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Executable cell biology
Jasmin Fisher1,2 & Thomas A Henzinger2,3

Computational modeling of biological systems is becoming increasingly important in efforts to better understand complex 
biological behaviors. In this review, we distinguish between two types of biological models—mathematical and computational—
which differ in their representations of biological phenomena. We call the approach of constructing computational models of 
biological systems ‘executable biology’, as it focuses on the design of executable computer algorithms that mimic biological 
phenomena. We survey the main modeling efforts in this direction, emphasize the applicability and benefits of executable 
models in biological research and highlight some of the challenges that executable biology poses for biology and computer 
science. We claim that for executable biology to reach its full potential as a mainstream biological technique, formal and 
algorithmic approaches must be integrated into biological research. This will drive biology toward a more precise engineering 
discipline.

Over the past decade, biological research has reached a point where 
the accumulated data exceed the human capacity to analyze it. The 
vast information generated by DNA microarrays, genome sequenc-
ers and other large-scale technologies requires computer power for 
storage, searching and integration into a coherent picture. Systems 
biology, which combines biology, chemistry, physics, mathematics, 
electrical engineering and computer science, among other disciplines, 
aims to integrate the data concerning individual genes and proteins 
and to investigate the behavior and relationships of various elements 
in a biological system to explain how it functions1–3.

At the core of systems biology lies the construction of models 
describing biological systems. Over the years, biologists have used 
diagrammatic models to summarize a mechanistic understanding 
of a set of observations. Despite the many benefits of such mod-
els, as well as their simplicity, they give a rather static picture of 
cellular processes. The growing need to translate these models into 
more dynamic forms that can capture time-dependent processes, 
together with increases in the models’ scale and complexity, has 
prompted biologists to harness computers to build and analyze 
ever-larger models. The long-term vision is that large-scale models 
should revolutionize biology and medicine and enable design of new 
therapies.

We distinguish between two types of models: (i) those that use 
computer power to analyze mathematical relationships between 
quantities and (ii) a new variety, resembling a computer program, 
which is central to an emerging field that we call executable biol-
ogy. Here, we explain the differences between these two approaches, 
explore some recent executable biology models and emphasize some 
challenges facing this new field.

Mathematical versus computational models
Mathematical models, such as those based on differential equations, 
can represent many situations in the natural sciences and engineering. 
Although they were developed before computation became feasible 
on a grand scale, they are now profiting from our increasing compu-
tational ability.

In contrast, computational models present a recipe—an algorithm— 
for an abstract execution engine to mimic a design or natural phe-
nomenon. Such models are ideally suited to representing complicated 
chains of events. They have been used recently to model biochemical 
processes4–7, thymocyte development and cell fate determination dur-
ing Caenorhabditis elegans development8–14.

Mathematical and computational models (Box 1) differ in the lan-
guages in which they are specified. Whereas the former are specified in 
mathematics, typically equations, the latter are specified by computer 
programs, often very high-level code written in a modeling language 
such as Statecharts15 or Reactive Modules16. Consequently, the two 
types of models yield different kinds of insights. The differences are 
exemplified by comparing different modeling approaches to cell fate 
determination during C. elegans vulval development11,13,17, which 
concentrate on different aspects and consequently provide different 
kinds of insights into the same system. In contrast with a mathemati-
cal model17 that predicts rates of intercellular reactions and suggests a 
time frame in which cell fate determination is established, the compu-
tational models11,13 predict the timing and order of signaling events as 
well as new modes of interaction between the epidermal growth factor 
receptor and LIN-12/Notch signaling pathways.

Mathematical models can be simulated and possibly solved. The 
basic entity of a mathematical model is the transfer function, which 
relates different numerical quantities to each other. A transfer function 
may be specified, for example, by a differential equation that relates 
an input to an output quantity. Complex mathematical models are 
constructed through the composition of transfer functions, yielding 
a network of interdependent quantities. If the constraints for indi-
vidual transfer functions are relatively simple (e.g., linear differential 
equations), then mathematical models are amenable to mathematical 
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analysis. In more complicated cases (e.g., nonlinear or stochastic differ-
ential equations) and in very high-dimensional cases (where the num-
ber of variables is large), mathematical models require computational 
simulation to plot changes in quantities of substances over time.

Computational models can be executed. By contrast, the basic entity 
of computational models is the state machine, which relates differ-
ent qualitative configurations (‘states’) to each other. A state machine 
may be specified by simple computer programs that define how, given 
certain events, one state is transformed into another. Complex com-
putational models are constructed through the composition of state 
machines, yielding a reactive system (Box 2). The components of 
such a system represent biological entities, such as cells, which react 
to events involving neighboring components by state transformations. 
This is often useful in cell biology, because it requires the modeler to 
think in terms of ‘cause and effect’ rather than rates of change.

Such computational models can have a very large number of states, 
are often highly nonlinear and nondeterministic (Box 2) and are gen-
erally not amenable to mathematical analysis. Whereas an algorithm 
must be devised to simulate a mathematical model, a computational 
model prescribes the steps taken by an abstract machine and is there-
fore inherently and immediately executable. As the primary semantics 
of computational models are operational, we use the term execution 
instead of simulation—hence executable biology. The efficiency with 
which computers can execute instructions, which exceeds their ability 
to solve or simulate mathematical equations, makes them ideally suited 
to the execution of very large computational models.

Quantitative versus qualitative modeling of biology. In biology, 
mathematical models for many quantitative relationships between 
variables, such as molecule concentrations and gene activity levels, 
have been devised to represent cell signaling pathways in a physically 
and biologically realistic manner and have been shown repeatedly to 
generate novel and useful hypotheses18–27. Such models, however, 
are difficult to obtain and analyze if the number of interdependent 
variables grows and if the relationships depend on qualitative events, 
such as a concentration reaching a threshold value. Computational 

models offer an effective alternative if pre-
cise quantitative relationships are unknown, 
if they involve many different variables or if 
they change over time, depending on certain 
events. Because computational models are 
qualitative, they do not presuppose a precision 
absent from the experimental data; because 
they are nondeterministic or stochastic, they 
allow many possible outcomes of a chain of 
events, which is often observed in biological 
systems.

A significant advantage of qualitative mod-
els is that different models can be used to 
describe the same system at different levels of 
detail and that the various levels can be related 
formally. There are several natural levels of 
abstraction for describing biological systems 
using computational models. For example, 
the individual components may represent 
molecules or, at a less detailed level, they may 
represent cells. In such models, it may not 
be necessary to know exactly how a certain 
process (e.g., protein synthesis) achieves a 
certain output, provided that the behavior of 

the process can be defined qualitatively in a robust manner. Hence, 
computational models can be useful even when not every detail about 
a system is known.

Computational models can be analyzed by model checking. 
Computational models can be used for testing and comparing hypoth-
eses. Suppose that we have collected experimental data. A computa-
tional model represents a hypothesis about the mechanism that results 
in the data. An execution of the model can be used to check whether 
a possible outcome of the mechanism conforms to the data (Fig. 1). 
Owing to nondeterminism or stochastic choices, each repeated execu-
tion may yield a different outcome. Therefore it is impossible to check 
by executing the model whether all possible outcomes conform to 
the data, or whether the distribution of outcomes conforms to the 
data. This, however, can be done by a technique called model check-
ing28, which systematically analyzes all of the infinitely many possible 
outcomes of a computational model without executing them one by 
one. Intuitively, this is done by exploring the states and possible state 
changes of a model, rather than by exploring all possible executions of 
the model. Model checking is effective, because there are usually many 
more executions than states. A state that may repeat can give rise to 
infinitely many possible executions.

If model checking tells us that all possible outcomes of the compu-
tational model agree with the experimental data and that all experi-
mental outcomes can be reproduced by the model, then the model 
represents a mechanism that satisfactorily explains the experimental 
data. If, on one hand, some of the experimental data cannot be repro-
duced, then the hypothesis is wrong. In this case, either the model must 
be improved to produce the additional outcomes that are present in 
the data, or completely revised. If, on the other hand, some outcomes 
of the computational model disagree with the experimental data, then 
the situation is more interesting. In this case, the mechanistic hypoth-
esis represented by the model may be wrong and one may attempt 
to restrict the model so it does not produce outcomes that are not 
supported by the data, as recently illustrated by a model of crosstalk 
between Notch and Wnt signaling29 and a model of C. elegans vulval 
development13. Alternatively, the experimental data may be incom-

Box 1  Mathematical versus computational models

A computational model is a formal model whose primary semantics is operational; that 
is, the model prescribes a sequence of steps or instructions that can be executed by an 
abstract machine, which can be implemented on a real computer. A mathematical model 
is a formal model whose primary semantics is denotational; that is, the model describes by 
equations a relationship between quantities and how they change over time. The equations 
do not determine an algorithm for solving them; in general, there may be many different 
solution algorithms and often such algorithms compute only approximate solutions.

There is an entire sub-field of computer science that studies the relationships and 
differences between computational (operational) and mathematical (denotational) views 
of a system. Whereas for computational models, the computer implementation is by 
definition a faithful representation of the model, for mathematical models, there is a 
gap between the meaning of the model and its implementation on a computer. This gap 
needs to be bridged, for example, by proving that a certain algorithm solves a certain 
equation with a certain precision. This is not to say that for computational models, the 
representation gap magically disappears; rather it is shifted and reappears between the 
biological system and the model. Bridging that gap requires the adequacy of abstractions, 
not the faithfulness of implementations. Although computational models are further from 
the biological system and closer to the computer, a good computational model–if one can 
be found–may explain the mechanisms behind a biological system in more intuitive and 
more easily analyzable terms than a mathematical model.
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plete and not exhibit some possible observations that would become 
evident if more data were collected. In this case, model checking can 
offer suggestions for additional, targeted experiments that would either 
confirm or invalidate the mechanistic hypothesis represented by the 
computational model (Fig. 1).

Models for executable biology
Here we summarize several research efforts aimed at realizing the 
executable biology framework. These are explained further in Box 3. 

Boolean networks for analyzing systems robustness and stabil-
ity. Boolean networks were first introduced by Kauffman in the early 
1970s30,31 and are the oldest form of executable biology models. Boolean 
networks approximate the dynamics of biological networks by consider-
ing each molecule (e.g., gene or protein) in the network as either active 
(1) or inactive (0); intermediate expression levels are neglected. Thus, 
the state of the system corresponds to the activation state of each of the 
molecules that make up the network. A molecule is considered to become 
active if the sum of its activations is larger than the sum of its inhibi-
tions and inactive if the sum of its activations is smaller than the sum of 
its inhibitions (Fig. 2a). Hence, we obtain a system whose state evolves 
according to the postulated connections between its molecules (Fig. 
2b). Despite this clearly simplified view of biological networks, several 
examples from models of genetic regulatory networks show that Boolean 
approaches give meaningful biological information32–34.

Boolean networks have proved useful in analyzing system dynamics 
and reasoning about the stability and robustness of biological sys-
tems34,35. The possible states of a Boolean network are drawn as nodes 
of a graph and possible state changes are drawn as edges. Loops in the 
graph are used to deduce which are the stable states of the system. 
The number of loops can be used to reason about system robustness 
(Fig. 2c). The strong simplifying assumptions on the structure and 
dynamics of a genetic regulatory system enable the efficient analysis 

of large regulatory networks. Boolean networks were also among the 
first formalisms for which algorithms were devised to infer genetic 
interactions from gene expression data36–41.

From a computational point of view, it is difficult to compose 
larger models from smaller building blocks using Boolean networks. 
Hierarchical structuring, which makes the design and analysis of mod-
els simpler, is not possible in Boolean networks. Recently, Schaub et 
al. introduced an extension to Boolean networks, called ‘qualitative 
networks’, in an attempt to support hierarchical structuring29.

Comparison

Model
execution

Data

Adjust
model

Suggest new
experiments

Model
construction

Experiments

Executable biology Experimental biology

Figure 1  The methodology of executable biology. Our view of executable 
biology is an interplay between collecting data in experiments (experimental 
biology) and constructing executable models that capture some mechanistic 
understanding of how the systems under study work. By executing the models 
under various conditions that correspond to the experiments and by comparing 
the outcomes to the experimental data, one can identify discrepancies 
between hypothetical mechanisms and the experimental observations. These 
differences can be used to suggest new hypotheses, which serve to adjust the 
model and need to be validated experimentally, or new experiments, which can 
confirm or falsify modeling hypotheses.

Reactive system. A system that consists of parallel processes, 
where each process may change state in reaction to another 
process changing state. Biological systems are highly reactive (e.g., 
cells constantly send and receive signals and operate under various 
conditions simultaneously).
Nondeterministic system. A system that may have several possible 
reactions to the same stimulus. In biological systems, for example, 
we can observe various patterns of cell fate under the same 
genotype. Hence, nondeterministic models capture the diverse 
behavior often observed in biological systems by allowing different 
choices of execution, without assigning priorities or probabilities to 
each choice.

Distributed system. A system that consists of a collection of 
autonomous computers, connected through a network that enables 
the computers to coordinate their activities and to share the 
resources of the system, so that users perceive the system as a 
single, integrated computing facility.

Concurrency. In computer science, a property of systems that 
consist of many processes running in parallel and sharing common 
resources.

Tokens in Petri nets. These describe the presence or absence 
of a condition, a signal, or a resource. In the case of metabolic 
networks, the number of tokens in a place stands for the number 
of molecules of that metabolite existing at a given moment. 

Alternatively, tokens may correspond to a predefined unit 
measuring the amount of a substance, such as mole and millimole.

Visual languages. Languages that allow programming with visual 
expressions (such as diagrams, drawings, animations and icons) 
as opposed to conventional textual languages that use only 
textual code. Visual programming environments provide graphical 
interfaces, which can be manipulated by the user in an interactive 
way.

Reactive animation. A visual front-end that can be set up to 
yield interactive animation movies that follow in real time the 
events taking place during model execution and which can be 
manipulated and changed during run-time.

Compositional analysis. Analysis through which the properties of a 
system can be derived from properties of its parts.

The Delta-Notch decision. A signaling process where two 
equipotent cells that initially express equal amounts of Notch 
and its ligand Delta gradually express either Notch or Delta. The 
Notch-expressing cell receives activation signals from the Delta-
presenting neighboring cell, resulting in these two cells adopting 
very different cell fates.

Very-large-scale integration (VLSI). The process of creating 
integrated circuits by combining many thousands of transistor-
based circuits into a single chip.

Box 2  Glossary of terms

REV IEW



1242 VOLUME 25   NUMBER 11   NOVEMBER 2007   NATURE BIOTECHNOLOGY

Petri nets for analyzing biological networks. Petri nets represent a 
well-established technique in computer science for modeling distrib-
uted systems (Box 2). The model stresses concurrency (Box 2), which 
is important when modeling biological systems. A Petri net is a graph 
with two types of nodes: places, which represent the resources of the 
system, and transitions, which correspond to events that can change 
the state of the resources. The edges of the graph connect places to 
transitions and transitions to places (Fig. 3a). The state of the system 
is represented by places holding so-called tokens (Box 2); one place 
may hold multiple tokens. Thus, different assignments of tokens to 
places induce different states of the system. Transitions change the 
state of the system by moving tokens along edges. In a given state of 
the system, there may be more than one transition that can move a 
token, leading to nondeterminism.

Petri nets are well-suited for modeling the concurrent behavior of 
biochemical networks42,43 and have been used to represent metabolic 
pathways44 and protein synthesis45,46. Figure 3 shows a Petri net model 
of the biosynthesis of tryptophan in Escherichia coli.

Some of the main advantages of Petri nets are that they are visual, 
have different flavors and can be designed and analyzed by a range of 
tools. The simple type of Petri nets described above subsume Boolean 
networks: a place represents a molecule and a token at that place rep-
resents the active state of the molecule. Choosing to model Boolean 
networks using Petri nets has the added advantage of ready-made 
visual design and analysis tools. Recently an automatic translation of 
Boolean networks to Petri nets has been suggested47. However, much 
like Boolean networks, Petri nets do no support hierarchical structur-
ing, which makes them difficult to use for large-scale models.

More complex flavors of Petri nets provide additional possibilities in 
modeling. For example, in colored Petri nets, different-colored tokens 
induce multiple possible values for each place, allowing different acti-
vation levels to be assigned to resources. Colored Petri nets have been 
used to analyze metabolic pathways48. Stochastic Petri nets add prob-
abilities to the different choices of the transitions and have been used 
to analyze signaling pathways49–51, where the number of molecules 
of a given type is represented by the color of a place and probabilities 
represent reaction rates. The Pathalyzer is a software tool that builds 
on the availability of Petri nets analysis and design tools to standard-
ize and collect information about signal transduction pathways52. It 
uses analysis techniques for Petri nets to answer queries such as “what 
could cause the activation of a certain substance?”, or “is it possible 
that a certain substance will reach activation in the absence of a dif-
ferent substance?’’52.

Interacting state machine models for biological mechanisms. State 
machine models define the behavior of objects over time, based on 
the various states that an object can be in over its lifetime. In other 
words, states are abstract situations in an object’s life cycle. Interacting 
state machines can specify causal relationships between state changes 
in different machines. These models describe both how objects com-
municate and collaborate as well as how they behave under different 
circumstances. Usually, the state of an object is determined by the 
states of its parts. For example, the state of a cell is determined by the 
states of various genes and proteins, each having its own reaction to the 
presence or absence of some other molecules. Changes in the state of 
the cell are determined by the interdependent state changes of all parts. 

Boolean networks. These models are computational, because 
from a given activation state of all molecules, they prescribe 
which molecules become active in the next step. The execution 
of a Boolean network thus illuminates the causal and temporal 
relationships between the activation of different molecules. The 
main drawback of Boolean networks is that they do not support the 
composition of larger models from smaller ones. To allow integration 
of several interacting mechanisms, a model needs to offer a so-
called composition operation. Interacting state machines and 
process calculi support such a composition operation.

Petri nets. These models are computational, because from a given 
assignment of tokens to places, they prescribe which tokens can 
change place in the next step. Petri nets are more general than 
Boolean networks, because their execution semantics allows for 
true concurrency: several tokens may change place independently 
in the same step. Also, whereas Boolean networks are deterministic 
(that is, the outcome of execution is unique), Petri nets may be 
nondeterministic (execution may have many different outcomes; 
e.g. when there are multiple options to move tokens), or stochastic 
(that is, there is a probability distribution of possible outcomes), 
or both (when there are several different probability distributions 
of possible outcomes). Like Boolean networks, Petri nets do not 
support the composition of several networks.

Interacting state machines. Several languages are available to 
specify these models, for example, the language of Reactive 
Modules. They are computational because from given states of 
all interacting machines, the model prescribes the next states 
of the machines. The interaction may be synchronous, when 
some machines change state simultaneously because of causal 

dependencies, or asynchronous, when some machines change 
state independently, in any order. Asynchronous interaction 
gives rise to nondeterminism, because different orders may give 
different results. Like Petri nets, interacting state machines may be 
nondeterministic, stochastic, or both. Unlike Boolean networks and 
Petri nets, interacting state machines are compositional, because 
several machines can be put together and will interact with each 
other. State machines can also be equipped with a hierarchical 
structure, as in Statecharts. A hierarchical machine may change 
state at a microlevel and several microsteps together make up a 
macro-step, which is a single state change of a higher-level machine 
providing a more abstract (that is, less detailed) view of the system.

Process calculi. Like interacting state machines, these models are 
computational and compositional. They may be nondeterministic, 
stochastic, or both. The main difference between interacting state 
machines and process calculi is that in the former case, the most 
basic notion is that of a state and the model prescribes how the 
state changes, whereas in the latter case, the most basic notion 
is that of an event and the model prescribes how events either 
cause or are independent of other events. Although an event can 
be represented by a state change and a state by a history of events, 
the two views give rise to different styles of modeling.

Hybrid models. The discrete part of these models is computational 
and the continuous part, mathematical. Executing the continuous 
change of variables, as described by differential equations, requires 
an algorithm that is independent of the model and often gives only 
approximate results. For example, the possibility of a discrete state 
transition may be missed if that possibility depends on the exact 
value of a continuous variable.

Box 3  Computational models
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A hierarchical structure allows one to view a system at different levels 
of detail (e.g., whole organism, tissues, cells; Fig. 4a). Models of this 
kind have been used to model T-cell activation and differentiation8,9, 
as well as C. elegans development10,11,13,14.

Interacting state machine models are particularly suitable for 
describing mechanistic models of biological systems that are well 
understood qualitatively. Such models do not require quantitative data 
relating to the number of molecules and reaction rates. They allow the 
creation of abstract high-level models and the application of strong 
analysis tools such as model checking. The possibility of hierarchical 
structuring is extremely useful in cases where the behavior is distrib-
uted over many cells and where multiple copies of the same process 
are executed in parallel.

There are many different languages to express interacting state 
machine models. Using the visual language (Box 2) of Statecharts15, 

Kam et al. developed a model that described the various stages in 
the life span of a T-cell and the transitions between these stages8. 
The initial T-cell model was followed by a more extensive animated 
model of T-cell differentiation in the thymus9. A major advantage of 
Statecharts compared to other state-based formalisms, such as Reactive 
Modules16, is the fact that this language is visual. The user can draw 
states and state changes and the tool automatically creates an execut-
able model, enabling relatively easy and intuitive programming even 
for nonspecialists. Efroni et al. used reactive animation (Box 2)9,53, 
where a reactive system drives the display of animation software to 
visualize the model. These studies were followed by ongoing efforts to 
model C. elegans development10,11,13,14, which used Statecharts and a 
visual language called Live Sequence Charts54 and more recently a lan-
guage called Reactive Modules16 that supports compositional analysis 
techniques (Box 2).
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strengths of inhibition arrows whose source is active. (b) Simplified cell-cycle network of the budding yeast. (c) Analysis of the yeast cell-cycle network using 
Boolean networks. Each dot represents a state of the proteins in the system, where each of the proteins is either active or inactive. Each arrow represents 
a transition from one state to another. The blue transitions correspond to the cell-cycle sequence. Starting from any point in the graph, in order to avoid 
reaching the stable state at the bottom of the diagram, one would have to continuously perturb the system. Hence, the normal behavior converges fast to the 
stable state at the bottom of the diagram, corresponding to the G1 stationary state in which the cell awaits a signal that will start another round of division. 
This demonstrates that the yeast cell-cycle regulatory network is stable and robust for its function. Figures reproduced with permission from ref. 34.
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Fisher et al.11 created a formal dynamic model of vulval fate speci-
fication based on the proposed mechanistic model of Sternberg and 
Horvitz55. This work revealed that state-based mechanistic modeling is 
well-suited to developmental genetics and can provide new insights into 
the temporal aspects of cell fate specification during C. elegans vulval 
development. Subsequent work13 was based on the more sophisticated 
current understanding of vulval fate specification (Fig. 4b). Model check-
ing allowed us to test the consistency of the current conceptual model for 
vulval precursor cell fate specification with an extensive set of observed 
behaviors and experimental perturbations of the vulval system. The 
analysis of this model predicted new genetic interactions between the 
signaling pathways involved in the patterning process, together with tem-
poral constraints that may further elucidate the mechanisms underlying 
precise pattern formation during animal development. These predictions 
were validated experimentally (Fig. 4).

Process calculi for executing molecular processes. A different 
approach stresses the importance of interactions between molecules 
as the driving force for biological processes. As opposed to previous 
approaches where execution results in a sequence of states, here execu-

tion is defined through a sequence of events and their causal depen-
dencies. This approach uses process calculi—languages that have been 
developed to model networks of communicating processes56. In this 
context, a process is a state machine for which some state changes 
can be observed as events. Events provide communication between 
processes.

To model biological behaviors, a process is associated with a molecule 
and many copies of the same process run in parallel to simulate the exis-
tence of many molecules. Communication between processes is used to 
model interactions between molecules. For example, the activation of 
a certain molecule by the energy released from ATP hydrolysis can be 
modeled by two processes and a communication event between them as 
follows: a process associated with ATP proceeds from the ‘ATP-state’ to 
the ‘ADP-state’, a process associated with the specific molecule proceeds 
from the ‘inactive-state’ to the ‘active-state’, and the two state changes are 
simultaneous because of a communication event. The inactivation of the 
same molecule can then be modeled by an independent state change.

This modeling approach is applicable to molecular interactions 
that occur stochastically. It can be used for the detailed analysis of the 
stochastic behavior of a molecular interaction network using model 
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checking. Currently, owing to scalability 
issues, such an analysis can be applied only to 
relatively small models. However, the infor-
mation and insights provided by this kind of 
analysis suggest that it is beneficial to create 
oversimplified models of large and complex 
networks.

Initial work along this line used a process 
calculus called pi-calculus56 as a modeling language for molecular 
interactions5. These studies included the modeling of the receptor 
tyrosine kinase and the mitogen-activated protein kinase signal-trans-
duction pathway and the construction of a simulation environment 
called BioSPI. The stochastic pi-calculus57 was later used to model 
a gene regulatory positive-feedback loop4. Many other studies have 
followed this direction, including experiments using the ambient 
calculus58 and the brane calculus59. The methodology has also been 
used to model transcription factor activation and glycolysis60, Raf 
kinase inhibitory protein inhibition of extracellular signal-regulated 
kinase61 and more recently, the mitogen-activated protein kinase cas-
cade (including a comparison with a similar model using differential 
equations)62 and the fibroblast growth factor 
pathway (Fig. 5) (and its extensive analysis 
using stochastic simulation and probabilistic 

model checking)63. A recent review7 discusses the process calculus 
approach in depth.

Hybrid models combining mathematical and computational mod-
els. Hybrid systems combine in a single framework variables that 
span discrete and continuous domains64. The discrete variables are 
controlled by discrete state changes that may depend on the values 
of continuous variables. The changes in continuous variables are 
governed by differential equations (preferably linear), which depend 
on discrete states (that is, the combined value of all discrete variables 
determines the discrete state and the discrete state determines which 
differential equations are to be used to govern the rates of change 

1:  FGF binds/releases FGFR          
        FGF + FGFR → FGFR:FGF            k1 = 5e + 8 M–1s–1

        FGF + FGFR ← FGFR:FGF            k2 = 0.002 s–1

2:  Phosphorylation of FGFR (whilst FGFR:FGF)
        FGFR:FGF + FGFR1 → FGFR:FGF + FGFR1P     k3 = 0.1 s–1

        FGFR:FGF + FGFR2 → FGFR:FGF + FGFR2P     k4 = 0.1 s–1

3:  Dephosphorylation of FGFR
        FGFR1P → FGFR1            k5 = 0.1 s–1

        FGFR2P → FGFR2            k6 = 0.1 s–1

4:  Effectors bind phosphorylated FGFR
        SRC + FGFR1P → SRC:FGFR           k7 = 1e + 6 M–1s–1

        SRC + FGFR1P ← SRC:FGFR          k8 = 0.02 s–1

        GRB2 + FGFR2P → GRB2:FGFR           k9 = 1e + 6 M–1s–1

        GRB2 + FGFR2P ← GRB2:FGFR           k10 = 0.02 s–1

5:  Relocation of FGFR (whilst SRC:FGFR)
        SRC:FGFR → relocFGFR            k11 = 1.1e–3 s–1
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                           . . .  .
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                           dph1![] , FGFR_Ph11 . % dephosphorylation
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 dph1![] , rel_src2! [], FGFR_Ph10;
 % dephosphorylation (and releasing SRC)
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Figure 5  Pi calculus. (a) Possible molecular 
interactions in the fibroblast growth factor (FGF) 
pathway. Figure reproduced from reference 63. 
(b) Partial summary of reactions between the 
components presented in the diagram, including 
reaction rates obtained from the literature. (c) 
A fragment of the stochastic pi-calculus code 
(in the textual format of BioSPI) relating to FGF 
receptor (FGFR) and its interactions with FGF 
and Src. (d) The BioSPI system inputs the pi-
calculus code and performs simulations using the 
Gillespie algorithm. The curves show the amount 
of relocated FGFR and Grb2 bound to FGFR over 
time, for an average of ten simulations. Figures 
reproduced from ref. 72.
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continuous variables. Each discrete state has 
its own differential equations, which govern the 
dynamics of continuous variables. (b) Influence 
diagram for Delta-Notch protein signaling 
network in a hexagonal close-packed lattice.  
(c) Plots of the continuous changes of the levels 
of Delta (x1) and Notch (x2) proteins as governed 
by changing differential equations that match 
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and green. An isolated single cell will converge 
to a steady state where it has a high level of 
Delta protein and a low level of Notch protein. 
(d) From left to right, layout of four cell Delta-
Notch network showing the variables associated 
with each cell; biologically consistent steady 
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reproduced from ref. 66.
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for the continuous variables). Hybrid systems aim to bridge the gap 
between mathematical models and computational models by com-
bining the two. The discrete part of such models is the executable 
control mechanism that drives a hybrid system. A major portion of 
the work on hybrid systems has focused on constructing algorithms 
that perform the required simulation and analysis of the continu-
ous part. Hybrid systems are particularly suitable to model biologi-
cal systems where the relationships between substances change over 
time (that is, different equations are used for the same variables in 
different discrete states). Yet, they require exact quantitative data in 
order to fine-tune the equations that produce the continuous part 
of the model.

A hybrid model of the Delta-Notch decision process65,66 (Box 2 
and Fig. 6) distinguishes between the control structure regulating the 
production of the Notch and Delta proteins (represented by discrete 
control variables) and the levels of these proteins (continuous values 
controlled by differential equations). The model reproduces the Delta-
Notch decision: cells that express Delta are surrounded by cells that 
express Notch. In addition, a detailed analysis of a two-cell model 
shows that the model’s behavior matches a classical model using non-
linear differential equations65. In a separate analysis of the same model, 
Ghosh and Tomlin checked which initial states of the hybrid system 
lead to the various Delta-Notch patterns66.

Challenges
Executable biology poses new challenges both for computer science 
and biology. One challenge facing computer science is to adjust for-
malisms that were originally developed for modeling hardware and 
software systems to the modeling of biological systems. We must 
also develop techniques that handle the complexity and magnitude 
of biological systems and modeling tools that are more accessible to 
biologists. For biology, some of the key challenges are to develop quan-
titative techniques to experimentally test dynamic scenarios proposed 
by executable models, to identify useful building blocks of complex 
biological networks and perhaps most importantly, to shift biology 
toward an engineering science, where students learn to use formal 
approaches.

Developing quantitative measures to test system dynamics. Dynamic 
executable models can represent biologically important phenomena 
such as time and system dynamics that cannot be represented by static 
diagrammatic models. The influence of time on system behavior must 
thus be examined experimentally. The executable models of cell fate 
specification described above11,13 predict such dynamic scenarios, 
suggesting a race between the epidermal growth factor recetor and 
LIN-12/Notch signaling pathways that determines cell fates during C. 
elegans vulval development.

Unfortunately, in practice, time is experimentally daunting. Using 
techniques that enable the direct quantitative measurement of path-
way activities or protein levels, at a single-cell resolution, is not yet 
common practice. Experimental data, such as fluorescence levels of 
tagged proteins or immunoblots, are usually limited to unit-less ratios 
of expression levels that are only proportional to the actual protein 
concentrations. Not having direct measures can significantly hinder 
or complicate finding parameter values. In many studies, the linear 
relation between the concentrations of fluorescent proteins and their 
measured fluorescence intensities has been used to measure protein 
levels in living cells, albeit only in relative terms and not in absolute 
numbers67,68. Hence, improvements in the existing experimental 
methodologies to enable direct quantitative measurements are essen-
tial. One of the recent efforts to follow this path is the development 
of a technique that converts observed fluorescence intensities into 
numbers of molecules69. The challenge is twofold: first, to develop 
techniques that allow such quantitative measurements; and second, 
to allow these measurements to be taken continuously from the same 
element (e.g., cell, tissue), providing a dynamic view of the involved 
processes. From the perspective of executable biology, quantitative 
parts can be then incorporated into computational executable models 
to establish probabilistic or hybrid models64, adding another dimen-
sion of accuracy to computational models.

Identifying ‘logic gates’ in biology. A complex system offers different 
characteristics when viewed from different distances. In a close-up view 
of an electronic circuit, for example, the circuit appears as a continuous-
time system where individual transistors are visible and these building 
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Transistor

Logic gate

Biology

Signaling pathway

Molecular interactions

Bio-logic gate

Differential equations

Truth table

Figure 7  The analogy between hardware 
design and biological models. Computer chips 
are built from transistors. The most accurate 
way to describe the behavior of transistors is 
by differential equations. However, hardware 
designers work neither with transistors nor 
with differential equations. The basic units 
used for hardware design are logic gates, each 
of which consists of a few transistors. The 
behavior of a gate is not described by the sum 
of the differential equations for the transistors 
comprising it, but rather by a simple truth table 
of inputs and outputs, each with a Boolean value 
of 0 or 1. Conventional models of biological 
pathways use differential equations to describe 
molecular interactions. A key challenge is to 
identify a more abstract level, perhaps similar 
to the gate level in hardware design, based on 
functional units each of which involves many 
molecules. Such ‘bio-logic gates’ need not 
correspond to traditional biological entities, 
but could simply be useful building blocks of 
a language for defining abstractions of certain 
biological systems.
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blocks are best modeled using differential equations. Viewed from further 
away, however, the same circuit appears as a discrete-time system where 
the identifiable building blocks are Boolean gates, which are naturally 
modeled in the mathematics of truth values (so-called propositional 
logic). The key enabler of very-large-scale integration (VLSI) (Box 2) 
design has been the insight that we can build circuits with a desired func-
tionality, such as the processors of modern computers, by working solely 
at the Boolean level. In other words, the circuit designer uses logic gates 
as black boxes and does not need to know that each black box comprises 
transistors. Although of course, to design an individual gate, one has to 
look at transistors and to build a transistor, one has to look at the molecu-
lar level, the circuit designer is completely insulated from these details. 
Similarly, operating at a higher level, a computer architect does not even 
see individual gates, but works with more coarse-grained building blocks 
that implement arithmetic operations and storage registers. If a computer 
architect had to deal with gates or a circuit designer with transistors, the 
task at hand would be too complicated.

Biological systems are even more complex than electronic circuits. 
Yet the only universally accepted models are either very low level (that 
is, detailed), or very high level (that is, coarse grained): one kind of 
models deals with individual molecules and their interaction, whereas 
the other kind views entire cells as indivisible units. This situation is 
akin to one where the gate level is absent from circuit design. Better 
understanding, analysis and synthesis of biological systems may need 
a standardized intermediate layer, each of whose building blocks may 
consist of many molecules but plays a single functional role within a 
cell or pathway. Such building blocks could be dubbed ‘bio-logic gates’ 
(Fig. 7). We do not suggest that such gates correspond to biological 
entities. Rather, the question is whether useful biological models can 
be assembled from a small number of different, possibly parameterized 
pieces (that is, building blocks). Identifying these pieces can be seen as 
one of the key challenges in biological modeling.

Biology as an engineering science. The modeling of biological systems 
is intended to improve our understanding of biological phenomena in 
their full complexity. For executable biology to realize its potential as a 

mainstream technique, the method must be used extensively by biolo-
gists. Thus, we have to suggest ways to represent models and data that 
are natural and can become standard. Stressing user friendliness, flex-
ibility and visuality are critical to integrating computational tools into 
experimental biology research. Biologists are not expected to become 
engineers and therefore, one of the challenges facing computer scien-
tists today is to design modeling languages and build software tools 
that are more accessible to nonexperts. We hope this will enable inte-
gration of executable biology into everyday biological methodology.

At the same time, a major challenge for biologists is to apply more 
formal approaches in biology and to develop precise, unambigu-
ous and standardized representations of biological knowledge and 
data70,71. Even with the most user-friendly tools, the construction of 
executable models is still similar to the engineering of hardware and 
software systems, which require the user to think about state machines 
and recipes of computation. Such algorithmic notions, to which com-
puter scientists are introduced at an early stage, are crucial for the suc-
cessful, large-scale application of these techniques by biologists. Part 
of the formal education of future biologists should therefore include 
instruction in engineering disciplines that teach an algorithmic and 
formal way of thinking and foster an appreciation of notions such as 
state changes, concurrency and abstraction. [AU:OK?] A main goal is 
to make computer science tools accessible to biologists. This requires, 
on one hand, an understanding by computer scientists of what kind 
and style of tools might prove useful to biologists and on the other 
hand, an understanding by biologists of what kind of assistance could 
be provided by computer science tools.

Although several areas of computer science have already been suc-
cessful in assisting biologists, such as algorithmics in the decoding 
of the genome and geometric modeling in the visualization of pro-
teins, also formal modeling and analysis of reactive systems, which 
has originated in computer science, may play a useful role in assisting 
biology.

Concluding remarks
Modeling offers great advantages for integrating and evaluating infor-

Table 1  Comparison of Executable Biology modeling approaches

Modeling approach Boolean networks Petri nets Process calculi
Interacting state 
machines Hybrid models

Referencesa 32–36 45–47, 52 56–63 8–16 65–66, 73

Referenced applications Gene regulatory networks Metabolic and signal 
transduction pathways

Metabolic and signal 
transduction pathways

Intracellular signaling, 
cell-cell interactions

Cell-cell interactions

Examples of modeled 
systems

Yeast cell-cycle

regulation 

EGFR signaling pathway, 
tryptophan regulatory 
network, glycolysis 
pathway

RTK-MAPK and FGF  
signaling pathways

T-cell activation, thymo-
cytes differentiation,  
C. elegans vulval devel-
opment

Delta-Notch decision, 
bacteria quorum sensing

Examples of description 
languages

– – Pi calculus, Ambient  
calculus, Brane calculus

Statecharts, Reactive 
Modules

Hybrid automata

Time Discrete Discrete Continuous Discrete Continuous

Concurrencyb – Synchronous and 
asynch.

Synchronous and 
asynch. and stochastic

Synchronous and 
asynch.

Synchronous

Structuringc – – Compositional Hierarchical and compo-
sitional

Compositional

Referenced analyses Reasoning about stability 
and robustness

Static analysis of system 
dynamics 

Dynamic analysis 
(simulation) of molecule 
quantities

Static analysis of  
system dynamics (model  
checking)

Reasoning about stability 
and system dynamics

Examples of software tools Matlab Pathalyzer BioSPI, SPiM, PEPA Rhapsody, Mocha Matlab, Charon
aThe table refers only to the work cited in the references row. bConcurrency refers to the way in which different parts of a system interact and change. A synchronous state change is a state change 
where the individual parts of the system change their contributions to the state simultaneously. An asynchronous state change is a state change where different parts proceed independently of 
each other. cA language is compositional if the behavior of a system can be specified by modeling a set of interacting sub-systems. A language is hierarchical if models of sub-systems can serve 
as indivisible, reusable building blocks within a larger system model.
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mation, generating predictions and focusing experimental directions. 
The long-term vision is that system-level models will revolutionize 
our understanding of biology and eventually enable design of new 
therapies. Although we are a long way from achieving this goal, formal 
models promise to change the face of biology and medicine. Moreover, 
the magnitude of the systems to be handled will challenge computer 
science to develop techniques that handle ever more complex models. 
Abstraction and high-level reasoning will likely play important roles 
in this endeavor.

Although executable biology is a pioneering and powerful approach 
in this direction, research into the design and use of computational 
models is still in its infancy and requires closer collaborations between 
biologists and computer scientists. The inherent differences between 
mathematical and computational models, along with the difficulty of 
obtaining precise biological data, make both approaches indispensable. 
We therefore believe that executable biology is poised to take its place 
in mainstream biological research.
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