

The alteration between day and night

the succession of the seasons

and the observation of the celestial bodies and their movements in the sky

$>$ We now know that we experience day and night because of Earth's rotation around itself
$>$ We experience seasons because of tilt of Earth's axis of rotation as Earth moves around Sun in a year
\geqslant Precise understanding of these phenomena came about through careful observations

4

Astronomy has its roots in the work done by the Babylonian and Egyptian civilizations

The oldest dial known 1500 BCE
The sundial is considered to be the first scientific instrument

Over a thousand years BCE the Babylonians already had extensive astronomical records with good measurements of time and of Moon positions as well as stars and planets in the sky from which we inherit both our systems of angular and time measurement: the 360° circle and the time units of $24 \mathrm{hrs}, 60$ minutes, and 60 seconds

Egyptian Sun Clock

OBELISK

The Babylonian Calendar was a lunisolar Calendar based on the lunar phases

It was used in Babylon and surrounding regions for administrative, commercial, and ritualistic purposes

Babylonian year consisted of 12 lunar months each beginning on the evening (after sunset) of the first observed (or computed) lunar crescent after the astronomical new moon

The year began around the spring equinox and to keep the calendar in step with the seasons an intercalary month was inserted at (semi-)regular intervals

At first the intercalary months were inserted at irregular intervals based on the observed discrepancies between the calendar and the seasons but after about 500 BCE a regular intercalation scheme consisting of seven intercalary months in a 19-year cycle was adopted

Just like Earth, the Moon rotates on its own axis and experiences daylight and dark cycles The Moon's day and night cycles are a little longer than Earth's:
the Moon spins on its axis once every 27.3 days

The Moon's period of rotation matches the time of revolution around Earth This implies that it takes the Moon the same length of time to turn once on its axis as it takes it to go once completely around the Earth

Just like Earth, the Moon rotates on its own axis and experiences daylight and dark cycles The Moon's day and night cycles are a little longer than Earth's:
the Moon spins on its axis once every 27.3 days

The Moon's period of rotation matches the time of revolution around Earth This implies that it takes the Moon the same length of time to turn once on its axis as it takes it to go once completely around the Earth

Just like Earth, the Moon rotates on its own axis and experiences daylight and dark cycles The Moon's day and night cycles are a little longer than Earth's:
the Moon spins on its axis once every 27.3 days

The Moon's period of rotation matches the time of revolution around Earth This implies that it takes the Moon the same length of time to turn once on its axis as it takes it to go once completely around the Earth

Just like Earth, the Moon rotates on its own axis and experiences daylight and dark cycles The Moon's day and night cycles are a little longer than Earth's:
the Moon spins on its axis once every 27.3 days

The Moon's period of rotation matches the time of revolution around Earth This implies that it takes the Moon the same length of time to turn once on its axis as it takes it to go once completely around the Earth

Just like Earth, the Moon rotates on its own axis and experiences daylight and dark cycles The Moon's day and night cycles are a little longer than Earth's:
the Moon spins on its axis once every 27.3 days

The Moon's period of rotation matches the time of revolution around Earth This implies that it takes the Moon the same length of time to turn once on its axis as it takes it to go once completely around the Earth

Just like Earth, the Moon rotates on its own axis and experiences daylight and dark cycles The Moon's day and night cycles are a little longer than Earth's:
the Moon spins on its axis once every 27.3 days

The Moon's period of rotation matches the time of revolution around Earth This implies that it takes the Moon the same length of time to turn once on its axis as it takes it to go once completely around the Earth

This means that Earth observers always see the same side of the Moon (called the "nearside")

The side we do not see from Earth, called the "farside," has been mapped during lunar missions

The Moon looks different during its revolution around the Earth

0\% illuminated

New Moon

The Moon looks different during its revolution around the Earth

14.6\% illuminated

Waxing Crescent

The Moon looks different during its revolution around the Earth

50\% illuminated

First Quarter

The Moon looks different during its revolution around the Earth

The Moon looks different during its revolution around the Earth

The Moon looks different during its revolution around the Earth

85.4\% illuminated

Waning Gibbous

The Moon looks different during its revolution around the Earth

50\% illuminated

Third Quarter

The Moon looks different during its revolution around the Earth

14.6\% illuminated

Waning Crescent

Phases of the Moon

- The center ring shows the moon as it revolves around the Earth, as seen from above the north pole
- Sunlight illuminates half the Farth and half the moon at all times
- But as the moon orbits around the Farth, at some points in its orbit the sunlit part of the moon can be seen from the Earth, and at other points, we can only see the parts of the moon that are in shadow
- The outer ring shows what we see on the Farth during each corresponding part of the moon's orbit

The Moon's sidereal orbital period (the sidereal month) is roughly 27.3 days
Time interval that the Moon takes to orbit 360° around the Earth relative to the "fixed" stars

Period of lunar phases (the synodic month -> full moon to full moon period) is about 29.5 days This is because while Moon is orbiting Earth -> Earth is progressing in its orbit around the Sun

14
Lunar Eclipse

CBC NEWS
$>$ Earth's atmosphere scatters blue light
\geqslant Red light is refracted and falls onto the Moon

As we've already mentioned $\boldsymbol{\sim}$ lunar eclipse always happens at a Full Moon

However w not every Full Moon comes with a lunar eclipse

Here is why w Moon's orbit is tilted at about five degrees to the Earth's orbit, so our natural satellite usually passes above or below the Earth's shadow at aFull Moon.

On average - there are two lunar eclipses per year

The maximum number of lunar eclipses in one year is five r though it happens quite rarely

The last time five lunar eclipses occurred in one calendar year was in 1879 and the next time such an event will happen is in 2132

Solar Fclipse

SUN, MOON, AND EARTH
 LINE UP, WITH THE MOON INTHE MIDDLE

$$
a^{r^{r^{r r o(0 ~} \rho ر},}
$$

 . 1 \square

$>$ Most calendar years have two solar eclipses
$>$ The maximum number of solar eclipses that can take place in the same year is five, but this is rare
$>$ Only about 25 years in the past 5,000 years have had five solar eclipses
$>$ The last time this happened was in 1935, and the next time will be in 2206

Astronomy 2500 Years Ago

Aristarchus realized that when the Moon was exactly half illuminated it formed a right triangle with the Earth and the Sun

By observing the angle between the Sun and Moon
the ratio of the distances to the Sun and Moon could be deduced using a form of trigonometry

Fig. 25.

After several pages of geometry...

$18 \mathrm{D}_{\mathrm{m}}<\mathrm{D}_{\mathrm{s}}<20 \mathrm{D}_{\mathrm{m}}$

What shape is the Earth? Key Concepts

1. Aristotle (4 ${ }^{\text {th }}$ Century BCE) was the first to demonstrate the Earth is spherical
2. Eratosthenes (ca. 200 BCE) was the first to determine the size of the Earth

Aristotle (4th Century BCW): First to give reasons why the Warth is spherical

Aristotle contemplating the Bust of Homer,
Rembrandt (CE 1653)

Aristotle's lst reason

You see different stars from the south than from the north

Big Dipper

Southern Cross

If the تarth were flat (as Thales believed)

Big Dipper

Shape of Farth's shadow

During a lunar eclipse, Earth's shadow is always circular
Only object whose shadow is always circular is a sphere

Hratosthenes (ca. 200 BC): First to find the size of the spherical Farth

.

[^0]Hratosthenes (ca. 200 BC): First to find the size of the spherical Farth

Eratosthenes was the head librarian
of the famous Library of Alexandria

$>$ What Eratosthenes read: At noon on June 21, Sun is at Zenith seen from Syene
$>$ What he saw: At noon on June 21, Sun is 7.2 south of Zenith seen from Alexandria
$>$ What he assumed: Earth is spherical; Sun is very, very far away

Eratosthenes then divided 360° by $7^{\circ} 12^{\prime}$ and determined that $y^{\circ} 12^{\prime}$ was $1 / 50$ th of a circle Since the distance between and Syene and Alexandria was measured to be 5,000 stades and these two places lie on the same meridian geometric argument -> circumference of the Earth ~ 250,000 stades

The best modern guess is that 1 stadia $=185 \mathrm{~m}$ Putting Eratosthenes result In modern units -> circumference of the Earth is $46,250 \mathrm{~km}$

Modern measurement -> 40,070 km
Eratosthenes estimate is only about 15% too large!

If the Farth-Moon distance were greater than
the Farth-Sun distance would an observer on the Farth
be able to see the Moon in its first quarter phase?
A. Yes
B. No

If the Barth-Moon distance were greater than
the Farth-Sun distance would an observer on the Farth
be able to see the Moon in its first quarter phase?
A. Yes
B. No

Observer on Earth would not be able to see the Moon in its first quarter phase
if Earth - Moon distance were greater than Earth - Sun distance
When we see the Moon in its first quarter phase, Earth, Moon, and Sun must be aligned such that they form a right angle with Earth - Sun distance as the hypotenuse of a right triangle This is the only way we would be able to see first quarter Moon.

The same side of the moon always faces the Farth because:
A. The moon is not rotating about its axis.
B. Tidal forces keep the moon's rotation and orbiting motion in sync with each other

The same side of the moon always faces the Farth because:
A. The moon is not rotating about its axis.
B. Tidal forces keep the moon's rotation and orbiting motion in sync with each other

Which civilization developed and implemented the first

 lunar calendar?A. Roman
B. Greek
C. Babylonian
D. Aztec

Which civilization developed and implemented the first

 lunar calendar?B. Greek
C. Babylonian
D. Aztec
D. Aztec

A. Roman
-

nian

\square
 ,
-
 O

$$
\square
$$

-
-

Babylo
F
\qquad

.號 .

\qquad

Which planet seems to be turned on its side with an axis tilt of 98 degrees?

A. Uranus

B. Pluto
C. Neptune
D. Saturn

A. Uranus

B. Pluto
C. Neptune
D. Saturn

The period from one full moon to the next is:
A. 27.3 days
B. 7 days
C. 29.5 days
D. 365 days

The period from one full moon to the next is:

A. 27.3 days

B. 7 days
C. 29.5 days
D. 365 days

Name the phase that the moon is in for each type of eclipse, lunar and solar:
A. Full moon for both phases
B. New moon for both phases
C. Full moon for lunar and new moon for solar
D. New moon for lunar and full moon for solar

Name the phase that the moon is in for each type of eclipse, lunar and solar:
A. Full moon for both phases
B. New moon for both phases
C. Full moon for lunar and new moon for solar
D. New moon for lunar and full moon for solar

47
 QUERY 1

Two martians, Yll and Ylla K, are located due north and south of each other on planet Mars

Yll sees Sun directly overhead (at the zenith) at noon. At same time, Ylla sees Sun 6 degrees away from the zenith. Ylla is 355 kilometers north of Yll. Compute circumference of planet Mars

QUERY 1

Two martians, Yll and Ylla K, are located due north and south of each other on planet Mars

Yll sees Sun directly overhead (at the zenith) at noon. At same time, Yla sees Sun 6 degrees away from the zenith. Ylla is 355 kilometers north of

Given that circumference of Earth is 40,000 kilometers, what is Earth's diameter in kilometers?

Given that there are 0.621 miles per kilometer, what is Earths diameter in miles?

QUERY 2

Given that circumference of Earth is 40,000 kilometers, what is Earth's diameter in kilometers?

Given that there are 0.621 miles per kilometer, what is Earths diameter in miles?

$$
\begin{aligned}
& \mathcal{C}=40,000 \mathrm{~km} \\
& d=\frac{\mathcal{C}}{\pi}=\frac{40,000 \mathrm{~km}}{\pi}=12,732 \mathrm{~km}
\end{aligned}
$$

$1 \mathrm{~km}=0.621$ miles $\Rightarrow 12,732 \mathrm{~km}=0.621 \cdot 12732$ miles $=7,906.57$ miles

[^0]:

