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I. ASTRONOMY BEFORE THE COMMON ERA

The alteration between day and night, the succession
of the seasons, and the observation of the celestial bodies
and their movements in the sky introduced the notion
of time. The first e↵ort humans made to define time
was to combine the notion of time and the movements
of celestial bodies. We now know that we experience
day and night because of Earth’s rotation around itself
and we experience seasons because of the tilt of Earth’s
axis of rotation as the Earth moves around the Sun in a
year. However, the precise understanding of these phe-
nomena came about through careful observations and
gradual application of the scientific method across the
world and over thousands of years.

Astronomy has its roots in the work done by the Baby-
lonian and Egyptian civilisations. Over a thousand years
before the common era (BCE), the Babylonians already
had extensive astronomical records, with good measure-
ments of time and of the positions of the Moon, as well
as stars and planets [1] in the sky (from which we inherit
both our systems of angular and time measurement: the
360� circle and the time units of 24 hrs, 60 minutes, and
60 seconds).1

The Babylonian calendar was a lunisolar calendar
based on the lunar phases which was used in Babylon
and surrounding regions for administrative, commercial
and ritualistic purposes. The Babylonian year consisted
of twelve lunar months, each beginning on the evening
(i.e. after sunset) of the first observed (or computed)
lunar crescent after the astronomical new moon. The
year began around the spring equinox and in order to
keep the calendar in step with the seasons, an intercalary
month was inserted at (semi-)regular intervals. At first
the intercalary months were inserted at irregular inter-
vals, based on the observed discrepancies between the
calendar and the seasons, but after about 500 BCE a reg-
ular intercalation scheme consisting of seven intercalary
months in a 19-year cycle was adopted.

Just like Earth, the Moon rotates on its own axis and
experiences daylight and dark cycles. The Moon’s day
and night cycles are a little longer than Earth’s: the Moon
spins on its axis once every 27.3 days. The Moon’s period

1 BCE and BC (before Christ) mean the same thing, i.e. previous to
year 1 of the common era. This is the same as the year AD 1 (Anno
Domini); the latter means “in the year of the lord,” often translated
as “in the year of our lord.”

of rotation matches the time of revolution around Earth.
This implies that it takes the Moon the same length of
time to turn once on its axis as it takes it to go once
completely around the Earth. This means that Earth ob-
servers always see the same side of the Moon (called the
“nearside”). The side we do not see from Earth, called
the “farside,” has been mapped during lunar missions.

The Moon looks di↵erent during its revolution around
the Earth, because at each position it is getting a di↵erent
amount of sunlight on its surface; see Fig. 1. When the
Moon is positioned between the Earth and the Sun, we
face the dark side, so cannot see the Moon at all. This is
called a new moon. As each day passes and the Moon
moves at an angle out from between the Earth and the
Sun, we begin to see a sliver of the Moon getting sunlight.
By day 4 this is called a waxing crescent. When the
moon has revolved to a 90� angle from the Earth and
Sun, on about day 7, it has reached its first quarter. We
can now see half the Moon, while the other half sits in
invisible shadows. The next phase, at about day 10,
we can see roughly three quarters of the Moon. This
is called the waxing gibbous phase. After roughly 2
weeks, the Moon is now in position with the Earth sitting
between it and the Sun, so we see its fully lit side as a
full moon. It is not an exact alignment though, or the
Earth would block the Sun from the moon causing a
lunar eclipse. As it continues on in its revolution around
the Earth, the moon begins to move into shadow as the
waning gibbous Moon by day 18, then the third quarter
half Moon at day 22, then waning crescent at day 26
and finally the invisible new moon again on day 29.5.
Like the full moon, the new moon does not block the
sun from reaching the Earth, because it is not an exact
alignment. On the months where the alignment is exact,
we experience a solar eclipse.

A careful reader should have noticed already the
di↵erence between the sideral month and the synodic
month. The Moon’s sidereal orbital period (the sidereal
month) is roughly 27.3 days; this is the time interval that
the Moon takes to orbit 360� around the Earth relative
to the “fixed” stars. The period of the lunar phases (the
synodic month), e.g. the full moon to full moon period,
is longer at about 29.5 days. This is because while the
Moon is orbiting the Earth, the Earth is progressing in
its orbit around the Sun. After completing a sidereal
month, the Moon must move a little further to reach the
new position having the same angular distance from the
Sun, appearing to move with respect to the stars since
the previous month. Therefore, the synodic month takes
2.2 Earth’s days longer than the sidereal month.



2

FIG. 1: Lunar phases.

FIG. 2: Aristarchus observation.

The first precise astronomical measurements were
carried out in the middle of the 2nd century BCE by
Aristarchus of Samos, and Eratosthenes of Cyrene. The
first distance to be measured with any accuracy was the
ratio of the Earth distances to the Sun and the Moon.
Aristarchus realized that when the Moon was exactly
half illuminated, it formed a right triangle with the Earth
and the Sun [2]. By observing the angle between the Sun
and Moon, �, the ratio of the distances to the Sun and
Moon could be deduced using a form of trigonometry.
From the diagram in Fig. 2 and trigonometry, we can
calculate that

S
L
=

1
cos�

= sec� . (1)

The diagram is greatly exaggerated, because in reality,
S = 390 L. Aristarchus determined � to be a thirtieth of
a quadrant (in modern terms, 3�) less than a right angle:
in current terminology, � = 87�. Trigonometric func-
tions had not yet been invented, but using geometrical
analysis in the style of Euclid, Aristarchus determined

that

18 <
S
L
< 20 . (2)

In other words, the distance to the Sun was somewhere
between 18 and 20 times greater than the distance to
the Moon. It was brilliant reasoning undermined by
insu�cient observations. With nothing but his eyes to
go on, Aristarchus estimate was not terribly far from the
true value of 89.853�. But when the distances involved
are enormous, small errors can be quickly magnified.
His result was o↵ by a factor of about 20.

We are told by Cleomedes, in a story often retold, that
Eratosthenes determined the size of the Earth by observ-
ing known phenomena and applying basic arithmetic
and geometry to them [3]. Here is how he did it. Er-
atosthenes was the head librarian of the famous Library
of Alexandria. While working at the library, he learned
that on the first day of summer the Egyptian town of
Syene cast no shadows; see Fig. 3. This happens because
at noon on the day of the summer solstice the Sun is
positioned directly above the town of Syene, near the
modern city of Aswan, Egypt. On the same date at noon
in Alexandria, a rod perpendicular to the ground cast a
shadow that is 7� 120 from perpendicular.2 Eratosthenes
then divided 360� by 7�120 and determined that 7� 120
was 1/50th of a circle. Since the distance between and
Syene and Alexandria was measured to be 5, 000 stades
and these two places lie on the same meridian, by means
of a simple geometric argument Eratosthenes calculated
the circumference of the Earth to be 250, 000 stades. The
best modern guess is that 1 stadia = 185 m. Putting Er-
atosthenes result into modern units, his estimate of the
circumference of the Earth is 46, 250 km. The modern
measurement is 40, 070 km. The largest uncertainty in
Eratosthenes measurement comes from the definition of
the stadia, there are also some minor erros in Eratos-
thenes calculations. Syene is not on the Tropic of Cancer,
where the Sun’s rays are directly overhead during the
summer solstice. It is actually 37 km (23 miles) north
of the Tropic of Cancer. Alexandria is not due north of
Syene and the distance between them is not 925 km. The
actual distance corresponds to an angular measurement
not of 7�120, but rather of 7�300. All in all, Eratosthenes’
estimate is only about 15% too large!

In closing, we note that Aristarchus also presented
the first known heliocentric model. Though the original
text has been lost, a reference in Archimedes’ book [4]
describes a work by Aristarchus in which he advanced
the heliocentric model as an alternative hypothesis to
geocentrism. Archimedes wrote: “Now you [you being
King Gelon] are aware the universe is the name given by
most astronomers to the sphere the center of which is

2 Note that noon is determined when the shadow is shortest, and
therefore one does not need any clock for this.



3

FIG. 3: Eratosthenes observation.

the center of the Earth, while its radius is equal to the
straight line between the center of the Sun and the center
of the Earth. This is the common account as you have
heard from astronomers. But Aristarchus has brought
out a book consisting of certain hypotheses, wherein it
appears, as a consequence of the assumptions made, that
the universe is many times greater than the universe just
mentioned. His hypotheses are that the fixed stars and
the Sun remain unmoved, that the Earth revolves about
the Sun on the circumference of a circle, the Sun lying in
the middle of the orbit, and that the sphere of the fixed
stars, situated about the same center as the Sun, is so
great that the circle in which he supposes the Earth to
revolve bears such a proportion to the distance of the
fixed stars as the center of the sphere bears to its sur-
face.” Aristarchus’ astronomical ideas were rejected in
favor of the geocentric theories of Aristotle and Ptolemy
until they were successfully revived nearly 1, 800 years
later by Copernicus and extensively developed and built
upon by Kepler and Newton. Copernicus attributed the
heliocentric theory to Aristarchus [2].

II. COPERNICUS REVOLUTION, KEPLER’S LAWS OF
PLANETARY MOTION, AND GALILEO’S VISION

A scientific theory should be: (i) simple; (ii) with-
out fewest unproven assumptions; (iii) verifiable. A
scientific theory begins with a hypothesis, which tries
to describe and predict the natural world (i.e. ex-
plain observations/experiments), possibly contributing
to or encompassing physical laws. However, theo-
ries may break down if they are not able to explain
new observations/experiments. A new hypothesis is
then proposed to modify or replace the current expla-
nations. The new hypothesis must also be under ob-
servational/experimental scrutiny. All results must be
repeatable/verifiable or else a new hypothesis must be

proposed as an explanation. According to Occam’s ra-
zor, when there exist two competing theories that make
exactly the same prediction, then the simpler one is the
better.3

One of the earliest scientific questions is whether the
Sun or the Earth is at the center of our Universe? The
answer is neither. However, we can ask ourselves which
view best explains the motions of the stars, planets, and
Sun in our sky? How this question was tackled over the
years gives insight as to how science is performed. It
also gives a historical context to astronomy.

On the one hand, Aristotle argued for a geocentric cos-
mology: the Earth is a sphere that is positioned at the
center of the universe. On the other hand, Aristarchus
proposed that: (i) the Sun is at the center of the uni-
verse; (ii) the Sun and stars are stationary; (iii) the
Earth and planets revolve around the sun. In contem-
porary Greece, Aristotle was far more influential than
Aristarchus and therefore the Earth-centered universe
became the accepted norm. The observational evidence
indicated that the earth is not felt to move beneath ones
feet, so it must be stationary. The stars, planets, and Sun
seem to revolve around the Earth.

Claudius Ptolemaeus (Ptolemy) devised a Geocentric
model to describe the motion of the heavenly bodies.
Based on the teachings of Aristotle and other Greek
scholars he argued that the motion of celestial objects
must have perfect uniform circular motion. To explain
the observed retrograde motion of the planets Ptolemaic
model incorporates epicycles. The epicycle orbits on a
circle called the deferent, see Fig. 4. The planet moves
along the epicycle. Even though Ptolemaic model rea-
sonably explains the retrograde motion, further predic-
tions of planetary positions using the Ptolemaic model
did not match observations.

Aristarchus ideas were rekindled by Nicolaus Coper-
nicus. He devised a heliocentric model of the universe
in which the Sun is at the center, and planets revolved
around it in perfect circles [5]. This model correctly
placed the position of the known planets of the time
(Mercury, Venus, Earth, Mars, Jupiter, and Saturn). The
Moon orbits the Earth and the stars are fixed. Coperni-
cus model elegantly describes the retrograde motion of
the planets, see Fig. 5.

The Copernican revolution was a major event dur-
ing the European Renaissance, a time when scientific
thoughts began to flourish. In this climate Tycho Brahe
performed and recorded detailed observations of the
stars, planets, and the Sun. Brahe observations encom-
passed the best astronomical data yet collected at the
time.

3 Occam’s razor is a principle (atributed to William of Ockham) that
underlies all scientific modelling and theory building. The prin-
ciple states that one should not make more assumptions than the
minimum needed.
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FIG. 4: Ptolemy’s geocentric model of the universe. The Sun,
the Moon, and each planet orbit a stationary Earth. To explain
the erratic apparent paths of the planets, Ptolemy shifted the
center of each planet orbit (deferent) from Earth – accounting
from the planet’s apogee and perigee – and added a second
orbital motion (epicycle) to explain retrogade motion. The
equant is the point from which each body sweeps out equal
angles along the deferent in equal times. The center of the
deferent is midway between the equant and the Earth.

Through meticulous observation of the planets and
other objects the Copernican model was corroborated
much further, but the stage was set for further refine-
ments of the model as well. Copernicus thought that the
planets travel in perfectly circular orbits around the sun,
but this change when Brahe’s young assistant Johannes
Kepler got his hand on this new data [6]. He used this
to determine that planets do not trace circles as they go
around the sun, but they trace ellipses. Unlike a circle
with its one center an ellipse has two foci and the sum
of the distances from the foci to a particular point on
the ellipse is a constant, see Fig. 6. When these foci get
very close together it starts to resemble a circle. This is
bacause a circle is just an ellipse with foci that coincide.
This is also why the orbits of the planets seem circular
and why we operated under that assumption for so long.

The brilliance of Kepler was to realize that the planets
actually follow elliptical paths, with the Sun acting as
one focus of the elipse. The point in a planet’s orbit that
is closest to the Sun is called perihelion and the point
furthest away is called aphelion. The distances to these
points are very close for most of the planets because the
ellipses have very low eccentricity. This fact is the first of
three laws known as Kepler’s laws of planetary motion,
which essentially mark the birth of Celestial Mechanics.
The second of Kepler’s laws says that the orbital speed of

FIG. 5: Copernicus heliocentric model showing: (i) the station-
ary sphere of immobile stars; (ii) Saturn is returned in the 30th
year; (iii) the revolution of Jupiter of 12 years; (iv) the two-year
revolution of Mars; (v) the year revolution of the Earth with its
Moon’s orbit; (vi) nine-month Venus revolution; (vii) of the 80
days of Mercury revolution; the Sun.

a planet will vary according to its distance from the Sun.
It slows down when further away and speeds up when
closer in. A little more formally, it says that a planet
will sweep out equal areas of the ellipse over equal time
intervals. So if we take one of the areas shown in Fig. 7
involving a part of the orbit that is closer to the Sun and
any other equal area of the ellipse involving a part of
the orbit that is further away from the Sun, we see that
the distances traveled by the planet in order to sweep
out these areas, say from January to February and July
to August, are of di↵erent magnitudes. However, the
planet moves faster when close and slower when far
away, in a manner that results in precisely equivalent
time intervals. Kepler’s third law states that the amount
of time a planet takes to orbit the Sun, (a.k.a. the period
⌧) is related to the length of the semi-major axis of the
orbit a. More concretely,

⌧2 / a3 , (3)

when ⌧ is measured in years and a in astronomical units
(AU), and the precise relation will depend on the mass
of the planet.

Kepler’s laws were derived from observation and
used to calculate the relative distances of all the planets
from the Sun. These laws had other practical applica-
tions as well, but the impact of these laws was much
deeper than the merely practical. Kepler’s laws repre-
sented the first time that a handful of extremely simple
mathematical formulae were able to describe and pre-
dict the motions of the heavens to the upmost precision.
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Tycho Brahe (1546-1601)

• Tycho had made the most 
accurate observations 
obtained at that time on 
the planets.

• Tycho’s model of the 
heavens had the planets 
orbiting round the Sun 
and the Sun orbiting 
round the Earth at the 
center of the Universe.

Tycho’s cosmos

Kepler’s laws of planetary motion

• Tycho died after two years and Kepler inherited his data 
and his title: Imperial Mathematician to the Emperor 
Rudolf II.

• Kepler dutifully attempted to reconcile the Mars data 
using models of Ptolemy, Copernicus, and Tycho.

• None were successful at representing Tycho’s accurate 
data for Mars.

• After six years of work he gave up attempting to use 
circles for the planetary orbits.

• Kepler realized Mars moves in an ellipse around the Sun.

• In his Astronomia Nova (1609) he presented his first two 
laws of planetary motion.

Geometry of ellipses

Kepler’s First Law

First Law: Planets move in elliptical orbits with the Sun at 
one focus of the ellipse.

Kepler’s Second Law

Second Law: A line from the Sun to the planet sweeps out 
equal areas in equal times, i.e. planets don’t move at 
constant speed.

FIG. 6: Geometry of ellipses.

FIG. 7: Second law of planetary motion.

It was undeniable proof that the Universe obeys math-
ematical principles that are decipherable by mankind,
which is the basis of the revolution that produced mod-
ern scientific thought.

Roughly simultaneous to Kepler’s model of the so-
lar system, Galileo Galilei was mapping the same night
sky, but focusing on entirely di↵erent observations [7, 8].
He used the best telescopes of the time to see that the
Moon has distinct terrestrial features, like mountains
and craters. This transformed the Moon into a world
unto itself, rather than just a mysterious glowing disk.
Galileo also noticed the dark sunspots on the Sun, which
changed position over time, thereby deducing the rota-
tion of the Sun. He observed Jupiter’s moons, and as
they orbit Jupiter, this proved that not everything in the
solar system orbits around the Sun or the Earth, no mat-
ter which of the two you put at the center. He saw what
we would later understand to be Saturn’s rings. He ob-
served the phases of Venus, demonstrating that it must

be in orbit around the Sun just as the Moon is in orbit
around the Earth, the match in the powder barrel for the
geocentric model. Galileo also observed far more stars
than were previously visible to the naked eye, indicating
that the Universe is much bigger than was thought at the
time.

III. NEWTONIAN CELESTIAL MECHANICS

The newtonian idea of force is based on experimental
observation [9]. Experiment tells us that everything in
the universe seems to have a preferred configuration:
e.g., (i) masses attract each other; (ii) magnets can repel
or attract one another. The concept of a force is intro-
duced to quantify the tendency of objects to move to-
wards their preferred configuration. If objects accelerate
very quickly towards their preferred configuration, then
we say that there is a big force acting on them. If they
don’t move (or move at constant velocity), then we say
there is no force.

We cannot see a force; we can only deduce its exis-
tence by observing its e↵ect. More specifically, forces are
defined through Newton’s laws of motion:

0. A particle is a small mass at some position in space.

1. When the sum of the forces acting on a particle is
zero, its velocity is constant.

2. The sum of forces acting on a particle of constant
mass is equal to the product of the mass of the
particle and its acceleration:

force = mass ⇥ acceleration . (4)

3. For every thing that moves there is an equal and
opposite reaction that happens because of the ac-
tion. In other words, the forces exerted by two
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particles on each other are equal in magnitude and
opposite in direction.

The standard unit of force is the newton, given the sym-
bol N. The newton is a derived unit, defined through
Newton’s second law of motion: one newton is the force
needed to accelerate one kilogram (kg = 2.2 lb) of mass
at the rate of one meter per second squared in direction
of the applied force.

Now, a point worth noting at this juncture is that forces
are vectors, which evidently have both magnitude and
direction. For example, the gravitational force is a force
that attracts any two objects with mass [9]. The magni-
tude of this force is directly dependent upon the masses
of both objects m and M and inversely proportional to
the square of the distance r that separates their centers,

gravitational force = Fg =
G M m

r2 , (5)

where G = 6.673 ⇥ 10�11 N m2/kg is the proportionality
constant.4 The direction of the force is along the line
joining the two objects. Near the Earth’s surface, the
acceleration due to gravity is approximately constant,

gravitational acceleration = g =
G M�

R2
�
⇡ 9.8 m/s2 , (6)

where M� = 1.3 ⇥ 1025 lb is the mass of the Earth and
R� = 3, 959 miles its radius.

So, the Earth pulls on the Moon because of gravity?
Why doesn’t the moon get pulled into the Earth and
crash? To answer this provocative question we first note
that an object can move around in a circle with a con-
stant speed yet still be accelerating because its direction
is constantly changing. This acceleration, which is al-
ways directed in toward the center of the circle, is called
centripetal acceleration. The magnitude of this accelera-
tion is written as

centripetal acceleration =
v2

r
, (7)

where v is the speed of the object and r the radius of the
circle. If a mass is being accelerated toward the center
of a circle, it must be acted upon by an unbalanced force
that gives it this acceleration. The centripetal force is the
net force required to keep an object moving on a circular
path. It is always directed inward toward the center of
the circle. So, we can say that the Moon continuously falls
towards Earth due to gravity, but does not get any closer
to Earth because its motion is an orbit. In other words,
the Moon is constantly trying to fall upon the Earth, due
to the force of gravity; but it is constantly missing, due to
its tangential velocity.

4 For a quick overview of scientific notation, see Appendix A.

We now turn to study the implications of Newton’s
laws for the planetary motion. We have seen that the
elliptical orbits of the planets have such small eccentric-
ities that, to a very good approximation, we can think
of them as circular orbits. (Only very precise measure-
ments, like those available to Kepler, are able to detect
the di↵erence.) This means that we can use the idea
of uniform circular motion to analyze planetary motion.
We have also seen that a body in uniform circular mo-
tion is constantly accelerating towards the center of its
circular track. Thus, according to Newton’s first law of
motion, there must be a force acting on the planet that
is always directed toward the center of the orbit – that is
toward the Sun.

Newton’s second law of motion allows us to state what
the magnitude of that force must be. The required force
is just the mass of the planet times its acceleration. We
know that the acceleration of an object moving in uni-
form circular motion is v2/r. Thus, we can calculate the
force that is required to keep the Earth on its circular
path.

Before proceeding though, we apply Newton’s third
law to the bound Earth-Sun system. If there is a force that
attracts the Earth toward the Sun, then there must be an
equal and opposite force attracting the Sun towards the
Earth. Why, then, does not the Sun move? The answer is
that it does move, but by a very small amount since the
mass of the Sun is about half a million times that of the
Earth. Thus, when subjected to the equal and opposite
force required by the third law, it accelerates about half a
million times less than the Earth as well. For this reason,
to a very good approximation, we can treat the Sun as
stationary in our studies of planetary motion.

We can now combine Newton’s gravitation and cir-
cular acceleration to obtain a nice relation between the
period, the orbital distance, and the mass of the central
body. We being by equating the centripetal force due to
the circular motion to the gravitational force,

GM�M�
a2 =M�

v2

a
, (8)

where M� is the mass of the Earth, M� the mass of the
Sun, a the Earth-Sun distance and v the orbiting velocity.
Note that the M� cancels, so that circular orbital motion
is independent of the mass of the orbiting body.

The orbital velocity of the Earth can be described as
distance/time, or circumference of the circular orbit di-
vided by the orbital period, v = 2⇡a/⌧. Substituting v
into (8) and rearranging to place all the a-terms on the
right and all the ⌧-terms on the left we have

a3 =
GM�
4⇡2 ⌧

2 , (9)

which looks startlingly like Kepler’s third law. To use a
and ⌧ to solve for the mass, we manipulate once more
(9) so that

M� =
4⇡2a3

G⌧2 . (10)
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•  Newton also predicted unbound orbits 
–  Parabolic and hyperbolic 
–  The four types of orbit are described by the conic sections 

•  Comets typically have such orbits 
–  an object comes very close to the Sun then travels out of the 

solar system 

FIG. 8: Classification of cellestial orbits.

All in all, Newton was able to re-derive Kepler’s laws
based upon physical laws. He gave a concrete physical
insight as to the motion of the planets.

Newton’s laws also predicted (parabolic and hyper-
bolic) unbound orbits. Comets typically have such or-
bits, in which the object comes very close to the Sun and
then travels out of the solar system. The four types of or-
bit of celestial objects are described by the conic sections;
see Fig. 8.

The planet Uranus was discovered in 1781 by Her-
schel, as a byproduct of a systematic sky-survey of the
brighter stars, and once he had reported his observation
(of what he thought be a comet), it then took about half
a year before it gradually became evident it was a new
planet due to its nearly circular orbit [10]. Uranus, be-
ing the 7th planet in the solar system, was the first to be
discovered with the aid of a telescope. Newtons laws
were then used to study the gravitational perturbations
of the orbit of Uranus. Discrepancies found between the
observed and theoretical orbit of Uranus seemed to in-
dicate that an undiscovered planet beyond Uranus was
the cause. The planet’s actual position was predicted
by Adams and Le Verrier (independently of each other’s
work) [11]. The planet, Neptune, was subsequently dis-
covered at the Berlin Observatory by Galle near that po-
sition [12]. The discovery of Neptune represents a great
testament to the power of Newton’s laws and to science.

IV. STARS AND GALAXIES

A look at the night sky provides a strong impression of
a changeless universe. We know that clouds drift across
the Moon, the sky rotates around the polar star, and on
longer times, the Moon itself grows and shrinks and the
Moon and planets move against the background of stars.
Of course we know that these are merely local phenom-
ena caused by motions within our solar system. Far
beyond the planets, the stars appear motionless. Indeed
we have seen that according to the ancient cosmological
belief, the celestial objects, except for a few that appeared
to move (the planets), where fixed on a sphere beyond
the last planet. In today’s class we are going to see that
this impression of changelessness is illusory.

The astronomical distances are so large that we specify
them in terms of the time it takes the light to travel a
given distance. For example,

one light second = 3 ⇥ 108m = 300, 000 km , (11)

one light minute = 1.8 ⇥ 107 km , (12)

and

one light year = 1 ly = 9.46 ⇥ 1015 m ⇡ 1013 km. (13)

For specifying distances to the Sun and the Moon, we
usually use meters or kilometers, but we could spec-
ify them in terms of light. The Earth-Moon distance is
384,000 km, which is 1.28 ls. The Earth-Sun distance is
150, 000, 000 km; this is equal to 8.3 lm. Far out in the
solar system, Pluto is about 6 ⇥ 109 km from the Sun, or
6 ⇥ 10�4 ly. The nearest star to us, Proxima Centauri, is
about 4.2 ly away. Therefore, the nearest star is 10,000
times farther from us that the outer reach of the solar
system.

On clear moonless nights, thousands of stars with
varying degrees of brightness can be seen, as well as
the long cloudy strip known as the Milky Way. Galileo
first observed with his telescope that the Milky Way is
comprised of countless numbers of individual stars. A
half century later Wright suggested that the Milky Way
was a flat disc of stars extending to great distances in a
plane, which we call the Galaxy [13].

Our Galaxy has a diameter of 100,000 ly and a thick-
ness of roughly 2,000 ly. It has a bulging central nucleus
and spiral arms. Our Sun, which seems to be just an-
other star, is located half way from the Galactic center
to the edge, some 26, 000 ly from the center. The Sun
orbits the Galactic center approximately once every 250
million years or so, so its speed is

v =
2⇡ 26, 000 ⇥ 1013 km

2.5 ⇥ 108 yr 3.156 ⇥ 107 s/yr
= 200 km/s . (14)

The total mass of all the stars in the Galaxy can be esti-
mated using the orbital data of the Sun about the center
of the Galaxy. To do so, assume that most of the mass
is concentrated near the center of the Galaxy and that
the Sun and the solar system (of total mass m) move in
a circular orbit around the center of the Galaxy (of total
mass M),

GMm
r2 = m

v2

r
, (15)

where we recall that a = v2/r is the centripetal accelera-
tion. All in all,

M =
r v2

G
⇡ 2 ⇥ 1041 kg . (16)

Assuming all the stars in the Galaxy are similar to our
Sun (M� ⇡ 2 ⇥ 1030 kg), we conclude that there are
roughly 1011 stars in the Galaxy.
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In addition to stars both within and outside the Milky
Way, we can see with a telescope many faint cloudy
patches in the sky which were once all referred to as
nebulae (Latin for clouds). A few of these, such as those in
the constellations of Andromeda and Orion, can actually
be discerned with the naked eye on a clear night. In the
XVII and XVIII centuries, astronomers found that these
objects were getting in the way of the search for comets.
In 1781, in order to provide a convenient list of objects not
to look at while hunting for comets, Messier published
a celebrated catalogue [14]. Nowadays astronomers still
refer to the 103 objects in this catalog by their Messier
numbers, e.g., the Andromeda Nebula is M31.

Even in Messier’s time it was clear that these extended
objects are not all the same. Some are star clusters,
groups of stars which are so numerous that they ap-
peared to be a cloud. Others are glowing clouds of gas
or dust and it is for these that we now mainly reserve
the word nebula. Most fascinating are those that belong
to a third category: they often have fairly regular ellip-
tical shapes and seem to be a great distance beyond the
Galaxy. Kant seems to have been the first to suggest that
these latter might be circular discs, but appear elliptical
because we see them at an angle, and are faint because
they are so distant [15]. At first it was not universally
accepted that these objects were extragalactic (i.e. out-
side our Galaxy). In 1920, Sir Hubble’s observations
revealed that individual stars could be resolved within
these extragalactic objects and that many contain spiral
arms [16]. The distance to our nearest spiral galaxy, An-
dromeda, is over 2 million ly, a distance 20 times greater
than the diameter of our Galaxy. It seemed logical that
these nebulae must be galaxies similar to ours. Today it
is thought that there are roughly 4 ⇥ 1010 galaxies in the
observable universe – that is, as many galaxies as there
are stars in the Galaxy.

V. ASTRONOMICALLY FAR AWAY

Last class we have been talking about the vast distance
of the objects in the universe. Today, we will discuss
di↵erent methods to estimate these distances.

How can we measure the distance to an object we
cannot reach? The answer to this question is simple: use
triangles. The small triangle in Fig. 9 has the same shape
as the large one. Then, by measuring the two sides of
the small triangle and the short side of the big triangle,
we can calculate the length of the long side of the big
triangle, i.e.,

B
A
=

b
a
) B =

A ⇥ b
a
. (17)

So, how can we measure the distance to stars? Take two
telescopes some distance apart and observe the same
star. Measure the tilt between the two telescopes, which
sets all the angles for the triangles; see Fig. 10. Then
we can find the distance to the star from the distance

Triangles 

The small triangle has the same shape as the large 
one. 

By measuring the two sides of the small triangle and 
the short side of the big triangle, we can calculate 
the length of the long side of the big triangle. 

A

B

a
b

FIG. 9: Triangle proportionality.

So, how can we measure the 
distance to stars? 

Take two telescopes some distance apart and 
observe the same star. 
Measure the tilt between the two telescopes – this 
sets all the angles for the triangles. 
Then we can find the distance to the star from the 
distance between the telescopes and the angle of 
the tilt. 

p 

p 

FIG. 10: Observing a star with two telescopes.

between the telescopes and the angle of the tilt. To this
end, we want to use the largest distance we can for the
short side of the big triangle. Now, what is the largest
distance we can get between the two telescopes (if both
of them have to be on Earth - no spacecraft)? The largest
distance is not obtained by placing the two telescopes
at opposite ends of the Earth. Instead, we can use one
telescope and just let the earth move.

This basic method to measure distances to nearby stars
employs simple geometry and stellar parallax. Parallax
is the apparent displacement of an object because of a
change in the observer’s point of view. One way to see
how this e↵ect works is to hold your hand out in front
of you and look at it with your left eye closed, then
your right eye closed. Your hand will appear to move
against the background. By stellar parallax we mean
the apparent motion of a star against the background of
more distant stars, due to Earth’s motion around the Sun;
see Fig. 11. The sighting angle of a star relative to the
plane of Earth’s orbit can be determined at two di↵erent
times of the year separated by six months. Since we
know the distance d from the Earth to the Sun, we can
determine the distance D to the star. For example, if the
parallax angle of a star is measured to be p = 0.00006�,
using trigonometry tan p = d/D, and since the distance
to the Sun is d = 1.5 ⇥ 108 km = 1 AU the distance to the
star is

D =
d

tan p
⇡ d

p
=

1.5 ⇥ 108 km
1 ⇥ 10�6 = 1.5 ⇥ 1014 km , (18)

or about 15 ly.
Distances to stars are often specified in terms of paral-

lax angles given in seconds of arc: 1 second (1”) is 1/60
of a minute (1’) of arc, which is 1/60 of a degree, so 1”
= 1/3600 of a degree. The distance is then specified in
parsecs (meaning parallax angle in seconds of arc), where
the parsec is defined as 1/p with p in seconds. For ex-
ample, if p = 6 ⇥ 10�5 �, we would say that the star is
at a distance D = 4.5 pc. We can also use the paral-
lax to determine distance to the bright star Vega. Vega
has a measured parallax of 0.1 arcsec (p = 0.100). This
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A.U. = Astronomical Unit = distance from Earth to Sun 

FIG. 11: The parallax method of measuring a star’s distance.

means that Vega appears to move from +0.100 to �0.100
with respect to distant stars over a year of observation:
D(pc) = 1/p(00) = 1/0.1 = 10 pc. Vega is 10 pc (parsec)
from Earth (about 32.6 light years).

To understand the other method used for estimating
long distances in space, we first need to introduce a few
general concepts adopted to describe the starlight ob-
served on Earth.

A star produces light: the total amount of energy that a
star puts out as light each second is called its Luminosity.
If we have a light detector (eye, camera, telescope) we
can measure the light produced by the star: the total
amount of energy intercepted by the detector divided
by the area of the detector is called the Flux. To find the
Luminosity, we take a shell which completely encloses
the star and measure all the light passing through the
shell. To find the Flux, we take our detector at some
particular distance from the star and measure the light
passing only through the detector. How bright a star
looks to us is determined by its Flux, not its Luminosity,
i.e. Brightness = Flux.

The Flux decreases as we get farther from the star like
1/Distance2, see Fig. 12. Mathematically, if we have two
stars A and B

FluxA

FluxB
=

LuminosityA

LuminosityB
⇥
✓Distance B

DistanceA

◆2
. (19)

Now we can look more careful at the Distance-
Luminosity relation. Assume the Luminosity of A is
twice the Luminosity of B and the Distance to A is twice
the Distance to B. Which star appears brighter to the
observer? We have that

LuminosityA

LuminosityB
= 2 (20)

and

Distance B

DistanceA
=

1
2
, (21)

3

8/25/17, 6:24 PMMissions | Mars Exploration Rover - Spirit

Page 1 of 2https://www.jpl.nasa.gov/missions/mars-exploration-rover-spirit-mer/

ABOUT THE MISSION

One of two rovers launched in 2003 to explore
Mars and search for signs of past life, Spirit far
outlasted her planned 90-day mission. Among her
myriad discoveries, Spirit found evidence that
Mars was once much wetter than it is today and
helped scientists better understand the Martian
wind. 

In May 2009, the rover became embedded in soft
soil at a site called "Troy" with only five working
wheels to aid in the rescue effort. After months of
testing and carefully planned maneuvers, NASA
ended efforts to free the rover and eventually
ended the mission on May 25, 2011. 

› Learn more about Spirit's twin rover, Opportunity

Scientific Instruments
- Panoramic camera (Pancam)
- Microscopic Imager (MI)
- Miniature Thermal Emission Spectrometer (Mini-
TES)
- Mossbauer Spectrometer (MB)
- Alpha Particle X-ray Spectrometer (APXS)
- Rock Abrasion Tool (RAT)
- Magnet arrays
- Hazard Avoidance Cameras (Hazcams)
- Navigation Cameras (Navcams)

Mission Badge

Acronym: MER

Type: Lander/Rover

Status: Past

Launch Date: June 10, 2003
1:58 p.m. EDT (17:58 UTC)

Launch Location: Cape
Canaveral Air Force Station,
Florida

Landing Date: January 04,
2004
04:35 UTC

Mission End Date: May 25,
2011

Target: Mars

Destination: Gusev Crater,
Mars

 

AST 250 Spring 2010 
HOMEWORK #2 
Due Wednesday Feb 03 

 
 

(1) (a)  What is the energy (in eV) of a photon of yellow visible light ? 
(b)  Calculate the wavelength of the famous spin-flip transition of atomic 
hydrogen (ν = 1420 MHz). 
 

(2) Calculate (a) the number of square degrees in 1 steradian and (b) the 
number of steradians in a region with an angular diameter of 1 arcsecond.  
 

(3)  The solar flux density measured above the Earth’s atmosphere is 1370 
Watts per square meter. 
(a) What is the average Solar flux density measured at Mars? 
(b) If the approximate efficiency of the solar panels (area = 1.3 m2) on the 

Martian rover, Spirit, is 20%, then how many Watts could the fully 
illuminated panels generate? 
 

 
 

 
(4) If you were standing on a hypothetical planet orbiting around our nearest 

star, Proxima Centauri (D = 4.2 ly), what would be the apparent magnitude 
(mV) of the Sun?  Would the Sun be a bright star in the planet’s night sky? 
 
 

(5)  The first exoplanet to be discovered was a half-Jupiter mass planet 
orbiting the star 51 Pegasi (mV = +5.49 mag, D = 15.61 pc). 
(a) What is the absolute visual magnitude of 51 Peg? 
(b) Ignoring bolometric corrections, how does 51 Peg’s luminosity 

compare to the Sun? 
(c) If the effective temperature of 51 Peg is Teff = 5570 K, how big is 51 

Peg compared to the Sun? 
(d) If the planet 51 Peg b orbits the star at a radius of 0.053 AU, how many 

times larger is the incident flux density on the planet’s atmosphere than 
the solar flux density for the Earth? 

 

FIG. 5: Martian exploration rover Spirit. The solar panels have an area of 1.3 m2.

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley

Luminosity passing 
through each sphere 
is the same

Area of sphere:

         4π (radius)2

Divide luminosity by 
area to get brightness.

15FIG. 6: The inverse square law.

understand the Martian wind. In May 2009, the rover
became embedded in soft soil at a site called “Troy”, with
only five working wheels to aid in the rescue e↵ort. Af-
ter months of testing and carefully planned maneuvers,
NASA ended e↵orts to free the rover and eventually
ended the mission on May 25, 2011.

We know the Sun emits energy at a rate (i.e., has a

total power output) of L� = 3.846 ⇥ 1026 W. Consider
a sphere centered on the Sun, and surrounding it at a
radius of the Earth rSun�Earth = 1 A.U.. This situation
is shown in the diagram of Fig. 6. If we assume the
energy flows out isotropically (this means the flux is the
same in all directions) from the source, then the energy
received at any point on the sphere should be the same.
It is easy to calculate the flux on the sphere, which is
the total power output as it passes through the sphere
(energy/ unit area/ unit time). It is just the total power
output divided by the surface of the sphere. (Using the
Sun-Earth distance = 1.496 ⇥ 1011 m convince yourself
that you can reproduce the solar energy density.) Now,
extend this idea to spheres at di↵erent radii: the surface
area of each sphere increases as r2, so the flux of the
energy (per unit area) must reduce as 1/r2. This is known
as the inverse square law.

Using the Sun-Mars distance = 1.524 A.U., make an
estimate of the average solar flux density measured at
Mars. Determine the speed of the solar car if it were to
move in a similar (frictionless) region, but over the surface
of Mars.

D. Solar racing

As a culminating activity, you will compete in a “Solar
Sprint” race modeled after the National Renewable En-
ergy Laboratorys Junior Solar Sprint competition. The
winner will get 10 points of extra credits on the lab re-
port. Get ready to race.

FIG. 12: The inverse square law.

hence

FluxA

FluxB
=

LuminosityA

LuminosityB

✓Distance B

DistanceA

◆2

= 2 ⇥
✓1

2

◆2
= 2 ⇥ 1

4
=

1
2
. (22)

This means that the nearest star is the brightest on Earth.
How do we measure the brightness of stars? Ptolemy

(150 B.C.E.) grouped stars into 6 magnitude groups ac-
cording to how bright they looked to his eye. In
the 1800s, Herschel first measured the brightness of
stars quantitatively and matched his measurements onto
Ptolemy’s magnitude groups and assigned a number for
the magnitude of each star. In Herschel’s system, if a
star is 1/100 as bright as another then the dimmer star
has a magnitude 5 higher than the brighter one. Note
that dimmer objects have higher magnitudes.

The magnitude of a star gives it brightness or flux
when observed from Earth. To talk about the properties
of star, independent of how far they happen to be from
Earth, we use absolute magnitude. Absolute magnitude
is the magnitude that a star would have viewed from
a distance of 10 parsecs. The absolute magnitude is
directly related to the luminosity of the star.

VI. CLASSIFYING STARS:
THE HERTZSPRUNG-RUSSELL DIAGRAM

Stars are so small compared to their distance to us
that we almost never have the resolution to see their
sizes and details directly. They are usually described
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as “point sources.” We deduce everything by measur-
ing the amount of light (brightness) which is emitted at
di↵erent wavelengths (color, spectra).

The rate at which an object radiates energy has been
found to be proportional to the fourth power of the
Kelvin temperature T and to the area A of the emitting
object, i.e.,

emitted radiation = �AT4 , (23)

where � = 5.670 ⇥ 10�5 erg cm�2 K�4 s�1 is the Stefan-
Boltzmann constant [17, 18]. At normal temperatures (⇡
300 K) we are not aware of this electromagnetic radiation
because of its low intensity. At higher temperatures,
there is su�cient infrared radiation that we can feel heat
if we are close to the object. At still higher temperatures
(on the order of 1000 K), objects actually glow, such as
a red-hot electric stove burner. At temperatures above
2000 K, objects glow with a yellow or whitish color, such
as the filament of a lightbulb.

Last class we have seen that a useful parameter for a
star or galaxy is its luminosity (hereafter L), by which we
mean the total power radiated in watts, and is given by
the product of its surface area and the radiation emitted
per unit area,

L = 4⇡R2�T4 , (24)

where R is the radius of the star (or galaxy). In addition,
we have seen that also important is the flux of energy
(hereafter F ), defined as the power crossing unit area
at the Earth perpendicular to the path of light. Given
that energy is conserved and ignoring any absorption
in space, the total emitted power L when it reaches a
distance D from the star will be spread over a sphere of
surface area 4⇡D2. If D is the distance from the star to
Earth, then

F = L
4⇡D2 . (25)

Careful analyses of nearby stars have shown that the
absolute luminosity for most of the stars depends on the
mass: the more massive the star, the greater the luminosity.

Another important parameter of a star is its surface
temperature, which can be determined from the spec-
trum of electromagnetic frequencies it emits.5 The wave-
length at the peak of the spectrum, �max, is related to the
temperature by Wien’s displacement law [19]

�maxT = 2.9 ⇥ 10�3 m K . (26)

We can now use Wien’s law and the Ste↵an-Boltzmann
equation (power output or luminosity / AT4) to deter-
mine the temperature and the relative size of a star. Sup-
pose that the distance from Earth to two nearby stars

5 An electromagnetic wave can be characterized by its frequency ⌫
and its wavelength �, they are related by � = c/⌫, where c is the
speed of light.

AST 250 Spring 2010 
HOMEWORK #5 

Due Friday March 26 
 

 
(1) Develop you own mnemonic for the modern stellar spectral sequence:     

O B A F G K M L T Y.  Be creative!  I’ll read a few in class. 
 

(2)  Look up the spectral types of the following stars (the primary stars if it is a 
binary) and order them by (a) effective temperature and (b) luminosity:  
Sun, Sirius, Betlegeuse, Aldebaran, and Barnard’s Star.  (N.B.  don’t just 
look up Teff and L.  Understand the ordering based on spectral type.  
There could be a similar question on the exam). 
 

(3)  Estimate the mass of main sequence stars with twice the luminosity of the 
Sun and with half the luminosity of the Sun.  What is the dominant 
nucleosynthesis process in the cores of these stars? 

 
(4)  Calculate the Schwarzchild radius for a star the mass of the Sun. 

 
(5)  (a) The Hertzsprung-Russell diagram is usually plotted in logarithmic 

coordinates (log L vs. log Teff with temperature increasing to the left).  
Mathematically derive the slope of a line of constant radius in the 
logarithmic H-R diagram.  (b) Order the stars in problem 2 by stellar radii. 

 
 

 

FIG. 13: HR diagram. The vertical axis depicts the inherent
brightness of a star, and the horizontal axis the surface temper-
ature increasing from right to left.

can be reasonably estimated, and that their apparent lu-
minosities suggest the two stars have about the same
absolute luminosity, L. The spectrum of one of the stars
peaks at about 700 nm (so it is reddish). The spectrum of
the other peaks at about 350 nm (bluish). Using Wien’s
law, the temperature of the reddish star is Tred ' 4140 K.
The temperature of the bluish star will be double because
its peak wavelength is half, Tblue ' 8280 K. The power
radiated per unit of area from a star is proportional to
the fourth power of the Kelvin temperature (24). Now
the temperature of the bluish star is double that of the
redish star, so the bluish must radiate 16 times as much
energy per unit area. But we are given that they have
the same luminosity, so the surface area of the blue star
must be 1/16 that of the red one. Since the surface area
is 4⇡R2, we conclude that the radius of the redish star is
4 times larger than the radius of the bluish star (and its
volume 64 times larger).

An important astronomical discovery, made around
1900, was that for most of the stars, the color is related
to the absolute luminosity and therefore to the mass. A
useful way to present this relationship is by the so-called
Hertzsprung-Russell (HR) diagram [20, 21]. On the HR
diagram, the horizontal axis shows the temperature T,
whereas the vertical axis the luminosity L, each star is
represented by a point on the diagram shown in Fig. 13.
Most of the stars fall along the diagonal band termed the
main sequence. Starting at the lowest right, we find the
coolest stars, redish in color; they are the least luminous
and therefore low in mass. Further up towards the left
we find hotter and more luminous stars that are whitish
like our Sun. Still farther up we find more massive and
more luminous stars, bluish in color. There are also stars
that fall outside the main sequence. Above and to the
right we find extremely large stars, with high luminosity
but with low (redish) color temperature: these are called
red giants. At the lower left, there are a few stars of low
luminosity but with high temperature: these are white
dwarfs.

Suppose that a detailed study of a certain star suggests
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FIG. 14: Contraction of a gas cloud. As the collapse due to
gravitational attraction proceeds it speeds up. The gas cloud
heats up, in the center most of all. Nuclear fusion starts. The
contraction stops and a balance is established between pressure
in the gas cloud and gravity.

that it most likely fits on the main sequence of the HR di-
agram. The observed flux isF = 1⇥10�12 W m�2, and the
peak wavelength of its spectrum is �max ⇡ 600 nm. We
can first find the temperature using Wien’s law and then
estimate the absolute luminosity using the HR diagram;
namely, T ⇡ 4800 K. A star on the main sequence of the
HR diagram at this temperature has absolute luminosity
of about L ⇡ 1026 W. Then, using (25) we can estimate its
distance from us, D = 3 ⇥ 1018 m or equivalently 300 ly.

VII. STELLAR EVOLUTION

§ In the beginning · · · ! there is a huge cloud of hydro-
gen and helium, about a trillion miles in diameter (this
is a million times the sun’s diameter). If the cloud has
a mass greater than about 1030 lb, the attractive forces
due to gravitation will be su�cient to overcome the dis-
persive e↵ects of the random motion of the atoms in the
cloud, and the cloud will begin to contract; see Fig. 14.

As the cloud contracts, one can think of all the atoms
falling in toward the center, and just like any other
kind of falling, they pick up speed. Their speed gets
randomized through collisions, so that the net e↵ect
is a large increase in the temperature (like the rise in
temperature of a falling brick when it strikes the ground).

§ Formation of the plasma. After about 10 million
(107) years of contraction, the hydrogen cloud shrunk
to a diameter of 100 million miles (100D�, or 100 times
the diameter of the sun). This is like shrinking the entire
Lehman campus down to an inch. The temperature of
the cloud has gone from about 100�K (representing an
average speed of 1 mile per second for the hydrogen
atoms) to about 50, 000�K (representing an average
speed of 20 miles per second). The density of the
cloud is about 1

1000 of the density of air. At this speed
and density the collisions are frequent enough (each
atom collides about a billion times/second) and violent
enough to ionize all the atoms in the cloud (that is,
remove the electrons from the atoms). So at this stage,
the star-to-be (called a protostar) consists of gas of
positively charged protons and helium nuclei, and
negatively charged electrons in equal balance. This kind

FIG. 15: p + n! D + �.

of hot gas is called a plasma.

§ Further contraction. The plasma continues to
contract under the influence of the gravitational force,
getting hotter and denser. The temperature rises because
the surface area of the star is not large enough in relation
to its volume to get rid of the heat as it is produced. After
another 10 million years the plasma has shrunk by an-
other factor of 100 to the size of the sun (D� = 1 million
miles), the density near the center has risen to 10 million
�K (corresponding to an average speed of 280 miles per
second for the protons). At this stage the plasma is
contracting so quickly that is about one hour from a to-
tal collapse into a point. But in the nick of time, we get · · ·

§ Nuclear ignition. Nuclei stay together in spite of
the strong repulsive electric forces between the protons.
This is because there is a much stronger attractive nuclear
force which acts like a glue between protons and protons
(or p’s and n’s, or n’s and p’s): namely, when they get
close enough to touch, the attraction due to the nuclear
force overwhelms any electrical repulsion which may
exist (like between p and p) [22]. It is also a property of
elementary particles (like p’s and n’s) that they never sit
still – they are always jiggling and moving about. This
tends to greatly weaken the binding due to the glue. In
the case of neutrons touching protons, the glue holds,
the binding is stable, and we get a deuteron; see Fig. 15.
If the Sun were to contain large numbers of neutrons, it
would burn up immediately into deuterium.

For the case of protons touching other protons,
the glue is slightly weakened by the presence of the
electrical repulsion, and the net attractive force is just
insu�cient to overcome the jiggling and bind the pp to
form 2He. So in our star, the protons will collide, hang
around each other a little, but no binding, no �-ray, no
“burning.”

§ However, enters the weak force! There is another
short range interaction between the nucleons which is
extremely weak, and is generally completely masked by
the strong force. This is called the weak interaction [23].
If two protons did bind, you would never know about
the weak force. But they don’t, so instead, once in every
10 billion collisions, the protons stick together to form a
deuteron. But a deuteron has a charge +1, and the two



12

FIG. 16: p + p! D + e+ + ⌫.

FIG. 17: D + p! 3He + �.

protons have charge +2, so we need something to carry
o↵ the extra positive charge: the carrier is a positron,
a positive electron e+. In addition to the positron, a
neutrino, carries o↵ a little of the energy and leaves the
Sun.

The reaction shown in Fig. 16 is very unlikely for
two reasons: (i) At 10 million �K, the protons get close
enough to touch only very rarely: the electric repulsion
is not fully overcome at this temperature. (ii) Even
when they do touch the fusion reaction is so weak that
it only occurs in a million times. Altogether, to see how
unlikely the whole thing is, if you had a lb of hydrogen
at the center of the sun, it would take 10 billion years for
half of it to burn into deuterium.

FIG. 18: 3He + 3He! 4He + 2p.

FIG. 19: Outward expansion into the red giant phase.

§ Cooking up the helium isotopes. We left o↵ with
the process p+ + p+ ! D+ + e+ + ⌫. This is not the end
of this sequence, however. The deuterium, in its many
collisions with protons, undergoes rapid conversion to
3He (see Fig. 17), and the 3He’s collide to form He4 and
two protons. The last reaction, shown in Fig. 18, pro-
ceeds slowly because the two 3He, each having charge
+2, have a hard time getting close to one another, in order
to undergo their nuclear reaction.

The net e↵ect of this sequence, which is called the
pp-cycle, is for four protons to combine to form one 4

2He
nucleus, plus two positrons, two neutrinos, and two
gamma rays.6 Now, nothing new happens for a long
time except for the accumulation of helium at the center
of the star.

§ Red giant phase. As the helium accumulates, it
starts undergoing gravitational contraction, heating up

6 The theory of the pp cycle as the source of energy for the Sun was
first worked out by Bethe [24]. Interestingly, the same set of nuclear
reactions that supply the energy of the Sun’s radiation also produce
neutrinos that can be searched for in the laboratory [25, 26].
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FIG. 20: 4He + 4He! 8Be + � and 4He + 8Be! 12C + �.

in the process (just like the hydrogen did before it). This
heating and contracting proceeds at a rather rapid rate
(over a period of tens of millions of years) leading to a
great increase in temperature of the hydrogen surround-
ing the helium core, and a consequent acceleration of its
burning. It also expands outward as shown in Fig. 19.

The end result is that the star becomes huge, the core
becomes small and dense (20, 000 miles across, 1 ton
per in3). The large size of the star allows the surface
to remain “cool” (i.e., only red hot) so that the star at
this stage is visible as a “red giant.” An example is
Betelgeuse (pronounced “beetle juice”) which is visible
as Orion’s left shoulder in the night spring sky, looking
south.

§Burning of the helium. When the temperature of the
core reaches 100 million �K, the helium begins to burn,
undergoing the reaction

4He + 4He! 8Be (beryllium-8) . (27)

Now, there is another of those “just so” accidents. 8Be
is not stable; although it can exist for a short time, the
nucleons out of which it is made do not attract each other
strongly enough, and in less than 10�12 s it breaks up into
separate helium nuclei again:

8Be !4 He +4 He . (28)

However, at the temperature and density of the helium
core, each helium nucleus undergoes about 1012 col-
lisions per second. So it is not unlikely that 8Be will
be hit by another helium-4 before it breaks apart; see
Fig. 20. This leads to the formation of carbon, and a
�-ray (which is energy).

§On to the white dwarf. So now a carbon core begins
to form. The heat generated by these interactions and the
subsequent collapse of the carbon core lead to a blow-o↵
of most of the outer gas layers. The star has become a hot
carbon core, about 20, 000 miles across, with a density of
10 tons per in3. The electron gas exerts enough outward
pressure to keep the carbon core from contracting much
in diameter, if the star is less than one and a half times
as massive as the Sun. But the inward pressures still
generate a great deal of heat, and the carbon star glows
with a white heat. This is a white dwarf. After a few
million years, the dwarf cools some, becomes yellow,
then red, then cools completely and the fire goes out.
The star has met its death as a massive, dense lump of
coal.
§Heavy stars. An entirely di↵erent end awaits the 5%

of stars whose masses exceed 1.5 times the mass of the
sun [27]. For such masses, the inward gravitational pres-
sure of the carbon core can generate a temperature suf-
ficiently large (600 million �K) to ignite the carbon. The
carbon burns to form magnesium and other elements.

The pressure and temperature mount, nuclear reac-
tions continue, until finally the iron is reached. At this
point, the process stops, because iron is a very special
element. Any reaction that takes place involving an iron
nucleus will use up energy. The iron, instead of provid-
ing more fuel to burn, puts the fire out. The center of
the star commences to collapse again, but this time, be-
cause of the presence of the iron nuclei, the fire cannot
be rekindled; it has gone out for the last time, and the
entire star commences its final collapse.

The collapse is a catastrophic event. The materials of
the collapsing star pile up at the center, creating exceed-
ingly high temperatures and pressures. Finally, when all
the nuclei are pressed against each other , the star can be
compressed no further. The collapsed star, compressed
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like a giant spring, rebounds instantly in a great explo-
sion. About half the material within the star disperses
into space, the other half remains as a tiny core (about
10 miles in diameter), containing a mass equal to that of
the Sun. This is now a pulsar or neutron star (for reason
to be explained soon). The entire episode (collapse and
explosion) lasts a few minutes.

The exploding star is called a supernova. The most fa-
mous supernova was recorded by Chinese astronomers
in A.D. 1054, and its remnants are now visible as the
Crab Nebula.

At the very high temperatures generated in the col-
lapse and explosion, some of the nuclei in the star are
broken up, and many neutrons and protons freed. These
are captured by other nuclei, building up heavier ele-
ments, such as silver, gold, and uranium. In this way
the remaining elements of the periodic table, extending
beyond iron, are perhaps manufactured in the final mo-
ments of the star’s life [28]. Because the time available
for making these elements is so brief, they never become
as abundant as the elements up to including iron.

The core of the collapsed star then contracts until all
the nuclei are touching, and then stops. The forces are
so great that all the nuclei (iron, etc.) disintegrate into
their constituents (neutrons and protons); the protons
combine with electrons to leave a dense core of neutrons
– a nucleus about as large as Boston [29]. This object,
a neutron star, rotates madly about its axis, emitting
energy at a billion times the rate at which the sun does
so. We see it in the sky as a pulsar.

If the mass of the neutron star is greater than about
three solar masses, then the star further contracts under
gravity and eventually collapses to the point of zero vol-
ume and infinite density [30]. As the density increases,
the paths of light rays emitted from the star are bent and
eventually wrapped irrevocably around the star. The
“star” with infinite density is completely enclosed by a
boundary known as the event horizon, inside which the
gravitational force of the star is so strong that light can-
not escape [31]. This is called a black hole, because no
light escapes the event horizon.

VIII. THE BIG BANG THEORY

Sir Hubble also observed a persistent redshift in the
spectra of known elements and that the shift was greater
the greater the distance of the galaxy from the Earth. It
was Hubble himself who explained the redshift as indi-
cating that distant galaxies were radially moving away
from the Earth [32]. In every direction, these vast accu-
mulations of stars and interstellar matter were moving
outward at enormous speeds. He called this motion, re-
cession. He showed that the velocity of recession was
greater at greater distances. Hubble’s law of cosmic ex-
pansion states that an observer at any point in the universe
will observe distant galaxies receding from him/her with
radial velocities V proportional to their distance d from the ob-

server,

V = H0 d (29)

where H0 is the Hubble’s proportionality constant. Hub-
ble’s initial determination of H0 was approximately
160 km/s per million-light-years. Most recent obser-
vations indicate that H0 ⇡ 22.4 km/s per million-light-
years [33–36].

Hubble’s law is consistent with a general expansion
of the space between galaxies (or galactic clusters),
and is not a particular characteristic of the galaxies
(clusters) themselves. This statement means that the
galaxies themselves are not changing in any way; only
the regions between them are expanding with time. If
the expansion is run backward (as can be done with
mathematics), then it would appear that, very long ago,
all the matter of the universe was once compacted into
a relatively small volume from which it was hurled
outward by some titanic force. This idea is the basis for
the hot Big Bang model [37–40].

Appendix A: Scientific Notation

Scientific notation refers to expressing a number as a
product of any number between 1 and 10 to the 10th
power. Scientific notation is mostly used when dealing
with large quantities or numbers containing many digits
since it shortens the notation, see Tables I and II.

To write a number in scientific notation:

• If the number is in decimal notation, move the dec-
imal point to the right of its original position and
place it after the first non-zero digit. The expo-
nent of 10 will be the number of places the original
decimal point was moved, and it will be negative
since it was moved to the right. For example, the
number 0.0000643 can be written as 6.43 ⇥ 10�5.

• If the number to be changed to scientific notation is
a whole number greater than 10, move the decimal
point to the left of its original position and place it
after the first digit. The exponent of 10 will be the
number of places the original decimal point was
moved, and it will be positive since it was moved
to the left. For example, the number 125, 000 can
be written as 1.25 ⇥ 105.

As an illustration, we estimate the volume of solar



15

TABLE I: Powers of 10 are shorthand for writing large numbers.

100 = 1 One
101 = 10 Ten (deca)
102 = 100 Hundred (centa)
103 = 1, 000 Thousand (kilo)
106 = 1, 000, 000 Million (mega)
109 = 1, 000, 000, 000 Billion (giga)
1012 = 1, 000, 000, 000, 000 Trillion (tera)
1015 = · · · Quadrillion (peta)
1054 = · · · Septendecillion

TABLE II: Powers of 10 also work for very small numbers.

100 = 1 One
10�1 = 0.1 One tenth (deci)
10�2 = 0.01 One hundredth (centi)
10�3 = 0.001 One thousandth (milli)
10�6 = 0.000, 001 One millionth (micro)
10�9 = 0.000, 000, 001 One billionth (nano)
10�12 = 0.000, 000, 000, 001 One trillionth (pico)
10�15 = · · · One quadrillionth (femto)
10�54 = · · · One septendecillionth

system taken up by stu↵:

Vstu↵ =
volume of Sun

volume of solar system

=
(radius of Sun)3

(radius of Pluto0s orbit)3

=

⇣
7 ⇥ 108

⌘3

(6 ⇥ 1012)3

=
73 ⇥ 103⇥8

63 ⇥ 103⇥12

=
73

63 ⇥ 103⇥8�3⇥12

= 1.6 ⇥ 10�12 , (A1)

which is about a millionth of a millionth. Recall that the
volume of a sphere = (4/3)⇡r3, where r is its radius.
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