

Often Only Seeing a Point of Light

Stars are so small compared to their distance to us that we almost never have the resolution to see their sizes and details directly point sources We deduce everything by measuring the amount of light (brightness) at different wavelengths (color, spectra)

Stars take millions or even billions of years to go through their life stages but we rarely see a single star change

Observing many different stars lets us figure out the sequence of a single stars life

One of the Most Basic Problems

Star of given APPARENT BRIGHTNESS could be either A. very luminous star far away B. low luminosity star closer by DISTANCE to the star matters!

Inverse Square Law of Brightness

Apparent Brightness $I_{0} / 4 \pi(\text { distance })^{2}$

If you quadruple (x4) your distance to a light source and look again, how much dimmer does it appear?
A. one-half as bright as originally
B. one-fourth as bright
C. one-sixteenth as bright
D. unchanged, since really same light

If you quadruple (x4) your distance to a light source and look again, how much dimmer does it appear?
A. one-half as bright as originally
B. one-fourth as bright
C. one-sixteenth as bright
D. unchanged, since really same light

What is parallax?

A. The total amount of power that a star emits into space
B. A measurement of the separation of two stars in a visual binary
C. A classification of a star based on its temperature
D. The shift of a stars apparent position due to the motion of the Earth

What is parallax?

A. The total amount of power that a star emits into space
B. A measurement of the separation of two stars in a visual binary
C. A classification of a star based on its temperature
D. The shift of a stars apparent position due to the motion of the Earth

The b1ggest ground-based tolescopes with adaptive
 ェtary poritions to accuracios of about 0.1 arcseconde. How Ias away can thoy may the positions of stase จia parallax?
A. 1 pc
B. 10 pc
C. 100 pc
D. 1000 pc

B. maximum distance is set hy the acoureoy with which you can measure positions in the sky (space does hetter than ground)
Distance $(\mathrm{pc})=1 / 0.1$ arsec $=10 \mathrm{pc}=32.6 \mathrm{ly}$
d (in parsecs) $=1 / \mathrm{p}$ (in arsec)

Brad an Angelina are two stars that have the same apparent brightness Brad has a larger parallax angle than Angelina
Which star is more luminous?
A. Brad
B. Angelina
C. Not enough information to know

- Brad has a larger parallax angle - he is closer to us
- If they both have the same APPARENT BRIGHTNESS, but Brad is closer...
B. Angelina must be more luminous

Stars: Temperature and Color

- Temperature vs heat
- Temperature vs color
- Colors/spectra of stars

Femperature

Longer arrows mean higher average speed
lower T
higher T

Temperature is proportional to the average kinetic energy per molecule

$$
K=\frac{1}{2} m v^{2}=\frac{3}{2} k T
$$

$\mathrm{k}=$ Boltzmann constant $=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}=8.62 \mathrm{X} 10^{-5} \mathrm{eV} / \mathrm{K}$

Temperature ∇s. Heat

Lower T Higher T

Longer arrows mean higher average speed

Temperature is proportional to the average kinetic energy per molecule

Heat (thermal energy) is proportional to the total kinetic energy in box

> Less heat More heat
same T

Luminosity of a Black Body Radiator

For the spherical object, the total power radiated = the total luminosity is:

$$
\mathrm{L}=4 \pi \mathrm{R}^{2} \sigma \mathrm{~T}^{4}
$$

T = temperature
$\sigma=$ Stephan-Boltzman constant $=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$
$\mathrm{R}=$ radius

Humans emit blackhody radiaton in the infrared

Wien's law

- Cooler objects produce radiation which peaks at lower energies = longer wavelengths = redder colors
- Hotter objects produce radiation which peaks at higher energies = shorter wavelengths = bluer colors
- Wavelength of peak radiation: Wien Law $\lambda_{\max }=2.9 \times 10^{6} / T(\mathbb{K})$ [nm]

A objects color depends on its surface temperature

Wavelength of peak radiation:
Wien Law $\lambda_{\max }=2.9 \times 10^{6} / T(\mathrm{~K})$ [nm]

What can we learn from a stars color?

The color indicates the temperature of the surface of the star

Wavelength (nm)
This star looks red

Wavelength (nm)
This star looks yellow-white

Wavelength (nm) \longrightarrow This star looks blue-white

Observationally, we measure colors by comparing the brightness of the star in two (or more) wavelength bands

This is the same way your eye determines color, but the bands are different

Use UVRI filters to determine apparent magnitude at each color

The spectrum of atar is primarily determined by
A. The temperature of the star's surface
B. The star's distance from Earth
C. The density of the star's core
D. The luminosity of the star

The spectrum of atar is primarily determined by

A. The temperature of the star's surface
B. The star's distance from Earth
C. The density of the star's core
D. The luminosity of the star

Stars are assigned a spectral type based on their spectra

> The spectral classification essentially sorts stars according to their surface temperature
> The spectral classification can also use spectral lines

Spectral Classification: O B A F K M

 Typical spectrum Hottest stars: 0 B mostly helium lines, few hydrogen linesHot stars: A F helium, hydrogen lines

Cooler stars: G hydrogen, heavier atoms

Coolest stars: M molecules, (complex absorption bands)

OBAFGKM

How to remember the sequence?

OBAFGKM

How to remember the sequence?

Oh Be A Fine Girl/Guy, Kiss Me

Spectra help classify stars

Sequence subdivided by attaching one numerical digit, for example: $\mathbb{F O}$, F1, F2, F3 ... F9 where F1 is hotter than F3. Sequence is 0 ... 09, B0, B1, ..., B9, A0, A1, ... A9, F0, ...

Which is cooler?

A. star with spectral type G2?
B. a star with spectral type A6?
surface temperature

$25,000 \mathrm{~K}$						$\xrightarrow{3,500 \mathrm{~K}}$
\bigcirc	B	A	F	G	K	M

This correlates with the color of the star

Main sequence stars

Burning hydrogen in their cores

Stellar masses decrease downward

Temperatures are hotter for more massive stars (more gravitational pressure \rightarrow higher T, remember Equation of State: PV = nkT)

More luminous (higher $T \rightarrow$ much higher emitted power)

Lifetimes on Main Sequence (MS)

- Stars spend 90% of their lives on MS
- Lifetime on MS = amount of time star fuses hydrogen (gradually) in its core
- For Sun (G), this is about 10 billion years
- For more massive stars (OBAF), lifetime is (much) shorter
- For less massive stars (KM), lifetime is longer

High Mass:
High Luminosity
Short-Lived
Large Radius
Hot
Blue
Low Mass:
Low Luminosity
Long-Lived

Small Radius

Cool
Red

George and Ale are two main sequence stars; George is an M star and Abe is a B star Which is more massive? Which is redder in color?
A. George is more massive and redder
B. Abe is more massive and redder
C. George is more massive; Abe is redder
D. Abe is more massive; George is redder

George and Abe are two main sequence stars; George is an M star and Ahe is a B star Which is more massive? Which is redder in color?
A. George is more massive and redder
B. Ahe is more massive and redder
C. George is more massive; Ale is redder
D. Abe is more massive; George is redder

QUERY 17

Suppose that you have used a Cepheid variable star as a "standard candle" to compute the distance to a particular galaxy

The distance computed is $\mathrm{d}=35 \mathrm{Mpc}$. Much to your embarrassment, you find
that the Cepheid variable star has a luminosity I that is actually twice
the luminosity you assumed when making your calculation
Is the galaxy closer or farther than you originally calculated?

What is the true distance to the galaxy?

QUERY 17

For a standard candle of assumed luminosity I and measured flux F, the distance is

$$
\begin{equation*}
d=\sqrt{\frac{L}{4 \pi F}} \tag{a}
\end{equation*}
$$

When you increase your assumed Iuminosity I, you increase the computed distance, thus, the galaxy is farther than you originally calculated Originally, using a false luminosity $I_{\text {false, }}$ you computed
(b) $d_{\text {false }}=\sqrt{\frac{L_{\text {false }}}{4 \pi F}}=35 \mathrm{Mpc}$

However, the true distance, using the correct luminosity $I_{\text {true }}=2 L_{\text {false }}$ is

$$
\begin{equation*}
d_{\text {true }}=\sqrt{\frac{L_{\text {true }}}{4 \pi F}}=\sqrt{\frac{2 L_{\text {false }}}{4 \pi F}}=\sqrt{2} \times \sqrt{\frac{L_{\text {false }}}{4 \pi F}} . \tag{c}
\end{equation*}
$$

Comparing equation (c) with equation (b), we find that

$$
\begin{equation*}
d_{\text {true }}=\sqrt{2} \times d_{\text {false }}=\sqrt{2} \times 35 \mathrm{Mpc}=49.5 \mathrm{Mpc} \tag{d}
\end{equation*}
$$

QUERY 18

The "lifespan" of the Sun is 10 billion years; that is, at the time it formed, it contained enough hydrogen to power nuclear fusion for 10 billion years

The star Altair, like the Sun, is powered by the fusion of hydrogen to helium
The mass of Altair is $M_{\text {Altair }}=1.7 \mathrm{M}_{\odot}$
The luminosity of Altair is $\mathrm{I}_{\text {Altair }}=10.7 \mathrm{I}_{\odot}$
Is the lifespan of Altair shorter or longer than that of the Sun?
What is the approximate lifespan of Altair, in billions of years?

QUERY 18

The lifespan of a star is directly proportional to its mass;
The mass of a star represents its fuel supply, so doubling the mass, all other things being equal, will double its lifespan

In addition, the lifespan of a star is inversely proportional to its luminosity The luminosity of a star tells you how fast it is using its fuel supply, so doubling the luminosity, all other things being equal, will have its lifespan If we scale everything by the Sun's properties, we can write a star's lifespan $t_{\text {star }}$ as

$$
t_{\mathrm{star}}=t_{\mathrm{sun}}\left(\frac{M_{\mathrm{star}}}{M_{\mathrm{sun}}}\right)\left(\frac{L_{\mathrm{sun}}}{L_{\mathrm{star}}}\right)
$$

with $t_{\text {sun }}=10$ billion years, as given in the problem
Since Altair's Iuminosity is more than 10 times the Sun's luminosity, while its mass is only 70% greater than the Sun's mass, the lifespan of Altair will be shorter than that of the Sun

Thus, Altair's lifespan will be

$$
t_{\text {altair }}=10 \text { billion years }(1.7)\left(\frac{1}{10.7}\right)=1.6 \text { billion years }
$$

QUERY 19

The surface of the Sun acts like a fairly good black body (even though it hardly looks black)

If the surface temperature of the Sun is $5,800 \mathrm{~K}$, find the peak wavelength of the black body radiation

QUERY 19

The surface of the Sun acts like a fairly good black body (even though it hardly looks black)

If the surface temperature of the Sun is $5,800 \mathrm{~K}$, find the peak wavelength of the black body radiation

The effective temperature of the Sun is 5778 K
Using Wien's law,

$$
\lambda_{\max }=2.9 \times 10^{6} / \mathrm{T}(\mathrm{~K})[\mathrm{nm}]
$$

one finds a peak emission per nanometer (of wavelength) at a wavelength of about 500 nm , in the green portion of the spectrum near the peak sensitivity of the human eye

