since the force acts only in the y direction, there will be a net

acceleration only in the y direction, and the velocity in the x direction will remain constant. Once

outside the region, the particle will experience no net force, and it will therefore continue along in a

straight line. It will have acquired a y component to its velocity due to the electric force, but the x

component will still be vx. Thus, the particle exits the region with velocity ~v = vxı̂+vy ̂. The angle

at which the particle exits the plates, measured with respect to the x axis, must be tan θ = vy/vx.

Thus, just like in any mechanics problem, finding the angle is reduced to a problem of finding the

final velocity components, of which we already know one. So, how do we find the final velocity in

the y direction? Initially, there is no velocity in the y direction, and while the particle is traveling

between the plates, there is a net force of qE in the y direction. Thus, the particle experiences

an acceleration ay =
Fy

m =
qEy

m . The electric field is purely in the y direction in this case, so

Ey = 90 N/C. Now we know the acceleration in the y direction, so if we can find out the time the

particle takes to transit the plates, we are done, since the the transit time ∆t and acceleration ay
determine vy, i.e., vy = ay∆t. Since the x component of the velocity is not changing, we can find

the transit time by noting that the distance covered in the x direction must be the x component

of the velocity times the transit time. The distance covered in the x direction is just the width of

the plates, so dx = vx∆t = 2.0 cm⇒ ∆t = dx/vx. Putting the previous equations together, we can



express vy in terms of known quantities: vy = ay∆t = aydx/vx =
qEydx
mvx

. Finally, we can now find

the angle θ as well: tan θ =
vy
vx

=
qEydx
mv2x

. And that’s that. Now we plug in the numbers we have,

watching the units carefully: θ = tan−1
[

1.6×10−19 C·90 N/C·0.02 m
70·1.66×10−27 kg·(1.8×104 m/s)2

]
= tan−1 7.6× 10−3 ≈ 0.44◦.

3. Two 2.0-g spheres are suspended by 10.0-cm-long light strings, see Fig. 3. A uniform electric

field is applied in the x direction. If the spheres have charges of −5.0× 10−8 C and 5.0× 10−8 C,

determine the electric field intensity that enables the spheres to be in equilibrium at θ = 10◦.

Solution The sketch in Fig. 3 gives a free-body diagram of the positively charged sphere. Here,

F1 = 1
4πε0

|q|2
r2

is the attractive force exerted by the negatively chaged sphere and F2 = qE is

exerted by the electric field. This leads to
∑
Fy = 0 ⇒ T cos 10◦ = mg or T = mg

cos 10◦ and∑
Fx = 0 ⇒ F2 = F1 + T sin 10◦ or qE = 1

4πε0

|q|2
r2

+ mg tan 10◦. At equilibrium, the distance

between the two spheres is r = 2(L sin 10◦). Thus, the electric field strength required is E =
1

4πε0

|q|
4(L sin 10◦)2 +mg tan 10◦

q = 8.99×109 N·m2/C25.0×10−8 C
4[0.100 m sin 10◦]2 + 2.0×10−3 kg 9.80 m/s2 tan 10◦

5.0×10−8 C
= 4.4×105 N/C.

4. Three charges of equal magnitude q are fixed in position at the vertices of an equilateral

triangle (Fig. 4). A fourth charge Q is free to move along the positive x axis under the influence of

the forces exerted by the three fixed charges. Find a value for s for which Q is in equilibrium. You

will need to solve a transcendental equation.

Solution At an equilibrium position, the net force on the charge Q is zero. The equilibrium po-

sition can be located by determining the angle θ corresponding to equilibrium. In terms of lengths

s,
√
3
2 a, and r, shown in Fig. 4, the charge at the origin exerts an attractive force 1

4πε0
Qq

(s+
√
3a
2

)2
. The

other two charges exert equal repulsive forces of magnitude 1
4piε0

Qq
r2

. The horizontal components of

the two repulsive forces add, balancing the attractive force, Fnet = 1
4πε0

Qq
(
2 cos θ
r2
− 1

[s+a(
√
3/2)]2

)
=

0. From Fig. 4 it follows that r = a
2 sin θ and s = a cot θ

2 . The equilibrium condition, in terms of

θ, is Fnet = 1
4πε0

4Qq
a2

[
2 cos θ sin2 θ − 1

(
√
3+cot θ)2

]
= 0. Hence the equilibrium value of θ satisfies

2 cos θ sin2 θ(
√

3 + cot θ)2 = 1. One method for solving for θ is to tabulate the left side. To three

significant figures a value of θ corresponding to equilibrium is 81.7◦, see Table 4. The distance from

the vertical side of the triangle to the equilibrium position is s = a cot 81.7◦

2 = 0.0729a. A second

zero-field point is on the negative side of the x-axis, where θ = −9.16◦ and s = −3.10a.

5. Eight solid plastic cubes, each 3.00 cm on each edge, are glued together to form each one of

the objects (i, ii, iii, iv) shown in Fig. 5. (a) Assuming each object carries charge with uniform

density 400 nC/m3 throughout its volume, find the charge of each object. (b) Assuming each object

carries charge with uniform density 15.0 nC/m2 everywhere on its exposed surface, find the charge

on each object. (c) Assuming charge is placed only on the edges where perpendicular surfaces meet,

with uniform density 80.0 pC/m, find the charge of each object.

Solution (a) Every object has the same volume, V = 8(0..030 m)3 = 2.16 × 10−4 m3. For

each, Q = ρV = 4.00 × 10−9 C/m3 2.16 × 10−4 m3 = 8.64 × 10−13 C. (b) We must count



Table 1: Problem 4.

θ 2 cos θ sin2 θ(
√

3 + cot θ)2

60◦ 4

70◦ 2.654

80◦ 1.226

90◦ 0

81◦ 1.091

81.5◦ 1.024

81.7◦ 0.997

the 9.00 cm2 squares painted with charge: (i) 6 × 4 = 24 squares, so Q = σA = (15.0 ×
10−9 C/m2 24.0 9.00 × 10−4 m2 = 3.24 × 10−10 C; (ii) 34 squares exposed, so Q = σA =

15.0 × 10−9 C/m2 34.0 9.00 × 10−4 m2 = 4.59 × 10−10 C; (iii) 34 squares, so Q = σA =

15.0 × 10−9 C/m2 34.0 9.00 × 10−4 m2 = 4.59 × 10−10 C; (iv) 32 squares, so Q = σA =

15.0×10−9 C/m2 32.0 9.00×10−4 m2 = 4.32×10−10 C; (c) (i) Total edge length, ` = 24×0.030 m,

so Q = λ` = 80.0×10−12 C/m×24×0.030 = 5.76×10−11 C; (ii) total edge length, ` = 44×0.030 m,

so Q = λ` = 80.0×10−12 C/m×44×0.030 = 1.06×10−10 C; (iii) total edge length, ` = 64×0.030 m,

so Q = λ` = 80.0×10−12 C/m×64×0.030 = 1.54×10−10 C; (iv) total edge length, ` = 40×0.030 m,

so Q = λ` = 80.0× 10−12 C/m× 40× 0.030 = 0.960× 10−10 C.



Problems 733

34. (a) Consider a uniformly charged thin-walled right circu-
lar cylindrical shell having total charge Q , radius R , and
height h. Determine the electric field at a point a distance
d from the right side of the cylinder as shown in Figure
P23.34. (Suggestion: Use the result of Example 23.8 and
treat the cylinder as a collection of ring charges.) (b) What
If? Consider now a solid cylinder with the same dimen-
sions and carrying the same charge, uniformly distributed
through its volume. Use the result of Example 23.9 to find
the field it creates at the same point.

36. Three solid plastic cylinders all have radius 2.50 cm and
length 6.00 cm. One (a) carries charge with uniform den-
sity 15.0 nC/m2 everywhere on its surface. Another
(b) carries charge with the same uniform density on its
curved lateral surface only. The third (c) carries charge
with uniform density 500 nC/m3 throughout the plastic.
Find the charge of each cylinder.

37. Eight solid plastic cubes, each 3.00 cm on each edge, are
glued together to form each one of the objects (i, ii, iii, and
iv) shown in Figure P23.37. (a) Assuming each object carries
charge with uniform density 400 nC/m3 throughout its
volume, find the charge of each object. (b) Assuming each
object carries charge with uniform density 15.0 nC/m2

everywhere on its exposed surface, find the charge on each
object. (c) Assuming charge is placed only on the edges
where perpendicular surfaces meet, with uniform density
80.0 pC/m, find the charge of each object.

Figure P23.33

Figure P23.34

Figure P23.35
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A thin rod of length ! and uniform charge per unit length
! lies along the x axis, as shown in Figure P23.35. (a) Show
that the electric field at P, a distance y from the rod along
its perpendicular bisector, has no x component and is
given by E " 2ke ! sin #0/y. (b) What If? Using your result
to part (a), show that the field of a rod of infinite length is
E " 2ke !/y. (Suggestion: First calculate the field at P due to
an element of length dx, which has a charge ! dx. Then
change variables from x to #, using the relationships x "
y tan # and dx " y sec2 # d#, and integrate over #.)

35.

Figure P23.37

(i) (ii) (iii) (iv)

Section 23.6 Electric Field Lines
38. A positively charged disk has a uniform charge per unit

area as described in Example 23.9. Sketch the electric field
lines in a plane perpendicular to the plane of the disk
passing through its center.

A negatively charged rod of finite length carries charge
with a uniform charge per unit length. Sketch the electric
field lines in a plane containing the rod.

40. Figure P23.40 shows the electric field lines for two point
charges separated by a small distance. (a) Determine the
ratio q1/q2. (b) What are the signs of q1 and q2?

39.

q2

q1

Figure P23.40Figure 1: Problem 1.
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A singly-ionized gallium atom has a charge of q =+e, and the mass of m=70u means 70 atomic mass
units, where one atomic mass unit is 1 u=1.66 ⇥ 10�27 kg.

What we really have here is a particle under the influence of a constant force, just as if we were to throw
a ball horizontally and watch its trajectory under the influence of gravity (the only di�erence is that
since we have negative charges, things can “fall up"). To start with, we will place the origin at the ion’s
initial position, let the positive x axi run to the right, and let the positive y axis run straight up. Thus,
the particle starts with a velocity purely in the x direction: ~v0 =vx x̂.

While the particle is in the electric-field-containing region, it will experience a force pointing along the
+y direction, with a constant magnitude of qE. Since the force acts only in the y direction, there will
be a net acceleration only in the y direction, and the velocity in the x direction will remain constant.
Once outside the region, the particle will experience no net force, and it will therefore continue along in
a straight line. It will have acquired a y component to its velocity due to the electric force, but the x
component will still be vx. Thus, the particle exits the region with velocity ~v=vx x̂ + vy ŷ. The angle
at which the particle exits the plates, measured with respect to the x axis, must be

tan ✓ =
vy

vx

Thus, just like in any mechanics problem, finding the angle is reduced to a problem of finding the final
velocity components, of which we already know one. So, how do we find the final velocity in the y
direction? Initially, there is no velocity in the y direction, and while the particle is traveling between
the plates, there is a net force of qE in the y direction. Thus, the particle experiences an acceleration

ay =
Fy

m
=

qEy

m

The electric field is purely in the y direction in this case, so Ey =90N/C. Now we know the acceleration
in the y direction, so if we can find out the time the particle takes to transit the plates, we are done,
since the the transit time Dt and acceleration ay determine vy:

vy = ayDt

Since the x component of the velocity is not changing, we can find the transit time by noting that the
distance covered in the x direction must be the x component of the velocity times the transit time. The
distance covered in the x direction is just the width of the plates, so:

dx = vxDt = 2.0 cm =) Dt =
dx

vx

Putting the previous equations together, we can express vy in terms of known quantities:

vy = ayDt = ay
dx

vx
=

qEy

m

dx

vx
=

qEydx

mvx

Figure 2: Problem 2.
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effects of the gravitational and buoyant forces on it, each
balloon can be modeled as a particle of mass 2.00 g, with
its center 50.0 cm from the point of support. To show off
the colors of the balloons, Inez rubs the whole surface of
each balloon with her woolen scarf, to make them hang
separately with gaps between them. The centers of the
hanging balloons form a horizontal equilateral triangle
with sides 30.0 cm long. What is the common charge each
balloon carries?

59. Review problem. Two identical metallic blocks resting on a
frictionless horizontal surface are connected by a light
metallic spring having a spring constant k as shown in 
Figure P23.59a and an unstretched length Li . A total
charge Q is slowly placed on the system, causing the spring
to stretch to an equilibrium length L , as shown in Figure
P23.59b. Determine the value of Q , assuming that all the
charge resides on the blocks and modeling the blocks as
point charges.

62. Two small spheres, each of mass 2.00 g, are suspended by
light strings 10.0 cm in length (Fig. P23.62). A uniform
electric field is applied in the x direction. The spheres
have charges equal to ! 5.00 " 10!8 C and # 5.00 "
10!8 C. Determine the electric field that enables the
spheres to be in equilibrium at an angle $ % 10.0°.

Figure P23.59

(a)

(b)

m mk

m mk

60. Consider a regular polygon with 29 sides. The distance
from the center to each vertex is a. Identical charges q are
placed at 28 vertices of the polygon. A single charge Q is
placed at the center of the polygon. What is the magnitude
and direction of the force experienced by the charge
Q ? (Suggestion: You may use the result of Problem 63 in
Chapter 3.)

61. Identical thin rods of length 2a carry equal charges # Q
uniformly distributed along their lengths. The rods lie
along the x axis with their centers separated by a distance
b & 2a (Fig. P23.61). Show that the magnitude of the force
exerted by the left rod on the right one is given by

F % ! keQ 
2

4a 
2 " ln ! b2

b2 ! 4a 
2 "

b

y

a–a b – a b + a
x

Figure P23.61

Figure P23.62
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63. A line of positive charge is formed into a semicircle of ra-
dius R % 60.0 cm as shown in Figure P23.63. The charge
per unit length along the semicircle is described by the ex-
pression ' % '0 cos $. The total charge on the semicircle is
12.0 (C. Calculate the total force on a charge of 3.00 (C
placed at the center of curvature.

Figure P23.63
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64. Three charges of equal magnitude q are fixed in posi-
tion at the vertices of an equilateral triangle (Fig. P23.64).
A fourth charge Q is free to move along the positive x axis

x
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–q
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y

a   3
2
√

Figure P23.64
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Chapt15, Problem-57: Two 2.0-g spheres are suspended by
10.0-cm-long light strings (Fig. P15.57). A uniform electric field is
applied in the x direction. If the spheres have charges of –5.0 x 10

–8
 C

and +5.0 x 10
–8

 C, determine the electric field intensity that enables
the spheres to be in equilibrium at ! = 10°.

Solut ion:                

The sketch to the right gives a free-body diagram of the

positively charged sphere. Here, 
    F1 = ke q

2

r2  is the attractive

force exerted by the negatively charged sphere and 
    F2 = qE

is exerted by the electric field.

    
!Fy = 0 "  T cos10° = mg   or   T =

mg

cos 10°

    
!Fx = 0 "  F2 = F1 +T sin10°   or   qE=

ke q
2

r2
+mg tan10°

At equilibrium, the distance between the two spheres is 
    
r = 2 Lsin 10°( ) .

Thus,

    

E =
ke q

4 Lsin 10°( )
2 +

mg tan10°

q

=
8.99! 109  N "m 2 C2( ) 5.0!10#8  C( )

4 0.100 m( )sin10°[ ]
2

+
2.0 !10#3  kg( ) 9.80 m s2( ) tan10°

5.0 !10#8  C( )
,

and so the electric field strength required is   E =
  
4.4!10

5
 N C .

Chapt15, Conceptual-2: Hospital personnel must wear special conducting shoes when they work
around oxygen in an operating room. Why? Contrast with what might happen when personnel wear rubber-
soled shoes.

Solut ion:                

To avoid making a spark. Rubber-soled shoes acquire a charge by friction with the floor and could discharge

with a spark, possibly causing an explosive burning situation, where the burning is enhanced by the oxygen.

Chapt15, Conceptual-12: Is it possible for an electric field to exist in empty space? Explain

Solut ion:                

An electric field once established by a positive or negative charge extends in all directions from the

charge. Thus, it can exist in empty space if that is what surrounds the charge.

Chapt15, Conceptual-14: Would life be different if the electron were positively charged and the
proton were negatively charged? Does the choice of signs have any bearing on physical and chemical
interactions? Explain

Solut ion:                

No. Life would be no different if electrons were positively charged and protons were negatively charged.

Opposite charges would still attract, and like charges would still repel. The designation of charges as

positive and negative is merely a definition.

mg

T

10°
y

x

F2F1

Figure 3: Problem 3.
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effects of the gravitational and buoyant forces on it, each
balloon can be modeled as a particle of mass 2.00 g, with
its center 50.0 cm from the point of support. To show off
the colors of the balloons, Inez rubs the whole surface of
each balloon with her woolen scarf, to make them hang
separately with gaps between them. The centers of the
hanging balloons form a horizontal equilateral triangle
with sides 30.0 cm long. What is the common charge each
balloon carries?

59. Review problem. Two identical metallic blocks resting on a
frictionless horizontal surface are connected by a light
metallic spring having a spring constant k as shown in 
Figure P23.59a and an unstretched length Li . A total
charge Q is slowly placed on the system, causing the spring
to stretch to an equilibrium length L , as shown in Figure
P23.59b. Determine the value of Q , assuming that all the
charge resides on the blocks and modeling the blocks as
point charges.

62. Two small spheres, each of mass 2.00 g, are suspended by
light strings 10.0 cm in length (Fig. P23.62). A uniform
electric field is applied in the x direction. The spheres
have charges equal to ! 5.00 " 10!8 C and # 5.00 "
10!8 C. Determine the electric field that enables the
spheres to be in equilibrium at an angle $ % 10.0°.
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60. Consider a regular polygon with 29 sides. The distance
from the center to each vertex is a. Identical charges q are
placed at 28 vertices of the polygon. A single charge Q is
placed at the center of the polygon. What is the magnitude
and direction of the force experienced by the charge
Q ? (Suggestion: You may use the result of Problem 63 in
Chapter 3.)

61. Identical thin rods of length 2a carry equal charges # Q
uniformly distributed along their lengths. The rods lie
along the x axis with their centers separated by a distance
b & 2a (Fig. P23.61). Show that the magnitude of the force
exerted by the left rod on the right one is given by

F % ! keQ 
2

4a 
2 " ln ! b2

b2 ! 4a 
2 "

b

y

a–a b – a b + a
x
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63. A line of positive charge is formed into a semicircle of ra-
dius R % 60.0 cm as shown in Figure P23.63. The charge
per unit length along the semicircle is described by the ex-
pression ' % '0 cos $. The total charge on the semicircle is
12.0 (C. Calculate the total force on a charge of 3.00 (C
placed at the center of curvature.

Figure P23.63

y

R

x

θ

64. Three charges of equal magnitude q are fixed in posi-
tion at the vertices of an equilateral triangle (Fig. P23.64).
A fourth charge Q is free to move along the positive x axis
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Figure P23.64
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The other two charges exert equal repulsive forces of magnitude 
k Qq
r
e

2 . The horizontal components

of the two repulsive forces add, balancing the attractive force,

F k Qq
r s a

enet  �
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From Figure P23.64 r
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The equilibrium condition, in terms of T, is F
a

k Qqenet  
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4
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02

2
2cos sin

cot
T T

Te j
.

Thus the equilibrium value of T satisfies 2 3 12 2
cos sin cotT T T�  e j .

One method for solving for T is to tabulate the left side. To three significant figures a value of T
corresponding to equilibrium is 81.7q.

The distance from the vertical side of the triangle to the equilibrium position is

s a a q 
1
2

81 7 0 072 9cot . . .

FIG. P23.64
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A second zero-field point is on the negative side of the x-axis, where T  � q9 16.  and s a �3 10. .

P23.65 (a) From the 2Q charge we have F Te �  2 2 0sinT  and mg T�  2 2 0cosT .

Combining these we find
F
mg

T
T

e   2 2

2 2
2

sin
cos

tan
T
T

T .

From the Q charge we have F Te   1 1 0sinT  and mg T�  1 1 0cosT .

Combining these we find
F
mg

T
T

e   1 1

1 1
1

sin
cos

tan
T
T

T  or T T2 1 .

(b) F
k QQ
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e e  
2 2

2
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FIG. P23.65

If we assume T is small then tanT |
r 2
A

.

Substitute expressions for Fe  and tanT  into either equation found in part (a) and solve for r.
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 and solving for r we find r
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4 2 1 3
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.

Figure 4: Problem 4.



Problems 733

34. (a) Consider a uniformly charged thin-walled right circu-
lar cylindrical shell having total charge Q , radius R , and
height h. Determine the electric field at a point a distance
d from the right side of the cylinder as shown in Figure
P23.34. (Suggestion: Use the result of Example 23.8 and
treat the cylinder as a collection of ring charges.) (b) What
If? Consider now a solid cylinder with the same dimen-
sions and carrying the same charge, uniformly distributed
through its volume. Use the result of Example 23.9 to find
the field it creates at the same point.

36. Three solid plastic cylinders all have radius 2.50 cm and
length 6.00 cm. One (a) carries charge with uniform den-
sity 15.0 nC/m2 everywhere on its surface. Another
(b) carries charge with the same uniform density on its
curved lateral surface only. The third (c) carries charge
with uniform density 500 nC/m3 throughout the plastic.
Find the charge of each cylinder.

37. Eight solid plastic cubes, each 3.00 cm on each edge, are
glued together to form each one of the objects (i, ii, iii, and
iv) shown in Figure P23.37. (a) Assuming each object carries
charge with uniform density 400 nC/m3 throughout its
volume, find the charge of each object. (b) Assuming each
object carries charge with uniform density 15.0 nC/m2

everywhere on its exposed surface, find the charge on each
object. (c) Assuming charge is placed only on the edges
where perpendicular surfaces meet, with uniform density
80.0 pC/m, find the charge of each object.

Figure P23.33

Figure P23.34

Figure P23.35
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A thin rod of length ! and uniform charge per unit length
! lies along the x axis, as shown in Figure P23.35. (a) Show
that the electric field at P, a distance y from the rod along
its perpendicular bisector, has no x component and is
given by E " 2ke ! sin #0/y. (b) What If? Using your result
to part (a), show that the field of a rod of infinite length is
E " 2ke !/y. (Suggestion: First calculate the field at P due to
an element of length dx, which has a charge ! dx. Then
change variables from x to #, using the relationships x "
y tan # and dx " y sec2 # d#, and integrate over #.)
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Section 23.6 Electric Field Lines
38. A positively charged disk has a uniform charge per unit

area as described in Example 23.9. Sketch the electric field
lines in a plane perpendicular to the plane of the disk
passing through its center.

A negatively charged rod of finite length carries charge
with a uniform charge per unit length. Sketch the electric
field lines in a plane containing the rod.

40. Figure P23.40 shows the electric field lines for two point
charges separated by a small distance. (a) Determine the
ratio q1/q2. (b) What are the signs of q1 and q2?

39.
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Figure P23.40

Figure 5: Problem 5.


