
Prof. Anchordoqui

Problems set # 13 Physics 167 Solutions

1. Counting photons. (i) How many photons are emitted by a 100-watt sodium lamp (550 nm)

in one second? (1 watt = 1 J/s) Assume the lamp is 100% efficient in converting electrical energy

into light. (ii) The absolute threshold of the dark-adapted human eye for the perception of light

at 510 nm has been measured as 3.5× 10−17 J. How many photons does this correspond to?

Solution (i) The energy of each photon is Eγ = hc
λ = (3×108 m/s)(6.62618×10−34 J·s)

550×10−9 m
= 3.61 ×

10−19 J/photon. Using the 100-watt lamp, this is P/Eγ = 100 W/(3.61 × 10−19 J/photon) =

2.77× 1020 photon/s. (ii) The energy of each photon now is Eγ = hc/λ = 3.90× 10−19 J/photon.

Hence, E/Eγ = 3× 10−17 J/(3.90× 10−19 J/photon) = 90 photons.

2. The temperature of a nuclear blast is 107 K. Conclude from this why it is not advised to be

in the line of sight of a nuclear blast.

Solution Using Wien’s displacement law λmax = 2.90×10−3m·K
107 K

= 2.910−10 m = 0.290 nm. This

is in the middle of the X-rays. The light emitted by a blackbody at this temperature would have

a lot of radiant energy density in the X-rays, which can strip valence electrons. This would not be

good for your atoms.

3. Light of wavelength 50 nm strikes a clean metal surface in vacuum, emmiting electrons of

maximum kinetic energy 12.4 eV. What is the maximum wavelength of light that can eject electrons

from this metal, in nm? [Hint: Use hc = 1240 eV · nm to do your calculation].

Solution If λ = 50 nm produces electrons with kinetic energy Ek = hc
λ − ϕw = 12.4 eV, then

using longer and longer wavelengthswe will produce less and less energetic electrons until they have

barely zero kinetic energy 0 = hc
λmax

− ϕw ⇒ λmax = hc/ϕw, where ϕw is the work function. Now,

using the kinetic energy relation we write ϕ = hc
λ −Ek and substituting in the expression for λmax

we have λmax = hc
hc/λ−Ek

= 100 nm.

4. A non-relativistic particle of mass m has a position uncertainty equal to its de Broglie wave-

length. What is the minimum fractional uncertainty in its velocity, ∆v/v?

Solution Heisenber uncertainty principle states that ∆x ∆p ≥ h̄/2, where h̄ = h/2π. The

de Broglie hypothesis states that p = h/λ ⇒ λ = h/p. The non-relativistic momentum is

p = mv ⇒ ∆p = m∆v. The position uncertainty is given in the problem as ∆x = λ. There-

fore, we have ∆x ∆p ≥ h̄/2⇒ λ (m ∆v) ≥ h̄/2⇒ h
mv (m ∆v) ≥ h̄/2⇒ ∆v

v ≥
1

4π

5. (i) Stars behave approximately like blackbodies. Use Wien’s displacement formula to obtain

a rough estimate of the surface temperature of the Sun, assuming that it is an ideal blackbody as
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Figure 1: Solar energy incident at Earth’s atmosphere and surface. The yellow band is the radiation

incident at the top of the atmosphere, while the red band is the radiation at Earth’s surface,

diminished by the atmospheric absorbers shown. The radiation approximates a blackbody curve.

These data are from the American Society for Testing and Materials (ASTM) Terrestrial Reference

Spectra.

suggested by the ASTM data shown in Fig. 1 and that evolution on Earth worked well (i.e., that

the human eye uses optimal the light from the Sun). (ii) The solar constant (radiant flux at the

surface of the Earth) is about 1.365 kW/m2. Find the effective surface temperature of the Sun

(iii) Assuming that the surface of Neptune and the thermodynamics of its atmosphere are similar

to those of the Earth estimate the surface temperature of Neptune. Neglect any possible internal

source of heat. [Hint: Astronomical data which may be helpful: radius of Sun R� = 7 × 105 km;

radius of Neptune RN = 2.2× 104 km; mean Sun-Earth distance rSE = 1 AU = 1.5× 108 km; mean

Sun-Neptune distance rSN = 4.5× 109 km.]

Solution We can obtain a first estimate of the surface temperature of the Sun from the sensi-

tivity of the human eye to light in the range 400 − 700 nm. Assuming that the evolution worked

well, i.e. that the human eye uses optimal the light from the Sun, and that the atmosphere is for

all frequencies in the visible range similarly transparent, we identify the maximum in Wien’s law

with the center of the frequency range visible for the human eye. Thus we set λmax,� ≈ 550 nm,

and obtain T� ≈ 5270 K for the surface temperature of the Sun. (ii) The bolometric luminosity L

of a star is given by the product of its surface A = 4πR2 and the radiation emitted per area σT 4,

i.e., L = 4πR2σT 4. The radiant flux is defined by F = L/A, so that we recover the well known



inverse-square law for the energy flux at the distance r > R outside of the star, F = L/(4πr2). The

validity of the inverse-square law F (r) ∝ r−2 relies on the assumptions that no radiation is absorbed

and that relativistic effects can be neglected. The later condition requires, in particular, that the

relative velocity of observer and source is small compared to the velocity of light. The energy flux

received from the Sun at the distance of the Earth, rSE = 1 AU, is equal to F = 1365 W/m2. The

solar luminosity follows then as L� = 4πd2F = 4× 1033 erg s−1, and serves as a convenient unit in

stellar astrophysics. The Stefan-Boltzmann law can then be used to define, with R� ≈ 7×1010 cm,

the effective temperature of the Sun, T� ≈ 5780 K. (iii) The average temperature on the surface

of Neptune is TN = L�/(4πr
2
Nσ) = 73 K.


