1. Figure 1 shows the electric field lines for two point charges separated by a small distance. (i) Determine the ratio q_{1} / q_{2}. (ii) What are the signs of q_{1} and q_{2} ?

Solution (i) The magnitude of q_{2} is three times the magnitude of q_{1} because 3 times as many lines emerge from q_{2} as enter q_{1}. Then $\left|q_{2}\right|=3\left|q_{1}\right|$, yielding $q_{1} / q_{2}=-1 / 3$. (ii) $q_{2}>0$ because lines emerge from it and $q_{1}<0$ because lines terminate on it.
2. An ion milling machine uses a beam of gallium ions $(m=70 u)$ to carve microstructures from a target. A region of uniform electric field between parallel sheets of charge is used for precise control of the beam direction. Single ionized gallium atoms with initially horizontal velocity of $1.8 \times 10^{4} \mathrm{~m} / \mathrm{s}$ enter a 2.0 cm -long region of uniform electric field which points vertically upward, as shown in Fig. 2. The ions are redirected by the field, and exit the region at the angle θ shown. If the field is set to a value of $E=90 \mathrm{~N} / \mathrm{C}$, what is the exit angle θ ?

Solution A singly-ionized gallium atom has a charge of $q=+e$, and the mass of $m=70 u$, means 70 atomic mass units, where one atomic mass unit is $1 u=1.66 \times 10^{-27} \mathrm{~kg}$. What we really have here is a particle under the influence of a constant force, just as if we were to throw a ball horizontally and watch its trajectory under the influence of gravity (the only difference is that since we have negative charges, things can "fall up"). To start with, we will place the origin at the ion's initial position, let the positive x axis run to the right, and let the positive y axis run straight up. Thus, the particle starts with a velocity purely in the x direction: $\vec{v}=v_{x} \hat{\imath}$. While the particle is in the electric-field-containing region, it will experience a force pointing along the $+y$ direction, with a constant magnitude of $q E$. Since the force acts only in the y direction, there will be a net acceleration only in the y direction, and the velocity in the x direction will remain constant. Once outside the region, the particle will experience no net force, and it will therefore continue along in a straight line. It will have acquired a y component to its velocity due to the electric force, but the x component will still be v_{x}. Thus, the particle exits the region with velocity $\vec{v}=v_{x} \hat{\imath}+v_{y} \hat{\jmath}$. The angle at which the particle exits the plates, measured with respect to the x axis, must be $\tan \theta=v_{y} / v_{x}$. Thus, just like in any mechanics problem, finding the angle is reduced to a problem of finding the final velocity components, of which we already know one. So, how do we find the final velocity in the y direction? Initially, there is no velocity in the y direction, and while the particle is traveling between the plates, there is a net force of $q E$ in the y direction. Thus, the particle experiences an acceleration $a_{y}=\frac{F_{y}}{m}=\frac{q E_{y}}{m}$. The electric field is purely in the y direction in this case, so $E_{y}=90 \mathrm{~N} / \mathrm{C}$. Now we know the acceleration in the y direction, so if we can find out the time the particle takes to transit the plates, we are done, since the the transit time Δt and acceleration a_{y} determine v_{y}, i.e., $v_{y}=a_{y} \Delta t$. Since the x component of the velocity is not changing, we can find the transit time by noting that the distance covered in the x direction must be the x component of the velocity times the transit time. The distance covered in the x direction is just the width of the plates, so $d_{x}=v_{x} \Delta t=2.0 \mathrm{~cm} \Rightarrow \Delta t=d_{x} / v_{x}$. Putting the previous equations together, we can
express v_{y} in terms of known quantities: $v_{y}=a_{y} \Delta t=a_{y} d_{x} / v_{x}=\frac{q E_{y} d_{x}}{m v_{x}}$. Finally, we can now find the angle θ as well: $\tan \theta=\frac{v_{y}}{v_{x}}=\frac{q E_{y} d_{x}}{m v_{x}^{2}}$. And that's that. Now we plug in the numbers we have, watching the units carefully: $\theta=\tan ^{-1}\left[\frac{1.6 \times 10^{-19} \mathrm{C} \cdot 90 \mathrm{~N} / \mathrm{C} \cdot 0.02 \mathrm{~m}}{70 \cdot 1.66 \times 10^{-27} \mathrm{~kg} \cdot\left(1.8 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)^{2}}\right]=\tan ^{-1} 7.6 \times 10^{-3} \approx 0.44^{\circ}$.
3. Two 2.0-g spheres are suspended by $10.0-\mathrm{cm}$-long light strings, see Fig. 3. A uniform electric field is applied in the x direction. If the spheres have charges of $-5.0 \times 10^{-8} \mathrm{C}$ and $5.0 \times 10^{-8} \mathrm{C}$, determine the electric field intensity that enables the spheres to be in equilibrium at $\theta=10^{\circ}$.

Solution The sketch in Fig. 3 gives a free-body diagram of the positively charged sphere. Here, $F_{1}=\frac{1}{4 \pi \epsilon_{0}} \frac{|q|^{2}}{r^{2}}$ is the attractive force exerted by the negatively chaged sphere and $F_{2}=q E$ is exerted by the electric field. This leads to $\sum F_{y}=0 \Rightarrow T \cos 10^{\circ}=m g$ or $T=\frac{m g}{\cos 10^{\circ}}$ and $\sum F_{x}=0 \Rightarrow F_{2}=F_{1}+T \sin 10^{\circ}$ or $q E=\frac{1}{4 \pi \epsilon_{0}} \frac{|q|^{2}}{r^{2}}+m g \tan 10^{\circ}$. At equilibrium, the distance between the two spheres is $r=2\left(L \sin 10^{\circ}\right)$. Thus, the electric field strength required is $E=$ $\frac{1}{4 \pi \epsilon_{0}} \frac{|q|}{4\left(L \sin 10^{\circ}\right)^{2}}+\frac{m g \tan 10^{\circ}}{q}=\frac{8.99 \times 10^{9} \mathrm{~N}^{\mathrm{N}} \mathrm{m}^{2} / \mathrm{C}^{2} 5.0 \times 10^{-8} \mathrm{C}}{4\left[0.100 \mathrm{~m} \sin 10^{\circ}\right]^{2}}+\frac{2.0 \times 10^{-3} \mathrm{~kg} 9.80 \mathrm{~m} / \mathrm{s}^{2} \tan 10^{\circ}}{5.0 \times 10^{-8} \mathrm{C}}=4.4 \times 10^{5} \mathrm{~N} / \mathrm{C}$.
4. Three charges of equal magnitude q are fixed in position at the vertices of an equilateral triangle (Fig. 4). A fourth charge Q is free to move along the positive x axis under the influence of the forces exerted by the three fixed charges. Find a value for s for which Q is in equilibrium. You will need to solve a transcendental equation.

Solution At an equilibrium position, the net force on the charge Q is zero. The equilibrium position can be located by determining the angle θ corresponding to equilibrium. In terms of lengths $s, \frac{\sqrt{3}}{2} a$, and r, shown in Fig. 4, the charge at the origin exerts an attractive force $\frac{1}{4 \pi \epsilon_{0}} \frac{Q q}{\left(s+\frac{\sqrt{3} a}{2}\right)^{2}}$. The other two charges exert equal repulsive forces of magnitude $\frac{1}{4 p i \epsilon_{0}} \frac{Q q}{r^{2}}$. The horizontal components of the two repulsive forces add, balancing the attractive force, $F_{\text {net }}=\frac{1}{4 \pi \epsilon_{0}} Q q\left(\frac{2 \cos \theta}{r^{2}}-\frac{1}{[s+a(\sqrt{3} / 2)]^{2}}\right)=$ 0 . From Fig. 4 it follows that $r=\frac{a}{2 \sin \theta}$ and $s=\frac{a \cot \theta}{2}$. The equilibrium condition, in terms of θ, is $F_{\text {net }}=\frac{1}{4 \pi \epsilon_{0}} \frac{4 Q q}{a^{2}}\left[2 \cos \theta \sin ^{2} \theta-\frac{1}{(\sqrt{3}+\cot \theta)^{2}}\right]=0$. Hence the equilibrium value of θ satisfies $2 \cos \theta \sin ^{2} \theta(\sqrt{3}+\cot \theta)^{2}=1$. One method for solving for θ is to tabulate the left side. To three significant figures a value of θ corresponding to equilibrium is 81.7°, see Table 4. The distance from the vertical side of the triangle to the equilibrium position is $s=\frac{a \cot 81.7^{\circ}}{2}=0.0729 a$. A second zero-field point is on the negative side of the x-axis, where $\theta=-9.16^{\circ}$ and $s=-3.10 a$.
5. Eight solid plastic cubes, each 3.00 cm on each edge, are glued together to form each one of the objects ($i, i i, i i i, i v$) shown in Fig. 5. (a) Assuming each object carries charge with uniform density $400 \mathrm{nC} / \mathrm{m}^{3}$ throughout its volume, find the charge of each object. (b) Assuming each object carries charge with uniform density $15.0 \mathrm{nC} / \mathrm{m}^{2}$ everywhere on its exposed surface, find the charge on each object. (c) Assuming charge is placed only on the edges where perpendicular surfaces meet, with uniform density $80.0 \mathrm{pC} / \mathrm{m}$, find the charge of each object.

Solution (a) Every object has the same volume, $V=8(0 . .030 \mathrm{~m})^{3}=2.16 \times 10^{-4} \mathrm{~m}^{3}$. For each, $Q=\rho V=4.00 \times 10^{-9} \mathrm{C} / \mathrm{m}^{3} 2.16 \times 10^{-4} \mathrm{~m}^{3}=8.64 \times 10^{-13} \mathrm{C}$. (b) We must count

Table 1: Problem 4.

θ	$2 \cos \theta \sin ^{2} \theta(\sqrt{3}+\cot \theta)^{2}$
60°	4
70°	2.654
80°	1.226
90°	0
81°	1.091
81.5°	1.024
81.7°	0.997

the $9.00 \mathrm{~cm}^{2}$ squares painted with charge: (i) $6 \times 4=24$ squares, so $Q=\sigma A=(15.0 \times$ $10^{-9} \mathrm{C} / \mathrm{m}^{2} 24.09 .00 \times 10^{-4} \mathrm{~m}^{2}=3.24 \times 10^{-10} \mathrm{C}$; (ii) 34 squares exposed, so $Q=\sigma A=$ $15.0 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2} 34.09 .00 \times 10^{-4} \mathrm{~m}^{2}=4.59 \times 10^{-10} \mathrm{C}$; (iii) 34 squares, so $Q=\sigma A=$ $15.0 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2} 34.09 .00 \times 10^{-4} \mathrm{~m}^{2}=4.59 \times 10^{-10} \mathrm{C}$; (iv) 32 squares, so $Q=\sigma A=$ $15.0 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2} 32.09 .00 \times 10^{-4} \mathrm{~m}^{2}=4.32 \times 10^{-10} \mathrm{C}$; (c) (i) Total edge length, $\ell=24 \times 0.030 \mathrm{~m}$, so $Q=\lambda \ell=80.0 \times 10^{-12} \mathrm{C} / \mathrm{m} \times 24 \times 0.030=5.76 \times 10^{-11} \mathrm{C}$; (ii) total edge length, $\ell=44 \times 0.030 \mathrm{~m}$, so $Q=\lambda \ell=80.0 \times 10^{-12} \mathrm{C} / \mathrm{m} \times 44 \times 0.030=1.06 \times 10^{-10} \mathrm{C}$; (iii) total edge length, $\ell=64 \times 0.030 \mathrm{~m}$, so $Q=\lambda \ell=80.0 \times 10^{-12} \mathrm{C} / \mathrm{m} \times 64 \times 0.030=1.54 \times 10^{-10} \mathrm{C}$; (iv) total edge length, $\ell=40 \times 0.030 \mathrm{~m}$, so $Q=\lambda \ell=80.0 \times 10^{-12} \mathrm{C} / \mathrm{m} \times 40 \times 0.030=0.960 \times 10^{-10} \mathrm{C}$.

Figure 1: Problem 1.

Figure 2: Problem 2.

Figure 3: Problem 3.

Figure 4: Problem 4.

Figure 5: Problem 5.

