

What is Science

Science has a two-fold definition
A body knowledge
A process of learning about nature

Mathematics is a tool for science
Analyze, test and quantify theories

Scientific theory

Begins with a hypothesis

$>$ Tries to describe and predict the natural world
$>$ Explain Observations/experiments

- Possibly contributing to or encompassing physical laws

But theories may break down

$>$ May not be able to explain new observations/ experiments
$>$ A new hypothesis is then proposed to modify or replace current explanations

- Must also be under observational/experimental scrutiny

Occam's Razor

$>$ When there exist two competing theories that make exactly same prediction, the simpler one is the better
$>$ A scientific theory should be
\checkmark simple
\checkmark without fewest unproven assumptions
\checkmark verificable

An Harly Scientific Question

Is the Sun or the Farth at the center of our universe?
$>$ The answer is neither

- but which view best explains the motions of
the stars, planets, and Sun in our sky?
$>$ How this question was tackled over the years gives insight as to how science is performed
- also gives a historical context to astronomy

Farly Astronomy and Planetary Motion Aristotle

- Farth is a sphere that is positioned at center of theuniverse
- Geocentric cosmology

Aristarchus

- Sun is at center of the universe
- Sun and stars are stationary
- Farth and planets revolve around the sun

In contemporary Greece, Aristotle was far more influential than Aristarchus

- the Farth-centered universe became the accepted norm Observational evidence:
- Farth is not felt to move beneath ones feet, so it must be stationary
- Stars, planets, and Sun seem to revolve around the Farth

Claudius Ptolemy

$90 \mathrm{AD}-168 \mathrm{AD}$

Ptolemaic Model

Claudius Ptolemaeus

Devised a Geocentric model to describe motion of heavenly bodies
Based on teachings of Aristotle and other Greek scholars

Motion of celestial objects must have perfect uniform circular motion

Hxplained observed retrograde motion of the planets

Retrograde motion

9

Retrograde motion of Mars

Object seems to reverse its general direction with respect to background stars

Hxample w Path of Mars

Retrograde motion A Geocentric Explanation

$>$ In order to account for retrograde motion Ptolemaic model incorporates epicycles

- تpicycle orbits on a circle called the deferent
- Planet moves along epicycle

Retrograde motion A Geocentric Explanation

> Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Retrograde motion A Geocentric Explanation

> Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Retrograde motion A Geocentric Explanation

> Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Retrograde motion A Geocentric Explanation

> Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Retrograde motion A Geocentric Explanation

> Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Retrograde motion A Geocentric Explanation

$>$ Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Retrograde motion A Geocentric Explanation

$>$ Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Retrograde motion A Geocentric Explanation

> Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Retrograde motion A Geocentric Explanation

> Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Retrograde motion A Geocentric Explanation

> Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Retrograde motion A Geocentric Explanation

$>$ Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Retrograde motion A Geocentric Explanation

$>$ Ptolemaic model reasonably explains retrograde motion
$>$ Further predictions of planetary positions using Ptolemaic model did not match observations

Placing the Sun at the Center

Ideas of Aristarchus were revived
\checkmark heliocentric cosmology

Planets, including Farth, orbit the Sun

Hasily explains complex motions of the planets

Copernican Model

- Devised a heliocentric model of universe
© Sun is the center, and planets revolved around it in perfect circles
- Correctly placed the position of the known planets of the time Mercury, Venus, Farth, Mars, Jupiter, Saturn
- The Moon orbits the Farth
- Stars are fixed
- Hlegantly describes retrograde motion
- Hrror is introduced due to assumption that orbits are perfect circles

Retrograde motion

A Heliocentric Explanation

Hxplained due to Farth being closer to Sun than Mars and orbiting more rapidly 1-4 w Mars appears to move eastward with respect to background stars 4-6 w Farth passes Mars-Mars seems to reverse direction 6-9 w تarth passed Mars-Mars resumes eastward motion

Planetary Configurations

Inferior planets (Mercury, Venus)

Inferior conjunction: Planet in line with Sun \&e Farth on same side of Sun as Farth Superior conjunction: Planet in line with Sun \&e Farth on opposite side of Sun to Farth Hlongation: Planet makes 90 degree angle between Sun and Farth

Planetary Configurations

Superior planets (Mars, Jupiter, Saturn, Uranus, Neptune)
Conjunction: Planet in line with Sun \&e Farth on opposite side of Sun to Farth Opposition: Planet in line with Sun \&e Farth on same side of Sun as Farth

Heliocêntrico

Geocêntrico

Heliocêntrico

Heliocêntrico
Geocêntrico

Heliocêntrico

Heliocêntrico

Heliocêntrico

Heliocêntrico

Heliocêntrico

Geocêntrico

Heliocêntrico
Geocêntrico

Heliocêntrico

Heliocêntrico

Synodic and sidereal periods

	Synodic (year)	Sidereal (year)
Mercury	0.318	0.241
Venus	1.599	0.616
Earth	-	1.0
Mars	2.136	1.9
Jupiter	1.092	11.9
Saturn	1.035	29.5
Uranus	1.013	84.0
Neptune	1.008	164.8

SynodicYear

~ time between consecutive conjunctions of planet with Harth

Sidereal Year

w time for that planet to make one full rotation around Sun with respect to background stars

Tycho Brahe (1546-1601)

Tycho's cosmos

Tycho had made most accurate observations obtained at that time on planets

Tycho's model of heavens had planets orbiting around Sun and Sun orbiting around Earth at center of the Universe

Johannes Kepler (1571-1630)

Kepler's Laws

Defined by Johannes Kepler

- Using Tycho's observations

Assumption planetary orbits are circular introduces errors when making predictions

Invoking elliptical orbits provides a far better description

Geometric Aside

Hlliptical \#ccentricity

$>$ Fccentricity measures the deviation of a circle
$>$ As eccentricity e increases the shape elongates

$>$ aphelion distance - distance farthest from Sun
$>$ perihelion distance - distance closest to Sun

Geometry of ellipses

Kepler's First Law

The orbit of a planet around the Sun is an ellipse, with the Sun at one focus

Kepler's First Law

Focus 1 Sun

Focus 2 -
Empty

Kepler's First Law

Focus 1 Sun

Focus 2 -
Empty

Kepler's First Law

Focus 1 Sun

Focus 2 Empty

Kepler's First Law

Focus 1 -
Sun

Focus 2 -
Empty

Kepler's First Law

Focus 1 Sun

Focus 2 Empty

Kepler's First Law

Focus 1 Sun

Focus 2 Empty

Kepler's First Law

Focus 1 Sun

Focus 2 -
Empty

Kepler's Second Law

A line joining a planet and Sun sweeps out equal areas in equal intervals of time

 -

 }
 \section*{Kepler's Second Law
 \section*{Kepler's Second Law

 29}

 29}

$$
\square
$$ -

.

Abstract

F

(.
\qquad
 Coser

O O , O \square \qquad
\qquad
 anepier s Deconc LevN
}

Abstract

（
震
R

$$
\square
$$

－ － 0 ．

\author{

IEpler＇s Second Iaw

}

\author{

IEpler＇s Second Iaw

}
 $+$

 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

（

\begin{abstract}

Abstract

．

\end{abstract}

星
－ n ， O
 \log $+$

，

－
－
－

－ －
－
－
 Tor
 \square

正
 －

2r

Kepler＇s Second Law AGPLLS SGCOLC LEWW

． ．

 正

IEDIOR's Second Law
.
IEpler's Second Iaw
 ．

\section*{IEPDer＇s Second Law

（GPLED＇S

Kepler＇s Second Law ，

$$
1
$$

（e）

 ．
 ．

}
，
.
位
㕍

$$
-
$$

f

$$
0
$$

Abstract

\qquad
\qquad
\qquad

Kepler＇s Second Law
 Kepler＇s Second Law
 \section*{$$
5
$$

}. － ．

， － $+$

震

－
－
\bullet \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
年 （2） （2nern ． （2nern

\qquad
 O

1
 （2nern （2nern ． －

－ （2nern （2nern \square为
 \square ， O

 IKeplers s second IeN
 \section*{\title{
Kepler's Second Law
 \section*{\title{
Kepler's Second Law

 Kepler's Second Law
}}

 Kepler's Second Law
}}

-

Kepler's Third Law

The square of a planet's sidereal period around the Sun is directly proportional to the cube of the length of its orbit's semimajor axis

$$
\left(T^{2} \propto R^{3}\right)
$$

Galileo Galilei (1564-1642)

Galileo Galilei

$>$ Made many discoveries that supported heliocentric view and Kepler's laws
$>$ Was the first to make use of and published results using a telescope
> Discovered moons of Jupiter
> Discovered that Venus has phases

Galileo Observations of Venus

$>$ Venus appears small at gibbous phase and large at crescent phase

- Note: Ptolemaic model does not predict Gibbous nor Full phases
$>d$ is diameter in units of arcsec
- the farther an object is the smaller its angular size

Phases of Venus

© In the Ptolemaic system (left), Venus always lies between the Sun and the Harth and it would always show a crescent phase

- The Copernican system (right) predicts a full range of phases for Venus as it passes from between the Sun and the Farth to being on the opposite side of the Sun from the Farth

$>$ Because of orbital mechanics, a planet with a superior orbit (one that orbits the Sun further away than Earth) will not go through phases, as we see it, because the planet won't cast a shadow from our perspective
$>$ Earth will go through phases from the point of view of any planet that has an orbit superior to earth
$>$ This extends to the relative position of any planet
> Somebody on Jupiter would see phases on Mars, but not on Saturn
> Somebody on Neptune could see phases on all seven of the other planets
$>$ Mars is a partial exception to the superior orbit rule
$>$ You will not see phases on Mars from Mars' shadow of sunlight, but Mars is close enough to Earth that Earth's shadow can cause some partial phasing
> This can make Mars appear irregular (or gibbous) because of Earth's interference with the light from the sun
> Planets further out into the solar system are too distant for Earth to interfere in this way

May 6, 2018

Galilean Moons of Jupiter

$>$ Discovered that Jupiter has moons
$>$ Confirmed orbits of moons obey Kepler's laws $\left(T^{2} \propto R^{3}\right)$

What is the motion called when a planet seems to be moving westward in the sky?
A. retrogade
B. parallax
C. reverse parallax

What is the motion called when a planet seems to be moving westward in the sky?

A. retrogade

B. parallax
C. reverse parallax

In Copernican system, what is shape of planets' orbits?
A. elipse
B. parabola
C. circle

In Copernican system, what is shape of planets' orbits?
A. elipse
B. parabola
C. circle

On what planet does a "year" last only 88 days?

A. Mars
B. Mercury
C. Jupiter

On what planet does a "year" last only 88 days?

A. Mars
B. Mercury
C. Jupiter

In what year did Galileo first use an optical telescope to

 study the moon?A. 250 BCE

B. 1611
C. 1945

In what year did Galileo first use an optical telescope to

 study the moon?A. 250 BCE

B. 1611
C. 1945

Galileo discovered something about Venus with his telescope that shook the old theories.

Which of the following was Galileo's discovery?
A. Venus surface is similar to Farth
B. Venus has phases like the moon
C. Venus has rings

Galileo discovered something about Venus with his telescope that shook the old theories.

Which of the following was Galileo's discovery?
A. Venus surface is similar to झarth
B. Venus has phases like the moon
C. Venus has rings

Heliocentric means around:
A. Sun
B. Barth
C. Moon
D. Jupiter

Heliocentric means around:
A. Sun
B. Farth
C. Moon
D. Jupiter

The greatest distance of a planet from the sun is called what? Is it the planet's:

A. aphelion

B. perihelion
C. helix
D. eccentricity

The greatest distance of a planet from the sun is called what? Is it the planet's:

A. aphelion

B. perihelion
C. helix
D. eccentricity

According to Kepler's Laws, the cube of the mean distance of a planet from the sun is proportional to the:
A. area that is swept out
B. cube of the period
C. square of the period
D. fourth power of the mean

According to Kepler's Laws, the cube of the mean distance of a planet from the sun is proportional to the:
A. area that is swept out
B. cube of the period
C. square of the period
D. fourth power of the mean

A. ellipses

B. parabolas
C. hyperbolas
D. squares

A. ellipses

B. parabolas
C. hyperbolas
D. squares

A. Yes

B. No

A. Yes

B. No

With a telescope here on Harth, would we ever see Jupiter in a crescent phase?
A. Yes
B. No

With a telescope here on Farth, would we ever see Jupiter in a crescent phase?

A. Yes

B. No

61 QUERY 3

(i) Mars is 1.5 AU away from the Sun. What is its orbital period?
(ii) Jupiter's mean orbital radius is 5.2 AU. What is the period of Jupiter's orbit around the Sun?
[AU is the abbreviation for astronomical units, where $1 \mathrm{AU}=1.5 \times 10^{11} \mathrm{~m}$ is the mean Earth-Sun distance]

QUERY 3

(i) Mars is 1.5 AU away from the Sun. What is its orbital period?
(ii) Jupiter's mean orbital radius is 5.2 AU. What is the period of Jupiter's orbit around the Sun?
[AU is the abbreviation for astronomical units, where $1 \mathrm{AU}=1.5 \times 10^{11} \mathrm{~m}$ is the mean Earth-Sun distance]
Kepler's constant

Kepler's law $\quad R^{3}=K T^{2}$
Since Earth is at 1 AU and it takes 1 year to go around the $\operatorname{Sun}-K=\frac{\mathrm{AU}^{3}}{\mathrm{yr}^{2}}$
(i) Period of Mars is m $T=\sqrt{R^{3} / K}=1.84 \mathrm{yr}$
(ii) Period of Jupiter is $T=\sqrt{R^{3} / K}=11.85 \mathrm{yr}$

63 QUERY 4

Earth has an orbital period of 365 days and its mean distance from the Sun is $1.495 \times 10^{8} \mathrm{~km}$. The Pluto's mean distance from the Sun is $5.896 \times 10^{9} \mathrm{~km}$. Using Kepler's third law, calculate Pluto's orbital period in Earth days

64 QUERY 4

Earth has an orbital period of 365 days and its mean distance from the Sun is $1.495 \times 10^{8} \mathrm{~km}$. The Pluto's mean distance from the Sun is $5.896 \times 10^{9} \mathrm{~km}$. Using Kepler's third law, calculate Pluto's orbital period in Earth days What we know $T_{E}=365$ days $\quad r_{E}=1.495 \times 10^{8} \mathrm{~km} \quad r_{P}=5.896 \times 10^{9} \mathrm{~km}$

$$
\begin{aligned}
& \left(\frac{T_{E}}{T_{P}}\right)^{2}=\left(\frac{r_{E}}{r_{P}}\right)^{3} \\
& \left(\frac{365 \text { days }}{T_{P}}\right)^{2}=\left(\frac{1.495 \times 10^{8} \mathrm{~km}}{5.896 \times 10^{9} \mathrm{~km}}\right)^{3} \\
& \left(\frac{365 \text { days }}{T_{P}}\right)^{2}=\left(2.54 \times 10^{-2}\right)^{3} \\
& \left(\frac{1.32 \times 10^{5} \text { days }^{2}}{T_{P}^{2}}\right)=1.63 \times 10^{-5} \\
& T_{P}=\sqrt{\frac{1.32 \times 10^{5} \text { days }^{2}}{1.63 \times 10^{-5}}}
\end{aligned}
$$

