Toggle Switch is one dimensional (why toggle switch)

- Simple transcriptional model for P.

\[\frac{dP}{dt} = \beta - \alpha P \]

\[
\begin{align*}
\text{production term} & \quad \text{degradation term} \\
\beta & \quad \alpha P
\end{align*}
\]

Steady state of the system

We can find steady states by solving

\[\frac{dP}{dt} = 0 \Rightarrow 0 = \beta - \alpha P \]

\[\Rightarrow P_{st} = \frac{\beta}{\alpha} \]

(Aside: This model obeys exponential kinetics (it's linear in P)

\[P(t) = \frac{\beta}{\alpha} (1 - e^{-\alpha t}) + P_0 e^{-\alpha t} \]

Graphical way to find steady state (aka "fixed points")

Analyzing stability of fixed points, arrows show direction of derivation.

Stable fixed point
Positive feedback

Production term can be function of P.
- Increasing function of P: “positive feedback”
- Decreasing function of P: “negative feedback”

Let’s consider first case

- Production term saturates
- Hyperbolic production term produces only one stable fixed point

Sigmoidal production term

- Can have 2 stable fixed points = bistability
- Which one reached depends on when system starts
 “System has memory”
Let's consider a system where the production term is a sum of a sigmoidal function and a constant function of P:

![Graph showing a sigmoidal function and a constant function](image)

- $\beta < \beta_{\text{crit}}$
- $\beta = \beta_k$
- $\beta > \beta_u$

At exactly right value of β, curve touches x-axis.

This is called a bifurcation point - a pair of fixed points.

Keep going, and lower fixed points merge & disappear!

Bifurcation diagram summarizes fixed point behavior:
- Upper FP (stable)
- Lower FP (stable)
- Unstable FP

![Bifurcation diagram](image)
Toggle switch

System exhibits memory in bistable region
Hard to turn ON when it starts in OFF state.
Hard to turn OFF when it starts in ON state.

If β is a signal, switch is robust to noise up to a threshold level, but once it's ON, doesn't require high level to maintain ON state.

This type of bifurcation is called a "saddle node" bifurcation.

So-called "canonical" form is intersection of parabola with x-axis:

$$\frac{dx}{dt} = \lambda - x^2$$

(Briefly)

A 2D toggle switch

$\begin{align*}
X &\rightarrow Y \quad \text{mutual inhibition; either } X \text{ or } Y. \\
\frac{dx}{dt} &= \frac{Z}{1+y^n} - x \\
\frac{dy}{dt} &= \frac{Z}{1+x^n} - y
\end{align*}$

Can find and analyze fixed points in x-y plane.
Method: Plot the "nullclines."

\[x_{nc} : \quad \frac{dx}{dt} = \frac{2}{1+xy} = x = 0 \]
\[\Rightarrow x_{nc} : \quad x = \frac{2}{1+y} \]

\[y_{nc} : \quad \frac{dy}{dt} = \frac{2}{1+xy} - y = 0 \]
\[\Rightarrow y_{nc} : \quad y = \frac{2}{1+x} \]

Fixed points from intersections of nullclines.