
NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 11 NOVEMBER 2007 1239

Executable cell biology
Jasmin Fisher1,2 & Thomas A Henzinger2,3

Computational modeling of biological systems is becoming increasingly important in efforts to better understand complex
biological behaviors. In this review, we distinguish between two types of biological models—mathematical and computational—
which differ in their representations of biological phenomena. We call the approach of constructing computational models of
biological systems ‘executable biology’, as it focuses on the design of executable computer algorithms that mimic biological
phenomena. We survey the main modeling efforts in this direction, emphasize the applicability and benefits of executable
models in biological research and highlight some of the challenges that executable biology poses for biology and computer
science. We claim that for executable biology to reach its full potential as a mainstream biological technique, formal and
algorithmic approaches must be integrated into biological research. This will drive biology toward a more precise engineering
discipline.

Over the past decade, biological research has reached a point where
the accumulated data exceed the human capacity to analyze it. The
vast information generated by DNA microarrays, genome sequenc-
ers and other large-scale technologies requires computer power for
storage, searching and integration into a coherent picture. Systems
biology, which combines biology, chemistry, physics, mathematics,
electrical engineering and computer science, among other disciplines,
aims to integrate the data concerning individual genes and proteins
and to investigate the behavior and relationships of various elements
in a biological system to explain how it functions1–3.

At the core of systems biology lies the construction of models
describing biological systems. Over the years, biologists have used
diagrammatic models to summarize a mechanistic understanding
of a set of observations. Despite the many benefits of such mod-
els, as well as their simplicity, they give a rather static picture of
cellular processes. The growing need to translate these models into
more dynamic forms that can capture time-dependent processes,
together with increases in the models’ scale and complexity, has
prompted biologists to harness computers to build and analyze
ever-larger models. The long-term vision is that large-scale models
should revolutionize biology and medicine and enable design of new
therapies.

We distinguish between two types of models: (i) those that use
computer power to analyze mathematical relationships between
quantities and (ii) a new variety, resembling a computer program,
which is central to an emerging field that we call executable biol-
ogy. Here, we explain the differences between these two approaches,
explore some recent executable biology models and emphasize some
challenges facing this new field.

Mathematical versus computational models
Mathematical models, such as those based on differential equations,
can represent many situations in the natural sciences and engineering.
Although they were developed before computation became feasible
on a grand scale, they are now profiting from our increasing compu-
tational ability.

In contrast, computational models present a recipe—an algorithm—
for an abstract execution engine to mimic a design or natural phe-
nomenon. Such models are ideally suited to representing complicated
chains of events. They have been used recently to model biochemical
processes4–7, thymocyte development and cell fate determination dur-
ing Caenorhabditis elegans development8–14.

Mathematical and computational models (Box 1) differ in the lan-
guages in which they are specified. Whereas the former are specified in
mathematics, typically equations, the latter are specified by computer
programs, often very high-level code written in a modeling language
such as Statecharts15 or Reactive Modules16. Consequently, the two
types of models yield different kinds of insights. The differences are
exemplified by comparing different modeling approaches to cell fate
determination during C. elegans vulval development11,13,17, which
concentrate on different aspects and consequently provide different
kinds of insights into the same system. In contrast with a mathemati-
cal model17 that predicts rates of intercellular reactions and suggests a
time frame in which cell fate determination is established, the compu-
tational models11,13 predict the timing and order of signaling events as
well as new modes of interaction between the epidermal growth factor
receptor and LIN-12/Notch signaling pathways.

Mathematical models can be simulated and possibly solved. The
basic entity of a mathematical model is the transfer function, which
relates different numerical quantities to each other. A transfer function
may be specified, for example, by a differential equation that relates
an input to an output quantity. Complex mathematical models are
constructed through the composition of transfer functions, yielding
a network of interdependent quantities. If the constraints for indi-
vidual transfer functions are relatively simple (e.g., linear differential
equations), then mathematical models are amenable to mathematical

1Microsoft Research, Cambridge CB3 0FB, UK. 2School of Computer and
Communication Sciences, EPFL, Lausanne CH-1015, Switzerland. 3Electrical
Engineering & Computer Sciences, University of California at Berkeley, California
94720-1770, USA. Correspondence should be addressed to J.F. (jasmin.
fisher@microsoft.com) or T.A.H (tah@epfl.ch).

Published online 7 November 2007; doi:10.1038/nbt1356

R E V I E W

mailto:jasmin.fisher@microsoft.com/
mailto:jasmin.fisher@microsoft.com/

1240 VOLUME 25 NUMBER 11 NOVEMBER 2007 NATURE BIOTECHNOLOGY

analysis. In more complicated cases (e.g., nonlinear or stochastic differ-
ential equations) and in very high-dimensional cases (where the num-
ber of variables is large), mathematical models require computational
simulation to plot changes in quantities of substances over time.

Computational models can be executed. By contrast, the basic entity
of computational models is the state machine, which relates differ-
ent qualitative configurations (‘states’) to each other. A state machine
may be specified by simple computer programs that define how, given
certain events, one state is transformed into another. Complex com-
putational models are constructed through the composition of state
machines, yielding a reactive system (Box 2). The components of
such a system represent biological entities, such as cells, which react
to events involving neighboring components by state transformations.
This is often useful in cell biology, because it requires the modeler to
think in terms of ‘cause and effect’ rather than rates of change.

Such computational models can have a very large number of states,
are often highly nonlinear and nondeterministic (Box 2) and are gen-
erally not amenable to mathematical analysis. Whereas an algorithm
must be devised to simulate a mathematical model, a computational
model prescribes the steps taken by an abstract machine and is there-
fore inherently and immediately executable. As the primary semantics
of computational models are operational, we use the term execution
instead of simulation—hence executable biology. The efficiency with
which computers can execute instructions, which exceeds their ability
to solve or simulate mathematical equations, makes them ideally suited
to the execution of very large computational models.

Quantitative versus qualitative modeling of biology. In biology,
mathematical models for many quantitative relationships between
variables, such as molecule concentrations and gene activity levels,
have been devised to represent cell signaling pathways in a physically
and biologically realistic manner and have been shown repeatedly to
generate novel and useful hypotheses18–27. Such models, however,
are difficult to obtain and analyze if the number of interdependent
variables grows and if the relationships depend on qualitative events,
such as a concentration reaching a threshold value. Computational

models offer an effective alternative if pre-
cise quantitative relationships are unknown,
if they involve many different variables or if
they change over time, depending on certain
events. Because computational models are
qualitative, they do not presuppose a precision
absent from the experimental data; because
they are nondeterministic or stochastic, they
allow many possible outcomes of a chain of
events, which is often observed in biological
systems.

A significant advantage of qualitative mod-
els is that different models can be used to
describe the same system at different levels of
detail and that the various levels can be related
formally. There are several natural levels of
abstraction for describing biological systems
using computational models. For example,
the individual components may represent
molecules or, at a less detailed level, they may
represent cells. In such models, it may not
be necessary to know exactly how a certain
process (e.g., protein synthesis) achieves a
certain output, provided that the behavior of

the process can be defined qualitatively in a robust manner. Hence,
computational models can be useful even when not every detail about
a system is known.

Computational models can be analyzed by model checking.
Computational models can be used for testing and comparing hypoth-
eses. Suppose that we have collected experimental data. A computa-
tional model represents a hypothesis about the mechanism that results
in the data. An execution of the model can be used to check whether
a possible outcome of the mechanism conforms to the data (Fig. 1).
Owing to nondeterminism or stochastic choices, each repeated execu-
tion may yield a different outcome. Therefore it is impossible to check
by executing the model whether all possible outcomes conform to
the data, or whether the distribution of outcomes conforms to the
data. This, however, can be done by a technique called model check-
ing28, which systematically analyzes all of the infinitely many possible
outcomes of a computational model without executing them one by
one. Intuitively, this is done by exploring the states and possible state
changes of a model, rather than by exploring all possible executions of
the model. Model checking is effective, because there are usually many
more executions than states. A state that may repeat can give rise to
infinitely many possible executions.

If model checking tells us that all possible outcomes of the compu-
tational model agree with the experimental data and that all experi-
mental outcomes can be reproduced by the model, then the model
represents a mechanism that satisfactorily explains the experimental
data. If, on one hand, some of the experimental data cannot be repro-
duced, then the hypothesis is wrong. In this case, either the model must
be improved to produce the additional outcomes that are present in
the data, or completely revised. If, on the other hand, some outcomes
of the computational model disagree with the experimental data, then
the situation is more interesting. In this case, the mechanistic hypoth-
esis represented by the model may be wrong and one may attempt
to restrict the model so it does not produce outcomes that are not
supported by the data, as recently illustrated by a model of crosstalk
between Notch and Wnt signaling29 and a model of C. elegans vulval
development13. Alternatively, the experimental data may be incom-

Box 1 Mathematical versus computational models

A computational model is a formal model whose primary semantics is operational; that
is, the model prescribes a sequence of steps or instructions that can be executed by an
abstract machine, which can be implemented on a real computer. A mathematical model
is a formal model whose primary semantics is denotational; that is, the model describes by
equations a relationship between quantities and how they change over time. The equations
do not determine an algorithm for solving them; in general, there may be many different
solution algorithms and often such algorithms compute only approximate solutions.

There is an entire sub-field of computer science that studies the relationships and
differences between computational (operational) and mathematical (denotational) views
of a system. Whereas for computational models, the computer implementation is by
definition a faithful representation of the model, for mathematical models, there is a
gap between the meaning of the model and its implementation on a computer. This gap
needs to be bridged, for example, by proving that a certain algorithm solves a certain
equation with a certain precision. This is not to say that for computational models, the
representation gap magically disappears; rather it is shifted and reappears between the
biological system and the model. Bridging that gap requires the adequacy of abstractions,
not the faithfulness of implementations. Although computational models are further from
the biological system and closer to the computer, a good computational model–if one can
be found–may explain the mechanisms behind a biological system in more intuitive and
more easily analyzable terms than a mathematical model.

REV IEW

NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 11 NOVEMBER 2007 1241

plete and not exhibit some possible observations that would become
evident if more data were collected. In this case, model checking can
offer suggestions for additional, targeted experiments that would either
confirm or invalidate the mechanistic hypothesis represented by the
computational model (Fig. 1).

Models for executable biology
Here we summarize several research efforts aimed at realizing the
executable biology framework. These are explained further in Box 3.

Boolean networks for analyzing systems robustness and stabil-
ity. Boolean networks were first introduced by Kauffman in the early
1970s30,31 and are the oldest form of executable biology models. Boolean
networks approximate the dynamics of biological networks by consider-
ing each molecule (e.g., gene or protein) in the network as either active
(1) or inactive (0); intermediate expression levels are neglected. Thus,
the state of the system corresponds to the activation state of each of the
molecules that make up the network. A molecule is considered to become
active if the sum of its activations is larger than the sum of its inhibi-
tions and inactive if the sum of its activations is smaller than the sum of
its inhibitions (Fig. 2a). Hence, we obtain a system whose state evolves
according to the postulated connections between its molecules (Fig.
2b). Despite this clearly simplified view of biological networks, several
examples from models of genetic regulatory networks show that Boolean
approaches give meaningful biological information32–34.

Boolean networks have proved useful in analyzing system dynamics
and reasoning about the stability and robustness of biological sys-
tems34,35. The possible states of a Boolean network are drawn as nodes
of a graph and possible state changes are drawn as edges. Loops in the
graph are used to deduce which are the stable states of the system.
The number of loops can be used to reason about system robustness
(Fig. 2c). The strong simplifying assumptions on the structure and
dynamics of a genetic regulatory system enable the efficient analysis

of large regulatory networks. Boolean networks were also among the
first formalisms for which algorithms were devised to infer genetic
interactions from gene expression data36–41.

From a computational point of view, it is difficult to compose
larger models from smaller building blocks using Boolean networks.
Hierarchical structuring, which makes the design and analysis of mod-
els simpler, is not possible in Boolean networks. Recently, Schaub et
al. introduced an extension to Boolean networks, called ‘qualitative
networks’, in an attempt to support hierarchical structuring29.

Comparison

Model
execution

Data

Adjust
model

Suggest new
experiments

Model
construction

Experiments

Executable biology Experimental biology

Figure 1 The methodology of executable biology. Our view of executable
biology is an interplay between collecting data in experiments (experimental
biology) and constructing executable models that capture some mechanistic
understanding of how the systems under study work. By executing the models
under various conditions that correspond to the experiments and by comparing
the outcomes to the experimental data, one can identify discrepancies
between hypothetical mechanisms and the experimental observations. These
differences can be used to suggest new hypotheses, which serve to adjust the
model and need to be validated experimentally, or new experiments, which can
confirm or falsify modeling hypotheses.

Reactive system. A system that consists of parallel processes,
where each process may change state in reaction to another
process changing state. Biological systems are highly reactive (e.g.,
cells constantly send and receive signals and operate under various
conditions simultaneously).
Nondeterministic system. A system that may have several possible
reactions to the same stimulus. In biological systems, for example,
we can observe various patterns of cell fate under the same
genotype. Hence, nondeterministic models capture the diverse
behavior often observed in biological systems by allowing different
choices of execution, without assigning priorities or probabilities to
each choice.

Distributed system. A system that consists of a collection of
autonomous computers, connected through a network that enables
the computers to coordinate their activities and to share the
resources of the system, so that users perceive the system as a
single, integrated computing facility.

Concurrency. In computer science, a property of systems that
consist of many processes running in parallel and sharing common
resources.

Tokens in Petri nets. These describe the presence or absence
of a condition, a signal, or a resource. In the case of metabolic
networks, the number of tokens in a place stands for the number
of molecules of that metabolite existing at a given moment.

Alternatively, tokens may correspond to a predefined unit
measuring the amount of a substance, such as mole and millimole.

Visual languages. Languages that allow programming with visual
expressions (such as diagrams, drawings, animations and icons)
as opposed to conventional textual languages that use only
textual code. Visual programming environments provide graphical
interfaces, which can be manipulated by the user in an interactive
way.

Reactive animation. A visual front-end that can be set up to
yield interactive animation movies that follow in real time the
events taking place during model execution and which can be
manipulated and changed during run-time.

Compositional analysis. Analysis through which the properties of a
system can be derived from properties of its parts.

The Delta-Notch decision. A signaling process where two
equipotent cells that initially express equal amounts of Notch
and its ligand Delta gradually express either Notch or Delta. The
Notch-expressing cell receives activation signals from the Delta-
presenting neighboring cell, resulting in these two cells adopting
very different cell fates.

Very-large-scale integration (VLSI). The process of creating
integrated circuits by combining many thousands of transistor-
based circuits into a single chip.

Box 2 Glossary of terms

REV IEW

1242 VOLUME 25 NUMBER 11 NOVEMBER 2007 NATURE BIOTECHNOLOGY

Petri nets for analyzing biological networks. Petri nets represent a
well-established technique in computer science for modeling distrib-
uted systems (Box 2). The model stresses concurrency (Box 2), which
is important when modeling biological systems. A Petri net is a graph
with two types of nodes: places, which represent the resources of the
system, and transitions, which correspond to events that can change
the state of the resources. The edges of the graph connect places to
transitions and transitions to places (Fig. 3a). The state of the system
is represented by places holding so-called tokens (Box 2); one place
may hold multiple tokens. Thus, different assignments of tokens to
places induce different states of the system. Transitions change the
state of the system by moving tokens along edges. In a given state of
the system, there may be more than one transition that can move a
token, leading to nondeterminism.

Petri nets are well-suited for modeling the concurrent behavior of
biochemical networks42,43 and have been used to represent metabolic
pathways44 and protein synthesis45,46. Figure 3 shows a Petri net model
of the biosynthesis of tryptophan in Escherichia coli.

Some of the main advantages of Petri nets are that they are visual,
have different flavors and can be designed and analyzed by a range of
tools. The simple type of Petri nets described above subsume Boolean
networks: a place represents a molecule and a token at that place rep-
resents the active state of the molecule. Choosing to model Boolean
networks using Petri nets has the added advantage of ready-made
visual design and analysis tools. Recently an automatic translation of
Boolean networks to Petri nets has been suggested47. However, much
like Boolean networks, Petri nets do no support hierarchical structur-
ing, which makes them difficult to use for large-scale models.

More complex flavors of Petri nets provide additional possibilities in
modeling. For example, in colored Petri nets, different-colored tokens
induce multiple possible values for each place, allowing different acti-
vation levels to be assigned to resources. Colored Petri nets have been
used to analyze metabolic pathways48. Stochastic Petri nets add prob-
abilities to the different choices of the transitions and have been used
to analyze signaling pathways49–51, where the number of molecules
of a given type is represented by the color of a place and probabilities
represent reaction rates. The Pathalyzer is a software tool that builds
on the availability of Petri nets analysis and design tools to standard-
ize and collect information about signal transduction pathways52. It
uses analysis techniques for Petri nets to answer queries such as “what
could cause the activation of a certain substance?”, or “is it possible
that a certain substance will reach activation in the absence of a dif-
ferent substance?’’52.

Interacting state machine models for biological mechanisms. State
machine models define the behavior of objects over time, based on
the various states that an object can be in over its lifetime. In other
words, states are abstract situations in an object’s life cycle. Interacting
state machines can specify causal relationships between state changes
in different machines. These models describe both how objects com-
municate and collaborate as well as how they behave under different
circumstances. Usually, the state of an object is determined by the
states of its parts. For example, the state of a cell is determined by the
states of various genes and proteins, each having its own reaction to the
presence or absence of some other molecules. Changes in the state of
the cell are determined by the interdependent state changes of all parts.

Boolean networks. These models are computational, because
from a given activation state of all molecules, they prescribe
which molecules become active in the next step. The execution
of a Boolean network thus illuminates the causal and temporal
relationships between the activation of different molecules. The
main drawback of Boolean networks is that they do not support the
composition of larger models from smaller ones. To allow integration
of several interacting mechanisms, a model needs to offer a so-
called composition operation. Interacting state machines and
process calculi support such a composition operation.

Petri nets. These models are computational, because from a given
assignment of tokens to places, they prescribe which tokens can
change place in the next step. Petri nets are more general than
Boolean networks, because their execution semantics allows for
true concurrency: several tokens may change place independently
in the same step. Also, whereas Boolean networks are deterministic
(that is, the outcome of execution is unique), Petri nets may be
nondeterministic (execution may have many different outcomes;
e.g. when there are multiple options to move tokens), or stochastic
(that is, there is a probability distribution of possible outcomes),
or both (when there are several different probability distributions
of possible outcomes). Like Boolean networks, Petri nets do not
support the composition of several networks.

Interacting state machines. Several languages are available to
specify these models, for example, the language of Reactive
Modules. They are computational because from given states of
all interacting machines, the model prescribes the next states
of the machines. The interaction may be synchronous, when
some machines change state simultaneously because of causal

dependencies, or asynchronous, when some machines change
state independently, in any order. Asynchronous interaction
gives rise to nondeterminism, because different orders may give
different results. Like Petri nets, interacting state machines may be
nondeterministic, stochastic, or both. Unlike Boolean networks and
Petri nets, interacting state machines are compositional, because
several machines can be put together and will interact with each
other. State machines can also be equipped with a hierarchical
structure, as in Statecharts. A hierarchical machine may change
state at a microlevel and several microsteps together make up a
macro-step, which is a single state change of a higher-level machine
providing a more abstract (that is, less detailed) view of the system.

Process calculi. Like interacting state machines, these models are
computational and compositional. They may be nondeterministic,
stochastic, or both. The main difference between interacting state
machines and process calculi is that in the former case, the most
basic notion is that of a state and the model prescribes how the
state changes, whereas in the latter case, the most basic notion
is that of an event and the model prescribes how events either
cause or are independent of other events. Although an event can
be represented by a state change and a state by a history of events,
the two views give rise to different styles of modeling.

Hybrid models. The discrete part of these models is computational
and the continuous part, mathematical. Executing the continuous
change of variables, as described by differential equations, requires
an algorithm that is independent of the model and often gives only
approximate results. For example, the possibility of a discrete state
transition may be missed if that possibility depends on the exact
value of a continuous variable.

Box 3 Computational models

REV IEW

NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 11 NOVEMBER 2007 1243

A hierarchical structure allows one to view a system at different levels
of detail (e.g., whole organism, tissues, cells; Fig. 4a). Models of this
kind have been used to model T-cell activation and differentiation8,9,
as well as C. elegans development10,11,13,14.

Interacting state machine models are particularly suitable for
describing mechanistic models of biological systems that are well
understood qualitatively. Such models do not require quantitative data
relating to the number of molecules and reaction rates. They allow the
creation of abstract high-level models and the application of strong
analysis tools such as model checking. The possibility of hierarchical
structuring is extremely useful in cases where the behavior is distrib-
uted over many cells and where multiple copies of the same process
are executed in parallel.

There are many different languages to express interacting state
machine models. Using the visual language (Box 2) of Statecharts15,

Kam et al. developed a model that described the various stages in
the life span of a T-cell and the transitions between these stages8.
The initial T-cell model was followed by a more extensive animated
model of T-cell differentiation in the thymus9. A major advantage of
Statecharts compared to other state-based formalisms, such as Reactive
Modules16, is the fact that this language is visual. The user can draw
states and state changes and the tool automatically creates an execut-
able model, enabling relatively easy and intuitive programming even
for nonspecialists. Efroni et al. used reactive animation (Box 2)9,53,
where a reactive system drives the display of animation software to
visualize the model. These studies were followed by ongoing efforts to
model C. elegans development10,11,13,14, which used Statecharts and a
visual language called Live Sequence Charts54 and more recently a lan-
guage called Reactive Modules16 that supports compositional analysis
techniques (Box 2).

c

a1

a2

a3

a4

b

a Cell Size

Cln3
MBF

Sic1

SBF

Cln1,2

Cdh1

Cdc20&Cdc14

Clb1,2

Swi5

Mcm1/SFF

Clb5,6

b

Figure 2 Boolean networks. (a) An isolated part of a Boolean network representing the behavior of one substance. Arrows indicates activation and bars
denote inhibition. The next value of the substance is determined by the sum of activations minus the sum of inhibitions. In this example, if we denote the
values of a1, a2, a3 and a4 at time t by a1, a2, a3 and a4, then the value of substance b at time t + 1 will be 1 if a1 + a2 – (a3 + a4) is positive and 0 otherwise.
Sometimes arrows are given strengths and then we take the sum of strengths of activation arrows whose source is active (that is, set to 1) minus the sum of
strengths of inhibition arrows whose source is active. (b) Simplified cell-cycle network of the budding yeast. (c) Analysis of the yeast cell-cycle network using
Boolean networks. Each dot represents a state of the proteins in the system, where each of the proteins is either active or inactive. Each arrow represents
a transition from one state to another. The blue transitions correspond to the cell-cycle sequence. Starting from any point in the graph, in order to avoid
reaching the stable state at the bottom of the diagram, one would have to continuously perturb the system. Hence, the normal behavior converges fast to the
stable state at the bottom of the diagram, corresponding to the G1 stationary state in which the cell awaits a signal that will start another round of division.
This demonstrates that the yeast cell-cycle regulatory network is stable and robust for its function. Figures reproduced with permission from ref. 34.

p1

p2

p3

t1

t2

t3

t4

2

2

2

3

2

21

1

1

1

Trp TrpE

TrpRTrpext

t3
t3 t3 t2 t2 t4

t6 t7 t5 t8 t9

+ +– –

Trpext Trpext

TrpE TrpE Trp Trp

TrpR TrpR

2

2 2

2
2

2

2 2

a

b

c
Figure 3 Petri nets. (a) A simple, standard
Petri net. The circles denote places, whereas
the boxes denote transitions. The distribution
of tokens (black dots) in the places at a given
time defines a marking. Transitions change
the marking by removing a token from each
incoming arrow and adding a token to each
outgoing arrow. (b) Simplified logical regulatory
graph for the biosynthesis of tryptophan in
E. coli. Each node of the regulatory graph
represents an active component: tryptophan
(Trp), the active enzyme (TrpE) and the active
repressor (TrpR). The node marked by a
rectangle accounts for the import of Trp from
external medium. All nodes are binary (that
is, can take the value 0 or 1), except Trp,
which is represented by a ternary variable
(taking the values 0, 1, 2). Arrows represent
activation and bars denote inhibition. (c) Petri
net of the Trp regulatory network. Each of the
four components of b is represented by two complementary places and all the different situations that lead to a change of the state of the system are
modeled by one of the nine transitions (t1–t9). Figures reproduced with permission from ref. 46.

REV IEW

1244 VOLUME 25 NUMBER 11 NOVEMBER 2007 NATURE BIOTECHNOLOGY

Fisher et al.11 created a formal dynamic model of vulval fate speci-
fication based on the proposed mechanistic model of Sternberg and
Horvitz55. This work revealed that state-based mechanistic modeling is
well-suited to developmental genetics and can provide new insights into
the temporal aspects of cell fate specification during C. elegans vulval
development. Subsequent work13 was based on the more sophisticated
current understanding of vulval fate specification (Fig. 4b). Model check-
ing allowed us to test the consistency of the current conceptual model for
vulval precursor cell fate specification with an extensive set of observed
behaviors and experimental perturbations of the vulval system. The
analysis of this model predicted new genetic interactions between the
signaling pathways involved in the patterning process, together with tem-
poral constraints that may further elucidate the mechanisms underlying
precise pattern formation during animal development. These predictions
were validated experimentally (Fig. 4).

Process calculi for executing molecular processes. A different
approach stresses the importance of interactions between molecules
as the driving force for biological processes. As opposed to previous
approaches where execution results in a sequence of states, here execu-

tion is defined through a sequence of events and their causal depen-
dencies. This approach uses process calculi—languages that have been
developed to model networks of communicating processes56. In this
context, a process is a state machine for which some state changes
can be observed as events. Events provide communication between
processes.

To model biological behaviors, a process is associated with a molecule
and many copies of the same process run in parallel to simulate the exis-
tence of many molecules. Communication between processes is used to
model interactions between molecules. For example, the activation of
a certain molecule by the energy released from ATP hydrolysis can be
modeled by two processes and a communication event between them as
follows: a process associated with ATP proceeds from the ‘ATP-state’ to
the ‘ADP-state’, a process associated with the specific molecule proceeds
from the ‘inactive-state’ to the ‘active-state’, and the two state changes are
simultaneous because of a communication event. The inactivation of the
same molecule can then be modeled by an independent state change.

This modeling approach is applicable to molecular interactions
that occur stochastically. It can be used for the detailed analysis of the
stochastic behavior of a molecular interaction network using model

a b

d

c

Tissue

Cell A Cell B Low IS

Medium ISHigh IS

Anchor
cell

VPCs

LS
1º

LET-23

SEM-5

LET-60

MPK-1

lin
-1

2 lst

LET-23

lin
-1

2

2º

SEM-5

LET-60

MPK-1

SEM-5

LET-60

MPK-1

LET-23

lin
-1

2

3º

P8.p P7.p P6.p P5.p P4.p P3.p

P8.p P7.p
P6.p

P5.p

P4.p

P3.p

P8.p
P7.p

P6.p P5.p
P4.p

P3.p

P8.p P7.p P6.p P5.p P4.p P3.p

P8.p P7.p
P6.p

P5.p

P4.p

P3.p

P8.p
P7.p

P6.p P5.p
P4.p

P3.p

P8.p P7.p P6.p P5.p P4.p P3.p

P8.p P7.p
P6.p

P5.p

P4.p

P3.p

P8.p
P7.p

P6.p P5.pP4.p
P3.p

VPC

Main

AdoptFate

1º or 2º 2º or 3º

2º 1º 3º

Vul

C C

C

C C
Muv

VulNotMutated...

Off Off

lin-12

Lateral Signal

Low Med High

VulMutated
Vul gene shuts-off

No VulSignal

MuvNotMutated>
Action on entry:

Gen(MuvInhibition);

MuvMutated
Muv gene shuts-off
No MuvInhibition

On>
Action on entry:

Gen(LateralSignal)

HighVulSignal

MedVulSignal

tm(15)

[IS_IN(High)] [else] [else]

[IS_IN(High)]

[else]

HighVulSignal

MedVulSignal

[MuvMutation]
[else] [VulMutation]

HighVulSignal

Lateral Signal

Lateral Signal

HighVulSignal

[!IS_IN(Primary)&&!IS_IN(Tertiary)]

[!IS_IN(Primary)
&&!IS_IN(Tertiary)]

lin-12(0) lin-12(d)

lin-12(wt)

lst

Figure 4 Interacting state machine models. (a) Hierarchical diagram representing a tissue comprising three cells of type A and three cells of type B. All cells
of the same type work according to the same program. (b) Diagrammatic mechanistic model for the signaling events underlying vulval precursor cell (VPC)
fate specification. IS, inductive signal; LS, lateral signal; cell fates: 1°, primary; 2°, secondary; 3°, tertiary. (c) Statecharts model of a vulval precursor cell.
Rectangles represent states and arrows represent transitions. A short arrow exiting a small circle marks the initial state of the object. The circled C denotes
a condition between two states. A transition from a condition is taken if the guard is true. Areas separated by dashed lines are concurrent components;
that is, the cell is present in all these components simultaneously. Figure reproduced with permission from ref. 11. (d) Experimental validation of the loss
of sequential activation in lin-15 mutants, as predicted by the computational model. The pictures visualize cell fate specification in C. elegans using blue
and yellow fluorescent proteins (EGL-17::CFP and LIP-1::YFP) expressed during activation of the inductive and lateral signaling pathways, respectively. The
upper and middle rows show examples of wild-type animals at mid and late L2 stage, expressing the EGL-17 marker in P6.p and the LIP-1 marker in P5.p
and P7.p, respectively. The lower row shows examples of a lin-15 mutant at the late L2 stage showing simultaneous expression of both markers in P5.p and
P7.p. Figure reproduced from ref. 13.

REV IEW

NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 11 NOVEMBER 2007 1245

checking. Currently, owing to scalability
issues, such an analysis can be applied only to
relatively small models. However, the infor-
mation and insights provided by this kind of
analysis suggest that it is beneficial to create
oversimplified models of large and complex
networks.

Initial work along this line used a process
calculus called pi-calculus56 as a modeling language for molecular
interactions5. These studies included the modeling of the receptor
tyrosine kinase and the mitogen-activated protein kinase signal-trans-
duction pathway and the construction of a simulation environment
called BioSPI. The stochastic pi-calculus57 was later used to model
a gene regulatory positive-feedback loop4. Many other studies have
followed this direction, including experiments using the ambient
calculus58 and the brane calculus59. The methodology has also been
used to model transcription factor activation and glycolysis60, Raf
kinase inhibitory protein inhibition of extracellular signal-regulated
kinase61 and more recently, the mitogen-activated protein kinase cas-
cade (including a comparison with a similar model using differential
equations)62 and the fibroblast growth factor
pathway (Fig. 5) (and its extensive analysis
using stochastic simulation and probabilistic

model checking)63. A recent review7 discusses the process calculus
approach in depth.

Hybrid models combining mathematical and computational mod-
els. Hybrid systems combine in a single framework variables that
span discrete and continuous domains64. The discrete variables are
controlled by discrete state changes that may depend on the values
of continuous variables. The changes in continuous variables are
governed by differential equations (preferably linear), which depend
on discrete states (that is, the combined value of all discrete variables
determines the discrete state and the discrete state determines which
differential equations are to be used to govern the rates of change

1: FGF binds/releases FGFR
 FGF + FGFR → FGFR:FGF k1 = 5e + 8 M–1s–1

 FGF + FGFR ← FGFR:FGF k2 = 0.002 s–1

2: Phosphorylation of FGFR (whilst FGFR:FGF)
 FGFR:FGF + FGFR1 → FGFR:FGF + FGFR1P k3 = 0.1 s–1

 FGFR:FGF + FGFR2 → FGFR:FGF + FGFR2P k4 = 0.1 s–1

3: Dephosphorylation of FGFR
 FGFR1P → FGFR1 k5 = 0.1 s–1

 FGFR2P → FGFR2 k6 = 0.1 s–1

4: Effectors bind phosphorylated FGFR
 SRC + FGFR1P → SRC:FGFR k7 = 1e + 6 M–1s–1

 SRC + FGFR1P ← SRC:FGFR k8 = 0.02 s–1

 GRB2 + FGFR2P → GRB2:FGFR k9 = 1e + 6 M–1s–1

 GRB2 + FGFR2P ← GRB2:FGFR k10 = 0.02 s–1

5: Relocation of FGFR (whilst SRC:FGFR)
 SRC:FGFR → relocFGFR k11 = 1.1e–3 s–1

FGF

FGFR

FRS2

PLC
SOS

GBR2

SPRY

CBL

SRC
GBR2

SOS

SHP2

Phosphorylation

FGFR ::= FGFR_FGF0 | FGFR_Phl0 |

FGFR_FGF0::= bind_fgf!{rel_fgf, reloc4}, FGFR_FGF1; % binding FGF
 reloc1?[] , true . % relocation
FGFR_FGF1::= rel_fgf?[] , FGFR_FGF0; % releasing FGF
 ph1?[] , FGFR_FGF1; % phosphorylation
 reloc1?[] , reloc4![] , true; % relocation

FGFR_Ph10 ::= ph1![] , FGFR_Ph11 . % phosphorylation
FGFR_Ph11 ::= bind_src!{rel_scr1, rel_scr2} , FGFR_SRC; % binding Src
 dph1![] , FGFR_Ph11 . % dephosphorylation
FGFR_SRC ::= rel_src1?[] , FGFR_Ph11; % releasing Src
 dph1![] , rel_src2! [], FGFR_Ph10;
 % dephosphorylation (and releasing SRC)
 reloc![] , reloc1![] , reloc2![], true. % relocation

100

80

60

40

20

0

Q
ua

nt
ity

0 1 2 3 4
T (hours)

FGFR relocated
Grb2:FGFR

a b

c d

Figure 5 Pi calculus. (a) Possible molecular
interactions in the fibroblast growth factor (FGF)
pathway. Figure reproduced from reference 63.
(b) Partial summary of reactions between the
components presented in the diagram, including
reaction rates obtained from the literature. (c)
A fragment of the stochastic pi-calculus code
(in the textual format of BioSPI) relating to FGF
receptor (FGFR) and its interactions with FGF
and Src. (d) The BioSPI system inputs the pi-
calculus code and performs simulations using the
Gillespie algorithm. The curves show the amount
of relocated FGFR and Grb2 bound to FGFR over
time, for an average of ten simulations. Figures
reproduced from ref. 72.

dx
dt dx

dt

dx
dt

dx
dt

dx
dt

dx
dt

dx
dt

Notch Notch

Notch

NotchNotch

Notch
Delta

Delta

Delta Delta

Delta

DeltaDelta

Notch

N
ot

ch
 p

ro
te

in

Delta protein

N
ot

ch
 p

ro
te

in

Delta protein

Equilibrium

x1 > 0 ^ x2 > –hD

x1 > 0 ^ x2 = –hD

x1 > 0 ^ x2 < –hD

Cell 1
(x1, x2)

Cell 2
(x3, x4)

Cell 3
(x5, x6)

Cell 4
(x7, x8)

a b

c

d

Figure 6 Hybrid systems. (a) In hybrid system
models, discrete state changes modify the
way continuous variables change. The discrete
changes are governed by the values of the
continuous variables. Each discrete state has
its own differential equations, which govern the
dynamics of continuous variables. (b) Influence
diagram for Delta-Notch protein signaling
network in a hexagonal close-packed lattice.
(c) Plots of the continuous changes of the levels
of Delta (x1) and Notch (x2) proteins as governed
by changing differential equations that match
three different discrete states, blue, brown
and green. An isolated single cell will converge
to a steady state where it has a high level of
Delta protein and a low level of Notch protein.
(d) From left to right, layout of four cell Delta-
Notch network showing the variables associated
with each cell; biologically consistent steady
states of the four-cell network, a shaded cell
represents a high steady-state concentration
of Delta protein and low level of Notch protein;
an unshaded cell has low Delta protein and
high Notch protein at steady state. Figures
reproduced from ref. 66.

REV IEW

1246 VOLUME 25 NUMBER 11 NOVEMBER 2007 NATURE BIOTECHNOLOGY

for the continuous variables). Hybrid systems aim to bridge the gap
between mathematical models and computational models by com-
bining the two. The discrete part of such models is the executable
control mechanism that drives a hybrid system. A major portion of
the work on hybrid systems has focused on constructing algorithms
that perform the required simulation and analysis of the continu-
ous part. Hybrid systems are particularly suitable to model biologi-
cal systems where the relationships between substances change over
time (that is, different equations are used for the same variables in
different discrete states). Yet, they require exact quantitative data in
order to fine-tune the equations that produce the continuous part
of the model.

A hybrid model of the Delta-Notch decision process65,66 (Box 2
and Fig. 6) distinguishes between the control structure regulating the
production of the Notch and Delta proteins (represented by discrete
control variables) and the levels of these proteins (continuous values
controlled by differential equations). The model reproduces the Delta-
Notch decision: cells that express Delta are surrounded by cells that
express Notch. In addition, a detailed analysis of a two-cell model
shows that the model’s behavior matches a classical model using non-
linear differential equations65. In a separate analysis of the same model,
Ghosh and Tomlin checked which initial states of the hybrid system
lead to the various Delta-Notch patterns66.

Challenges
Executable biology poses new challenges both for computer science
and biology. One challenge facing computer science is to adjust for-
malisms that were originally developed for modeling hardware and
software systems to the modeling of biological systems. We must
also develop techniques that handle the complexity and magnitude
of biological systems and modeling tools that are more accessible to
biologists. For biology, some of the key challenges are to develop quan-
titative techniques to experimentally test dynamic scenarios proposed
by executable models, to identify useful building blocks of complex
biological networks and perhaps most importantly, to shift biology
toward an engineering science, where students learn to use formal
approaches.

Developing quantitative measures to test system dynamics. Dynamic
executable models can represent biologically important phenomena
such as time and system dynamics that cannot be represented by static
diagrammatic models. The influence of time on system behavior must
thus be examined experimentally. The executable models of cell fate
specification described above11,13 predict such dynamic scenarios,
suggesting a race between the epidermal growth factor recetor and
LIN-12/Notch signaling pathways that determines cell fates during C.
elegans vulval development.

Unfortunately, in practice, time is experimentally daunting. Using
techniques that enable the direct quantitative measurement of path-
way activities or protein levels, at a single-cell resolution, is not yet
common practice. Experimental data, such as fluorescence levels of
tagged proteins or immunoblots, are usually limited to unit-less ratios
of expression levels that are only proportional to the actual protein
concentrations. Not having direct measures can significantly hinder
or complicate finding parameter values. In many studies, the linear
relation between the concentrations of fluorescent proteins and their
measured fluorescence intensities has been used to measure protein
levels in living cells, albeit only in relative terms and not in absolute
numbers67,68. Hence, improvements in the existing experimental
methodologies to enable direct quantitative measurements are essen-
tial. One of the recent efforts to follow this path is the development
of a technique that converts observed fluorescence intensities into
numbers of molecules69. The challenge is twofold: first, to develop
techniques that allow such quantitative measurements; and second,
to allow these measurements to be taken continuously from the same
element (e.g., cell, tissue), providing a dynamic view of the involved
processes. From the perspective of executable biology, quantitative
parts can be then incorporated into computational executable models
to establish probabilistic or hybrid models64, adding another dimen-
sion of accuracy to computational models.

Identifying ‘logic gates’ in biology. A complex system offers different
characteristics when viewed from different distances. In a close-up view
of an electronic circuit, for example, the circuit appears as a continuous-
time system where individual transistors are visible and these building

Hardware

Computer chip

Transistor

Logic gate

Biology

Signaling pathway

Molecular interactions

Bio-logic gate

Differential equations

Truth table

Figure 7 The analogy between hardware
design and biological models. Computer chips
are built from transistors. The most accurate
way to describe the behavior of transistors is
by differential equations. However, hardware
designers work neither with transistors nor
with differential equations. The basic units
used for hardware design are logic gates, each
of which consists of a few transistors. The
behavior of a gate is not described by the sum
of the differential equations for the transistors
comprising it, but rather by a simple truth table
of inputs and outputs, each with a Boolean value
of 0 or 1. Conventional models of biological
pathways use differential equations to describe
molecular interactions. A key challenge is to
identify a more abstract level, perhaps similar
to the gate level in hardware design, based on
functional units each of which involves many
molecules. Such ‘bio-logic gates’ need not
correspond to traditional biological entities,
but could simply be useful building blocks of
a language for defining abstractions of certain
biological systems.

REV IEW

NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 11 NOVEMBER 2007 1247

blocks are best modeled using differential equations. Viewed from further
away, however, the same circuit appears as a discrete-time system where
the identifiable building blocks are Boolean gates, which are naturally
modeled in the mathematics of truth values (so-called propositional
logic). The key enabler of very-large-scale integration (VLSI) (Box 2)
design has been the insight that we can build circuits with a desired func-
tionality, such as the processors of modern computers, by working solely
at the Boolean level. In other words, the circuit designer uses logic gates
as black boxes and does not need to know that each black box comprises
transistors. Although of course, to design an individual gate, one has to
look at transistors and to build a transistor, one has to look at the molecu-
lar level, the circuit designer is completely insulated from these details.
Similarly, operating at a higher level, a computer architect does not even
see individual gates, but works with more coarse-grained building blocks
that implement arithmetic operations and storage registers. If a computer
architect had to deal with gates or a circuit designer with transistors, the
task at hand would be too complicated.

Biological systems are even more complex than electronic circuits.
Yet the only universally accepted models are either very low level (that
is, detailed), or very high level (that is, coarse grained): one kind of
models deals with individual molecules and their interaction, whereas
the other kind views entire cells as indivisible units. This situation is
akin to one where the gate level is absent from circuit design. Better
understanding, analysis and synthesis of biological systems may need
a standardized intermediate layer, each of whose building blocks may
consist of many molecules but plays a single functional role within a
cell or pathway. Such building blocks could be dubbed ‘bio-logic gates’
(Fig. 7). We do not suggest that such gates correspond to biological
entities. Rather, the question is whether useful biological models can
be assembled from a small number of different, possibly parameterized
pieces (that is, building blocks). Identifying these pieces can be seen as
one of the key challenges in biological modeling.

Biology as an engineering science. The modeling of biological systems
is intended to improve our understanding of biological phenomena in
their full complexity. For executable biology to realize its potential as a

mainstream technique, the method must be used extensively by biolo-
gists. Thus, we have to suggest ways to represent models and data that
are natural and can become standard. Stressing user friendliness, flex-
ibility and visuality are critical to integrating computational tools into
experimental biology research. Biologists are not expected to become
engineers and therefore, one of the challenges facing computer scien-
tists today is to design modeling languages and build software tools
that are more accessible to nonexperts. We hope this will enable inte-
gration of executable biology into everyday biological methodology.

At the same time, a major challenge for biologists is to apply more
formal approaches in biology and to develop precise, unambigu-
ous and standardized representations of biological knowledge and
data70,71. Even with the most user-friendly tools, the construction of
executable models is still similar to the engineering of hardware and
software systems, which require the user to think about state machines
and recipes of computation. Such algorithmic notions, to which com-
puter scientists are introduced at an early stage, are crucial for the suc-
cessful, large-scale application of these techniques by biologists. Part
of the formal education of future biologists should therefore include
instruction in engineering disciplines that teach an algorithmic and
formal way of thinking and foster an appreciation of notions such as
state changes, concurrency and abstraction. [AU:OK?] A main goal is
to make computer science tools accessible to biologists. This requires,
on one hand, an understanding by computer scientists of what kind
and style of tools might prove useful to biologists and on the other
hand, an understanding by biologists of what kind of assistance could
be provided by computer science tools.

Although several areas of computer science have already been suc-
cessful in assisting biologists, such as algorithmics in the decoding
of the genome and geometric modeling in the visualization of pro-
teins, also formal modeling and analysis of reactive systems, which
has originated in computer science, may play a useful role in assisting
biology.

Concluding remarks
Modeling offers great advantages for integrating and evaluating infor-

Table 1 Comparison of Executable Biology modeling approaches

Modeling approach Boolean networks Petri nets Process calculi
Interacting state
machines Hybrid models

Referencesa 32–36 45–47, 52 56–63 8–16 65–66, 73

Referenced applications Gene regulatory networks Metabolic and signal
transduction pathways

Metabolic and signal
transduction pathways

Intracellular signaling,
cell-cell interactions

Cell-cell interactions

Examples of modeled
systems

Yeast cell-cycle

regulation

EGFR signaling pathway,
tryptophan regulatory
network, glycolysis
pathway

RTK-MAPK and FGF
signaling pathways

T-cell activation, thymo-
cytes differentiation,
C. elegans vulval devel-
opment

Delta-Notch decision,
bacteria quorum sensing

Examples of description
languages

– – Pi calculus, Ambient
calculus, Brane calculus

Statecharts, Reactive
Modules

Hybrid automata

Time Discrete Discrete Continuous Discrete Continuous

Concurrencyb – Synchronous and
asynch.

Synchronous and
asynch. and stochastic

Synchronous and
asynch.

Synchronous

Structuringc – – Compositional Hierarchical and compo-
sitional

Compositional

Referenced analyses Reasoning about stability
and robustness

Static analysis of system
dynamics

Dynamic analysis
(simulation) of molecule
quantities

Static analysis of
system dynamics (model
checking)

Reasoning about stability
and system dynamics

Examples of software tools Matlab Pathalyzer BioSPI, SPiM, PEPA Rhapsody, Mocha Matlab, Charon
aThe table refers only to the work cited in the references row. bConcurrency refers to the way in which different parts of a system interact and change. A synchronous state change is a state change
where the individual parts of the system change their contributions to the state simultaneously. An asynchronous state change is a state change where different parts proceed independently of
each other. cA language is compositional if the behavior of a system can be specified by modeling a set of interacting sub-systems. A language is hierarchical if models of sub-systems can serve
as indivisible, reusable building blocks within a larger system model.

REV IEW

1248 VOLUME 25 NUMBER 11 NOVEMBER 2007 NATURE BIOTECHNOLOGY

mation, generating predictions and focusing experimental directions.
The long-term vision is that system-level models will revolutionize
our understanding of biology and eventually enable design of new
therapies. Although we are a long way from achieving this goal, formal
models promise to change the face of biology and medicine. Moreover,
the magnitude of the systems to be handled will challenge computer
science to develop techniques that handle ever more complex models.
Abstraction and high-level reasoning will likely play important roles
in this endeavor.

Although executable biology is a pioneering and powerful approach
in this direction, research into the design and use of computational
models is still in its infancy and requires closer collaborations between
biologists and computer scientists. The inherent differences between
mathematical and computational models, along with the difficulty of
obtaining precise biological data, make both approaches indispensable.
We therefore believe that executable biology is poised to take its place
in mainstream biological research.

ACKNOWLEDGMENTS
We apologize to colleagues whose work was not reviewed due to lack of space. We
thank John K. Heath, Alex Hajnal, Freddy Radtke and Nir Piterman for helpful
discussions and critical readings of the manuscript and the anonymous referees
for valuable comments. J.F. is particularly grateful to David Harel for introducing
her to this line of research and for many fruitful discussions over the years. Our
research is supported in part by the Swiss National Science Foundation under
grant 205321-111840.

Published online at http://www.nature.com/naturebiotechnology/
Reprints and permissions information is available online at http://npg.nature.com/
reprintsandpermissions/

1. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology.

Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).
2. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).
3. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207

(2003).
4. Priami, C., Regev, A., Shapiro, E.Y. & Silverman, W. Application of a stochastic name-

passing calculus to representation and simulation of molecular processes. Inf. Process.
Lett. 80, 25–31 (2001).

5. Regev, A., Silverman, W. & Shapiro, E. Representation and simulation of biochemical
processes using the pi-calculus process algebra. Pac. Symp. Biocomput. 459–470
(2001).

6. Errampalli, D.D., Priami, C. & Quaglia, P. A formal language for computational systems
biology. OMICS 8, 370–380 (2004).

7. Cardelli, L. Abstract machines of systems biology. Transactions on Computational
Systems Biology III. LNCS 3737, 145–168, (2005).

8. Kam, N., Harel, D. & Cohen, I.R. in Visual Languages and Formal Methods Stressa,
Italy, September 5-7, 2001 (IEEE, 2001).

9. Efroni, S., Harel, D. & Cohen, I.R. Toward rigorous comprehension of biological complex-
ity: modeling, execution and visualization of thymic T-cell maturation. Genome Res. 13,
2485–2497 (2003).

10. Kam, N. et al. in First International Workshop on Computational Methods in Systems
Biology (CMSB), Roverto, Italy, February 24–26, 2003 (ed. Priami, C.) LNCS 2602,
4–20 (2003).

11. Fisher, J., Piterman, N., Hubbard, E.J., Stern, M.J. & Harel, D. Computational insights
into Caenorhabditis elegans vulval development. Proc. Natl. Acad. Sci. USA 102,
1951–1956 (2005).

12. Efroni, S., Harel, D. & Cohen, I.R. Emergent dynamics of thymocyte development and
lineage determination. PLoS Comput. Biol. 3, e13 (2007).

13. Fisher, J., Piterman, N., Hajnal, A. & Henzinger, T.A. Predictive modeling of signaling
croostalk during C. elegans vulval development. PLoS Comput. Biol. 3, e92 (2007).

14. Sadot, A. et al. Towards verified biological models. in Transactions on Computational
Biology and Bioinformatics (in the press).

15. Harel, D. Statecharts: a visual formalism for complex systems. Sci. Comput. Program.
8, 231–274 (1987).

16. Alur, R. & Henzinger, T.A. Reactive Modules. Form. Methods Syst. Des. 15, 7–48
(1999).

17. Giurumescu, C.A., Sternberg, P.W. & Asthagiri, A.R. Intercellular coupling amplifies
fate segregation during Caenorhabditis elegans vulval development. Proc. Natl. Acad.
Sci. USA 103, 1331–1336 (2006).

18. Janes, K.A. & Yaffe, M.B. Data-driven modelling of signal-transduction networks. Nat.
Rev. Mol. Cell Biol. 7, 820–828 (2006).

19. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A. & Sorger, P.K. Physicochemical model-
ling of cell signalling pathways. Nat. Cell Biol. 8, 1195–1203 (2006).

20. Janes, K.A. & Lauffenburger, D.A. A biological approach to computational models of
proteomic networks. Curr. Opin. Chem. Biol. 10, 73–80 (2006).

21. Hua, F., Hautaniemi, S., Yokoo, R. & Lauffenburger, D.A. Integrated mechanistic
and data-driven modelling for multivariate analysis of signalling pathways. J. R. Soc.
Interface 3, 515–526 (2006).

22. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J., III & Doyle, J. Robustness of cellular
functions. Cell 118, 675–685 (2004).

23. Stelling, J. Mathematical models in microbial systems biology. Curr. Opin. Microbiol.
7, 513–518 (2004).

24. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8,
450–461 (2007).

25. Davidson, E.H. et al. A genomic regulatory network for development. Science 295,
1669–1678 (2002).

26. Bolouri, H. & Davidson, E.H. Modeling transcriptional regulatory networks. Bioessays
24, 1118–1129 (2002).

27. Bolouri, H. & Davidson, E.H. Transcriptional regulatory cascades in development: initial
rates, not steady state, determine network kinetics. Proc. Natl. Acad. Sci. USA 100,
9371–9376 (2003).

28. Clarke, E.M., Grumberg, O. & Peled, D. Model Checking (MIT Press, Cambridge,
Massachusetts, 1999).

29. Schaub, M.A., Henzinger, T.A. & Fisher, J. Qualitative networks: a symbolic approach
to analyze biological signaling networks. BMC Syst. Biol. 1 (2007).

30. Kauffman, S.A. Metabolic stability and epigenesis in randomly constructed genetic nets.
J. Theor. Biol. 22, 437–467 (1969).

31. Glass, L. & Kauffman, S.A. The logical analysis of continuous, non-linear biochemical
control networks. J. Theor. Biol. 39, 103–129 (1973).

32. Shmulevich, I. & Zhang, W. Binary analysis and optimization-based normalization of
gene expression data. Bioinformatics 18, 555–565 (2002).

33. Shmulevich, I., Lahdesmaki, H., Dougherty, E.R., Astola, J. & Zhang, W. The role of
certain Post classes in Boolean network models of genetic networks. Proc. Natl. Acad.
Sci. USA 100, 10734–10739 (2003).

34. Li, F., Long, T., Lu, Y., Ouyang, Q. & Tang, C. The yeast cell-cycle network is robustly
designed. Proc. Natl. Acad. Sci. USA 101, 4781–4786 (2004).

35. Albert, R. & Othmer, H.G. The topology of the regulatory interactions predicts the expres-
sion pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol.
223, 1–18 (2003).

36. Akutsu, T., Miyano, S. & Kuhara, S. Identification of genetic networks from a small
number of gene expression patterns under the Boolean network model. Pac. Symp.
Biocomput., 17–28 (1999).

37. Friedman, N., Linial, M., Nachman, I. & Pe’er, D. Using Bayesian networks to analyze
expression data. J. Comput. Biol. 7, 601–620 (2000).

38. Ideker, T.E., Thorsson, V. & Karp, R.M. Discovery of regulatory interactions through
perturbation: inference and experimental design. Pac. Symp. Biocomput., 305–316
(2000). [AU: Please provide the missing volume number in this journal reference. (in
reference 38 “Ideker, Thorsson, Karp, 2000”).]

39. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A. & Nolan, G.P. Causal protein-sig-
naling networks derived from multiparameter single-cell data. Science 308, 523–529
(2005).

40. D’Haeseleer, P., Liang, S. & Somogyi, R. Genetic network inference: from co-expression
clustering to reverse engineering. Bioinformatics 16, 707–726 (2000).

41. de Jong, H. Modeling and simulation of genetic regulatory systems: a literature review.
J. Comput. Biol. 9, 67–103 (2002).

42. Chaouiya, C. Petri net modelling of biological networks. Brief. Bioinform. 8, 210–219
(2007).

43. Li, C., Ge, Q.W., Nakata, M., Matsuno, H. & Miyano, S. Modelling and simulation of
signal transductions in an apoptosis pathway by using timed Petri nets. J. Biosci. 32,
113–127 (2007).

44. Reddy, V.N., Mavrovouniotis, M.L. & Liebman, M.N. in 1st ISMB , Bethesda, Maryland,
July 1993 (eds. Hunter, L., Searls, D. & Shavlik, J.) 328–336 (AAAI, 1993).

45. Barjis, J. & Barjis, I. in Conference on Information Intelligence and Systems (ICIIS),
Bethesda, Maryland, October 31–November 3, 1999, 4–9 (IEEE, 1999).

46. Simao, E., Remy, E., Thieffry, D. & Chaouiya, C. Qualitative modelling of regulated met-
abolic pathways: application to the tryptophan biosynthesis in E. coli. Bioinformatics
21 Suppl 2, ii190–ii196 (2005).

47. Steggles, L.J., Banks, R. & Wipat, A. in 4th International Conference on Computational
Methods in Systems Biology (CMSB), Trento, Italy, October 18–19, 2006 (ed. Priami,
C.) LNCS 4210, 127–142 (2006).

48. Genrich, H., Küffner, R. & Voss, K. Executable Petri net models for the analysis of
metabolic pathways. Int. J. Softw. Tools Tech. Transf. 3, 394–404 (2001).

49. Goss, P.J. & Peccoud, J. Quantitative modeling of stochastic systems in molecular biology
by using stochastic Petri nets. Proc. Natl. Acad. Sci. USA 95, 6750–6755 (1998).

50. Srivastava, R., Peterson, M.S. & Bentley, W.E. Stochastic kinetic analysis of the
Escherichia coli stress circuit using sigma(32)-targeted antisense. Biotechnol. Bioeng.
75, 120–129 (2001).

51. Srivastava, R., You, L., Summers, J. & Yin, J. Stochastic vs. deterministic modeling
of intracellular viral kinetics. J. Theor. Biol. 218, 309–321 (2002).

52. Dill, D. et al. The Pathalyzer: a tool for analysis of signal transduction pathways. [in
Biology], San Diego, December 2–4, 2005, LNCS 4023 (2005).

53. Efroni, S., Harel, D. & Cohen, I.R. Reactive animation: Realistic modeling of complex
dynamic systems. Computer 38, 38–47 (2005).

54. Damm, W. & Harel, D. LSCs: Breathing life into message sequence charts. Form.
Methods Syst. Des. 19, 45–80 (2001).

55. Sternberg, P.W. & Horvitz, H.R. The combined action of two intercellular signaling

REV IEW

NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 11 NOVEMBER 2007 1249

pathways specifies three cell fates during vulval induction in C. elegans. Cell 58,
679–693 (1989).

56. Milner, R. Communicating and Mobile Systems: The pi-Calculus (Cambridge University
Press, Cambridge, UK, 1999).

57. Priami, C. The stochastic pi-calculus. Comp. J. 38 578–589 (1995).
58. Regev, A., Panina, E.M., Silverman, W., Cardelli, L. & Shapiro, E.Y. Bioambients: An

abstraction for biological compartments. Theor. Comput. Sci. 325, 141–167 (2004).
59. Cardelli, L. Brane caluli. in Computational Methods in Systems Biology (CMSB) Paris,

May 26, 2004 (eds. Danos, V. & Schächter) LNCS 3082, 257 (2004).
60. Curti, M., Degano, P., Priami, C. & Baldari, C. Modeling biochemical pathways through

enhanced pi-calculus. Theor. Comput. Sci. 325, 111–140 (2004).
61. Calder, M., Vyshemirsky, V., Gilbert, D. & Orton, R. Analysis of signaling pathways using

the prism model checker in 3rd International Conference on Computational Methods
in Systems Biology (CMSB) (ed. Plotkin, G.) 179–190, (ed. G. Plotkin) Edinburgh,
Scotland (2005).

62. Calder, M., Duguid, A., Gilmore, S. & Hillston, J. Stronger computational model-
ling of signalling pathways using both continuous and discrete-state methods in 4th
International Conference on Computational Methods in Systems Biology (CMSB), Trento,
Italy, October 18–19 (ed. C. Priami) LNCS 4210, 63–78 (2006).

63. Heath, J., Kwiatkowska, M., Norman, G., Parker, D. & Tymchyshyn, O. in 4th International
Conference on Computational Methods in Systems Biology (CMSB), Trento, Italy, October
18–19 (ed. C. Priami) LNCS 4210, 32–48 (2006).

64. Henzinger, T.A. The theory of Hybrid Automata in Proceedings 11th IEEE Symposium
on Logic in Computer Science 278–292 (1996).

65. Ghosh, R. & Tomlin, C. Lateral inhibition through delta-notch signalling: A piecewise
affine hybrid model in 4th International Workshop on Hybrid Systems Computation and
Control, Rome, Italy, LNCS 2034, 232–246 (2001).

66. Ghosh, R. & Tomlin, C. Symbolic reachable set computation of piecewise affine hybrid
automata and its application to biological modeling: Delta-Notch protein signaling in
IEE Transactions on Systems Biology, volume 1, 170–183, June 2004.

67. Kaern, M., Elston, T.C., Blake, W.J. & Collins, J.J. Stochasticity in gene expression: from
theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).

68. Sprinzak, D. & Elowitz, M.B. Reconstruction of genetic circuits. Nature 438, 443–448
(2005).

69. Rosenfeld, N., Perkins, T.J., Alon, U., Elowitz, M.B. & Swain, P.S. A fluctuation method
to quantify in vivo fluorescence data. Biophys. J. 91, 759–766 (2006).

70. Gilman, A. & Arkin, A.P. Genetic “code”: representations and dynamical models of
genetic components and networks. Annu. Rev. Genomics Hum. Genet. 3, 341–369
(2002).

71. Lazebnik, Y. Can a biologist fix a radio?–Or, what I learned while studying apoptosis.
Cancer Cell 2, 179–182 (2002).

72. Kwiatkowska, M. et al. Simulation and verification for computational modeling of signal-
ing pathways. in Proceedings of Winter Simulation Conference, Monterey, California,
December 2–6, 2006, 1666–1674 (IEEE, 2006).

73. Alur, R. et al. Hybrid modeling and simulation of biomolecular networks. in Fourth
Internations Workshop on Hybrid Systems: Computation and Control, Rome, Italy, March
28–30, 2001 (eds. Di Benedetto, M.D. & Sangiovanni-Vincentelli, A.L.) LNCS 2034,
19–32 (2001).

REV IEW

