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Saline Oscillator:

A “hydrodynamic curiosity”
first described by Seelye
Martin in 1970.1

S. Martin observed that a
partially submerged syringe of
salt water in fresh water
exhibits oscillations.

— downward jet of salt water
followed by an upward jet of
fresh water

Oscillations were discovered
by accident while setting up a
demonstration of a buoyant
jet for a class in meterology.?
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Borrowed from M. Okamura and K. Yoshikawa, Phys. Rev. E. 61,
2445 (2000).

[1] Martin S., 1970, A hydrodynamic curiosity: the salt oscillator. Geophys. Fluid Dynamics. 1;143.
[2] Stong, C. L., 1970, The amateur scientist. Scientific American. 223; 221.



Physical basis for the oscillations:

: : : Hydrostatic Pressure: P = pgh
* Higher density fluid Y Pg

(saline) lies above lower
density fluid (water) with 1 H,,
restricted access between I

_ p,,+Ap h,
the two fluids.

e Gravitational instability
generates oscillations

about equi“brium hEIght Balance hydrostatic pressures to
(H derive equilibrium height (H,,):
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Physical basis for the oscillations:

1) Equilibrium height (H,,) is unstable:

A <0

p,+Op ihi w <0

pw (

2)  Flow will occur through orifice with space- Ah>0

average velocity, w(?) h

— Height of saline water inside inner vessel will v
deviate periodically from equilibrium height w>0
(Ah(t)=h;(t)-H,,) leading to fluctuations in
hydrostatic pressure at orifice.




Height and Velocity Profiles

Experimental: Simulation (Navier-Stokes eqs.):
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Okamura, M, and K Yoshikawa. "Rhythm in a saline oscillator." Physical Review E (APS) 61,
no. 3 (2000): 2445-2452.



Phase space trajectories

Trajectories ("flow") can be
visualized in phase space.

Equilibrium height is an unstable
fixed point (i.e., an unstable point

of no flow). w

Trajectories (Ah = hi-H,,, )
approach stable limit cycle
(isolated closed trajectory).

Example of a relaxation oscillator

— hydrostatic pressure difference at
orifice as a result of height change
increases slowly (B' -> A, for
downward flow, A'->B for upward
flow)

— This slow buildup is discharged fast
(Transition to upward flow, A->A',
or transition to downward flow, B-
>B')
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Relaxation oscillations:

* Dynamics similar to that of other relaxation
oscillators such as those governing action
potentials

— two distinct phases: fast release phase and slow
recovery (relaxing) phase.

* Purely nonlinear phenomenon

— limit cycle can't occur for linear phenomenon

e Oscillations are governed by the structure of the
system

— e.g. period of oscillation is intrinsic to the structure of
the system and independent of initial conditions



Some exercises:

 Measure intrinsic period of oscillation for the
setups in the following stations (try to explain the
trends you observe using your physical intuition).

— Station 1: Orifice diameter
— Station 2: Length of orifice
— Station 3: Vessel areas

— Station 4: Density difference



Results:

Station 1: Orifice diameter

Orifice diameter —> Intrinsic Period
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Results:

Station 2: Length of orifice
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equation for fluid
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Results:

Station 3: Vessel areas
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Results:

Station 4: Density difference

Density Difference —» Intrinsic Period
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Studying Rhythms in Saline Oscillator

* The system can be
stimulated or paced

— we "push” system to
different phase in phase
space and let it return to
limit cycle

— this can be accomplished
by infusing some water
into outer vessel

— similar to excitable cells
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Studying Rhythms in Saline Oscillator

* We can study different
rhythms of oscillation and

their bifurcations saline
— i.e., we can observe topological e TN water

changes in the rhythm as we
vary the pacing period

syringe pump

* We can record system \ e
behavior using oscilloscope .
because of electrode- o distilled water
electrolyte interface

— bilayer generates equilibrium b
potential

— equilibrium potential is vl @ C
different for different solutions m d

time



Various N:M Rhythms
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Gonzalez, H, H Arce, and MR Guevara. "Phase resetting, phase locking, and bistability in the periodically
driven saline oscillator: Experiment and model." Physical Review E (APS) 78, no. 3 (2008): 36217.



Different N:M Rhythms

To = 33s/cycle

0.7To = 22.4s/cycle (1:1)
0.5To = 16s/cycle (2:2)
1.9To = 60.8s/cycle (1:2)

0.15To = 4.8s/cycle (?)



Summary

Saline (density) oscillators exhibit oscillatory jets from a density and
hydrostatic pressure imbalance.

— A higher density fluid suspended above a lower density fluid will exhibit a pattern of
upward and downward jets through a restricted channel.

— Equilibrium height is an unstable fixed point.

Trajectories (Ah = hi—Heq,E) exist on a stable limit cycle characterized by
the structure of the system.

— e.g., period of oscillation is defined by orifice diameter, orifice length, density difference,

vessel areas, etc.

Density oscillator is an example of a relaxation oscillator.

— Limit cycle has fast release phase and slow recovery phase.

— It's a good example of an excitable system.

— Infusing a fixed amount of water can stimulate the system into a different state.

Density oscillators take on various N:M rhythms as the period of

stimulation is varied.

— The transitioning point (in terms of period of stimulation) between two rhythms defines
the point of bifurcation in the system dynamics.

— You will see this again for other excitable systems such as neurons and cardiac cells.



